A Review of Recent Advances in Biomass Pyrolysis

Pyrolysis has created many (and will open more) possibilities for high-value utilization of biomass. To obtain the optimal amount of desired pyrolysis products, especially high-quality bio-oil, a great deal of effort has been conducted in both academia in the past few decades, to clarify fundamental...

Full description

Saved in:
Bibliographic Details
Published inEnergy & fuels Vol. 34; no. 12; pp. 15557 - 15578
Main Authors Wang, Guanyu, Dai, Yujie, Yang, Haiping, Xiong, Qingang, Wang, Kaige, Zhou, Jinsong, Li, Yunchao, Wang, Shurong
Format Journal Article
LanguageEnglish
Published American Chemical Society 17.12.2020
Subjects
Online AccessGet full text
ISSN0887-0624
1520-5029
1520-5029
DOI10.1021/acs.energyfuels.0c03107

Cover

Loading…
Abstract Pyrolysis has created many (and will open more) possibilities for high-value utilization of biomass. To obtain the optimal amount of desired pyrolysis products, especially high-quality bio-oil, a great deal of effort has been conducted in both academia in the past few decades, to clarify fundamental mechanisms of biomass pyrolysis and design efficient relevant technical processes. This paper comprehensively reviews recent advances in both fundamental studies and technology applications of biomass pyrolysis. First, pyrolysis mechanisms of real biomass and its major components, the reactor-scale simulation of biomass pyrolysis, and applications of pyrolysis products are discussed. Then, according to the requirements imposed to improve the physicochemical properties of respective pyrolysis products, relevant optimization and regulation methods for biomass pyrolysis process are reviewed. Previous research has indicated that biomass copyrolysis with other feedstock can not only enhance physicochemical properties of pyrolysis products but also effectively realize recycling of wastes. Thus, an in-depth discussion of recent advances in biomass copyrolysis with four different feedstocks (i.e., coal, plastics, tires, and sludge) is covered in this Review. As an indispensable component of general biomass pyrolysis, recent activities of catalytic biomass pyrolysis are also summarized, including new catalytic pyrolysis processes such as catalytic hydropyrolysis and catalytic copyrolysis. Besides, two novel heating approaches (microwave heating and solar heating) for biomass pyrolysis are described, and their features are compared with the conventional heating method. Finally, this Review is concluded with perspectives for future directions of biomass pyrolysis.
AbstractList Pyrolysis has created many (and will open more) possibilities for high-value utilization of biomass. To obtain the optimal amount of desired pyrolysis products, especially high-quality bio-oil, a great deal of effort has been conducted in both academia in the past few decades, to clarify fundamental mechanisms of biomass pyrolysis and design efficient relevant technical processes. This paper comprehensively reviews recent advances in both fundamental studies and technology applications of biomass pyrolysis. First, pyrolysis mechanisms of real biomass and its major components, the reactor-scale simulation of biomass pyrolysis, and applications of pyrolysis products are discussed. Then, according to the requirements imposed to improve the physicochemical properties of respective pyrolysis products, relevant optimization and regulation methods for biomass pyrolysis process are reviewed. Previous research has indicated that biomass copyrolysis with other feedstock can not only enhance physicochemical properties of pyrolysis products but also effectively realize recycling of wastes. Thus, an in-depth discussion of recent advances in biomass copyrolysis with four different feedstocks (i.e., coal, plastics, tires, and sludge) is covered in this Review. As an indispensable component of general biomass pyrolysis, recent activities of catalytic biomass pyrolysis are also summarized, including new catalytic pyrolysis processes such as catalytic hydropyrolysis and catalytic copyrolysis. Besides, two novel heating approaches (microwave heating and solar heating) for biomass pyrolysis are described, and their features are compared with the conventional heating method. Finally, this Review is concluded with perspectives for future directions of biomass pyrolysis.
Author Zhou, Jinsong
Wang, Guanyu
Xiong, Qingang
Wang, Kaige
Yang, Haiping
Wang, Shurong
Dai, Yujie
Li, Yunchao
AuthorAffiliation State Key Laboratory of Coal Combustion
IT Innovation Center
General Motors
State Key Laboratory of Clean Energy Utilization
Huazhong University of Science and Technology
AuthorAffiliation_xml – name: IT Innovation Center
– name: State Key Laboratory of Clean Energy Utilization
– name: Huazhong University of Science and Technology
– name: General Motors
– name: State Key Laboratory of Coal Combustion
Author_xml – sequence: 1
  givenname: Guanyu
  surname: Wang
  fullname: Wang, Guanyu
  organization: State Key Laboratory of Clean Energy Utilization
– sequence: 2
  givenname: Yujie
  surname: Dai
  fullname: Dai, Yujie
  organization: State Key Laboratory of Clean Energy Utilization
– sequence: 3
  givenname: Haiping
  orcidid: 0000-0002-8323-8879
  surname: Yang
  fullname: Yang, Haiping
  email: yhping2002@163.com
  organization: Huazhong University of Science and Technology
– sequence: 4
  givenname: Qingang
  orcidid: 0000-0002-8484-6163
  surname: Xiong
  fullname: Xiong, Qingang
  organization: General Motors
– sequence: 5
  givenname: Kaige
  surname: Wang
  fullname: Wang, Kaige
  organization: State Key Laboratory of Clean Energy Utilization
– sequence: 6
  givenname: Jinsong
  orcidid: 0000-0003-2704-0419
  surname: Zhou
  fullname: Zhou, Jinsong
  organization: State Key Laboratory of Clean Energy Utilization
– sequence: 7
  givenname: Yunchao
  surname: Li
  fullname: Li, Yunchao
  organization: State Key Laboratory of Clean Energy Utilization
– sequence: 8
  givenname: Shurong
  orcidid: 0000-0001-6733-3027
  surname: Wang
  fullname: Wang, Shurong
  email: srwang@zju.edu.cn
  organization: State Key Laboratory of Clean Energy Utilization
BookMark eNqNkL1OwzAURi1UJNrCM5CRJeXaseNkYCgVf1IlEILZcp0b5Cq1i50U5e1J1Q6IBaZ7h3O-4UzIyHmHhFxSmFFg9FqbOEOH4aOvO2ziDAxkFOQJGVPBIBXAyhEZQ1HIFHLGz8gkxjUA5FkhxgTmySvuLH4lvh4-g65N5tVOO4MxsS65tX6jY0xe-uCbPtp4Tk5r3US8ON4peb-_e1s8psvnh6fFfJlqDtCmXJe05pWucgmiKgqAEnIwhaiQG1EIwbOV5Ax5UesVM7VGyQwCljSnJqNVNiVXh91t8J8dxlZtbDTYNNqh76JignFWghRyQOUBNcHHGLBW22A3OvSKgto3UkMj9aOROjYazJtfprGtbq13bdC2-YefHfw9sPZdcEOSP61vm7iHIw
CitedBy_id crossref_primary_10_1155_2022_9084029
crossref_primary_10_1016_j_cej_2023_147203
crossref_primary_10_1016_j_jaap_2024_106741
crossref_primary_10_1007_s11356_023_27297_3
crossref_primary_10_1016_j_fuel_2023_129481
crossref_primary_10_1038_s41598_023_39441_7
crossref_primary_10_1021_acs_energyfuels_1c00177
crossref_primary_10_1007_s10973_022_11910_7
crossref_primary_10_1021_acs_energyfuels_1c02355
crossref_primary_10_1007_s13399_024_05853_2
crossref_primary_10_1016_j_ijhydene_2024_11_300
crossref_primary_10_1016_j_fuel_2023_129367
crossref_primary_10_1016_j_psep_2024_07_034
crossref_primary_10_1016_j_fuel_2023_128714
crossref_primary_10_1021_acs_energyfuels_4c04131
crossref_primary_10_1016_j_ijhydene_2024_12_473
crossref_primary_10_1016_j_renene_2022_08_077
crossref_primary_10_1007_s10562_024_04804_w
crossref_primary_10_1021_acsomega_1c00622
crossref_primary_10_1016_j_fuproc_2022_107485
crossref_primary_10_1016_j_combustflame_2023_112671
crossref_primary_10_1016_j_jclepro_2022_132131
crossref_primary_10_1016_j_jaap_2023_105922
crossref_primary_10_1016_j_jclepro_2023_139168
crossref_primary_10_1007_s40831_024_00940_0
crossref_primary_10_1016_j_jaap_2022_105543
crossref_primary_10_1016_j_indcrop_2024_118232
crossref_primary_10_1016_j_jaap_2021_105123
crossref_primary_10_1002_kin_21684
crossref_primary_10_1016_j_enconman_2024_118822
crossref_primary_10_1021_acs_joc_4c01106
crossref_primary_10_1016_j_enconman_2024_119359
crossref_primary_10_1021_acsenvironau_1c00025
crossref_primary_10_1016_j_biombioe_2023_106837
crossref_primary_10_1007_s10934_024_01682_w
crossref_primary_10_1016_j_fuel_2022_126268
crossref_primary_10_1021_acs_energyfuels_1c01947
crossref_primary_10_1016_j_joei_2024_101902
crossref_primary_10_3389_fpls_2024_1479925
crossref_primary_10_1016_j_fuel_2023_130222
crossref_primary_10_1016_j_jhazmat_2023_132414
crossref_primary_10_1016_j_combustflame_2022_112142
crossref_primary_10_1016_j_psep_2024_10_118
crossref_primary_10_1007_s13399_023_03851_4
crossref_primary_10_1016_j_fuproc_2023_107897
crossref_primary_10_1016_j_heliyon_2025_e42800
crossref_primary_10_1016_j_jaap_2024_106645
crossref_primary_10_1016_j_enconman_2024_119001
crossref_primary_10_3390_en16041829
crossref_primary_10_1016_j_energy_2024_131241
crossref_primary_10_1016_j_fuel_2024_133246
crossref_primary_10_3390_polym16162334
crossref_primary_10_1016_j_fuel_2024_131060
crossref_primary_10_1007_s11368_024_03842_6
crossref_primary_10_1016_j_fuel_2022_126474
crossref_primary_10_1016_j_enconman_2023_116925
crossref_primary_10_1002_rcm_9412
crossref_primary_10_1007_s13399_024_05867_w
crossref_primary_10_1016_j_fuel_2023_127769
crossref_primary_10_1007_s13399_022_02900_8
crossref_primary_10_1016_j_energy_2021_122602
crossref_primary_10_1016_j_ijoes_2024_100827
crossref_primary_10_1021_acscentsci_4c00545
crossref_primary_10_1039_D3NJ00095H
crossref_primary_10_1016_j_fuel_2024_133483
crossref_primary_10_1016_j_jaap_2024_106635
crossref_primary_10_3390_en16196936
crossref_primary_10_1007_s10311_023_01654_7
crossref_primary_10_3390_en16196932
crossref_primary_10_1016_j_biortech_2022_127520
crossref_primary_10_1021_acssuschemeng_2c02881
crossref_primary_10_1016_j_jcat_2023_115267
crossref_primary_10_3390_catal14030200
crossref_primary_10_1002_cey2_260
crossref_primary_10_1002_ese3_1833
crossref_primary_10_1016_j_indcrop_2022_115501
crossref_primary_10_1016_j_renene_2021_12_007
crossref_primary_10_1021_acs_energyfuels_1c01606
crossref_primary_10_1021_acsomega_1c01122
crossref_primary_10_1016_j_cej_2024_153146
crossref_primary_10_1016_j_jclepro_2022_134347
crossref_primary_10_1007_s10973_023_12461_1
crossref_primary_10_1016_j_energy_2022_123667
crossref_primary_10_1016_j_enconman_2023_117085
crossref_primary_10_1007_s12649_023_02153_0
crossref_primary_10_3390_ma17051016
crossref_primary_10_1016_j_biortech_2021_125251
crossref_primary_10_1021_acs_est_1c08400
crossref_primary_10_1016_j_nexus_2024_100301
crossref_primary_10_1007_s13399_023_05065_0
crossref_primary_10_1007_s42250_024_00907_4
crossref_primary_10_1016_j_joei_2023_101315
crossref_primary_10_1038_s41893_024_01480_x
crossref_primary_10_1016_j_crcon_2024_100228
crossref_primary_10_1016_j_fuel_2023_130795
crossref_primary_10_1016_j_jaap_2022_105463
crossref_primary_10_1016_j_jaap_2024_106799
crossref_primary_10_1016_j_energy_2024_134049
crossref_primary_10_1007_s10311_023_01613_2
crossref_primary_10_1007_s12649_022_01848_0
crossref_primary_10_1016_j_jaap_2023_106254
crossref_primary_10_1021_acs_energyfuels_2c02075
crossref_primary_10_1142_S2737416524500303
crossref_primary_10_1016_j_jaap_2022_105462
crossref_primary_10_1093_ce_zkae036
crossref_primary_10_3390_ma17030565
crossref_primary_10_1016_j_scca_2024_100046
crossref_primary_10_1016_j_fuel_2023_128461
crossref_primary_10_1016_j_jece_2022_108025
crossref_primary_10_1021_acssuschemeng_3c04597
crossref_primary_10_1002_ange_202308822
crossref_primary_10_3390_en17092011
crossref_primary_10_1016_j_jaap_2022_105456
crossref_primary_10_1016_j_joei_2024_101663
crossref_primary_10_3390_catal11121526
crossref_primary_10_1016_j_jaap_2022_105459
crossref_primary_10_1016_j_jaap_2022_105433
crossref_primary_10_1051_e3sconf_202346203047
crossref_primary_10_1016_j_energy_2025_135522
crossref_primary_10_1016_j_jclepro_2024_141957
crossref_primary_10_1016_j_renene_2022_12_076
crossref_primary_10_1016_j_energy_2024_131201
crossref_primary_10_1002_cphc_202200510
crossref_primary_10_1051_mattech_2024026
crossref_primary_10_1007_s13399_024_05535_z
crossref_primary_10_1093_oxfmat_itab014
crossref_primary_10_3775_jie_101_210
crossref_primary_10_1016_j_fuel_2022_126311
crossref_primary_10_1021_acssusresmgt_4c00195
crossref_primary_10_1021_acs_energyfuels_0c03968
crossref_primary_10_1063_5_0101634
crossref_primary_10_2139_ssrn_4118105
crossref_primary_10_1016_j_fuproc_2024_108077
crossref_primary_10_1016_j_joei_2024_101537
crossref_primary_10_1080_15567036_2024_2353843
crossref_primary_10_1016_j_psep_2025_106803
crossref_primary_10_3390_cleantechnol3040043
crossref_primary_10_1016_j_fuel_2024_131024
crossref_primary_10_1016_j_fuel_2024_132364
crossref_primary_10_1002_anie_202308822
crossref_primary_10_1016_j_biteb_2023_101650
crossref_primary_10_1016_j_jaap_2021_105261
crossref_primary_10_1016_j_envres_2023_116489
crossref_primary_10_1016_j_jaap_2023_106153
crossref_primary_10_17798_bitlisfen_997799
crossref_primary_10_1016_j_egyr_2022_04_051
crossref_primary_10_1016_j_jece_2024_113879
crossref_primary_10_3390_nano12213841
crossref_primary_10_1016_j_heliyon_2024_e27713
crossref_primary_10_1002_ente_202300901
crossref_primary_10_1021_acs_energyfuels_1c01651
crossref_primary_10_1016_j_ijhydene_2022_07_173
crossref_primary_10_3390_agriculture13020260
crossref_primary_10_1002_asia_202400045
crossref_primary_10_1016_j_energy_2024_130901
crossref_primary_10_1016_j_dche_2023_100103
crossref_primary_10_3390_su17051945
crossref_primary_10_1016_j_joei_2022_01_016
crossref_primary_10_1016_j_fuproc_2022_107175
crossref_primary_10_3390_pr11051549
crossref_primary_10_1016_j_renene_2023_119460
crossref_primary_10_1016_j_jclepro_2024_140738
crossref_primary_10_1016_j_jaap_2025_106985
crossref_primary_10_1016_j_joei_2024_101880
crossref_primary_10_1007_s42250_024_00992_5
crossref_primary_10_1016_j_gee_2022_12_002
crossref_primary_10_1002_adma_202300369
crossref_primary_10_1007_s13399_024_06250_5
crossref_primary_10_1021_acsomega_3c04325
crossref_primary_10_2139_ssrn_4074339
crossref_primary_10_1016_j_jaap_2023_106068
crossref_primary_10_1021_acs_energyfuels_3c02934
crossref_primary_10_1080_00986445_2023_2223489
crossref_primary_10_3389_fchem_2022_973417
crossref_primary_10_1002_ente_202300350
crossref_primary_10_1016_j_energy_2024_131427
crossref_primary_10_1016_j_renene_2025_122666
crossref_primary_10_1021_acs_iecr_3c03667
crossref_primary_10_1016_j_crmicr_2024_100237
crossref_primary_10_1080_02786826_2023_2254355
crossref_primary_10_1016_j_cej_2022_138979
crossref_primary_10_1016_j_fuel_2023_128437
crossref_primary_10_1016_j_fuel_2022_123148
crossref_primary_10_1016_j_jwpe_2022_103458
crossref_primary_10_1002_tcr_202300333
crossref_primary_10_1038_s41598_024_61108_0
crossref_primary_10_1016_j_jaap_2025_107044
crossref_primary_10_1016_j_jaap_2022_105801
crossref_primary_10_1021_acs_energyfuels_3c03231
crossref_primary_10_1016_j_indcrop_2022_115474
crossref_primary_10_1016_j_jcat_2024_115914
crossref_primary_10_1016_j_scitotenv_2021_149195
crossref_primary_10_1016_j_jaap_2021_105405
crossref_primary_10_1063_5_0146201
crossref_primary_10_1016_j_jaap_2024_106357
crossref_primary_10_3390_en16145403
crossref_primary_10_1016_j_clet_2024_100874
crossref_primary_10_1016_j_jaap_2024_106354
crossref_primary_10_1007_s10311_023_01573_7
crossref_primary_10_1016_j_jaap_2024_106352
crossref_primary_10_1016_j_jaap_2024_106472
crossref_primary_10_1016_j_jaap_2024_106591
crossref_primary_10_1016_j_psep_2023_03_034
crossref_primary_10_1016_j_powtec_2024_120570
crossref_primary_10_1016_j_fuel_2022_126781
crossref_primary_10_1080_21622515_2023_2198147
crossref_primary_10_1016_j_est_2025_115725
crossref_primary_10_1016_j_wmb_2024_05_002
crossref_primary_10_1134_S1990793122050116
crossref_primary_10_1016_j_enconman_2022_115951
crossref_primary_10_1016_j_psep_2023_11_014
crossref_primary_10_1021_acs_energyfuels_4c05631
crossref_primary_10_1016_j_fuel_2023_130623
crossref_primary_10_1016_j_joei_2024_101624
crossref_primary_10_1016_j_energy_2024_132072
crossref_primary_10_1016_j_energy_2022_125307
crossref_primary_10_1016_j_renene_2022_08_006
crossref_primary_10_1002_ente_202400183
crossref_primary_10_1016_j_cej_2024_156260
crossref_primary_10_1016_j_enconman_2024_118437
crossref_primary_10_1021_acs_energyfuels_4c04745
crossref_primary_10_31857_S0028242124020015
crossref_primary_10_1016_j_fuel_2023_127482
crossref_primary_10_1016_j_jece_2025_115508
crossref_primary_10_1007_s10311_022_01543_5
crossref_primary_10_1021_acssuschemeng_1c06202
crossref_primary_10_1007_s13369_025_10022_2
crossref_primary_10_1016_j_psep_2023_11_048
crossref_primary_10_1016_j_partic_2023_07_004
crossref_primary_10_1007_s10311_021_01273_0
crossref_primary_10_1016_j_indcrop_2025_120516
crossref_primary_10_1016_j_jhazmat_2021_127783
crossref_primary_10_1016_j_chemosphere_2023_139760
crossref_primary_10_1016_j_jaap_2022_105588
crossref_primary_10_1016_j_psep_2024_12_016
crossref_primary_10_1016_j_jaap_2021_105184
crossref_primary_10_1016_j_ijhydene_2023_05_049
crossref_primary_10_1016_j_jaap_2023_106197
crossref_primary_10_1016_j_jaap_2024_106375
crossref_primary_10_1016_j_fuel_2021_122437
crossref_primary_10_1016_j_cej_2021_131048
crossref_primary_10_1016_j_jaap_2024_106373
crossref_primary_10_1016_j_scp_2023_101216
crossref_primary_10_1016_j_enconman_2024_118206
crossref_primary_10_1039_D3CC01555F
crossref_primary_10_1016_j_jaap_2023_106193
crossref_primary_10_1016_j_fuel_2022_127057
crossref_primary_10_3390_polym15122741
crossref_primary_10_3390_molecules28041777
crossref_primary_10_1016_j_ecmx_2024_100783
crossref_primary_10_1080_17597269_2023_2206698
crossref_primary_10_3390_polym15122747
crossref_primary_10_1016_j_indcrop_2024_119864
crossref_primary_10_1016_j_biortech_2022_128087
crossref_primary_10_1021_acs_est_2c02631
crossref_primary_10_1007_s12155_025_10835_x
crossref_primary_10_1007_s13399_023_03858_x
crossref_primary_10_1016_j_jaap_2021_105333
crossref_primary_10_1016_j_combustflame_2023_112909
crossref_primary_10_1016_j_energy_2025_135389
crossref_primary_10_1007_s00425_024_04603_y
crossref_primary_10_3390_en16237839
crossref_primary_10_1038_s41598_024_52500_x
crossref_primary_10_1039_D1RA06652H
crossref_primary_10_1021_acs_energyfuels_1c02793
crossref_primary_10_1007_s10965_023_03587_9
crossref_primary_10_1016_j_fuel_2023_129169
crossref_primary_10_1021_acs_energyfuels_1c00251
crossref_primary_10_1016_j_scitotenv_2022_158034
crossref_primary_10_1007_s11356_023_28992_x
crossref_primary_10_1016_j_biombioe_2022_106654
crossref_primary_10_1016_j_ijhydene_2024_01_228
crossref_primary_10_1016_j_jaap_2024_106817
crossref_primary_10_1021_acssusresmgt_4c00137
crossref_primary_10_1002_slct_202200789
crossref_primary_10_1016_j_fuproc_2022_107323
crossref_primary_10_1016_j_chemosphere_2023_139784
crossref_primary_10_1039_D2GC04872H
crossref_primary_10_1016_j_biteb_2024_101899
crossref_primary_10_1016_j_cattod_2022_02_004
crossref_primary_10_1016_j_micromeso_2024_113362
crossref_primary_10_1016_j_nxmate_2024_100450
crossref_primary_10_1016_j_enconman_2022_116323
crossref_primary_10_1016_j_jaap_2024_106393
crossref_primary_10_1016_j_seta_2022_102991
crossref_primary_10_1016_j_jaap_2024_106390
crossref_primary_10_1007_s12649_023_02076_w
crossref_primary_10_1088_1755_1315_1254_1_012088
crossref_primary_10_1016_j_scitotenv_2023_165359
crossref_primary_10_1016_j_fuel_2022_126622
crossref_primary_10_1007_s12155_022_10529_8
crossref_primary_10_1016_j_fuel_2022_123478
crossref_primary_10_1021_acs_energyfuels_1c01107
crossref_primary_10_1016_j_cej_2024_152434
crossref_primary_10_1080_15567036_2024_2428393
crossref_primary_10_1021_acs_jpca_2c03669
crossref_primary_10_1016_j_jiec_2023_03_021
crossref_primary_10_3390_chemistry5010035
crossref_primary_10_1016_j_seppur_2023_125921
crossref_primary_10_1021_acs_energyfuels_3c02211
crossref_primary_10_1007_s13399_024_05760_6
crossref_primary_10_1016_j_jaap_2024_106843
crossref_primary_10_2139_ssrn_4000208
crossref_primary_10_1016_j_fuel_2021_122746
crossref_primary_10_1021_acs_iecr_4c01676
crossref_primary_10_3390_polym14081621
crossref_primary_10_1039_D3SU00097D
crossref_primary_10_2139_ssrn_4195666
crossref_primary_10_2139_ssrn_4195421
crossref_primary_10_1016_j_indcrop_2023_116822
crossref_primary_10_1016_j_renene_2024_121429
crossref_primary_10_1016_j_fuel_2022_124413
crossref_primary_10_1016_j_renene_2025_122714
crossref_primary_10_1016_j_icheatmasstransfer_2023_107132
crossref_primary_10_1016_j_jenvman_2024_120152
crossref_primary_10_1088_1742_6596_2751_1_012024
crossref_primary_10_3390_jmmp8030121
crossref_primary_10_1016_j_biortech_2025_132212
crossref_primary_10_1016_j_fuel_2024_133163
crossref_primary_10_1007_s11164_024_05389_0
crossref_primary_10_1016_j_jaap_2024_106712
crossref_primary_10_51583_IJLTEMAS_2024_130903
crossref_primary_10_1016_j_rineng_2023_100876
crossref_primary_10_1002_cssc_202400602
crossref_primary_10_1016_j_chemosphere_2021_131901
crossref_primary_10_1016_j_fuproc_2023_107989
crossref_primary_10_1021_acs_energyfuels_4c00918
crossref_primary_10_1016_j_fuproc_2021_107042
crossref_primary_10_1186_s42834_023_00176_9
crossref_primary_10_1016_j_renene_2022_07_031
crossref_primary_10_1016_j_chemosphere_2024_141251
crossref_primary_10_1021_acs_energyfuels_0c04415
crossref_primary_10_1021_acs_energyfuels_2c04192
crossref_primary_10_1007_s13399_024_06434_z
crossref_primary_10_1016_j_jaecs_2022_100061
crossref_primary_10_1016_j_cej_2024_152099
crossref_primary_10_1016_j_fuel_2022_123453
crossref_primary_10_1016_j_scitotenv_2023_161655
crossref_primary_10_1021_acssusresmgt_4c00121
crossref_primary_10_1016_j_jer_2024_06_020
crossref_primary_10_1016_j_fuproc_2023_107872
crossref_primary_10_1007_s41742_024_00732_0
crossref_primary_10_1016_j_joei_2023_101501
crossref_primary_10_1016_j_ijhydene_2021_08_180
crossref_primary_10_1016_j_jaap_2022_105830
crossref_primary_10_1016_j_indcrop_2024_119148
crossref_primary_10_1016_j_mcat_2023_113382
Cites_doi 10.1039/C8SE00096D
10.1016/j.jenvman.2019.02.039
10.1016/j.jclepro.2019.06.026
10.1021/acs.energyfuels.9b02585
10.1039/D0RE00121J
10.1016/j.fuproc.2018.11.004
10.1016/j.renene.2019.10.141
10.1016/j.wasman.2019.04.033
10.1016/j.joei.2019.12.001
10.1016/j.wasman.2019.01.003
10.1016/j.rser.2015.06.054
10.1016/j.biortech.2016.02.042
10.1016/j.rser.2015.12.146
10.1016/j.fuel.2018.10.139
10.1016/j.fuel.2018.06.061
10.1021/acs.energyfuels.9b00482
10.1016/j.apcata.2015.12.022
10.1016/j.biortech.2019.121691
10.1016/j.proci.2020.06.172
10.1016/j.fuel.2018.07.070
10.1515/9783110369632
10.1016/j.fuproc.2019.05.037
10.1021/acs.energyfuels.8b04191
10.1039/C8GC03461C
10.1016/j.jenvman.2017.01.069
10.1016/j.biortech.2018.10.062
10.1016/j.jaap.2017.10.023
10.1016/j.proci.2020.06.196
10.1021/acs.energyfuels.6b00247
10.1016/j.fuproc.2016.10.020
10.1016/j.joei.2018.10.012
10.1016/j.biortech.2017.09.184
10.1016/j.rser.2018.03.048
10.1016/j.renene.2018.11.097
10.1016/j.energy.2017.06.022
10.1016/j.fuproc.2018.11.007
10.1016/j.fuel.2019.02.135
10.1016/j.comptc.2017.08.014
10.1039/C6GC00911E
10.1016/j.jaap.2017.06.011
10.1016/j.biortech.2020.123473
10.1021/acs.energyfuels.9b02523
10.1016/j.rser.2015.12.342
10.1016/j.rser.2020.110148
10.1016/j.renene.2018.06.045
10.1016/j.enconman.2019.112442
10.1016/j.enconman.2016.11.016
10.1016/j.biortech.2019.03.049
10.1021/ef500129x
10.1016/j.wasman.2018.04.044
10.1016/j.biombioe.2019.03.017
10.1016/j.fuel.2019.03.099
10.1016/j.fuel.2020.117302
10.1016/j.powtec.2019.12.011
10.1016/j.cej.2020.125372
10.1016/j.renene.2019.01.015
10.1016/j.combustflame.2019.07.009
10.1016/j.energy.2019.116016
10.1016/j.energy.2015.11.034
10.1016/j.cattod.2019.01.047
10.1016/j.fuel.2015.12.057
10.1016/j.energy.2018.09.133
10.1016/j.rser.2016.12.001
10.1016/j.rser.2014.07.159
10.1016/j.biortech.2016.01.033
10.1039/C7GC01088E
10.1016/j.pecs.2017.05.004
10.1016/j.joei.2019.01.014
10.1016/j.renene.2017.04.035
10.1126/science.aaq0324
10.1039/C9SE00162J
10.1016/j.jaap.2016.01.007
10.1016/j.biortech.2011.10.078
10.1016/j.fuel.2013.09.009
10.1016/j.biortech.2020.123457
10.1016/j.fuproc.2018.07.023
10.1016/j.biortech.2019.122627
10.1016/j.cep.2018.04.005
10.1016/j.fuel.2015.04.033
10.1016/j.combustflame.2019.04.052
10.1016/j.enconman.2016.04.014
10.1016/j.wasman.2017.02.012
10.1016/j.rser.2020.110124
10.1016/j.jaap.2018.07.010
10.1002/ep.11906
10.1016/j.biortech.2014.01.038
10.1016/j.fuproc.2018.08.002
10.1016/j.rser.2019.01.030
10.1016/j.biombioe.2018.02.006
10.1016/j.combustflame.2020.01.016
10.15376/biores.9.3.4050-4062
10.1007/s10311-020-01040-7
10.1016/j.renene.2015.11.071
10.1016/j.proci.2018.05.146
10.1016/j.fuel.2016.03.008
10.1016/j.renene.2019.09.069
10.1016/j.renene.2019.10.103
10.1016/j.biortech.2017.09.210
10.1016/j.biortech.2015.01.127
10.1016/j.biortech.2016.08.068
10.1016/j.jenvman.2019.109410
10.1016/j.biortech.2019.122480
10.1016/j.rser.2015.04.193
10.1016/j.fuproc.2018.05.002
10.1016/j.rser.2018.03.066
10.1016/j.energy.2016.03.015
10.1016/j.energy.2016.11.135
10.1016/j.biortech.2019.03.137
10.1016/j.biortech.2019.01.119
10.1016/j.jaap.2015.07.009
10.1002/ep.10629
10.1021/acs.energyfuels.6b00373
10.1016/j.fuproc.2018.02.019
10.1002/9781119417637
10.1016/j.biortech.2015.10.086
10.1016/j.enconman.2017.10.029
10.1016/j.fuel.2018.08.014
10.1021/acssuschemeng.6b02634
10.1016/j.energy.2018.08.002
10.1016/j.apenergy.2013.11.040
10.1039/C3CS60414D
10.1016/j.fuproc.2019.04.022
10.1016/j.biortech.2014.08.104
10.1016/j.fuproc.2019.106180
10.1016/j.jaap.2016.01.008
10.1016/j.combustflame.2018.09.025
10.1016/j.cej.2020.124401
10.1016/j.biortech.2017.07.011
10.1016/j.biortech.2019.121729
10.1016/j.jechem.2017.11.013
10.1021/acssuschemeng.6b02262
10.1016/j.biortech.2015.08.051
10.1016/j.renene.2019.05.088
10.1016/j.enconman.2017.08.062
10.1016/j.biortech.2019.01.081
10.1016/j.jaap.2016.08.017
10.1016/j.enconman.2019.111816
10.1016/j.fuproc.2016.10.012
10.1016/j.proci.2016.07.129
10.1016/j.apcatb.2019.04.058
10.1016/j.jaap.2017.11.012
10.1016/j.jaap.2017.04.018
10.1021/acs.jpca.9b04438
10.1016/j.enconman.2018.02.004
10.1016/j.enconman.2014.07.007
10.1016/j.energy.2020.118128
10.1016/j.pecs.2018.05.002
10.1016/j.jclepro.2018.06.142
10.1016/j.tca.2018.05.008
10.1016/j.scitotenv.2018.03.239
10.1016/j.biombioe.2019.02.008
10.1016/j.jaap.2020.104779
10.1016/j.cplett.2016.03.058
10.1016/j.jechem.2019.08.023
10.1016/j.apenergy.2018.03.117
10.1039/C9GC00585D
10.1016/j.apcata.2011.08.046
10.1016/j.biortech.2019.121844
10.1016/j.enconman.2018.12.060
10.1016/j.biombioe.2011.01.048
10.1016/j.energy.2019.116545
10.1007/s00894-015-2843-6
10.1016/j.energy.2017.05.042
10.1021/acssuschemeng.0c03903
10.1021/acs.energyfuels.8b03987
10.1016/j.biortech.2016.09.026
10.1016/j.fuel.2020.118004
10.1016/j.cattod.2016.01.004
10.1016/j.fuel.2017.11.073
10.1016/j.solener.2017.05.033
10.1016/j.jclepro.2018.02.052
10.1016/j.cplett.2016.06.025
10.1016/j.rser.2019.109676
10.1016/j.enconman.2017.12.038
10.1016/j.fuel.2016.11.057
10.1002/aic.15106
10.1016/j.fuel.2015.10.125
10.1016/j.biortech.2017.04.104
10.1016/j.proci.2016.06.167
10.1016/j.biortech.2018.07.153
10.1016/j.jaap.2018.12.005
10.1016/j.rser.2018.02.027
10.1016/j.jece.2018.07.050
10.1016/j.energy.2016.01.088
10.1016/j.rser.2015.10.103
10.1021/acssuschemeng.6b02806
10.1016/j.fuel.2017.11.083
10.1016/j.fuel.2017.11.084
10.1016/j.biortech.2015.10.096
10.1016/j.rser.2015.12.185
10.1039/C7EE03208K
10.1016/j.cej.2019.123404
10.1016/j.cej.2017.01.130
10.1016/j.fuproc.2019.04.038
10.1016/j.jaap.2017.07.022
10.1016/j.fuel.2016.10.036
10.1016/j.biortech.2017.02.070
10.1016/j.fuproc.2019.02.016
ContentType Journal Article
Copyright 2020 American Chemical Society
Copyright_xml – notice: 2020 American Chemical Society
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1021/acs.energyfuels.0c03107
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-5029
EndPage 15578
ExternalDocumentID 10_1021_acs_energyfuels_0c03107
d77874794
GroupedDBID 02
55A
5GY
5VS
7~N
AABXI
ABFLS
ABMVS
ABUCX
ACGFS
ACJ
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED
ED~
F5P
GNL
IH9
JG
JG~
LG6
P2P
ROL
TAE
TN5
UI2
VF5
VG9
W1F
X
-~X
.DC
4.4
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AGXLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
ZCA
~02
7S9
L.6
ID FETCH-LOGICAL-a400t-4a91f4dad6705d88009060c85de4c585543b742e48fab2cfae72ce0e9161c31d3
IEDL.DBID ACS
ISSN 0887-0624
1520-5029
IngestDate Thu Jul 10 22:03:08 EDT 2025
Thu Apr 24 23:05:41 EDT 2025
Tue Jul 01 02:27:31 EDT 2025
Sat Dec 19 09:08:32 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a400t-4a91f4dad6705d88009060c85de4c585543b742e48fab2cfae72ce0e9161c31d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6733-3027
0000-0002-8484-6163
0000-0002-8323-8879
0000-0003-2704-0419
PQID 2524290757
PQPubID 24069
PageCount 22
ParticipantIDs proquest_miscellaneous_2524290757
crossref_primary_10_1021_acs_energyfuels_0c03107
crossref_citationtrail_10_1021_acs_energyfuels_0c03107
acs_journals_10_1021_acs_energyfuels_0c03107
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-17
PublicationDateYYYYMMDD 2020-12-17
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-17
  day: 17
PublicationDecade 2020
PublicationTitle Energy & fuels
PublicationTitleAlternate Energy Fuels
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
ref185/cit185
ref23/cit23
ref115/cit115
ref187/cit187
Bu Q. (ref172/cit172) 2016; 1
ref111/cit111
ref113/cit113
ref183/cit183
ref117/cit117
ref48/cit48
ref74/cit74
ref189/cit189
ref119/cit119
ref35/cit35
ref93/cit93
ref42/cit42
ref120/cit120
ref178/cit178
ref122/cit122
ref61/cit61
ref176/cit176
ref67/cit67
ref128/cit128
ref124/cit124
ref126/cit126
ref54/cit54
Wang S. (ref76/cit76) 2017; 25
ref137/cit137
ref11/cit11
ref102/cit102
ref29/cit29
ref174/cit174
ref86/cit86
ref170/cit170
ref5/cit5
ref43/cit43
ref80/cit80
ref133/cit133
ref28/cit28
ref203/cit203
ref148/cit148
ref55/cit55
ref144/cit144
ref167/cit167
ref163/cit163
ref66/cit66
ref87/cit87
ref106/cit106
ref190/cit190
ref140/cit140
ref198/cit198
(ref1/cit1) 2019
ref194/cit194
ref98/cit98
ref153/cit153
ref150/cit150
ref63/cit63
ref56/cit56
ref155/cit155
ref156/cit156
ref158/cit158
ref8/cit8
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref60/cit60
ref17/cit17
ref82/cit82
ref147/cit147
ref145/cit145
ref21/cit21
ref166/cit166
ref164/cit164
(ref2/cit2) 2020
ref78/cit78
ref36/cit36
ref83/cit83
ref79/cit79
ref139/cit139
ref200/cit200
ref14/cit14
ref57/cit57
ref169/cit169
ref134/cit134
ref40/cit40
ref131/cit131
ref161/cit161
ref142/cit142
ref15/cit15
ref180/cit180
ref62/cit62
ref41/cit41
ref58/cit58
ref104/cit104
ref177/cit177
ref84/cit84
ref123/cit123
ref196/cit196
ref7/cit7
ref45/cit45
ref52/cit52
ref184/cit184
ref114/cit114
ref186/cit186
ref116/cit116
ref110/cit110
ref182/cit182
ref112/cit112
ref77/cit77
ref71/cit71
ref188/cit188
ref20/cit20
ref118/cit118
ref89/cit89
ref19/cit19
ref96/cit96
ref107/cit107
Brown R. C. (ref10/cit10) 2019
ref191/cit191
ref109/cit109
ref13/cit13
ref193/cit193
Cheng J. (ref18/cit18) 2017
ref105/cit105
ref197/cit197
ref38/cit38
ref199/cit199
Wang S. (ref22/cit22) 2016; 1
ref90/cit90
ref195/cit195
ref64/cit64
ref6/cit6
ref136/cit136
ref65/cit65
ref171/cit171
ref97/cit97
ref101/cit101
ref32/cit32
ref39/cit39
ref202/cit202
ref168/cit168
ref132/cit132
ref91/cit91
ref12/cit12
ref179/cit179
ref121/cit121
ref175/cit175
ref33/cit33
ref129/cit129
ref44/cit44
ref70/cit70
ref125/cit125
ref9/cit9
ref152/cit152
ref154/cit154
ref27/cit27
ref151/cit151
ref159/cit159
ref92/cit92
ref157/cit157
ref31/cit31
ref88/cit88
ref160/cit160
ref143/cit143
ref53/cit53
ref149/cit149
ref162/cit162
ref46/cit46
ref49/cit49
ref75/cit75
ref24/cit24
ref141/cit141
ref50/cit50
ref138/cit138
ref100/cit100
ref25/cit25
ref173/cit173
ref103/cit103
ref72/cit72
ref201/cit201
Ge S. (ref181/cit181) 2020; 135
ref51/cit51
ref135/cit135
ref68/cit68
ref94/cit94
ref130/cit130
ref204/cit204
ref146/cit146
ref26/cit26
ref73/cit73
ref69/cit69
ref165/cit165
ref95/cit95
ref108/cit108
ref192/cit192
ref4/cit4
ref30/cit30
ref47/cit47
ref127/cit127
References_xml – ident: ref188/cit188
  doi: 10.1039/C8SE00096D
– ident: ref95/cit95
  doi: 10.1016/j.jenvman.2019.02.039
– ident: ref27/cit27
  doi: 10.1016/j.jclepro.2019.06.026
– ident: ref155/cit155
  doi: 10.1021/acs.energyfuels.9b02585
– ident: ref157/cit157
  doi: 10.1039/D0RE00121J
– ident: ref78/cit78
  doi: 10.1016/j.fuproc.2018.11.004
– ident: ref144/cit144
  doi: 10.1016/j.renene.2019.10.141
– ident: ref101/cit101
  doi: 10.1016/j.wasman.2019.04.033
– ident: ref203/cit203
  doi: 10.1016/j.joei.2019.12.001
– ident: ref84/cit84
  doi: 10.1016/j.wasman.2019.01.003
– ident: ref21/cit21
  doi: 10.1016/j.rser.2015.06.054
– ident: ref60/cit60
  doi: 10.1016/j.biortech.2016.02.042
– ident: ref67/cit67
  doi: 10.1016/j.rser.2015.12.146
– ident: ref185/cit185
  doi: 10.1016/j.fuel.2018.10.139
– ident: ref199/cit199
  doi: 10.1016/j.fuel.2018.06.061
– ident: ref38/cit38
  doi: 10.1021/acs.energyfuels.9b00482
– ident: ref137/cit137
  doi: 10.1016/j.apcata.2015.12.022
– ident: ref140/cit140
  doi: 10.1016/j.biortech.2019.121691
– ident: ref34/cit34
  doi: 10.1016/j.proci.2020.06.172
– ident: ref66/cit66
  doi: 10.1016/j.fuel.2018.07.070
– volume: 1
  volume-title: Pyrolysis of Biomass
  year: 2016
  ident: ref22/cit22
  doi: 10.1515/9783110369632
– ident: ref158/cit158
  doi: 10.1016/j.fuproc.2019.05.037
– volume-title: Biomass to Renewable Energy Processes
  year: 2017
  ident: ref18/cit18
– ident: ref153/cit153
  doi: 10.1021/acs.energyfuels.8b04191
– ident: ref49/cit49
  doi: 10.1039/C8GC03461C
– ident: ref117/cit117
  doi: 10.1016/j.jenvman.2017.01.069
– ident: ref145/cit145
  doi: 10.1016/j.biortech.2018.10.062
– ident: ref182/cit182
  doi: 10.1016/j.jaap.2017.10.023
– ident: ref37/cit37
  doi: 10.1016/j.proci.2020.06.196
– ident: ref47/cit47
  doi: 10.1021/acs.energyfuels.6b00247
– ident: ref81/cit81
  doi: 10.1016/j.fuproc.2016.10.020
– ident: ref187/cit187
  doi: 10.1016/j.joei.2018.10.012
– ident: ref192/cit192
  doi: 10.1016/j.biortech.2017.09.184
– ident: ref69/cit69
  doi: 10.1016/j.rser.2018.03.048
– ident: ref64/cit64
  doi: 10.1016/j.renene.2018.11.097
– ident: ref124/cit124
  doi: 10.1016/j.energy.2017.06.022
– ident: ref178/cit178
  doi: 10.1016/j.fuproc.2018.11.007
– ident: ref202/cit202
  doi: 10.1016/j.fuel.2019.02.135
– ident: ref33/cit33
  doi: 10.1016/j.comptc.2017.08.014
– ident: ref138/cit138
  doi: 10.1039/C6GC00911E
– ident: ref141/cit141
  doi: 10.1016/j.jaap.2017.06.011
– ident: ref161/cit161
  doi: 10.1016/j.biortech.2020.123473
– ident: ref154/cit154
  doi: 10.1021/acs.energyfuels.9b02523
– ident: ref68/cit68
  doi: 10.1016/j.rser.2015.12.342
– volume: 135
  start-page: 110148
  year: 2020
  ident: ref181/cit181
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2020.110148
– ident: ref99/cit99
  doi: 10.1016/j.renene.2018.06.045
– ident: ref92/cit92
  doi: 10.1016/j.enconman.2019.112442
– ident: ref19/cit19
  doi: 10.1016/j.enconman.2016.11.016
– ident: ref198/cit198
  doi: 10.1016/j.biortech.2019.03.049
– ident: ref80/cit80
  doi: 10.1021/ef500129x
– ident: ref204/cit204
  doi: 10.1016/j.wasman.2018.04.044
– ident: ref134/cit134
  doi: 10.1016/j.biombioe.2019.03.017
– volume-title: World Energy Outlook 2019
  year: 2019
  ident: ref1/cit1
– ident: ref44/cit44
  doi: 10.1016/j.fuel.2019.03.099
– ident: ref54/cit54
  doi: 10.1016/j.fuel.2020.117302
– ident: ref59/cit59
  doi: 10.1016/j.powtec.2019.12.011
– ident: ref118/cit118
  doi: 10.1016/j.cej.2020.125372
– ident: ref107/cit107
  doi: 10.1016/j.renene.2019.01.015
– ident: ref28/cit28
  doi: 10.1016/j.combustflame.2019.07.009
– ident: ref193/cit193
  doi: 10.1016/j.energy.2019.116016
– ident: ref171/cit171
  doi: 10.1016/j.energy.2015.11.034
– ident: ref152/cit152
  doi: 10.1016/j.cattod.2019.01.047
– ident: ref106/cit106
  doi: 10.1016/j.fuel.2015.12.057
– ident: ref113/cit113
  doi: 10.1016/j.energy.2018.09.133
– ident: ref70/cit70
  doi: 10.1016/j.rser.2016.12.001
– ident: ref71/cit71
  doi: 10.1016/j.rser.2014.07.159
– ident: ref105/cit105
  doi: 10.1016/j.biortech.2016.01.033
– ident: ref159/cit159
  doi: 10.1039/C7GC01088E
– ident: ref5/cit5
  doi: 10.1016/j.pecs.2017.05.004
– ident: ref135/cit135
  doi: 10.1016/j.joei.2019.01.014
– ident: ref8/cit8
  doi: 10.1016/j.renene.2017.04.035
– ident: ref110/cit110
  doi: 10.1126/science.aaq0324
– ident: ref169/cit169
  doi: 10.1039/C9SE00162J
– ident: ref41/cit41
  doi: 10.1016/j.jaap.2016.01.007
– ident: ref51/cit51
  doi: 10.1016/j.biortech.2011.10.078
– ident: ref62/cit62
  doi: 10.1016/j.fuel.2013.09.009
– ident: ref162/cit162
  doi: 10.1016/j.biortech.2020.123457
– ident: ref139/cit139
  doi: 10.1016/j.fuproc.2018.07.023
– ident: ref91/cit91
  doi: 10.1016/j.biortech.2019.122627
– ident: ref65/cit65
  doi: 10.1016/j.cep.2018.04.005
– ident: ref93/cit93
  doi: 10.1016/j.fuel.2015.04.033
– ident: ref36/cit36
  doi: 10.1016/j.combustflame.2019.04.052
– ident: ref100/cit100
  doi: 10.1016/j.enconman.2016.04.014
– ident: ref119/cit119
  doi: 10.1016/j.wasman.2017.02.012
– ident: ref77/cit77
  doi: 10.1016/j.rser.2020.110124
– ident: ref129/cit129
  doi: 10.1016/j.jaap.2018.07.010
– ident: ref151/cit151
  doi: 10.1002/ep.11906
– ident: ref179/cit179
  doi: 10.1016/j.biortech.2014.01.038
– ident: ref122/cit122
  doi: 10.1016/j.fuproc.2018.08.002
– ident: ref4/cit4
  doi: 10.1016/j.rser.2019.01.030
– ident: ref56/cit56
  doi: 10.1016/j.biombioe.2018.02.006
– ident: ref45/cit45
  doi: 10.1016/j.combustflame.2020.01.016
– ident: ref126/cit126
  doi: 10.15376/biores.9.3.4050-4062
– ident: ref131/cit131
  doi: 10.1007/s10311-020-01040-7
– ident: ref197/cit197
  doi: 10.1016/j.renene.2015.11.071
– ident: ref24/cit24
  doi: 10.1016/j.proci.2018.05.146
– ident: ref31/cit31
  doi: 10.1016/j.fuel.2016.03.008
– ident: ref30/cit30
  doi: 10.1016/j.renene.2019.09.069
– ident: ref96/cit96
  doi: 10.1016/j.renene.2019.10.103
– ident: ref97/cit97
  doi: 10.1016/j.biortech.2017.09.210
– ident: ref55/cit55
  doi: 10.1016/j.biortech.2015.01.127
– ident: ref163/cit163
  doi: 10.1016/j.biortech.2016.08.068
– ident: ref120/cit120
  doi: 10.1016/j.jenvman.2019.109410
– ident: ref174/cit174
  doi: 10.1016/j.biortech.2019.122480
– ident: ref23/cit23
  doi: 10.1016/j.rser.2015.04.193
– ident: ref102/cit102
  doi: 10.1016/j.fuproc.2018.05.002
– ident: ref11/cit11
  doi: 10.1016/j.rser.2018.03.066
– ident: ref111/cit111
  doi: 10.1016/j.energy.2016.03.015
– volume: 1
  start-page: 69
  volume-title: Advances in Bioenergy
  year: 2016
  ident: ref172/cit172
– ident: ref48/cit48
  doi: 10.1016/j.energy.2016.11.135
– ident: ref166/cit166
  doi: 10.1016/j.biortech.2019.03.137
– ident: ref190/cit190
  doi: 10.1016/j.biortech.2019.01.119
– ident: ref43/cit43
  doi: 10.1016/j.jaap.2015.07.009
– ident: ref150/cit150
  doi: 10.1002/ep.10629
– ident: ref156/cit156
  doi: 10.1021/acs.energyfuels.6b00373
– ident: ref184/cit184
  doi: 10.1016/j.fuproc.2018.02.019
– volume-title: Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power
  year: 2019
  ident: ref10/cit10
  doi: 10.1002/9781119417637
– ident: ref20/cit20
  doi: 10.1016/j.biortech.2015.10.086
– ident: ref200/cit200
  doi: 10.1016/j.enconman.2017.10.029
– ident: ref109/cit109
  doi: 10.1016/j.fuel.2018.08.014
– ident: ref57/cit57
  doi: 10.1021/acssuschemeng.6b02634
– ident: ref186/cit186
  doi: 10.1016/j.energy.2018.08.002
– ident: ref74/cit74
  doi: 10.1016/j.apenergy.2013.11.040
– ident: ref132/cit132
  doi: 10.1039/C3CS60414D
– ident: ref103/cit103
  doi: 10.1016/j.fuproc.2019.04.022
– ident: ref104/cit104
  doi: 10.1016/j.biortech.2014.08.104
– ident: ref123/cit123
  doi: 10.1016/j.fuproc.2019.106180
– ident: ref175/cit175
  doi: 10.1016/j.jaap.2016.01.008
– ident: ref25/cit25
  doi: 10.1016/j.combustflame.2018.09.025
– ident: ref170/cit170
  doi: 10.1016/j.cej.2020.124401
– ident: ref136/cit136
  doi: 10.1016/j.biortech.2017.07.011
– ident: ref148/cit148
  doi: 10.1016/j.biortech.2019.121729
– ident: ref50/cit50
  doi: 10.1016/j.jechem.2017.11.013
– ident: ref142/cit142
  doi: 10.1021/acssuschemeng.6b02262
– ident: ref7/cit7
  doi: 10.1016/j.biortech.2015.08.051
– ident: ref61/cit61
  doi: 10.1016/j.renene.2019.05.088
– ident: ref116/cit116
  doi: 10.1016/j.enconman.2017.08.062
– ident: ref146/cit146
  doi: 10.1016/j.biortech.2019.01.081
– ident: ref90/cit90
  doi: 10.1016/j.jaap.2016.08.017
– ident: ref168/cit168
  doi: 10.1016/j.enconman.2019.111816
– ident: ref173/cit173
  doi: 10.1016/j.fuproc.2016.10.012
– ident: ref42/cit42
  doi: 10.1016/j.proci.2016.07.129
– ident: ref183/cit183
  doi: 10.1016/j.apcatb.2019.04.058
– ident: ref165/cit165
  doi: 10.1016/j.jaap.2017.11.012
– ident: ref87/cit87
  doi: 10.1016/j.jaap.2017.04.018
– ident: ref35/cit35
  doi: 10.1021/acs.jpca.9b04438
– ident: ref15/cit15
  doi: 10.1016/j.enconman.2018.02.004
– ident: ref89/cit89
  doi: 10.1016/j.enconman.2014.07.007
– ident: ref194/cit194
  doi: 10.1016/j.energy.2020.118128
– ident: ref3/cit3
  doi: 10.1016/j.pecs.2018.05.002
– ident: ref98/cit98
  doi: 10.1016/j.jclepro.2018.06.142
– ident: ref29/cit29
  doi: 10.1016/j.tca.2018.05.008
– ident: ref167/cit167
  doi: 10.1016/j.scitotenv.2018.03.239
– ident: ref58/cit58
  doi: 10.1016/j.biombioe.2019.02.008
– ident: ref160/cit160
  doi: 10.1016/j.jaap.2020.104779
– ident: ref40/cit40
  doi: 10.1016/j.cplett.2016.03.058
– ident: ref79/cit79
  doi: 10.1016/j.jechem.2019.08.023
– ident: ref86/cit86
  doi: 10.1016/j.apenergy.2018.03.117
– ident: ref63/cit63
  doi: 10.1039/C9GC00585D
– ident: ref72/cit72
  doi: 10.1016/j.apcata.2011.08.046
– ident: ref6/cit6
  doi: 10.1016/j.biortech.2019.121844
– ident: ref114/cit114
  doi: 10.1016/j.enconman.2018.12.060
– ident: ref14/cit14
  doi: 10.1016/j.biombioe.2011.01.048
– ident: ref73/cit73
– ident: ref94/cit94
  doi: 10.1016/j.energy.2019.116545
– ident: ref53/cit53
  doi: 10.1007/s00894-015-2843-6
– ident: ref115/cit115
  doi: 10.1016/j.energy.2017.05.042
– ident: ref75/cit75
  doi: 10.1021/acssuschemeng.0c03903
– ident: ref108/cit108
  doi: 10.1021/acs.energyfuels.8b03987
– volume-title: BP Statistical Review of World Energy 2020
  year: 2020
  ident: ref2/cit2
– ident: ref83/cit83
  doi: 10.1016/j.biortech.2016.09.026
– ident: ref85/cit85
  doi: 10.1016/j.fuel.2020.118004
– ident: ref149/cit149
  doi: 10.1016/j.cattod.2016.01.004
– ident: ref130/cit130
  doi: 10.1016/j.fuel.2017.11.073
– ident: ref17/cit17
  doi: 10.1016/j.solener.2017.05.033
– ident: ref177/cit177
  doi: 10.1016/j.jclepro.2018.02.052
– ident: ref32/cit32
  doi: 10.1016/j.cplett.2016.06.025
– ident: ref121/cit121
  doi: 10.1016/j.rser.2019.109676
– ident: ref112/cit112
  doi: 10.1016/j.enconman.2017.12.038
– ident: ref52/cit52
  doi: 10.1016/j.fuel.2016.11.057
– ident: ref127/cit127
  doi: 10.1002/aic.15106
– ident: ref164/cit164
  doi: 10.1016/j.fuel.2015.10.125
– ident: ref191/cit191
  doi: 10.1016/j.biortech.2017.04.104
– ident: ref128/cit128
  doi: 10.1016/j.proci.2016.06.167
– ident: ref88/cit88
  doi: 10.1016/j.biortech.2018.07.153
– ident: ref147/cit147
  doi: 10.1016/j.jaap.2018.12.005
– ident: ref196/cit196
  doi: 10.1016/j.rser.2018.02.027
– ident: ref82/cit82
  doi: 10.1016/j.jece.2018.07.050
– ident: ref16/cit16
  doi: 10.1016/j.energy.2016.01.088
– ident: ref9/cit9
  doi: 10.1016/j.rser.2015.10.103
– ident: ref201/cit201
  doi: 10.1021/acssuschemeng.6b02806
– ident: ref12/cit12
  doi: 10.1016/j.fuel.2017.11.083
– ident: ref46/cit46
  doi: 10.1016/j.fuel.2017.11.084
– ident: ref189/cit189
  doi: 10.1016/j.biortech.2015.10.096
– ident: ref13/cit13
  doi: 10.1016/j.rser.2015.12.185
– ident: ref39/cit39
  doi: 10.1039/C7EE03208K
– ident: ref176/cit176
  doi: 10.1016/j.cej.2019.123404
– ident: ref180/cit180
  doi: 10.1016/j.cej.2017.01.130
– volume: 25
  start-page: 57
  issue: 01
  year: 2017
  ident: ref76/cit76
  publication-title: Sci. Found. China
– ident: ref26/cit26
  doi: 10.1016/j.fuproc.2019.04.038
– ident: ref125/cit125
  doi: 10.1016/j.jaap.2017.07.022
– ident: ref195/cit195
  doi: 10.1016/j.fuel.2016.10.036
– ident: ref133/cit133
  doi: 10.1016/j.biortech.2017.02.070
– ident: ref143/cit143
  doi: 10.1016/j.fuproc.2019.02.016
SSID ssj0006385
Score 2.6946282
SecondaryResourceType review_article
Snippet Pyrolysis has created many (and will open more) possibilities for high-value utilization of biomass. To obtain the optimal amount of desired pyrolysis...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 15557
SubjectTerms biofuels
biomass
coal
energy
feedstocks
heat
microwave treatment
pyrolysis
sludge
Title A Review of Recent Advances in Biomass Pyrolysis
URI http://dx.doi.org/10.1021/acs.energyfuels.0c03107
https://www.proquest.com/docview/2524290757
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mfFAf_JiK84sKPtqZpEnaPc7hGIIi6mBvJUkTGEon6_agf71JP8aGjOlbW7jQXO5yv3CX3wFcJwGT2CDjc8WkT7GMfEE48yXD3EiSEBa5C86PT7w_oA9DNqwBXpHBJ_hWqKyl83twZmbDRQspx2YZbsAm4daVHRrqvs43X2tOrCL3RJzQqqRr9UAuLKlsOSwt78p5qOntwUt1YaeoMHlvzaaypb5_8zf-fRb7sFsCT69TWMoB1HTagK1u1e-tATsL1ISHgDpekTbwxsY-uRpOr1PUC2TeKPXuRq6wKPOevybjnNXkCAa9-7du3y-7K_jC-u3Up6KNDU1EwkPEEuvGqI04UhFLNFXMVa8F0p6bNY2MkEQZoUOiNNIWT2IV4CQ4hno6TvUJeFwGRBFqoZBgNKRacBIJ-5a0NTYKiybc2PnHpXdkcZ74Jjh2HxeUEpdKaQKv1iJWJVO5a5jxsV4QzQU_C7KO9SJX1WLHVt8uWyJSPZ5lMWEWvbQtogpP__f7Z7BN3KEcEx-H51CfTmb6wiKXqbzMbfUHADnr1g
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50PagH3-L6rODRrkmapN3juijrE0EFPZUkTUCUrtjdg_56J912fYCI3tpAwmQyk_nCTL4A7GWR0NQRF0ojdMipTkLFpAi1oNJpljGR-AvOF5eyd8tP78TdBCT1XRgUosCRijKJ_8EuQA98my2vw7khRo0WMZ7UMp6EKYQkzNt2p3s93oPRqkTN8Ukk43Vl188D-ehkiq_R6evmXEac43m4H8taFpo8toYD3TJv32gc_zOZBZirYGjQGdnNIkzYfAmmu_Xrb0sw-4mocBlIJxglEYK-wy9f0Rl0RtUDRfCQB4cPvsyoCK5eX_olx8kK3B4f3XR7YfXWQqjQiwchV23qeKYyGRORoVOTNpHEJCKz3AhfyxZpPEVbnjilmXHKxsxYYhFdUhPRLFqFRt7P7RoEUkfMMI7ASAkec6skSxT-ZW1LnaGqCfs4_7TylSIt0-CMpr7xk1LSSilNkPWSpKbiLffPZzz93pGMOz6PqDt-77Jbr3mK-va5E5Xb_rBImUAs00Z8Fa__TfwdmO7dXJyn5yeXZxsww_xxnbKQxpvQGLwM7RZimoHeLs33HZh89Dc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60go-Db_HtCh7dmmST7Ba81GrxWQoqeJElTyjKVtz2oL_eZLtbVBDR225gwmQyk5kwk28ADnTEJLbIhlwxGVIsk1AQzkLJMLeSaMIS_8D5psPP7-nlA3uYgOPqLYxjIncz5UUS31v1i7YlwgA-8uOmeBJnh85z1JHywJbxJEz55J3X72brdnwOO81iFc4n4oRW1V0_T-Q9lMq_eqivB3ThddoL8Djmtyg2eaoPB7Ku3r9BOf53QYswX4ajQXOkP0swYbJlmGlVXeCWYe4TYOEKoGYwSiYEfeu-fGVn0BxVEeRBLwtOer7cKA-6b6_9AutkFe7bZ3et87DsuRAKZ82DkIoGtlQLzWPEtDNu1EAcqYRpQxXzNW2RdLdpQxMrJFFWmJgog4yLMrGKsI7WoJb1M7MOAZcRUYS6AEkwGlMjOEmE-9MNg63CYgMO3frT0mbytEiHE5z6wU9CSUuhbACvtiVVJX65b6Px_DshGhO-jCA8fifZr_Y9dfL2ORSRmf4wTwlzMU3DxVnx5t_Y34Pp7mk7vb7oXG3BLPG3dkxCHG9DbfA6NDsutBnI3UKDPwB4_fa6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+of+Recent+Advances+in+Biomass+Pyrolysis&rft.jtitle=Energy+%26+fuels&rft.au=Wang%2C+Guanyu&rft.au=Dai%2C+Yujie&rft.au=Yang%2C+Haiping&rft.au=Xiong%2C+Qingang&rft.date=2020-12-17&rft.issn=0887-0624&rft.eissn=1520-5029&rft.volume=34&rft.issue=12&rft.spage=15557&rft.epage=15578&rft_id=info:doi/10.1021%2Facs.energyfuels.0c03107&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_energyfuels_0c03107
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-0624&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-0624&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-0624&client=summon