Eco-Friendly Conductive Cotton-Based Textile Electrodes Using Silver- and Carbon-Coated Fabrics for Advanced Flexible Supercapacitors
Wearable electronics need the execution of electronic functions, especially on a flexible and wearable sheet substrate. In this regard, cotton textiles are widely considered as environmentally friendly and natural fiber materials, including for soft and breathable clothing. Previously, conductive co...
Saved in:
Published in | Energy & fuels Vol. 34; no. 7; pp. 8977 - 8986 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
16.07.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Wearable electronics need the execution of electronic functions, especially on a flexible and wearable sheet substrate. In this regard, cotton textiles are widely considered as environmentally friendly and natural fiber materials, including for soft and breathable clothing. Previously, conductive cotton-based textiles were successfully fabricated through different methods, and the surface sheet resistance was found to be <15 Ω, which shows effective electrical conductivity. Nevertheless, they still need to improve mainly because of the poor electrical conductivity. In this work, conductive cotton textile electrodes with superior bending ability are judiciously fabricated by mixing conductive silver (Ag) powder into a textile ink with various carbon sources such as activated carbon (AC), graphene, and carbon nanotubes (CNTs), which can work as flexible supercapacitor electrodes. Among the three different carbon materials, the AC-based conductive cotton electrodes exhibit superior electrochemical performance in alkaline electrolyte (6 M potassium hydroxide (KOH)). The results of cyclic voltammetry (CV) reveal that areal specific capacitances as high as 3288 and 2695 mF/cm2 were achieved at scan rates of 5 and 10 mV/s, respectively, for the appropriate proportion of 0.3 g of Ag with 0.15 g of AC (0.3 Ag–AC-0.15). It also exhibits excellent cyclic stability with a high capacitance retention of ∼130% for over 10 000 cycles. Moreover, a symmetric flexible supercapacitor device was also successfully fabricated in the lab scale using a poly(vinyl alcohol) (PVA)–KOH gel electrolyte system, demonstrating that noteworthy rate performance and flexibility can be achieved for the advanced flexible energy-storage devices. |
---|---|
AbstractList | Wearable electronics need the execution of electronic functions, especially on a flexible and wearable sheet substrate. In this regard, cotton textiles are widely considered as environmentally friendly and natural fiber materials, including for soft and breathable clothing. Previously, conductive cotton-based textiles were successfully fabricated through different methods, and the surface sheet resistance was found to be <15 Ω, which shows effective electrical conductivity. Nevertheless, they still need to improve mainly because of the poor electrical conductivity. In this work, conductive cotton textile electrodes with superior bending ability are judiciously fabricated by mixing conductive silver (Ag) powder into a textile ink with various carbon sources such as activated carbon (AC), graphene, and carbon nanotubes (CNTs), which can work as flexible supercapacitor electrodes. Among the three different carbon materials, the AC-based conductive cotton electrodes exhibit superior electrochemical performance in alkaline electrolyte (6 M potassium hydroxide (KOH)). The results of cyclic voltammetry (CV) reveal that areal specific capacitances as high as 3288 and 2695 mF/cm² were achieved at scan rates of 5 and 10 mV/s, respectively, for the appropriate proportion of 0.3 g of Ag with 0.15 g of AC (0.3 Ag–AC-0.15). It also exhibits excellent cyclic stability with a high capacitance retention of ∼130% for over 10 000 cycles. Moreover, a symmetric flexible supercapacitor device was also successfully fabricated in the lab scale using a poly(vinyl alcohol) (PVA)–KOH gel electrolyte system, demonstrating that noteworthy rate performance and flexibility can be achieved for the advanced flexible energy-storage devices. Wearable electronics need the execution of electronic functions, especially on a flexible and wearable sheet substrate. In this regard, cotton textiles are widely considered as environmentally friendly and natural fiber materials, including for soft and breathable clothing. Previously, conductive cotton-based textiles were successfully fabricated through different methods, and the surface sheet resistance was found to be <15 Ω, which shows effective electrical conductivity. Nevertheless, they still need to improve mainly because of the poor electrical conductivity. In this work, conductive cotton textile electrodes with superior bending ability are judiciously fabricated by mixing conductive silver (Ag) powder into a textile ink with various carbon sources such as activated carbon (AC), graphene, and carbon nanotubes (CNTs), which can work as flexible supercapacitor electrodes. Among the three different carbon materials, the AC-based conductive cotton electrodes exhibit superior electrochemical performance in alkaline electrolyte (6 M potassium hydroxide (KOH)). The results of cyclic voltammetry (CV) reveal that areal specific capacitances as high as 3288 and 2695 mF/cm2 were achieved at scan rates of 5 and 10 mV/s, respectively, for the appropriate proportion of 0.3 g of Ag with 0.15 g of AC (0.3 Ag–AC-0.15). It also exhibits excellent cyclic stability with a high capacitance retention of ∼130% for over 10 000 cycles. Moreover, a symmetric flexible supercapacitor device was also successfully fabricated in the lab scale using a poly(vinyl alcohol) (PVA)–KOH gel electrolyte system, demonstrating that noteworthy rate performance and flexibility can be achieved for the advanced flexible energy-storage devices. |
Author | Zhang, Xinyu Qin, Jiaqian Liu, Riping Wangyao, Panyawat Venkatkarthick, Radhakrishnan Keawploy, Norawich |
AuthorAffiliation | State Key Laboratory of Metastable Materials Science and Technology Center of Excellence in Smart Wearable Devices, Metallurgy and Materials Science Research Institute Metallurgical Engineering Department, Faculty of Engineering |
AuthorAffiliation_xml | – name: State Key Laboratory of Metastable Materials Science and Technology – name: Metallurgical Engineering Department, Faculty of Engineering – name: Center of Excellence in Smart Wearable Devices, Metallurgy and Materials Science Research Institute |
Author_xml | – sequence: 1 givenname: Norawich surname: Keawploy fullname: Keawploy, Norawich organization: Center of Excellence in Smart Wearable Devices, Metallurgy and Materials Science Research Institute – sequence: 2 givenname: Radhakrishnan surname: Venkatkarthick fullname: Venkatkarthick, Radhakrishnan organization: Center of Excellence in Smart Wearable Devices, Metallurgy and Materials Science Research Institute – sequence: 3 givenname: Panyawat surname: Wangyao fullname: Wangyao, Panyawat email: Panyawat.W@chula.ac.th organization: Metallurgical Engineering Department, Faculty of Engineering – sequence: 4 givenname: Xinyu surname: Zhang fullname: Zhang, Xinyu email: xyzhang@ysu.edu.cn organization: State Key Laboratory of Metastable Materials Science and Technology – sequence: 5 givenname: Riping surname: Liu fullname: Liu, Riping organization: State Key Laboratory of Metastable Materials Science and Technology – sequence: 6 givenname: Jiaqian orcidid: 0000-0002-9166-3533 surname: Qin fullname: Qin, Jiaqian email: Jiaqian.q@chula.ac.th organization: Center of Excellence in Smart Wearable Devices, Metallurgy and Materials Science Research Institute |
BookMark | eNqNkMFqGzEQhkVJIE6aZ4iOvaw70mp35UMP6WK3hUAPSc6LLI2CgiK5ktbED5D3roxzKL20c5lh-L9h-C7JWYgBCblhsGTA2Wel8xIDpqeDndHnJWhggq0-kAXrODQd8NUZWYCUQwM9FxfkMudnAOhb2S3I21rHZpMcBuMPdIzBzLq4PdaxlBiaryqjoQ_4WpxHuvaoS4oGM33MLjzRe-f3mBqqgqGjSttKjFGVimzUNjmdqY2J3pq9Cvq49PjqtvXQ_bzDpNVOaVdiyh_JuVU-4_V7vyKPm_XD-L25-_ntx3h71ygBUJpOcs5Nr7nQ2HK03dawTiOIfkDbr3Qr0Q5ganX90ILgstfMylZaKwXnqr0in053dyn-mjGX6cVljd6rgHHOE--44AJWwGr0yymqU8w5oZ3qq6q4GEpSzk8MpqP-qeqf_tA_veuv_PAXv0vuRaXDf5DtiTwGnuOcQlXyT-o3_lWm5Q |
CitedBy_id | crossref_primary_10_1177_15589250241293882 crossref_primary_10_1021_acsomega_3c01176 crossref_primary_10_2139_ssrn_3988099 crossref_primary_10_1088_2058_8585_ac3a13 crossref_primary_10_1016_j_est_2021_103042 crossref_primary_10_1007_s42765_023_00262_y crossref_primary_10_1016_j_rser_2023_113999 crossref_primary_10_1016_j_eti_2021_101474 crossref_primary_10_1088_1361_6528_ad773b crossref_primary_10_1016_j_cej_2024_155174 crossref_primary_10_1016_j_electacta_2021_139678 crossref_primary_10_1149_1945_7111_ac5306 crossref_primary_10_2320_matertrans_MT_N2024008 crossref_primary_10_1016_j_jiec_2024_07_014 crossref_primary_10_1021_acsaem_1c01404 crossref_primary_10_1021_acsaem_2c02623 crossref_primary_10_1021_acsami_1c23388 crossref_primary_10_1002_slct_202204567 crossref_primary_10_1039_D4NJ04451G crossref_primary_10_3390_ma14164571 crossref_primary_10_1002_adma_202406483 crossref_primary_10_1021_acs_energyfuels_0c03380 crossref_primary_10_1177_15280837241252182 crossref_primary_10_3390_polym13203585 crossref_primary_10_1038_s41528_022_00148_w crossref_primary_10_3390_polym17050628 crossref_primary_10_1016_j_heliyon_2024_e37120 crossref_primary_10_1149_2162_8777_ac4389 crossref_primary_10_1016_j_materresbull_2023_112490 crossref_primary_10_1002_er_8551 crossref_primary_10_1007_s10853_022_07662_2 crossref_primary_10_1007_s11581_021_03917_1 crossref_primary_10_1021_acsaelm_3c00022 crossref_primary_10_1007_s42765_023_00372_7 crossref_primary_10_1016_j_jiec_2024_10_037 crossref_primary_10_1016_j_reactfunctpolym_2022_105221 crossref_primary_10_1016_j_mtcomm_2024_110577 crossref_primary_10_1007_s10854_022_07718_8 crossref_primary_10_1016_j_jpowsour_2021_230303 crossref_primary_10_1021_acs_energyfuels_2c01336 crossref_primary_10_1021_acs_energyfuels_4c03291 crossref_primary_10_55713_jmmm_v30i4_892 |
Cites_doi | 10.1155/2016/2375836 10.1007/s10570-019-02321-3 10.1016/j.jcis.2019.06.048 10.1016/S0167-2738(02)00617-3 10.1021/nl903949m 10.1039/C6SE00047A 10.1016/j.jpowsour.2019.226735 10.1039/C7SE00492C 10.1016/j.est.2018.03.012 10.1016/j.electacta.2018.12.181 10.1002/smll.201701827 10.1038/ncomms4754 10.1016/j.colsurfa.2019.124025 10.1016/j.jpcs.2013.09.006 10.1039/C4NR01780C 10.1007/s10854-019-02672-4 10.1007/s10570-018-1893-1 10.1039/c1ee02421c 10.1039/c3ee40515j 10.1016/j.cej.2019.123692 10.1016/j.supflu.2015.02.027 10.1016/j.apsusc.2019.05.101 10.1038/nmat2297 10.1016/j.jpowsour.2014.02.086 10.1149/1.3090012 10.1016/j.apsusc.2019.05.054 10.1016/j.nanoen.2016.11.007 10.1039/c2jm32659k 10.1021/ef500342d |
ContentType | Journal Article |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1021/acs.energyfuels.0c01419 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-5029 |
EndPage | 8986 |
ExternalDocumentID | 10_1021_acs_energyfuels_0c01419 a245143379 |
GroupedDBID | 02 55A 5GY 7~N AABXI ABFLS ABMVS ABUCX ACGFS ACJ ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED ED~ F5P GNL IH9 JG JG~ LG6 P2P ROL TAE TN5 UI2 VF5 VG9 W1F X -~X .DC 4.4 5VS AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AGXLV AHGAQ BAANH CITATION CUPRZ GGK ZCA ~02 7S9 L.6 |
ID | FETCH-LOGICAL-a400t-58222d6c24ce32ef5bd15ce0467ef69c38ef70dddd567304286c1f838ff8422a3 |
IEDL.DBID | ACS |
ISSN | 0887-0624 1520-5029 |
IngestDate | Thu Jul 10 18:38:39 EDT 2025 Thu Apr 24 23:05:41 EDT 2025 Tue Jul 01 01:57:26 EDT 2025 Thu Aug 27 13:41:53 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a400t-58222d6c24ce32ef5bd15ce0467ef69c38ef70dddd567304286c1f838ff8422a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9166-3533 |
PQID | 2524240901 |
PQPubID | 24069 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2524240901 crossref_citationtrail_10_1021_acs_energyfuels_0c01419 crossref_primary_10_1021_acs_energyfuels_0c01419 acs_journals_10_1021_acs_energyfuels_0c01419 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-16 |
PublicationDateYYYYMMDD | 2020-07-16 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-16 day: 16 |
PublicationDecade | 2020 |
PublicationTitle | Energy & fuels |
PublicationTitleAlternate | Energy Fuels |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref2/cit2 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref4/cit4 ref1/cit1 ref24/cit24 ref7/cit7 |
References_xml | – ident: ref13/cit13 doi: 10.1155/2016/2375836 – ident: ref20/cit20 doi: 10.1007/s10570-019-02321-3 – ident: ref21/cit21 doi: 10.1016/j.jcis.2019.06.048 – ident: ref22/cit22 doi: 10.1016/S0167-2738(02)00617-3 – ident: ref14/cit14 doi: 10.1021/nl903949m – ident: ref8/cit8 doi: 10.1039/C6SE00047A – ident: ref19/cit19 doi: 10.1016/j.jpowsour.2019.226735 – ident: ref10/cit10 doi: 10.1039/C7SE00492C – ident: ref1/cit1 doi: 10.1016/j.est.2018.03.012 – ident: ref18/cit18 doi: 10.1016/j.electacta.2018.12.181 – ident: ref3/cit3 doi: 10.1002/smll.201701827 – ident: ref29/cit29 doi: 10.1038/ncomms4754 – ident: ref16/cit16 doi: 10.1016/j.colsurfa.2019.124025 – ident: ref6/cit6 doi: 10.1016/j.jpcs.2013.09.006 – ident: ref26/cit26 doi: 10.1039/C4NR01780C – ident: ref17/cit17 doi: 10.1007/s10854-019-02672-4 – ident: ref11/cit11 doi: 10.1007/s10570-018-1893-1 – ident: ref25/cit25 doi: 10.1039/c1ee02421c – ident: ref5/cit5 doi: 10.1039/c3ee40515j – ident: ref28/cit28 doi: 10.1016/j.cej.2019.123692 – ident: ref12/cit12 doi: 10.1016/j.supflu.2015.02.027 – ident: ref15/cit15 doi: 10.1016/j.apsusc.2019.05.101 – ident: ref4/cit4 doi: 10.1038/nmat2297 – ident: ref23/cit23 doi: 10.1016/j.jpowsour.2014.02.086 – ident: ref9/cit9 doi: 10.1149/1.3090012 – ident: ref27/cit27 doi: 10.1016/j.apsusc.2019.05.054 – ident: ref24/cit24 doi: 10.1016/j.nanoen.2016.11.007 – ident: ref2/cit2 doi: 10.1039/c2jm32659k – ident: ref7/cit7 doi: 10.1021/ef500342d |
SSID | ssj0006385 |
Score | 2.5075614 |
Snippet | Wearable electronics need the execution of electronic functions, especially on a flexible and wearable sheet substrate. In this regard, cotton textiles are... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 8977 |
SubjectTerms | activated carbon Batteries and Energy Storage capacitance carbon nanotubes cotton cotton fabric electrical conductivity electrochemical capacitors electrochemistry electrolytes electronics energy gels graphene potassium hydroxide silver voltammetry |
Title | Eco-Friendly Conductive Cotton-Based Textile Electrodes Using Silver- and Carbon-Coated Fabrics for Advanced Flexible Supercapacitors |
URI | http://dx.doi.org/10.1021/acs.energyfuels.0c01419 https://www.proquest.com/docview/2524240901 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS9xAFH5YPdgerNVK1SpT6NFsk0lmNntcwwYR2kNXwVuYnyCVRDbJQe_-376XTUQR2ZpTCHkhmR_vfZN57_sAftrYahIwD6JYR0SqrQOMOyZAcJHYOMWFkKR6599_5Nllcn4lrtYgemMHn0e_lKlHrquD8y2Gi1FoKDdx8gE2uMSpTGgomz85XxxOYiD3DCVPhpSutx9EYcnUL8PSS6_chZr8M_wdCnaWGSb_Rm2jR-b-NX_j_3_FNmz1wJNNlyPlC6y5cgc2s0HvbQc-PaMm3IWHmamCnEiQ7c0dy6qSeGHRM-JpQ6rDpxj9LLtA145uhc2WYjrW1azLQWDza8q4DpgqLcvUQqNFViGstSxXGl1vzRAss2mfgMByouXU-KB5e-sWBgO4uSYZoK9wmc8usrOgl2wIFDqDJhCEN6w0PDEu5s4LbSNhHC7Cx87LiYlT58ehxUPIMf1JSaWJfBqn3qcJ5yreg_WyKt03YHgvghmhBFdhohM38ZyYiPx4omLSqdmHE2zUop9yddHtpvOooIvPWrroW3of5NDBhenpz0mF42a1YfhkeLtkAFlt8mMYQQV2Im3BqNJVbV1wQeU4IYKwg_e9_iF85LTSJ0pP-R3Wm0XrjhAONfq4mwCPYdMKJg |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcigceBQQLQWMxJEsiRN7s8dttNECbS-7lcop8lOqWiXVJjnQe_93Z7LJ0iKhCnKKrIzl2OOZz_b4G4DPNraaEpgHUawjItXWAfodEyC4SGyc4kJI0n3n4xM5P02-n4mzLUiHuzDYiBprqrtD_N_sAtFXKnPddTjfotcYhYZCFCeP4DFCEk66Pc0WGxuMWiUGjs9Q8mSI7Pp7ReSdTH3fO903zp3HyZ_Dz01bu0CTi1Hb6JG5_oPG8X9-5gU862Eom6715iVsuXIXdrIh-9suPL1DVPgKbmamCnKiRLaXv1hWlcQSi3YSXxvKQXyIvtCyJRp6NDJstk6tY13NuogEtjin-OuAqdKyTK00SmQVglzLcqXRENcMoTOb9uEILCeSTo0VLdortzLozs05JQV6Daf5bJnNgz6BQ6DQNDSBIPRhpeGJcTF3XmgbCeNwST52Xk5MnDo_Di0-Qo5pXyWVJvJpnHqfJpyr-A1sl1Xp3gLDbxHaCCW4ChOduInnxEvkxxMVU9aaPfiCnVr0E7AuurN1HhVUeKeni76n90AO41yYngydcnJcPiwYbgSv1nwgD4t8GhSpwEGkAxlVuqqtCy7ock6IkGz_35r_EXbmy-Oj4ujbyY938ITTHgCRfcoD2G5WrXuPQKnRH7o5cQsoLRKH |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9qC348WK2KVVtX8NFck012Lwe-nOmF-lWEa6EvEvYTiiU5LsmDvvf_7kwuOVpBis1TWDLLZnd2ZnZn5jcA721sNRUwD6JYRwSqrQPUOyZA4yKxcYoHIUn5zt-P5dFp8uVMnG3AxyEXBgdRY09158SnXb2wvkcYiA6o3XUpcb5FzTEKDYUpTu7BFjnviL-n2Xwth5GzxIDzGUqeDNFd_-6INJSpb2qomwK60zr5Nvxcj7cLNvk1ahs9Mn_-gnK86w89gce9OcqmK_55Chuu3IEH2VAFbgceXQMsfAaXM1MFOUEj24vfLKtKQotFeYmvDdUi_oQ60bITFPgobNhsVWLHupp1kQlsfk5x2AFTpWWZWmqkyCo0di3LlUaBXDM0odm0D0tgOYF1auxo3i7c0qBaN-dUHOg5nOazk-wo6As5BApFRBMIskKsNDwxLubOC20jYRwezcfOy4mJU-fHocVHyDHdr6TSRD6NU-_ThHMVv4DNsirdS2D4LZo4QgmuwkQnbuI54RP58UTFVL1mFz7gpBb9RqyLzsfOo4Iar8100c_0LshhrQvTg6JTbY6L2wnDNeFihQtyO8m7gZkKXERyzKjSVW1dcEFJOiGaZq_-b_hv4f6Pw7z49vn462t4yOkqgDA_5RvYbJat20N7qdH73ba4Ata7FQo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Eco-Friendly+Conductive+Cotton-Based+Textile+Electrodes+Using+Silver-+and+Carbon-Coated+Fabrics+for+Advanced+Flexible+Supercapacitors&rft.jtitle=Energy+%26+fuels&rft.au=Keawploy%2C+Norawich&rft.au=Venkatkarthick%2C+Radhakrishnan&rft.au=Wangyao%2C+Panyawat&rft.au=Zhang%2C+Xinyu&rft.date=2020-07-16&rft.pub=American+Chemical+Society&rft.issn=0887-0624&rft.eissn=1520-5029&rft.volume=34&rft.issue=7&rft.spage=8977&rft.epage=8986&rft_id=info:doi/10.1021%2Facs.energyfuels.0c01419&rft.externalDocID=a245143379 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-0624&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-0624&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-0624&client=summon |