Eco-Friendly Conductive Cotton-Based Textile Electrodes Using Silver- and Carbon-Coated Fabrics for Advanced Flexible Supercapacitors

Wearable electronics need the execution of electronic functions, especially on a flexible and wearable sheet substrate. In this regard, cotton textiles are widely considered as environmentally friendly and natural fiber materials, including for soft and breathable clothing. Previously, conductive co...

Full description

Saved in:
Bibliographic Details
Published inEnergy & fuels Vol. 34; no. 7; pp. 8977 - 8986
Main Authors Keawploy, Norawich, Venkatkarthick, Radhakrishnan, Wangyao, Panyawat, Zhang, Xinyu, Liu, Riping, Qin, Jiaqian
Format Journal Article
LanguageEnglish
Published American Chemical Society 16.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Wearable electronics need the execution of electronic functions, especially on a flexible and wearable sheet substrate. In this regard, cotton textiles are widely considered as environmentally friendly and natural fiber materials, including for soft and breathable clothing. Previously, conductive cotton-based textiles were successfully fabricated through different methods, and the surface sheet resistance was found to be <15 Ω, which shows effective electrical conductivity. Nevertheless, they still need to improve mainly because of the poor electrical conductivity. In this work, conductive cotton textile electrodes with superior bending ability are judiciously fabricated by mixing conductive silver (Ag) powder into a textile ink with various carbon sources such as activated carbon (AC), graphene, and carbon nanotubes (CNTs), which can work as flexible supercapacitor electrodes. Among the three different carbon materials, the AC-based conductive cotton electrodes exhibit superior electrochemical performance in alkaline electrolyte (6 M potassium hydroxide (KOH)). The results of cyclic voltammetry (CV) reveal that areal specific capacitances as high as 3288 and 2695 mF/cm2 were achieved at scan rates of 5 and 10 mV/s, respectively, for the appropriate proportion of 0.3 g of Ag with 0.15 g of AC (0.3 Ag–AC-0.15). It also exhibits excellent cyclic stability with a high capacitance retention of ∼130% for over 10 000 cycles. Moreover, a symmetric flexible supercapacitor device was also successfully fabricated in the lab scale using a poly­(vinyl alcohol) (PVA)–KOH gel electrolyte system, demonstrating that noteworthy rate performance and flexibility can be achieved for the advanced flexible energy-storage devices.
AbstractList Wearable electronics need the execution of electronic functions, especially on a flexible and wearable sheet substrate. In this regard, cotton textiles are widely considered as environmentally friendly and natural fiber materials, including for soft and breathable clothing. Previously, conductive cotton-based textiles were successfully fabricated through different methods, and the surface sheet resistance was found to be <15 Ω, which shows effective electrical conductivity. Nevertheless, they still need to improve mainly because of the poor electrical conductivity. In this work, conductive cotton textile electrodes with superior bending ability are judiciously fabricated by mixing conductive silver (Ag) powder into a textile ink with various carbon sources such as activated carbon (AC), graphene, and carbon nanotubes (CNTs), which can work as flexible supercapacitor electrodes. Among the three different carbon materials, the AC-based conductive cotton electrodes exhibit superior electrochemical performance in alkaline electrolyte (6 M potassium hydroxide (KOH)). The results of cyclic voltammetry (CV) reveal that areal specific capacitances as high as 3288 and 2695 mF/cm² were achieved at scan rates of 5 and 10 mV/s, respectively, for the appropriate proportion of 0.3 g of Ag with 0.15 g of AC (0.3 Ag–AC-0.15). It also exhibits excellent cyclic stability with a high capacitance retention of ∼130% for over 10 000 cycles. Moreover, a symmetric flexible supercapacitor device was also successfully fabricated in the lab scale using a poly(vinyl alcohol) (PVA)–KOH gel electrolyte system, demonstrating that noteworthy rate performance and flexibility can be achieved for the advanced flexible energy-storage devices.
Wearable electronics need the execution of electronic functions, especially on a flexible and wearable sheet substrate. In this regard, cotton textiles are widely considered as environmentally friendly and natural fiber materials, including for soft and breathable clothing. Previously, conductive cotton-based textiles were successfully fabricated through different methods, and the surface sheet resistance was found to be <15 Ω, which shows effective electrical conductivity. Nevertheless, they still need to improve mainly because of the poor electrical conductivity. In this work, conductive cotton textile electrodes with superior bending ability are judiciously fabricated by mixing conductive silver (Ag) powder into a textile ink with various carbon sources such as activated carbon (AC), graphene, and carbon nanotubes (CNTs), which can work as flexible supercapacitor electrodes. Among the three different carbon materials, the AC-based conductive cotton electrodes exhibit superior electrochemical performance in alkaline electrolyte (6 M potassium hydroxide (KOH)). The results of cyclic voltammetry (CV) reveal that areal specific capacitances as high as 3288 and 2695 mF/cm2 were achieved at scan rates of 5 and 10 mV/s, respectively, for the appropriate proportion of 0.3 g of Ag with 0.15 g of AC (0.3 Ag–AC-0.15). It also exhibits excellent cyclic stability with a high capacitance retention of ∼130% for over 10 000 cycles. Moreover, a symmetric flexible supercapacitor device was also successfully fabricated in the lab scale using a poly­(vinyl alcohol) (PVA)–KOH gel electrolyte system, demonstrating that noteworthy rate performance and flexibility can be achieved for the advanced flexible energy-storage devices.
Author Zhang, Xinyu
Qin, Jiaqian
Liu, Riping
Wangyao, Panyawat
Venkatkarthick, Radhakrishnan
Keawploy, Norawich
AuthorAffiliation State Key Laboratory of Metastable Materials Science and Technology
Center of Excellence in Smart Wearable Devices, Metallurgy and Materials Science Research Institute
Metallurgical Engineering Department, Faculty of Engineering
AuthorAffiliation_xml – name: State Key Laboratory of Metastable Materials Science and Technology
– name: Metallurgical Engineering Department, Faculty of Engineering
– name: Center of Excellence in Smart Wearable Devices, Metallurgy and Materials Science Research Institute
Author_xml – sequence: 1
  givenname: Norawich
  surname: Keawploy
  fullname: Keawploy, Norawich
  organization: Center of Excellence in Smart Wearable Devices, Metallurgy and Materials Science Research Institute
– sequence: 2
  givenname: Radhakrishnan
  surname: Venkatkarthick
  fullname: Venkatkarthick, Radhakrishnan
  organization: Center of Excellence in Smart Wearable Devices, Metallurgy and Materials Science Research Institute
– sequence: 3
  givenname: Panyawat
  surname: Wangyao
  fullname: Wangyao, Panyawat
  email: Panyawat.W@chula.ac.th
  organization: Metallurgical Engineering Department, Faculty of Engineering
– sequence: 4
  givenname: Xinyu
  surname: Zhang
  fullname: Zhang, Xinyu
  email: xyzhang@ysu.edu.cn
  organization: State Key Laboratory of Metastable Materials Science and Technology
– sequence: 5
  givenname: Riping
  surname: Liu
  fullname: Liu, Riping
  organization: State Key Laboratory of Metastable Materials Science and Technology
– sequence: 6
  givenname: Jiaqian
  orcidid: 0000-0002-9166-3533
  surname: Qin
  fullname: Qin, Jiaqian
  email: Jiaqian.q@chula.ac.th
  organization: Center of Excellence in Smart Wearable Devices, Metallurgy and Materials Science Research Institute
BookMark eNqNkMFqGzEQhkVJIE6aZ4iOvaw70mp35UMP6WK3hUAPSc6LLI2CgiK5ktbED5D3roxzKL20c5lh-L9h-C7JWYgBCblhsGTA2Wel8xIDpqeDndHnJWhggq0-kAXrODQd8NUZWYCUQwM9FxfkMudnAOhb2S3I21rHZpMcBuMPdIzBzLq4PdaxlBiaryqjoQ_4WpxHuvaoS4oGM33MLjzRe-f3mBqqgqGjSttKjFGVimzUNjmdqY2J3pq9Cvq49PjqtvXQ_bzDpNVOaVdiyh_JuVU-4_V7vyKPm_XD-L25-_ntx3h71ygBUJpOcs5Nr7nQ2HK03dawTiOIfkDbr3Qr0Q5ganX90ILgstfMylZaKwXnqr0in053dyn-mjGX6cVljd6rgHHOE--44AJWwGr0yymqU8w5oZ3qq6q4GEpSzk8MpqP-qeqf_tA_veuv_PAXv0vuRaXDf5DtiTwGnuOcQlXyT-o3_lWm5Q
CitedBy_id crossref_primary_10_1177_15589250241293882
crossref_primary_10_1021_acsomega_3c01176
crossref_primary_10_2139_ssrn_3988099
crossref_primary_10_1088_2058_8585_ac3a13
crossref_primary_10_1016_j_est_2021_103042
crossref_primary_10_1007_s42765_023_00262_y
crossref_primary_10_1016_j_rser_2023_113999
crossref_primary_10_1016_j_eti_2021_101474
crossref_primary_10_1088_1361_6528_ad773b
crossref_primary_10_1016_j_cej_2024_155174
crossref_primary_10_1016_j_electacta_2021_139678
crossref_primary_10_1149_1945_7111_ac5306
crossref_primary_10_2320_matertrans_MT_N2024008
crossref_primary_10_1016_j_jiec_2024_07_014
crossref_primary_10_1021_acsaem_1c01404
crossref_primary_10_1021_acsaem_2c02623
crossref_primary_10_1021_acsami_1c23388
crossref_primary_10_1002_slct_202204567
crossref_primary_10_1039_D4NJ04451G
crossref_primary_10_3390_ma14164571
crossref_primary_10_1002_adma_202406483
crossref_primary_10_1021_acs_energyfuels_0c03380
crossref_primary_10_1177_15280837241252182
crossref_primary_10_3390_polym13203585
crossref_primary_10_1038_s41528_022_00148_w
crossref_primary_10_3390_polym17050628
crossref_primary_10_1016_j_heliyon_2024_e37120
crossref_primary_10_1149_2162_8777_ac4389
crossref_primary_10_1016_j_materresbull_2023_112490
crossref_primary_10_1002_er_8551
crossref_primary_10_1007_s10853_022_07662_2
crossref_primary_10_1007_s11581_021_03917_1
crossref_primary_10_1021_acsaelm_3c00022
crossref_primary_10_1007_s42765_023_00372_7
crossref_primary_10_1016_j_jiec_2024_10_037
crossref_primary_10_1016_j_reactfunctpolym_2022_105221
crossref_primary_10_1016_j_mtcomm_2024_110577
crossref_primary_10_1007_s10854_022_07718_8
crossref_primary_10_1016_j_jpowsour_2021_230303
crossref_primary_10_1021_acs_energyfuels_2c01336
crossref_primary_10_1021_acs_energyfuels_4c03291
crossref_primary_10_55713_jmmm_v30i4_892
Cites_doi 10.1155/2016/2375836
10.1007/s10570-019-02321-3
10.1016/j.jcis.2019.06.048
10.1016/S0167-2738(02)00617-3
10.1021/nl903949m
10.1039/C6SE00047A
10.1016/j.jpowsour.2019.226735
10.1039/C7SE00492C
10.1016/j.est.2018.03.012
10.1016/j.electacta.2018.12.181
10.1002/smll.201701827
10.1038/ncomms4754
10.1016/j.colsurfa.2019.124025
10.1016/j.jpcs.2013.09.006
10.1039/C4NR01780C
10.1007/s10854-019-02672-4
10.1007/s10570-018-1893-1
10.1039/c1ee02421c
10.1039/c3ee40515j
10.1016/j.cej.2019.123692
10.1016/j.supflu.2015.02.027
10.1016/j.apsusc.2019.05.101
10.1038/nmat2297
10.1016/j.jpowsour.2014.02.086
10.1149/1.3090012
10.1016/j.apsusc.2019.05.054
10.1016/j.nanoen.2016.11.007
10.1039/c2jm32659k
10.1021/ef500342d
ContentType Journal Article
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1021/acs.energyfuels.0c01419
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-5029
EndPage 8986
ExternalDocumentID 10_1021_acs_energyfuels_0c01419
a245143379
GroupedDBID 02
55A
5GY
7~N
AABXI
ABFLS
ABMVS
ABUCX
ACGFS
ACJ
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED
ED~
F5P
GNL
IH9
JG
JG~
LG6
P2P
ROL
TAE
TN5
UI2
VF5
VG9
W1F
X
-~X
.DC
4.4
5VS
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AGXLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
ZCA
~02
7S9
L.6
ID FETCH-LOGICAL-a400t-58222d6c24ce32ef5bd15ce0467ef69c38ef70dddd567304286c1f838ff8422a3
IEDL.DBID ACS
ISSN 0887-0624
1520-5029
IngestDate Thu Jul 10 18:38:39 EDT 2025
Thu Apr 24 23:05:41 EDT 2025
Tue Jul 01 01:57:26 EDT 2025
Thu Aug 27 13:41:53 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a400t-58222d6c24ce32ef5bd15ce0467ef69c38ef70dddd567304286c1f838ff8422a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9166-3533
PQID 2524240901
PQPubID 24069
PageCount 10
ParticipantIDs proquest_miscellaneous_2524240901
crossref_citationtrail_10_1021_acs_energyfuels_0c01419
crossref_primary_10_1021_acs_energyfuels_0c01419
acs_journals_10_1021_acs_energyfuels_0c01419
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-16
PublicationDateYYYYMMDD 2020-07-16
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-16
  day: 16
PublicationDecade 2020
PublicationTitle Energy & fuels
PublicationTitleAlternate Energy Fuels
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref2/cit2
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref4/cit4
ref1/cit1
ref24/cit24
ref7/cit7
References_xml – ident: ref13/cit13
  doi: 10.1155/2016/2375836
– ident: ref20/cit20
  doi: 10.1007/s10570-019-02321-3
– ident: ref21/cit21
  doi: 10.1016/j.jcis.2019.06.048
– ident: ref22/cit22
  doi: 10.1016/S0167-2738(02)00617-3
– ident: ref14/cit14
  doi: 10.1021/nl903949m
– ident: ref8/cit8
  doi: 10.1039/C6SE00047A
– ident: ref19/cit19
  doi: 10.1016/j.jpowsour.2019.226735
– ident: ref10/cit10
  doi: 10.1039/C7SE00492C
– ident: ref1/cit1
  doi: 10.1016/j.est.2018.03.012
– ident: ref18/cit18
  doi: 10.1016/j.electacta.2018.12.181
– ident: ref3/cit3
  doi: 10.1002/smll.201701827
– ident: ref29/cit29
  doi: 10.1038/ncomms4754
– ident: ref16/cit16
  doi: 10.1016/j.colsurfa.2019.124025
– ident: ref6/cit6
  doi: 10.1016/j.jpcs.2013.09.006
– ident: ref26/cit26
  doi: 10.1039/C4NR01780C
– ident: ref17/cit17
  doi: 10.1007/s10854-019-02672-4
– ident: ref11/cit11
  doi: 10.1007/s10570-018-1893-1
– ident: ref25/cit25
  doi: 10.1039/c1ee02421c
– ident: ref5/cit5
  doi: 10.1039/c3ee40515j
– ident: ref28/cit28
  doi: 10.1016/j.cej.2019.123692
– ident: ref12/cit12
  doi: 10.1016/j.supflu.2015.02.027
– ident: ref15/cit15
  doi: 10.1016/j.apsusc.2019.05.101
– ident: ref4/cit4
  doi: 10.1038/nmat2297
– ident: ref23/cit23
  doi: 10.1016/j.jpowsour.2014.02.086
– ident: ref9/cit9
  doi: 10.1149/1.3090012
– ident: ref27/cit27
  doi: 10.1016/j.apsusc.2019.05.054
– ident: ref24/cit24
  doi: 10.1016/j.nanoen.2016.11.007
– ident: ref2/cit2
  doi: 10.1039/c2jm32659k
– ident: ref7/cit7
  doi: 10.1021/ef500342d
SSID ssj0006385
Score 2.5075614
Snippet Wearable electronics need the execution of electronic functions, especially on a flexible and wearable sheet substrate. In this regard, cotton textiles are...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8977
SubjectTerms activated carbon
Batteries and Energy Storage
capacitance
carbon nanotubes
cotton
cotton fabric
electrical conductivity
electrochemical capacitors
electrochemistry
electrolytes
electronics
energy
gels
graphene
potassium hydroxide
silver
voltammetry
Title Eco-Friendly Conductive Cotton-Based Textile Electrodes Using Silver- and Carbon-Coated Fabrics for Advanced Flexible Supercapacitors
URI http://dx.doi.org/10.1021/acs.energyfuels.0c01419
https://www.proquest.com/docview/2524240901
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS9xAFH5YPdgerNVK1SpT6NFsk0lmNntcwwYR2kNXwVuYnyCVRDbJQe_-376XTUQR2ZpTCHkhmR_vfZN57_sAftrYahIwD6JYR0SqrQOMOyZAcJHYOMWFkKR6599_5Nllcn4lrtYgemMHn0e_lKlHrquD8y2Gi1FoKDdx8gE2uMSpTGgomz85XxxOYiD3DCVPhpSutx9EYcnUL8PSS6_chZr8M_wdCnaWGSb_Rm2jR-b-NX_j_3_FNmz1wJNNlyPlC6y5cgc2s0HvbQc-PaMm3IWHmamCnEiQ7c0dy6qSeGHRM-JpQ6rDpxj9LLtA145uhc2WYjrW1azLQWDza8q4DpgqLcvUQqNFViGstSxXGl1vzRAss2mfgMByouXU-KB5e-sWBgO4uSYZoK9wmc8usrOgl2wIFDqDJhCEN6w0PDEu5s4LbSNhHC7Cx87LiYlT58ehxUPIMf1JSaWJfBqn3qcJ5yreg_WyKt03YHgvghmhBFdhohM38ZyYiPx4omLSqdmHE2zUop9yddHtpvOooIvPWrroW3of5NDBhenpz0mF42a1YfhkeLtkAFlt8mMYQQV2Im3BqNJVbV1wQeU4IYKwg_e9_iF85LTSJ0pP-R3Wm0XrjhAONfq4mwCPYdMKJg
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcigceBQQLQWMxJEsiRN7s8dttNECbS-7lcop8lOqWiXVJjnQe_93Z7LJ0iKhCnKKrIzl2OOZz_b4G4DPNraaEpgHUawjItXWAfodEyC4SGyc4kJI0n3n4xM5P02-n4mzLUiHuzDYiBprqrtD_N_sAtFXKnPddTjfotcYhYZCFCeP4DFCEk66Pc0WGxuMWiUGjs9Q8mSI7Pp7ReSdTH3fO903zp3HyZ_Dz01bu0CTi1Hb6JG5_oPG8X9-5gU862Eom6715iVsuXIXdrIh-9suPL1DVPgKbmamCnKiRLaXv1hWlcQSi3YSXxvKQXyIvtCyJRp6NDJstk6tY13NuogEtjin-OuAqdKyTK00SmQVglzLcqXRENcMoTOb9uEILCeSTo0VLdortzLozs05JQV6Daf5bJnNgz6BQ6DQNDSBIPRhpeGJcTF3XmgbCeNwST52Xk5MnDo_Di0-Qo5pXyWVJvJpnHqfJpyr-A1sl1Xp3gLDbxHaCCW4ChOduInnxEvkxxMVU9aaPfiCnVr0E7AuurN1HhVUeKeni76n90AO41yYngydcnJcPiwYbgSv1nwgD4t8GhSpwEGkAxlVuqqtCy7ock6IkGz_35r_EXbmy-Oj4ujbyY938ITTHgCRfcoD2G5WrXuPQKnRH7o5cQsoLRKH
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9qC348WK2KVVtX8NFck012Lwe-nOmF-lWEa6EvEvYTiiU5LsmDvvf_7kwuOVpBis1TWDLLZnd2ZnZn5jcA721sNRUwD6JYRwSqrQPUOyZA4yKxcYoHIUn5zt-P5dFp8uVMnG3AxyEXBgdRY09158SnXb2wvkcYiA6o3XUpcb5FzTEKDYUpTu7BFjnviL-n2Xwth5GzxIDzGUqeDNFd_-6INJSpb2qomwK60zr5Nvxcj7cLNvk1ahs9Mn_-gnK86w89gce9OcqmK_55Chuu3IEH2VAFbgceXQMsfAaXM1MFOUEj24vfLKtKQotFeYmvDdUi_oQ60bITFPgobNhsVWLHupp1kQlsfk5x2AFTpWWZWmqkyCo0di3LlUaBXDM0odm0D0tgOYF1auxo3i7c0qBaN-dUHOg5nOazk-wo6As5BApFRBMIskKsNDwxLubOC20jYRwezcfOy4mJU-fHocVHyDHdr6TSRD6NU-_ThHMVv4DNsirdS2D4LZo4QgmuwkQnbuI54RP58UTFVL1mFz7gpBb9RqyLzsfOo4Iar8100c_0LshhrQvTg6JTbY6L2wnDNeFihQtyO8m7gZkKXERyzKjSVW1dcEFJOiGaZq_-b_hv4f6Pw7z49vn462t4yOkqgDA_5RvYbJat20N7qdH73ba4Ata7FQo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Eco-Friendly+Conductive+Cotton-Based+Textile+Electrodes+Using+Silver-+and+Carbon-Coated+Fabrics+for+Advanced+Flexible+Supercapacitors&rft.jtitle=Energy+%26+fuels&rft.au=Keawploy%2C+Norawich&rft.au=Venkatkarthick%2C+Radhakrishnan&rft.au=Wangyao%2C+Panyawat&rft.au=Zhang%2C+Xinyu&rft.date=2020-07-16&rft.pub=American+Chemical+Society&rft.issn=0887-0624&rft.eissn=1520-5029&rft.volume=34&rft.issue=7&rft.spage=8977&rft.epage=8986&rft_id=info:doi/10.1021%2Facs.energyfuels.0c01419&rft.externalDocID=a245143379
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-0624&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-0624&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-0624&client=summon