Toward Reducing the Operation Temperature of Solid Oxide Fuel Cells: Our Past 15 Years of Efforts in Cathode Development

The development of clean and efficient energy conversion and storage systems is becoming increasingly vital as a result of accelerated global energy consumption. Solid oxide fuel cells (SOFCs) as one key class of fuel cells have attracted much attention, owing to their high energy conversion efficie...

Full description

Saved in:
Bibliographic Details
Published inEnergy & fuels Vol. 34; no. 12; pp. 15169 - 15194
Main Authors Yang, Guangming, Su, Chao, Shi, Huangang, Zhu, Yinlong, Song, Yufei, Zhou, Wei, Shao, Zongping
Format Journal Article
LanguageEnglish
Published American Chemical Society 17.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The development of clean and efficient energy conversion and storage systems is becoming increasingly vital as a result of accelerated global energy consumption. Solid oxide fuel cells (SOFCs) as one key class of fuel cells have attracted much attention, owing to their high energy conversion efficiency and low emissions. However, some serious problems appeared because of the scorching operating temperatures of SOFCs (800–1000 °C), such as poor thermomechanical stability and difficult sealing, resulting in a short lifespan and high cost of SOFCs. Therefore, lowering the operating temperature of SOFCs to mid-range and even low range has become one of the main goals for SOFC development in the recent years. Looking for new cathode materials with high electrocatalytic activity and robust stability at relatively low temperatures is one of the essential requirements for intermediate-to-low-temperature SOFCs (ILT-SOFCs). During the past 15 years, we put considerable efforts into the development of alternative cathode materials for ILT-SOFCs. In this review, we give a summary of our progress from such efforts. We first summarize several strategies that have been adopted for developing cathode materials with high activity and durability toward reducing operating temperatures of SOFCs. Then, our new ideas and progress on cathode development with respect to activity and stability are provided. Both the cathodes of oxygen-ion-conducting SOFCs and protonic-conducting SOFCs are discussed. In the end, we outline the opportunities, challenges, and future approaches for the development of cathodes for ILT-SOFCs.
AbstractList The development of clean and efficient energy conversion and storage systems is becoming increasingly vital as a result of accelerated global energy consumption. Solid oxide fuel cells (SOFCs) as one key class of fuel cells have attracted much attention, owing to their high energy conversion efficiency and low emissions. However, some serious problems appeared because of the scorching operating temperatures of SOFCs (800–1000 °C), such as poor thermomechanical stability and difficult sealing, resulting in a short lifespan and high cost of SOFCs. Therefore, lowering the operating temperature of SOFCs to mid-range and even low range has become one of the main goals for SOFC development in the recent years. Looking for new cathode materials with high electrocatalytic activity and robust stability at relatively low temperatures is one of the essential requirements for intermediate-to-low-temperature SOFCs (ILT-SOFCs). During the past 15 years, we put considerable efforts into the development of alternative cathode materials for ILT-SOFCs. In this review, we give a summary of our progress from such efforts. We first summarize several strategies that have been adopted for developing cathode materials with high activity and durability toward reducing operating temperatures of SOFCs. Then, our new ideas and progress on cathode development with respect to activity and stability are provided. Both the cathodes of oxygen-ion-conducting SOFCs and protonic-conducting SOFCs are discussed. In the end, we outline the opportunities, challenges, and future approaches for the development of cathodes for ILT-SOFCs.
Author Zhu, Yinlong
Yang, Guangming
Shi, Huangang
Su, Chao
Shao, Zongping
Zhou, Wei
Song, Yufei
AuthorAffiliation School of Environmental Engineering
WA School of Mines: Minerals, Energy and Chemical Engineering
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering
School of Energy and Power Engineering
Department of Chemical Engineering
Jiangsu University of Science and Technology
AuthorAffiliation_xml – name: Department of Chemical Engineering
– name: WA School of Mines: Minerals, Energy and Chemical Engineering
– name: Jiangsu University of Science and Technology
– name: School of Environmental Engineering
– name: State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering
– name: School of Energy and Power Engineering
Author_xml – sequence: 1
  givenname: Guangming
  orcidid: 0000-0003-3792-5018
  surname: Yang
  fullname: Yang, Guangming
  organization: State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering
– sequence: 2
  givenname: Chao
  surname: Su
  fullname: Su, Chao
  organization: Jiangsu University of Science and Technology
– sequence: 3
  givenname: Huangang
  surname: Shi
  fullname: Shi, Huangang
  organization: School of Environmental Engineering
– sequence: 4
  givenname: Yinlong
  orcidid: 0000-0002-9207-2452
  surname: Zhu
  fullname: Zhu, Yinlong
  organization: Department of Chemical Engineering
– sequence: 5
  givenname: Yufei
  surname: Song
  fullname: Song, Yufei
  organization: State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering
– sequence: 6
  givenname: Wei
  orcidid: 0000-0003-0322-095X
  surname: Zhou
  fullname: Zhou, Wei
  organization: State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering
– sequence: 7
  givenname: Zongping
  orcidid: 0000-0002-4538-4218
  surname: Shao
  fullname: Shao, Zongping
  email: shaozp@njtech.edu.cn
  organization: WA School of Mines: Minerals, Energy and Chemical Engineering
BookMark eNqNkMtOwzAQRS0EEuXxDXjJJmXsxE2CxAKV8pAqFUFZsIpsZwJGqV1sh8ffk7YsEBtYzWh0z8zo7JFt6ywScsRgyICzE6nDEC36p8-mwzYMQQMrinyLDJjgkAjg5TYZQD9KYMSzXbIXwgsAjNJCDMjH3L1LX9M7rDtt7BONz0hnS_QyGmfpHBfrvvNIXUPvXWtqOvswNdLL_hodY9uGUzrrPL2VIVIm6CNKH1bhSdM4HwM1lo5lfHY9c4Fv2LrlAm08IDuNbAMeftd98nA5mY-vk-ns6mZ8Pk1kBhCTFBUvlUKuRjrN0lowKbEopEAucqXKlOdZqrRqtNaqLoqizGuWKSElqExkPN0nx5u9S-9eOwyxWpig-7elRdeFigue8RIE5H0030S1dyF4bKqlNwvpPysG1cp11buufriuvl335NkvUpu4Nhi9NO0_-HTDrwIvrvO2V_In9QXcV6Ho
CitedBy_id crossref_primary_10_1021_acsami_4c02957
crossref_primary_10_1016_j_cej_2023_143762
crossref_primary_10_1016_j_mseb_2023_116415
crossref_primary_10_1016_j_ceramint_2024_10_368
crossref_primary_10_1016_j_electacta_2025_145662
crossref_primary_10_1021_acs_energyfuels_1c02111
crossref_primary_10_1021_acsomega_2c06808
crossref_primary_10_20964_2021_10_52
crossref_primary_10_1021_acsami_2c22939
crossref_primary_10_1039_D4TA04925J
crossref_primary_10_1002_adfm_202411216
crossref_primary_10_1002_apj_2769
crossref_primary_10_3390_coatings12111692
crossref_primary_10_1002_adfm_202100034
crossref_primary_10_1016_j_ceramint_2021_12_365
crossref_primary_10_1016_j_enrev_2023_100038
crossref_primary_10_1016_j_ijhydene_2023_03_393
crossref_primary_10_1021_acsami_4c14828
crossref_primary_10_1016_j_ceramint_2024_06_160
crossref_primary_10_1039_D2NJ01917E
crossref_primary_10_1016_j_seppur_2022_120657
crossref_primary_10_1016_j_ces_2021_116944
crossref_primary_10_1016_j_ceramint_2024_03_036
crossref_primary_10_1016_j_electacta_2021_138908
crossref_primary_10_1039_D1TA09110G
crossref_primary_10_3390_ma14205990
crossref_primary_10_1063_5_0212526
crossref_primary_10_1016_j_ceramint_2024_08_331
crossref_primary_10_1007_s12274_023_5531_3
crossref_primary_10_1016_j_jeurceramsoc_2022_02_012
crossref_primary_10_1021_acs_energyfuels_1c00742
crossref_primary_10_1002_adfm_202102907
crossref_primary_10_1016_j_electacta_2021_139673
crossref_primary_10_1002_adfm_202311140
crossref_primary_10_1016_j_ceramint_2023_05_074
crossref_primary_10_1021_acsaem_2c03853
crossref_primary_10_1016_j_jpowsour_2024_234071
crossref_primary_10_1016_j_mtener_2021_100815
crossref_primary_10_1016_j_ijhydene_2022_02_075
crossref_primary_10_1021_acs_energyfuels_1c02148
crossref_primary_10_1021_acs_energyfuels_4c01095
crossref_primary_10_1002_inc2_12026
crossref_primary_10_1016_j_cej_2023_147098
crossref_primary_10_1016_j_susmat_2024_e00888
crossref_primary_10_1016_j_compositesb_2021_108726
crossref_primary_10_1016_j_ceramint_2021_11_310
crossref_primary_10_1002_smll_202307900
crossref_primary_10_3390_catal11091073
crossref_primary_10_1007_s11581_022_04465_y
crossref_primary_10_1021_acssuschemeng_3c03819
crossref_primary_10_3390_membranes12090831
crossref_primary_10_1016_j_cej_2024_150896
crossref_primary_10_1016_j_ijhydene_2023_03_341
crossref_primary_10_1016_j_ijhydene_2025_02_384
crossref_primary_10_1021_acsaem_4c01529
crossref_primary_10_1002_aenm_202103783
crossref_primary_10_1039_D1TA07208K
crossref_primary_10_1016_j_ssi_2022_116065
crossref_primary_10_3390_catal13050793
crossref_primary_10_1002_adma_202106379
crossref_primary_10_1016_j_jeurceramsoc_2023_05_003
crossref_primary_10_1021_acs_jpcc_1c00317
crossref_primary_10_1007_s12274_024_6768_1
crossref_primary_10_1016_j_jallcom_2023_168837
crossref_primary_10_1002_apj_2792
crossref_primary_10_1021_acs_energyfuels_3c00545
crossref_primary_10_1016_j_icheatmasstransfer_2023_106646
crossref_primary_10_1016_j_jcis_2023_12_169
crossref_primary_10_1016_j_cej_2021_134281
crossref_primary_10_3390_pr11072139
crossref_primary_10_1016_j_ceramint_2024_06_110
crossref_primary_10_1016_j_ceramint_2024_02_182
crossref_primary_10_1021_acsami_2c20974
crossref_primary_10_1016_j_cej_2024_156758
crossref_primary_10_1021_acs_energyfuels_1c00534
crossref_primary_10_3390_catal12121636
crossref_primary_10_1016_j_ceramint_2023_11_015
crossref_primary_10_1007_s11356_022_22087_9
crossref_primary_10_1021_acs_energyfuels_2c03956
crossref_primary_10_1016_j_mtener_2024_101633
crossref_primary_10_1016_j_ceramint_2021_01_264
crossref_primary_10_1002_apj_2780
crossref_primary_10_1002_aenm_202003916
crossref_primary_10_1039_D2EE00132B
crossref_primary_10_1016_j_pnsc_2020_09_003
crossref_primary_10_1021_acs_langmuir_4c01339
crossref_primary_10_1016_j_nxsust_2024_100028
crossref_primary_10_1039_D2TA06915F
crossref_primary_10_1002_er_8583
crossref_primary_10_1021_acs_jpcc_3c08256
crossref_primary_10_1002_aenm_202101937
crossref_primary_10_1002_apj_2789
crossref_primary_10_1002_adfm_202105702
crossref_primary_10_1080_09506608_2022_2068399
crossref_primary_10_3390_nano12071059
crossref_primary_10_1002_adfm_202402716
crossref_primary_10_1016_j_jpowsour_2024_234277
crossref_primary_10_1021_acs_energyfuels_0c03843
crossref_primary_10_1016_j_ijhydene_2024_07_095
crossref_primary_10_1016_j_ceramint_2024_04_424
crossref_primary_10_1016_j_jallcom_2022_164191
crossref_primary_10_1039_D4EE00688G
crossref_primary_10_1021_acs_energyfuels_2c03934
crossref_primary_10_1016_j_ceramint_2024_07_173
crossref_primary_10_1016_j_ijhydene_2021_12_187
crossref_primary_10_1016_j_fuel_2024_133621
crossref_primary_10_1016_j_seppur_2023_123936
crossref_primary_10_1016_j_jechem_2024_12_009
crossref_primary_10_1039_D2CP05133H
crossref_primary_10_1016_j_renene_2025_122662
crossref_primary_10_1002_advs_202401130
crossref_primary_10_1002_smll_202203207
crossref_primary_10_1002_celc_202300845
crossref_primary_10_1016_j_jmst_2022_02_031
crossref_primary_10_1039_D3EE03121G
crossref_primary_10_1016_j_ceramint_2024_05_298
crossref_primary_10_1039_D1SE01291F
crossref_primary_10_3390_nano14080673
crossref_primary_10_1021_acsaem_4c02665
crossref_primary_10_1021_acs_energyfuels_2c00650
crossref_primary_10_1021_acssuschemeng_0c07657
crossref_primary_10_3390_cryst14030225
crossref_primary_10_1080_15435075_2024_2373814
crossref_primary_10_2139_ssrn_4162747
crossref_primary_10_1016_j_electacta_2022_140643
crossref_primary_10_1016_j_rser_2021_111985
crossref_primary_10_1016_j_jpowsour_2022_232073
crossref_primary_10_1007_s10008_024_06187_9
crossref_primary_10_3390_molecules27238396
crossref_primary_10_1016_j_ijhydene_2024_08_421
crossref_primary_10_1016_j_ijheatmasstransfer_2025_126944
crossref_primary_10_1002_adfm_202316485
crossref_primary_10_1016_j_electacta_2024_144310
crossref_primary_10_1016_j_ijhydene_2024_07_185
crossref_primary_10_1016_j_ssi_2022_115918
crossref_primary_10_14710_jksa_25_10_346_351
crossref_primary_10_1016_j_ijhydene_2021_05_134
crossref_primary_10_1002_smll_202406627
crossref_primary_10_1002_aenm_202404118
crossref_primary_10_1002_smll_202101872
crossref_primary_10_1016_j_ceramint_2025_01_229
crossref_primary_10_1063_1674_0068_cjcp2204072
crossref_primary_10_1039_D1EE03046A
crossref_primary_10_1016_j_cej_2022_137787
crossref_primary_10_1007_s40145_022_0599_x
crossref_primary_10_3390_catal10121465
crossref_primary_10_1021_acsami_1c02502
crossref_primary_10_3390_cryst13071008
crossref_primary_10_1039_D0TA08132A
crossref_primary_10_1021_accountsmr_1c00036
crossref_primary_10_1007_s12598_024_02691_z
crossref_primary_10_1016_j_jpowsour_2024_234232
crossref_primary_10_1016_j_jpowsour_2024_234233
crossref_primary_10_1016_j_ijhydene_2021_09_061
crossref_primary_10_1039_D4TA08696A
crossref_primary_10_1016_j_jpowsour_2024_234591
crossref_primary_10_1016_j_enrev_2024_100085
crossref_primary_10_1016_j_ceramint_2024_08_287
crossref_primary_10_1016_j_ijhydene_2022_02_238
crossref_primary_10_1016_j_jpowsour_2024_234344
crossref_primary_10_3390_membranes14020044
crossref_primary_10_1016_j_mtchem_2023_101800
crossref_primary_10_1021_acsami_4c01223
crossref_primary_10_1016_j_ceramint_2022_11_336
crossref_primary_10_1016_j_ijhydene_2023_05_111
crossref_primary_10_1016_j_apcatb_2022_121929
crossref_primary_10_1002_eem2_12660
crossref_primary_10_1016_j_ijhydene_2023_05_115
crossref_primary_10_1039_D4TA02455A
crossref_primary_10_1016_j_compositesb_2024_111517
crossref_primary_10_1039_D1SE01635K
crossref_primary_10_5796_electrochemistry_22_00128
crossref_primary_10_1007_s41918_021_00099_2
crossref_primary_10_1002_adfm_202310790
crossref_primary_10_1002_idm2_12068
crossref_primary_10_1016_j_jeurceramsoc_2022_12_029
crossref_primary_10_1016_j_jeurceramsoc_2024_01_058
crossref_primary_10_1016_j_jpowsour_2025_236257
crossref_primary_10_1016_j_etran_2023_100276
crossref_primary_10_1016_j_jpowsour_2023_232722
crossref_primary_10_1021_acsaem_1c04124
crossref_primary_10_1016_j_isci_2021_103464
crossref_primary_10_1016_j_egyai_2023_100317
crossref_primary_10_1016_j_jpowsour_2024_235419
crossref_primary_10_1039_D0TA09346G
crossref_primary_10_1039_D1TA10652J
crossref_primary_10_1016_j_seppur_2022_121174
crossref_primary_10_1021_acs_energyfuels_3c03889
crossref_primary_10_1016_j_renene_2021_12_030
crossref_primary_10_1016_j_ceramint_2022_04_110
crossref_primary_10_1016_j_jechem_2021_04_020
crossref_primary_10_1002_aenm_202101899
crossref_primary_10_2139_ssrn_4156094
crossref_primary_10_1007_s40820_022_00967_6
crossref_primary_10_3390_molecules27082549
crossref_primary_10_1002_admi_202002227
crossref_primary_10_20964_2022_01_16
crossref_primary_10_1016_j_jallcom_2024_177585
crossref_primary_10_1016_j_ijhydene_2022_03_116
crossref_primary_10_1016_j_electacta_2022_140062
crossref_primary_10_1016_j_compositesb_2022_109881
crossref_primary_10_1016_j_pmatsci_2024_101353
crossref_primary_10_1007_s12613_024_2872_1
crossref_primary_10_1016_j_apcatb_2021_120631
crossref_primary_10_1016_j_apcatb_2024_124410
Cites_doi 10.1039/C4TA04372C
10.1039/C5EE03858H
10.1016/j.jpowsour.2008.02.044
10.1007/s10008-009-0932-0
10.1016/j.jpowsour.2018.03.029
10.1016/S1383-5866(01)00071-5
10.1111/jace.14291
10.1016/j.jpowsour.2010.05.051
10.1039/C7TA07760B
10.1021/acs.nanolett.6b02757
10.1038/nchem.1773
10.1021/acsami.5b09780
10.1039/C4TA03208J
10.1002/cssc.201301341
10.1016/j.memsci.2007.01.003
10.1016/j.jpowsour.2015.06.095
10.1039/C4TA03485F
10.1016/j.ijhydene.2019.01.212
10.1016/j.joule.2018.02.006
10.1016/j.memsci.2013.03.002
10.1016/j.ijhydene.2010.11.109
10.1039/C4TA02869D
10.1149/1.3521316
10.1039/c3ta12376f
10.1002/ente.201700738
10.1016/j.ijhydene.2017.08.057
10.1038/nmat4166
10.1021/acsaem.8b00198
10.1146/annurev.matsci.33.022802.093258
10.1021/cr300491e
10.1039/C3TA13253F
10.1016/j.ijhydene.2009.11.092
10.1016/j.jpowsour.2010.02.080
10.1002/aenm.201902384
10.1016/j.memsci.2008.03.074
10.1039/b612060c
10.1038/ncomms15967
10.1016/j.jpowsour.2016.07.023
10.1016/j.jpowsour.2015.08.064
10.1039/C6TA00321D
10.1038/srep00327
10.1002/aic.14312
10.1126/science.aab3987
10.1021/cr980129f
10.1016/j.ijhydene.2011.11.150
10.1016/j.elecom.2009.09.034
10.1016/j.jpowsour.2018.10.025
10.1002/cssc.201100254
10.1002/adma.200802428
10.1038/nature19090
10.1016/j.elecom.2011.10.024
10.1016/j.jpowsour.2006.01.092
10.1021/acs.nanolett.0c00488
10.1016/S0376-7388(00)00337-9
10.1016/j.nanoen.2017.12.044
10.1039/C6EE01915C
10.1039/c3ee42926a
10.1021/ef401473w
10.1557/jmr.2012.186
10.1016/j.electacta.2012.06.073
10.1016/j.apcatb.2015.02.010
10.1016/j.jpowsour.2015.10.090
10.1038/nmat892
10.1021/jp9042599
10.1016/j.elecom.2013.08.017
10.1016/j.jallcom.2007.01.144
10.1038/s41560-017-0085-9
10.1111/j.1151-2916.1993.tb03645.x
10.1021/acsami.0c01611
10.1021/acsami.6b12157
10.1126/science.1125877
10.1016/S0167-2738(96)00524-3
10.1016/j.electacta.2016.12.100
10.1038/nenergy.2016.214
10.1016/j.apcatb.2007.06.010
10.1039/c2jm33311b
10.1016/j.jpowsour.2010.02.062
10.1016/j.jpowsour.2008.11.045
10.1016/S0167-2738(98)00195-7
10.1016/j.ijhydene.2009.12.017
10.1021/cm101745v
10.1002/cssc.201300694
10.1016/j.apenergy.2018.01.098
10.1016/j.jpowsour.2014.10.177
10.1016/j.jmatprotec.2007.07.030
10.1016/j.elecom.2008.08.033
10.1016/j.jpowsour.2006.12.080
10.1002/anie.201307305
10.1016/0920-5861(92)80046-P
10.1039/C9TA03501J
10.1039/C4RA06191H
10.1038/35104620
10.1007/s10853-008-2966-6
10.1039/c1ra00419k
10.1016/j.jpowsour.2008.04.012
10.1016/j.memsci.2008.02.015
10.1002/apj.2009
10.1016/j.joule.2019.07.004
10.1016/j.jpowsour.2008.12.050
10.1016/j.ijhydene.2011.09.010
10.1063/1.2163257
10.1016/j.jpowsour.2015.12.021
10.1103/PhysRev.82.403
10.1016/j.jpowsour.2007.08.087
10.1149/1.2981024
10.1149/1.1837360
10.1016/j.apenergy.2019.01.094
10.1002/cssc.201200264
10.1021/acsaem.9b00037
10.1021/acsaem.8b00051
10.1149/1.1951232
10.1016/j.elecom.2011.08.007
10.1016/j.jpowsour.2015.08.063
10.1038/35005040
10.1016/j.memsci.2019.117709
10.1002/aenm.201700242
10.1021/acs.chemmater.5b04107
10.1016/j.jpowsour.2016.12.109
10.1146/annurev-matsci-070813-113426
10.1002/adma.201906979
10.1016/j.jpowsour.2009.09.015
10.1039/b813327a
10.1021/acs.nanolett.5b04160
10.1016/S0167-2738(99)00230-1
10.1039/c0jm02816a
10.1016/j.ssi.2007.06.011
10.1007/s12598-017-0942-5
10.1038/srep02426
10.1016/j.elecom.2009.04.016
10.1002/aenm.201500537
10.1016/j.jpowsour.2007.04.070
10.1039/c2jm31774e
10.1021/cm902640j
10.1039/C6TA02986H
10.1039/c1jm12660a
10.1016/j.memsci.2013.08.021
10.1126/science.1204090
10.1038/ncomms13990
10.1039/c3ta11447c
10.1039/D0TA02435J
10.1016/j.electacta.2017.11.037
10.1002/anie.201604160
10.1016/j.actamat.2008.02.002
10.1002/smll.202001859
10.1039/C4TA01593B
10.1002/smtd.201800071
10.1016/j.jpowsour.2009.04.049
10.1016/j.electacta.2010.12.075
10.1149/1.1838786
10.1039/c2jm31711g
10.1016/j.jpowsour.2012.05.068
10.1039/C5TA10670B
10.1038/nature02863
10.1007/BF01507527
10.1002/celc.201701309
10.1038/nmat871
10.1016/j.actamat.2008.06.004
10.1016/j.jpowsour.2009.12.039
10.1021/acsami.0c00975
10.1002/adma.201103102
10.1039/C4TA07176J
10.1016/j.electacta.2013.04.054
10.1021/am502240m
10.1016/j.jpowsour.2020.227995
ContentType Journal Article
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1021/acs.energyfuels.0c01887
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-5029
EndPage 15194
ExternalDocumentID 10_1021_acs_energyfuels_0c01887
h9370279
GroupedDBID 02
55A
5GY
5VS
7~N
AABXI
ABFLS
ABMVS
ABUCX
ACGFS
ACJ
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED
ED~
F5P
GNL
IH9
JG
JG~
LG6
P2P
ROL
TAE
TN5
UI2
VF5
VG9
W1F
X
-~X
.DC
4.4
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AGXLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
ZCA
~02
7S9
L.6
ID FETCH-LOGICAL-a400t-3eb29bbe2b6c343d51aae88a5e257bb932743bcbfcccbd88897d14b5aa0b45423
IEDL.DBID ACS
ISSN 0887-0624
1520-5029
IngestDate Fri Jul 11 06:38:30 EDT 2025
Tue Jul 01 02:27:27 EDT 2025
Thu Apr 24 22:54:48 EDT 2025
Sat Dec 19 09:08:32 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a400t-3eb29bbe2b6c343d51aae88a5e257bb932743bcbfcccbd88897d14b5aa0b45423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9207-2452
0000-0002-4538-4218
0000-0003-3792-5018
0000-0003-0322-095X
PQID 2524290507
PQPubID 24069
PageCount 26
ParticipantIDs proquest_miscellaneous_2524290507
crossref_primary_10_1021_acs_energyfuels_0c01887
crossref_citationtrail_10_1021_acs_energyfuels_0c01887
acs_journals_10_1021_acs_energyfuels_0c01887
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-17
PublicationDateYYYYMMDD 2020-12-17
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-17
  day: 17
PublicationDecade 2020
PublicationTitle Energy & fuels
PublicationTitleAlternate Energy Fuels
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
ref52/cit52
ref114/cit114
ref23/cit23
ref115/cit115
ref116/cit116
ref110/cit110
ref111/cit111
ref2/cit2
ref112/cit112
ref77/cit77
ref113/cit113
ref71/cit71
ref117/cit117
ref20/cit20
ref48/cit48
ref118/cit118
ref74/cit74
ref119/cit119
ref10/cit10
ref35/cit35
ref89/cit89
ref19/cit19
ref93/cit93
ref42/cit42
ref96/cit96
ref107/cit107
ref120/cit120
ref109/cit109
ref13/cit13
ref122/cit122
ref105/cit105
ref61/cit61
ref38/cit38
ref128/cit128
ref90/cit90
ref124/cit124
ref64/cit64
ref126/cit126
ref54/cit54
ref6/cit6
ref18/cit18
ref136/cit136
ref137/cit137
ref65/cit65
ref97/cit97
ref101/cit101
ref11/cit11
ref102/cit102
ref29/cit29
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref5/cit5
ref43/cit43
ref80/cit80
ref133/cit133
ref28/cit28
ref132/cit132
ref91/cit91
ref148/cit148
ref55/cit55
ref144/cit144
ref12/cit12
ref163/cit163
ref66/cit66
ref22/cit22
ref121/cit121
ref33/cit33
ref87/cit87
ref106/cit106
ref140/cit140
ref129/cit129
ref44/cit44
ref70/cit70
ref98/cit98
ref125/cit125
ref9/cit9
ref152/cit152
ref153/cit153
ref154/cit154
ref27/cit27
ref150/cit150
ref63/cit63
ref151/cit151
ref56/cit56
ref159/cit159
ref92/cit92
ref155/cit155
ref156/cit156
ref157/cit157
ref158/cit158
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref60/cit60
ref88/cit88
ref17/cit17
ref82/cit82
ref147/cit147
ref160/cit160
ref143/cit143
ref53/cit53
ref145/cit145
ref21/cit21
ref149/cit149
ref162/cit162
ref46/cit46
ref164/cit164
ref49/cit49
ref75/cit75
ref24/cit24
ref141/cit141
ref50/cit50
ref78/cit78
ref36/cit36
ref83/cit83
ref138/cit138
ref79/cit79
ref139/cit139
ref100/cit100
ref25/cit25
ref103/cit103
ref72/cit72
ref14/cit14
ref57/cit57
ref51/cit51
ref134/cit134
ref135/cit135
ref40/cit40
ref68/cit68
ref94/cit94
ref130/cit130
ref131/cit131
ref146/cit146
ref26/cit26
ref161/cit161
ref142/cit142
ref73/cit73
ref69/cit69
ref165/cit165
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref95/cit95
ref108/cit108
ref104/cit104
Shao Z. (ref67/cit67) 2000; 21
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref127/cit127
ref1/cit1
ref123/cit123
ref7/cit7
References_xml – ident: ref97/cit97
  doi: 10.1039/C4TA04372C
– ident: ref26/cit26
  doi: 10.1039/C5EE03858H
– ident: ref148/cit148
  doi: 10.1016/j.jpowsour.2008.02.044
– ident: ref27/cit27
  doi: 10.1007/s10008-009-0932-0
– ident: ref29/cit29
  doi: 10.1016/j.jpowsour.2018.03.029
– ident: ref68/cit68
  doi: 10.1016/S1383-5866(01)00071-5
– ident: ref92/cit92
  doi: 10.1111/jace.14291
– ident: ref153/cit153
  doi: 10.1016/j.jpowsour.2010.05.051
– ident: ref85/cit85
  doi: 10.1039/C7TA07760B
– ident: ref131/cit131
  doi: 10.1021/acs.nanolett.6b02757
– ident: ref128/cit128
  doi: 10.1038/nchem.1773
– ident: ref141/cit141
  doi: 10.1021/acsami.5b09780
– ident: ref82/cit82
  doi: 10.1039/C4TA03208J
– ident: ref3/cit3
  doi: 10.1002/cssc.201301341
– ident: ref70/cit70
  doi: 10.1016/j.memsci.2007.01.003
– ident: ref83/cit83
  doi: 10.1016/j.jpowsour.2015.06.095
– ident: ref52/cit52
  doi: 10.1039/C4TA03485F
– ident: ref23/cit23
  doi: 10.1016/j.ijhydene.2019.01.212
– ident: ref130/cit130
  doi: 10.1016/j.joule.2018.02.006
– ident: ref146/cit146
  doi: 10.1016/j.memsci.2013.03.002
– ident: ref115/cit115
  doi: 10.1016/j.ijhydene.2010.11.109
– ident: ref75/cit75
  doi: 10.1039/C4TA02869D
– ident: ref114/cit114
  doi: 10.1149/1.3521316
– ident: ref81/cit81
  doi: 10.1039/c3ta12376f
– ident: ref2/cit2
  doi: 10.1002/ente.201700738
– ident: ref22/cit22
  doi: 10.1016/j.ijhydene.2017.08.057
– ident: ref43/cit43
  doi: 10.1038/nmat4166
– ident: ref105/cit105
  doi: 10.1021/acsaem.8b00198
– ident: ref30/cit30
  doi: 10.1146/annurev.matsci.33.022802.093258
– ident: ref1/cit1
  doi: 10.1021/cr300491e
– ident: ref54/cit54
  doi: 10.1039/C3TA13253F
– ident: ref79/cit79
  doi: 10.1016/j.ijhydene.2009.11.092
– ident: ref86/cit86
  doi: 10.1016/j.jpowsour.2010.02.080
– ident: ref96/cit96
  doi: 10.1002/aenm.201902384
– ident: ref34/cit34
  doi: 10.1016/j.memsci.2008.03.074
– ident: ref12/cit12
  doi: 10.1039/b612060c
– ident: ref132/cit132
  doi: 10.1038/ncomms15967
– ident: ref121/cit121
  doi: 10.1016/j.jpowsour.2016.07.023
– ident: ref122/cit122
  doi: 10.1016/j.jpowsour.2015.08.064
– ident: ref53/cit53
  doi: 10.1039/C6TA00321D
– ident: ref59/cit59
  doi: 10.1038/srep00327
– ident: ref16/cit16
  doi: 10.1002/aic.14312
– ident: ref151/cit151
  doi: 10.1126/science.aab3987
– ident: ref35/cit35
  doi: 10.1021/cr980129f
– ident: ref73/cit73
  doi: 10.1016/j.ijhydene.2011.11.150
– ident: ref88/cit88
  doi: 10.1016/j.elecom.2009.09.034
– ident: ref142/cit142
  doi: 10.1016/j.jpowsour.2018.10.025
– ident: ref116/cit116
  doi: 10.1002/cssc.201100254
– ident: ref28/cit28
  doi: 10.1002/adma.200802428
– ident: ref129/cit129
  doi: 10.1038/nature19090
– ident: ref127/cit127
  doi: 10.1016/j.elecom.2011.10.024
– ident: ref57/cit57
  doi: 10.1016/j.jpowsour.2006.01.092
– ident: ref133/cit133
  doi: 10.1021/acs.nanolett.0c00488
– ident: ref64/cit64
  doi: 10.1016/S0376-7388(00)00337-9
– ident: ref50/cit50
  doi: 10.1016/j.nanoen.2017.12.044
– ident: ref150/cit150
  doi: 10.1039/C6EE01915C
– ident: ref51/cit51
  doi: 10.1039/c3ee42926a
– ident: ref124/cit124
  doi: 10.1021/ef401473w
– ident: ref36/cit36
  doi: 10.1557/jmr.2012.186
– ident: ref123/cit123
  doi: 10.1016/j.electacta.2012.06.073
– ident: ref140/cit140
  doi: 10.1016/j.apcatb.2015.02.010
– ident: ref158/cit158
  doi: 10.1016/j.jpowsour.2015.10.090
– ident: ref40/cit40
  doi: 10.1038/nmat892
– ident: ref152/cit152
  doi: 10.1021/jp9042599
– ident: ref18/cit18
  doi: 10.1016/j.elecom.2013.08.017
– ident: ref76/cit76
  doi: 10.1016/j.jallcom.2007.01.144
– ident: ref157/cit157
  doi: 10.1038/s41560-017-0085-9
– ident: ref8/cit8
  doi: 10.1111/j.1151-2916.1993.tb03645.x
– ident: ref134/cit134
  doi: 10.1021/acsami.0c01611
– ident: ref106/cit106
  doi: 10.1021/acsami.6b12157
– ident: ref42/cit42
  doi: 10.1126/science.1125877
– ident: ref32/cit32
  doi: 10.1016/S0167-2738(96)00524-3
– ident: ref58/cit58
  doi: 10.1016/j.electacta.2016.12.100
– ident: ref63/cit63
  doi: 10.1038/nenergy.2016.214
– ident: ref61/cit61
  doi: 10.1016/j.apcatb.2007.06.010
– ident: ref109/cit109
  doi: 10.1039/c2jm33311b
– ident: ref160/cit160
  doi: 10.1016/j.jpowsour.2010.02.062
– ident: ref48/cit48
  doi: 10.1016/j.jpowsour.2008.11.045
– ident: ref55/cit55
  doi: 10.1016/S0167-2738(98)00195-7
– ident: ref149/cit149
  doi: 10.1016/j.ijhydene.2009.12.017
– ident: ref21/cit21
  doi: 10.1021/cm101745v
– ident: ref95/cit95
  doi: 10.1002/cssc.201300694
– ident: ref7/cit7
  doi: 10.1016/j.apenergy.2018.01.098
– ident: ref56/cit56
  doi: 10.1016/j.jpowsour.2014.10.177
– ident: ref14/cit14
  doi: 10.1016/j.jmatprotec.2007.07.030
– ident: ref77/cit77
  doi: 10.1016/j.elecom.2008.08.033
– ident: ref136/cit136
  doi: 10.1016/j.jpowsour.2006.12.080
– ident: ref80/cit80
  doi: 10.1002/anie.201307305
– ident: ref37/cit37
  doi: 10.1016/0920-5861(92)80046-P
– ident: ref163/cit163
  doi: 10.1039/C9TA03501J
– ident: ref94/cit94
  doi: 10.1039/C4RA06191H
– ident: ref20/cit20
  doi: 10.1038/35104620
– ident: ref10/cit10
  doi: 10.1007/s10853-008-2966-6
– ident: ref45/cit45
  doi: 10.1039/c1ra00419k
– ident: ref100/cit100
  doi: 10.1016/j.jpowsour.2008.04.012
– ident: ref102/cit102
  doi: 10.1016/j.memsci.2008.02.015
– ident: ref144/cit144
  doi: 10.1002/apj.2009
– ident: ref159/cit159
  doi: 10.1016/j.joule.2019.07.004
– ident: ref25/cit25
  doi: 10.1016/j.jpowsour.2008.12.050
– ident: ref154/cit154
  doi: 10.1016/j.ijhydene.2011.09.010
– ident: ref49/cit49
  doi: 10.1063/1.2163257
– ident: ref90/cit90
  doi: 10.1016/j.jpowsour.2015.12.021
– ident: ref39/cit39
  doi: 10.1103/PhysRev.82.403
– ident: ref69/cit69
  doi: 10.1016/j.jpowsour.2007.08.087
– ident: ref60/cit60
  doi: 10.1149/1.2981024
– ident: ref33/cit33
  doi: 10.1149/1.1837360
– ident: ref161/cit161
  doi: 10.1016/j.apenergy.2019.01.094
– ident: ref108/cit108
  doi: 10.1002/cssc.201200264
– ident: ref24/cit24
  doi: 10.1021/acsaem.9b00037
– ident: ref110/cit110
  doi: 10.1021/acsaem.8b00051
– ident: ref66/cit66
  doi: 10.1149/1.1951232
– ident: ref117/cit117
  doi: 10.1016/j.elecom.2011.08.007
– ident: ref107/cit107
  doi: 10.1016/j.jpowsour.2015.08.063
– ident: ref135/cit135
  doi: 10.1038/35005040
– ident: ref164/cit164
  doi: 10.1016/j.memsci.2019.117709
– ident: ref104/cit104
  doi: 10.1002/aenm.201700242
– ident: ref47/cit47
  doi: 10.1021/acs.chemmater.5b04107
– volume: 21
  start-page: 500
  issue: 5
  year: 2000
  ident: ref67/cit67
  publication-title: Chin. J. Catal.
– ident: ref126/cit126
  doi: 10.1016/j.jpowsour.2016.12.109
– ident: ref13/cit13
  doi: 10.1146/annurev-matsci-070813-113426
– ident: ref112/cit112
  doi: 10.1002/adma.201906979
– ident: ref5/cit5
  doi: 10.1016/j.jpowsour.2009.09.015
– ident: ref78/cit78
  doi: 10.1039/b813327a
– ident: ref91/cit91
  doi: 10.1021/acs.nanolett.5b04160
– ident: ref99/cit99
  doi: 10.1016/S0167-2738(99)00230-1
– ident: ref113/cit113
  doi: 10.1039/c0jm02816a
– ident: ref98/cit98
  doi: 10.1016/j.ssi.2007.06.011
– ident: ref145/cit145
  doi: 10.1007/s12598-017-0942-5
– ident: ref156/cit156
  doi: 10.1038/srep02426
– ident: ref6/cit6
  doi: 10.1016/j.elecom.2009.04.016
– ident: ref38/cit38
  doi: 10.1002/aenm.201500537
– ident: ref17/cit17
  doi: 10.1016/j.jpowsour.2007.04.070
– ident: ref137/cit137
  doi: 10.1039/c2jm31774e
– ident: ref9/cit9
  doi: 10.1021/cm902640j
– ident: ref125/cit125
  doi: 10.1039/C6TA02986H
– ident: ref138/cit138
  doi: 10.1039/c1jm12660a
– ident: ref165/cit165
  doi: 10.1016/j.memsci.2013.08.021
– ident: ref11/cit11
  doi: 10.1126/science.1204090
– ident: ref84/cit84
  doi: 10.1038/ncomms13990
– ident: ref120/cit120
  doi: 10.1039/c3ta11447c
– ident: ref162/cit162
  doi: 10.1039/D0TA02435J
– ident: ref155/cit155
  doi: 10.1016/j.electacta.2017.11.037
– ident: ref143/cit143
  doi: 10.1002/anie.201604160
– ident: ref101/cit101
  doi: 10.1016/j.actamat.2008.02.002
– ident: ref4/cit4
  doi: 10.1002/smll.202001859
– ident: ref119/cit119
  doi: 10.1039/C4TA01593B
– ident: ref139/cit139
  doi: 10.1002/smtd.201800071
– ident: ref15/cit15
  doi: 10.1016/j.jpowsour.2009.04.049
– ident: ref72/cit72
  doi: 10.1016/j.electacta.2010.12.075
– ident: ref31/cit31
  doi: 10.1149/1.1838786
– ident: ref44/cit44
  doi: 10.1039/c2jm31711g
– ident: ref62/cit62
  doi: 10.1016/j.jpowsour.2012.05.068
– ident: ref147/cit147
  doi: 10.1039/C5TA10670B
– ident: ref65/cit65
  doi: 10.1038/nature02863
– ident: ref46/cit46
  doi: 10.1007/BF01507527
– ident: ref74/cit74
  doi: 10.1002/celc.201701309
– ident: ref41/cit41
  doi: 10.1038/nmat871
– ident: ref71/cit71
  doi: 10.1016/j.actamat.2008.06.004
– ident: ref89/cit89
  doi: 10.1016/j.jpowsour.2009.12.039
– ident: ref111/cit111
  doi: 10.1021/acsami.0c00975
– ident: ref19/cit19
  doi: 10.1002/adma.201103102
– ident: ref103/cit103
  doi: 10.1039/C4TA07176J
– ident: ref93/cit93
  doi: 10.1016/j.electacta.2013.04.054
– ident: ref118/cit118
  doi: 10.1021/am502240m
– ident: ref87/cit87
  doi: 10.1016/j.jpowsour.2020.227995
SSID ssj0006385
Score 2.6704454
Snippet The development of clean and efficient energy conversion and storage systems is becoming increasingly vital as a result of accelerated global energy...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 15169
SubjectTerms cathodes
durability
energy conversion
longevity
temperature
Title Toward Reducing the Operation Temperature of Solid Oxide Fuel Cells: Our Past 15 Years of Efforts in Cathode Development
URI http://dx.doi.org/10.1021/acs.energyfuels.0c01887
https://www.proquest.com/docview/2524290507
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS9xAEF6sfbB9qNVWamvLFHw01-yvZNM3OTyk0F7RE-xT2N3swuGZHCYB8a93NpfISRHb1yWzSXZndr5hZr4l5DApuPRCuYhroyLBqIuUFyayIuGpZDYVKjQ4__yVnF6IH5fycoPQJzL4jH7Tth65rg_Ot-guRrGNKVrGC_KSJSoN8dbx-Pzh8EV1kgO5Z5wwMZR0PT1RcEu2fuyWHp_KnauZbJOzoWFnVWFyNWobM7J3f_M3_vtfvCVveuAJxytN2SEbrtwlW-Phvrdd8nqNmvAduZ119bRwFqhdcQQQKMJ06VYKAzN3vezpmKHycF4t5gVMb-eFgwm-GcZusai_w7S9gd-6boBK-IM2VYeHT7wPaQqYlxD6DyuUWStdek8uJiez8WnU39IQabT_JuIYm2fGOGYSywUvJNXaKaWlw9PAGMSHCFKMNd5aawoMuLO0oMJIrWMjJKK5PbJZVqX7QMArxrlXqmCpFRizZy4TGE5qL1XmuUz2yRGuY95bWZ13CXRG8zC4trh5v7j7JBn2NLc943m4eGPxvGD8ILhckX48L_J1UJoc9y1kXXTpqrbOmUQUlMWIuz_-3-d_Iq9YCO4pi2h6QDabm9Z9RgTUmC-dzt8DrT0GJA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6N8TB42GAwsbGBkXgkJXbsxOFtqlYV2FbEOml7imzHlipKUi2JNPHXc06TrkNCE7xaucSx78d3Ot9ngPdxHgnHpQ0ipWXAGbWBdFwHhsdRIphJuPQNzmfn8fiSf7kSVxsg-14YnESFb6raIv4duwD96Mds2w7nGowag9CEFA3kETxGSMJ82nU8vFj5YNQq0XN8hjHj_cmuv7_IRydT3Y9O951zG3FGO3C9mmt70OTHoKn1wPz6g8bxf37mGWx3MJQcL_XmOWzYYhe2hv3tb7vwdI2o8AXcTtvTteS7J3rFEYKwkUwWdqk-ZGp_LjpyZlI6clHOZzmZ3M5yS0b4ZTK083n1iUyaG_JNVTWhglyjhVX-4RPnfNGCzAriuxFLlFk7yPQSLkcn0-E46O5sCBR6gzqIMFNPtbZMxybiUS6oUlZKJSz6Bq0RLSJk0UY7Y4zOMf1Ok5xyLZQKNReI7fZgsygL-wqIkyyKnJQ5SwzHDD61KcfkUjkhUxeJeB8-4Dpmnc1VWVtOZzTzg2uLm3WLuw9xv7WZ6fjP_TUc84cFw5XgYkkB8rDIu153Mtw3X4NRhS2bKmMCMVEaIgo_-Lfpv4Wt8fTsNDv9fP71NTxhPu2nLKDJIWzWN409QmxU6zetGfwGBvUOhQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9wwEB7SFHo89Ehbmp4q9LHeWpctl76EbZb0yoZmA8lDMZIswdKtvcQ2hP76jrz2simU0L4Kjy1Lc3zDaD4BvE4KLr1QLuLaqEgw6iLlhYmsSHgqmU2FCg3OXw-TgxPx6VSebsH7oRcGJ1Hjm-quiB-seln4nmGAvg3jrmuJ8y1GjlFsY4pGcg2uh-JdSL32xsdrP4yaJQeezzhhYjjd9fcXhQhl68sR6rKD7qLO5C58X8-3O2zyY9Q2ZmR__UHl-L8_dA_u9HCU7K305z5suXIHbo6HW-B24PYGYeEDuJh1p2zJt0D4iiME4SOZLt1KjcjM_Vz2JM2k8uS4WswLMr2YF45M8Mtk7BaL-h2ZtufkSNcNoZKcoaXV4eF970PxgsxLEroSK5TZOND0EE4m-7PxQdTf3RBp9ApNxDFjz4xxzCSWC15IqrVTSkuHPsIYRI0IXYw13lprCkzDs7SgwkitYyMkYrxHsF1WpXsMxCvGuVeqYKkVmMlnLhOYZGovVea5THbhDa5j3ttenXdldUbzMLixuHm_uLuQDNub254HPVzHsbhaMF4LLldUIFeLvBr0J8d9C7UYXbqqrXMmERtlMaLxJ_82_Zdw4-jDJP_y8fDzU7jFQvZPWUTTZ7DdnLfuOUKkxrzoLOE3mhsRCA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+Reducing+the+Operation+Temperature+of+Solid+Oxide+Fuel+Cells%3A+Our+Past+15+Years+of+Efforts+in+Cathode+Development&rft.jtitle=Energy+%26+fuels&rft.au=Yang%2C+Guangming&rft.au=Su%2C+Chao&rft.au=Shi%2C+Huangang&rft.au=Zhu%2C+Yinlong&rft.date=2020-12-17&rft.issn=1520-5029&rft.volume=34&rft.issue=12+p.15169-15194&rft.spage=15169&rft.epage=15194&rft_id=info:doi/10.1021%2Facs.energyfuels.0c01887&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-0624&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-0624&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-0624&client=summon