A Review on Advanced FeNi-Based Catalysts for Water Splitting Reaction
Water splitting as an advanced energy conversion technology driven by sustainable energy is attracting ever-increasing attention for clean hydrogen fuel generation from water. Two fundamental reactions, hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), are involved, and cost-eff...
Saved in:
Published in | Energy & fuels Vol. 34; no. 11; pp. 13491 - 13522 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
19.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Water splitting as an advanced energy conversion technology driven by sustainable energy is attracting ever-increasing attention for clean hydrogen fuel generation from water. Two fundamental reactions, hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), are involved, and cost-effective catalysts are required to fulfill the energy transfer process. Non-precious-metal catalysts have been proposed as the mainstay for future commercial applications. Among them, iron–nickel (FeNi)-based catalysts are very promising benefiting from the FeNi synergistic interaction in promoting the basic reactions. With the help of rational structure design, composition optimization, and electronic state tuning, advanced catalysts based on FeNi have been extensively reported. Herein, we focus on the varied FeNi-based catalysts for water splitting reactions. Before reviewing the literature, some descriptors and perspective comments are first given in the parameter evaluation part that might be helpful for understating the catalytic capability. In light of the extensive reports, some typical examples of FeNi-based catalysts classified into FeNi-alloy, phosphides, oxides, layered double hydroxides, sulfides, tellurides, selenides, and fluorides are introduced in detail. Combined with these advanced catalysts and the performance evaluation, this review will be helpful for readers in understanding the advanced progress on FeNi-based catalysts for water splitting reaction. Problems and challenges are also discussed demonstrating that efficient catalysts that can maintain high activity and stability are still highly desired. A brief perspective on FeNi-based catalysts is proposed that we hope can be a good complement to the existing literature for a better understanding of FeNi-based catalysts for water splitting reaction. |
---|---|
AbstractList | Water splitting as an advanced energy conversion technology driven by sustainable energy is attracting ever-increasing attention for clean hydrogen fuel generation from water. Two fundamental reactions, hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), are involved, and cost-effective catalysts are required to fulfill the energy transfer process. Non-precious-metal catalysts have been proposed as the mainstay for future commercial applications. Among them, iron–nickel (FeNi)-based catalysts are very promising benefiting from the FeNi synergistic interaction in promoting the basic reactions. With the help of rational structure design, composition optimization, and electronic state tuning, advanced catalysts based on FeNi have been extensively reported. Herein, we focus on the varied FeNi-based catalysts for water splitting reactions. Before reviewing the literature, some descriptors and perspective comments are first given in the parameter evaluation part that might be helpful for understating the catalytic capability. In light of the extensive reports, some typical examples of FeNi-based catalysts classified into FeNi-alloy, phosphides, oxides, layered double hydroxides, sulfides, tellurides, selenides, and fluorides are introduced in detail. Combined with these advanced catalysts and the performance evaluation, this review will be helpful for readers in understanding the advanced progress on FeNi-based catalysts for water splitting reaction. Problems and challenges are also discussed demonstrating that efficient catalysts that can maintain high activity and stability are still highly desired. A brief perspective on FeNi-based catalysts is proposed that we hope can be a good complement to the existing literature for a better understanding of FeNi-based catalysts for water splitting reaction. |
Author | Feng, Ligang Liu, Hui Li, Dongze |
AuthorAffiliation | School of Chemistry and Chemical Engineering |
AuthorAffiliation_xml | – name: School of Chemistry and Chemical Engineering |
Author_xml | – sequence: 1 givenname: Dongze surname: Li fullname: Li, Dongze – sequence: 2 givenname: Hui surname: Liu fullname: Liu, Hui – sequence: 3 givenname: Ligang orcidid: 0000-0001-9879-0773 surname: Feng fullname: Feng, Ligang email: ligang.feng@yzu.edu.cn |
BookMark | eNqNkEtPAjEUhRuDiYD-BmfpZvC2M53HwgUSUROiiY-4bC6dO6Rk6GBbMPx7h8DCuNHVPYvzndx8A9azrSXGLjmMOAh-jdqPyJJb7OoNNX4EGhIo0hPW51JALEGUPdaHoshjyER6xgbeLwEgSwrZZ9Nx9EJbQ19Ra6NxtUWrqYqm9GTiW_RdnGDAZueDj-rWRR8YyEWv68aEYOyiY1EH09pzdlpj4-nieIfsfXr3NnmIZ8_3j5PxLMYUIMRCVFhQhvVcUlJplLzOc52KsgBNIivnGZ-nQpcVCYFpIiueAQngdUYJr5EnQ3Z12F279nNDPqiV8ZqaBi21G6-6JZkXkEnRVW8OVe1a7x3VSpuA-2eDQ9MoDmrvT3X-1A9_6uiv4_Nf_NqZFbrdP8jkQO4Ly3bjbKfkT-obXOePVw |
CitedBy_id | crossref_primary_10_1016_j_cej_2024_149107 crossref_primary_10_1039_D4DT00710G crossref_primary_10_1016_j_cej_2021_130686 crossref_primary_10_1021_acsaenm_2c00257 crossref_primary_10_1021_acs_energyfuels_1c03446 crossref_primary_10_1155_2022_1552334 crossref_primary_10_1021_acs_energyfuels_1c02111 crossref_primary_10_1039_D1NR01669E crossref_primary_10_1002_cctc_202401749 crossref_primary_10_1016_j_apsusc_2021_150681 crossref_primary_10_2139_ssrn_4072321 crossref_primary_10_1595_205651321X16067419458185 crossref_primary_10_1016_j_ijhydene_2022_12_356 crossref_primary_10_1007_s12274_021_3800_6 crossref_primary_10_1039_D3DT03695B crossref_primary_10_1016_j_jallcom_2022_166113 crossref_primary_10_1016_j_rser_2025_115385 crossref_primary_10_1016_j_ijhydene_2023_07_177 crossref_primary_10_1016_j_ijhydene_2025_02_234 crossref_primary_10_3390_molecules27041241 crossref_primary_10_1016_j_cej_2022_136165 crossref_primary_10_1039_D0CS01079K crossref_primary_10_1002_ange_202110352 crossref_primary_10_1002_smll_202500081 crossref_primary_10_1002_sstr_202300012 crossref_primary_10_1021_acs_energyfuels_3c02773 crossref_primary_10_1016_j_carbon_2021_03_007 crossref_primary_10_1016_j_est_2023_107825 crossref_primary_10_1016_j_jechem_2021_08_042 crossref_primary_10_1016_j_xcrp_2023_101526 crossref_primary_10_1007_s12274_022_5207_4 crossref_primary_10_1002_slct_202100727 crossref_primary_10_1016_j_ijhydene_2023_09_304 crossref_primary_10_1021_acs_energyfuels_3c04026 crossref_primary_10_1021_acs_energyfuels_2c01562 crossref_primary_10_1007_s12034_022_02838_7 crossref_primary_10_1016_j_diamond_2024_111362 crossref_primary_10_1016_j_ijhydene_2024_07_332 crossref_primary_10_1021_acs_energyfuels_4c02061 crossref_primary_10_1021_acs_energyfuels_4c03150 crossref_primary_10_1002_slct_202201464 crossref_primary_10_1007_s11426_024_2077_2 crossref_primary_10_1002_adfm_202208718 crossref_primary_10_1016_j_molstruc_2024_140852 crossref_primary_10_1039_D3NH00156C crossref_primary_10_3390_pr13030644 crossref_primary_10_1016_j_mtcomm_2025_111669 crossref_primary_10_1016_j_jelechem_2023_117703 crossref_primary_10_1021_acsomega_3c04882 crossref_primary_10_1002_ange_202015738 crossref_primary_10_1002_celc_202100984 crossref_primary_10_1016_j_cej_2021_131576 crossref_primary_10_1021_acs_energyfuels_1c02706 crossref_primary_10_1016_j_ijhydene_2021_09_003 crossref_primary_10_1021_acs_energyfuels_1c01854 crossref_primary_10_1039_D1NJ04509A crossref_primary_10_1002_cey2_553 crossref_primary_10_1021_acs_energyfuels_2c01429 crossref_primary_10_1021_acs_inorgchem_1c00295 crossref_primary_10_3390_molecules28031475 crossref_primary_10_1016_j_ccr_2024_216304 crossref_primary_10_1039_D4TA03268C crossref_primary_10_1039_D2RA05922C crossref_primary_10_1002_celc_202101387 crossref_primary_10_1021_acs_inorgchem_2c01867 crossref_primary_10_1016_j_ijhydene_2023_04_023 crossref_primary_10_1016_S1003_6326_23_66380_0 crossref_primary_10_1002_cey2_206 crossref_primary_10_1016_j_chemosphere_2021_131893 crossref_primary_10_1039_D3YA00450C crossref_primary_10_1039_D2DT02729A crossref_primary_10_1039_D3TA04580C crossref_primary_10_1002_cite_202100160 crossref_primary_10_1021_acs_energyfuels_1c02056 crossref_primary_10_1016_j_jcis_2023_10_003 crossref_primary_10_1002_adsu_202400011 crossref_primary_10_1016_j_ijhydene_2024_03_098 crossref_primary_10_1039_D3NJ01546G crossref_primary_10_1039_D3TA02390G crossref_primary_10_1016_j_apcatb_2021_120462 crossref_primary_10_2139_ssrn_4087320 crossref_primary_10_1021_acsami_4c16113 crossref_primary_10_1016_j_cis_2022_102708 crossref_primary_10_3390_ma15020458 crossref_primary_10_1016_j_apmate_2022_01_003 crossref_primary_10_1016_j_cclet_2022_02_046 crossref_primary_10_1016_j_apcatb_2021_120474 crossref_primary_10_1016_j_jelechem_2022_116633 crossref_primary_10_1016_j_ijhydene_2025_01_213 crossref_primary_10_1039_D4TA05738D crossref_primary_10_1007_s13538_024_01679_5 crossref_primary_10_1016_j_fuel_2023_129087 crossref_primary_10_1016_j_cej_2021_130168 crossref_primary_10_1021_acsaem_3c01117 crossref_primary_10_1016_j_colsurfa_2021_127934 crossref_primary_10_1016_j_ijhydene_2022_07_163 crossref_primary_10_1039_D1TA03809E crossref_primary_10_1002_cphc_202400701 crossref_primary_10_1021_acs_langmuir_2c00097 crossref_primary_10_3390_coatings13061127 crossref_primary_10_1016_j_fuel_2022_123947 crossref_primary_10_1039_D0TA12152E crossref_primary_10_1002_metm_11 crossref_primary_10_1016_j_ijhydene_2024_07_030 crossref_primary_10_1002_anie_202015738 crossref_primary_10_3390_molecules29071481 crossref_primary_10_1021_acs_cgd_2c00168 crossref_primary_10_1007_s11581_021_04396_0 crossref_primary_10_1016_j_cej_2021_129987 crossref_primary_10_1021_acs_energyfuels_3c00749 crossref_primary_10_1002_celc_202400457 crossref_primary_10_1016_j_ccr_2023_215274 crossref_primary_10_1039_D2RA07901A crossref_primary_10_1021_acs_energyfuels_2c01061 crossref_primary_10_1021_acs_energyfuels_4c04534 crossref_primary_10_1016_j_jallcom_2024_173709 crossref_primary_10_1039_D4TA02785J crossref_primary_10_3390_molecules29061215 crossref_primary_10_1016_j_diamond_2024_111655 crossref_primary_10_1016_j_cej_2023_145882 crossref_primary_10_1039_D3CY01514A crossref_primary_10_1021_acs_iecr_2c04643 crossref_primary_10_1021_acs_energyfuels_3c00732 crossref_primary_10_2166_wst_2021_336 crossref_primary_10_1039_D1NR07254D crossref_primary_10_1016_j_jssc_2023_124369 crossref_primary_10_1002_smll_202302866 crossref_primary_10_1016_j_ijhydene_2023_04_257 crossref_primary_10_1002_adsu_202400571 crossref_primary_10_1021_acsomega_4c05651 crossref_primary_10_1016_j_mtener_2022_101123 crossref_primary_10_1021_acs_energyfuels_2c02017 crossref_primary_10_1016_j_colsurfa_2021_127142 crossref_primary_10_1016_j_ijhydene_2023_11_310 crossref_primary_10_1021_acs_energyfuels_2c02013 crossref_primary_10_1002_anie_202110352 crossref_primary_10_1039_D1EE02798K crossref_primary_10_1016_j_jallcom_2022_165883 crossref_primary_10_1016_j_apcata_2022_118786 crossref_primary_10_1016_j_cej_2022_140959 crossref_primary_10_1002_cplu_202200338 crossref_primary_10_14710_jksa_26_10_391_403 crossref_primary_10_1016_j_ijhydene_2024_06_014 crossref_primary_10_1016_j_jallcom_2023_170842 crossref_primary_10_1016_j_ijhydene_2021_02_173 crossref_primary_10_1016_j_matchar_2022_112311 crossref_primary_10_1039_D1NJ04439G crossref_primary_10_1039_D1SE01193F crossref_primary_10_1002_celc_202400005 crossref_primary_10_1016_j_cej_2023_144418 crossref_primary_10_1021_acs_langmuir_4c00633 crossref_primary_10_1016_j_jechem_2025_02_042 crossref_primary_10_1016_j_vacuum_2023_112413 crossref_primary_10_1016_j_catcom_2022_106401 crossref_primary_10_1039_D2NR01259F crossref_primary_10_3740_MRSK_2022_32_2_98 crossref_primary_10_1016_j_ijhydene_2023_01_341 crossref_primary_10_1021_acs_energyfuels_1c00367 crossref_primary_10_1016_j_electacta_2025_146042 crossref_primary_10_1016_j_ijhydene_2024_03_351 crossref_primary_10_3390_ijms232314768 crossref_primary_10_1016_j_ijhydene_2022_04_151 crossref_primary_10_1002_adma_202404658 crossref_primary_10_1039_D4CY00727A crossref_primary_10_1007_s11581_023_05213_6 crossref_primary_10_1016_S1872_2067_23_64490_0 crossref_primary_10_1016_j_mtsust_2023_100451 crossref_primary_10_1016_j_jallcom_2023_171746 crossref_primary_10_1021_acs_inorgchem_3c01572 crossref_primary_10_1016_j_elecom_2020_106901 crossref_primary_10_1016_j_nanoen_2021_106463 crossref_primary_10_1016_j_mtsust_2021_100060 crossref_primary_10_1021_acsaenm_3c00534 crossref_primary_10_1021_acsanm_3c03670 crossref_primary_10_1002_eem2_12441 crossref_primary_10_1016_j_jcis_2023_03_176 crossref_primary_10_1016_j_jallcom_2022_165799 crossref_primary_10_1039_D2NJ00947A crossref_primary_10_26599_POM_2023_9140037 crossref_primary_10_1016_j_jtice_2024_105356 crossref_primary_10_1021_acs_energyfuels_1c00823 crossref_primary_10_1016_j_jcis_2023_10_088 crossref_primary_10_1016_j_jallcom_2024_177225 crossref_primary_10_1016_j_ijhydene_2022_08_231 crossref_primary_10_1021_acsaem_2c00663 crossref_primary_10_1039_D1DT01468D crossref_primary_10_1016_j_fuel_2024_131790 crossref_primary_10_1039_D3CC00652B crossref_primary_10_1016_j_ijhydene_2022_11_295 crossref_primary_10_2139_ssrn_4047624 crossref_primary_10_1016_j_apt_2021_09_031 crossref_primary_10_1177_17475198221103519 crossref_primary_10_1002_adma_202107072 crossref_primary_10_1016_j_ijhydene_2023_11_118 crossref_primary_10_1016_j_ccr_2022_214864 crossref_primary_10_1016_j_est_2023_108824 crossref_primary_10_1016_j_jallcom_2024_175275 |
Cites_doi | 10.1039/D0DT01520B 10.1039/C8CC08511K 10.1149/1.2100463 10.1021/acs.nanolett.7b05314 10.1039/C5RA01414J 10.1016/j.apcatb.2020.119165 10.1039/C9SE00700H 10.1002/advs.201800064 10.1039/C6TA05907D 10.1016/j.cej.2020.126371 10.1002/anie.201902446 10.1016/j.ijhydene.2019.09.116 10.1021/am500988p 10.1002/aenm.201502333 10.1039/C7EE03457A 10.34133/2020/3976278 10.1002/cssc.201801103 10.1039/C9SC04027G 10.1039/D0CC03422C 10.1021/acs.inorgchem.7b02947 10.1021/acs.energyfuels.0c01559 10.1016/j.jpowsour.2019.03.089 10.1016/j.ijhydene.2018.09.018 10.1021/jacs.7b07044 10.1016/j.apcatb.2019.118324 10.1002/celc.201700439 10.1016/j.jpowsour.2020.227837 10.1039/C5TA07586F 10.1039/C7TA03163G 10.1016/j.ijhydene.2019.10.229 10.1021/jacs.5b06814 10.1016/j.apcatb.2020.118988 10.1002/aenm.201600621 10.1016/j.cej.2020.125500 10.1039/C9TA00598F 10.1002/anie.201809689 10.1021/ja301018q 10.1146/annurev.anchem.012809.102211 10.1016/j.nanoen.2018.03.010 10.1021/acs.energyfuels.9b02934 10.1002/adma.201806769 10.1007/s10008-018-4061-5 10.1007/s12274-019-2284-0 10.1038/ncomms12324 10.1039/C8NR00426A 10.1016/j.jcis.2019.11.033 10.1016/j.apcatb.2020.118729 10.1002/adma.201700017 10.1016/j.electacta.2020.136516 10.1021/cs3002644 10.1021/acsaem.9b01965 10.1021/acs.energyfuels.0c00793 10.1038/s41560-019-0462-7 10.1039/C8TA10083G 10.1021/ja104587v 10.1016/j.apcatb.2019.118268 10.1016/j.elecom.2017.11.008 10.1016/j.jechem.2019.01.017 10.1039/C8CC02872A 10.1021/jacs.8b05382 10.1021/jacs.7b01482 10.1039/C7SC04569G 10.1002/adfm.201702513 10.1002/chem.201701391 10.1039/C4CC01625D 10.1021/cs401013v 10.1039/C5EE01155H 10.1039/C5TA02974K 10.1038/ncomms5695 10.1016/j.nanoen.2018.10.008 10.1039/C6CS00328A 10.1039/C8TA00622A 10.1039/C9CC07651D 10.1016/j.ijhydene.2017.08.098 10.1016/j.apcatb.2020.119281 10.1016/j.jcat.2014.12.033 10.1016/j.apcatb.2019.01.082 10.1039/C9CC04429A 10.1021/ja511559d 10.1021/acsami.7b00019 10.1021/acsami.0c03823 10.1039/C8CC09993F 10.1039/C9TA08594G 10.1021/acsami.9b09344 10.1038/s41467-019-13415-8 10.1021/acsami.8b11688 10.1039/C9TA03201K 10.1002/adma.201903909 10.1016/j.cej.2020.125507 10.1021/acsami.9b15208 10.1002/adma.201606570 10.1038/s41560-019-0407-1 10.1021/cr200434v 10.1039/C9TA13637A 10.1016/j.ijhydene.2018.06.109 10.1007/s12274-014-0591-z 10.1039/D0NR01386B 10.1016/j.apcatb.2019.05.009 10.1002/adma.201807134 10.1016/j.isci.2019.01.004 10.1016/j.carbon.2019.05.058 10.1002/anie.201306166 10.1038/ncomms12269 10.1016/j.ijhydene.2014.05.016 10.1007/s12274-019-2389-5 10.1039/C7TA04438K 10.1016/S1452-3981(23)15531-3 10.1039/C8TA06529B 10.1002/cctc.201900570 10.1021/acscatal.6b03497 10.1039/C6EE02375D 10.1039/c3ee42413h 10.1039/C6TA08075H 10.1039/C8TA00447A 10.1038/srep13801 10.1016/j.electacta.2019.134656 10.1016/j.matlet.2019.03.131 10.1002/cssc.201200507 10.1021/cs401245q 10.1021/acsenergylett.7b00206 10.1039/C9DT04755G 10.1021/acsami.7b10609 10.1021/acscatal.8b00413 10.1016/j.ijhydene.2015.07.165 10.1016/j.apcatb.2018.09.064 10.1016/j.jcis.2020.06.044 10.1016/j.matlet.2018.03.142 10.1039/C7TA02968C 10.1039/C9CC09187D 10.1039/C8NR05587D 10.1021/acsami.8b00069 10.1021/acscatal.7b02617 10.1016/j.jelechem.2007.08.022 10.1016/j.apcatb.2020.118627 10.1016/j.cclet.2019.01.009 10.1016/j.nanoen.2018.02.017 10.1002/adma.201706279 10.1039/C8CC09893J 10.1021/ja510442p 10.1016/j.nanoen.2018.11.090 10.1007/s12274-016-1211-x 10.1002/admi.201600368 10.1039/C5EE02460A 10.1021/ac0001535 10.1002/smll.201802824 10.1016/j.electacta.2019.134652 10.1016/j.nanoen.2019.02.024 10.1016/j.apcatb.2019.118193 10.1016/j.elecom.2018.05.020 10.1002/cssc.201801250 10.1098/rsos.161016 10.1016/j.cej.2020.125170 10.1039/C6TA04499A 10.1038/s41467-019-11765-x 10.1002/adma.201900510 10.1021/acscatal.7b03191 10.1016/j.cej.2020.124408 10.1039/C4CS00160E 10.1039/C8TA00536B 10.1021/acsami.7b16430 10.1007/s40843-019-1215-9 10.1038/s41598-018-27477-z 10.1002/cctc.201900886 10.1039/C9NR06976C 10.1021/nn5069836 10.1021/acssuschemeng.7b04743 10.1016/j.apcatb.2020.119396 10.1039/C5EE03440J 10.1021/acsami.6b03392 10.1002/cssc.201901828 10.1002/celc.201901420 10.1016/j.apcatb.2018.04.009 10.1021/ja4027715 10.1002/celc.201900481 10.1038/nchem.1853 10.1016/j.jechem.2019.12.008 10.1039/D0TA04388E 10.1016/S1872-2067(18)63150-X 10.1021/acs.energyfuels.0c00953 10.1016/0368-1874(85)85756-7 10.1039/C9CY00191C 10.1007/s12274-014-0677-7 10.1039/C9NR05204F 10.1002/anie.201606290 10.1021/acs.energyfuels.0c00526 10.1021/acssuschemeng.0c02636 10.1016/j.jpowsour.2018.04.090 10.1016/j.cattod.2019.09.046 10.1002/smll.201700610 10.1021/acscatal.7b02991 10.1039/C6TA03177C 10.1038/ncomms7616 10.1039/C8CC03223H 10.1039/C6TA10509B 10.1016/j.electacta.2019.06.060 10.1039/c4cp00482e 10.1021/acs.energyfuels.0c01493 10.1021/acsami.7b08922 10.1039/C8TA06051G 10.1016/j.nanoen.2018.11.047 10.1016/j.jpowsour.2019.227375 10.1002/cssc.201901153 10.1021/acs.jpcc.5b00105 10.1039/C8TA11072G 10.1016/j.ijhydene.2014.01.141 10.1039/C8CC08251K 10.1016/j.jallcom.2019.153346 |
ContentType | Journal Article |
Copyright | 2020 American Chemical
Society |
Copyright_xml | – notice: 2020 American Chemical Society |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1021/acs.energyfuels.0c03084 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-5029 |
EndPage | 13522 |
ExternalDocumentID | 10_1021_acs_energyfuels_0c03084 i3847916 |
GroupedDBID | 02 55A 5GY 5VS 7~N AABXI ABFLS ABMVS ABUCX ACGFS ACJ ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED ED~ F5P GNL IH9 JG JG~ LG6 P2P ROL TAE TN5 UI2 VF5 VG9 W1F X -~X .DC 4.4 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AGXLV AHGAQ BAANH CITATION CUPRZ GGK ZCA ~02 7S9 L.6 |
ID | FETCH-LOGICAL-a400t-22da8e6afb5e3dca51f77c42980ce269b61b42c9de22a435d160e201f6e31fa13 |
IEDL.DBID | ACS |
ISSN | 0887-0624 1520-5029 |
IngestDate | Fri Jul 11 03:11:43 EDT 2025 Thu Apr 24 23:02:14 EDT 2025 Tue Jul 01 02:27:30 EDT 2025 Sat Nov 21 06:54:30 EST 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a400t-22da8e6afb5e3dca51f77c42980ce269b61b42c9de22a435d160e201f6e31fa13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9879-0773 |
PQID | 2985780652 |
PQPubID | 24069 |
PageCount | 32 |
ParticipantIDs | proquest_miscellaneous_2985780652 crossref_citationtrail_10_1021_acs_energyfuels_0c03084 crossref_primary_10_1021_acs_energyfuels_0c03084 acs_journals_10_1021_acs_energyfuels_0c03084 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-19 |
PublicationDateYYYYMMDD | 2020-11-19 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-19 day: 19 |
PublicationDecade | 2020 |
PublicationTitle | Energy & fuels |
PublicationTitleAlternate | Energy Fuels |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref99/cit99 ref3/cit3 ref81/cit81 ref16/cit16 ref185/cit185 ref23/cit23 ref115/cit115 ref187/cit187 ref181/cit181 ref111/cit111 ref113/cit113 ref183/cit183 ref117/cit117 ref48/cit48 ref74/cit74 ref189/cit189 ref119/cit119 ref10/cit10 ref35/cit35 ref93/cit93 ref42/cit42 ref120/cit120 ref178/cit178 ref122/cit122 ref61/cit61 ref176/cit176 ref67/cit67 ref128/cit128 ref124/cit124 ref126/cit126 ref54/cit54 ref137/cit137 ref11/cit11 ref102/cit102 ref29/cit29 ref174/cit174 ref86/cit86 ref170/cit170 ref5/cit5 ref43/cit43 ref80/cit80 ref133/cit133 ref207/cit207 ref28/cit28 ref203/cit203 ref148/cit148 ref55/cit55 ref144/cit144 ref167/cit167 ref163/cit163 ref66/cit66 ref22/cit22 ref87/cit87 ref106/cit106 ref190/cit190 ref140/cit140 ref198/cit198 ref194/cit194 ref98/cit98 ref150/cit150 ref63/cit63 ref56/cit56 ref155/cit155 ref156/cit156 ref158/cit158 ref8/cit8 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref60/cit60 ref17/cit17 ref82/cit82 ref147/cit147 ref145/cit145 ref21/cit21 ref166/cit166 ref164/cit164 ref78/cit78 ref36/cit36 ref83/cit83 ref79/cit79 ref139/cit139 ref172/cit172 ref200/cit200 ref14/cit14 ref57/cit57 ref169/cit169 ref134/cit134 ref40/cit40 ref131/cit131 ref205/cit205 ref161/cit161 ref142/cit142 ref15/cit15 ref180/cit180 ref62/cit62 ref41/cit41 ref58/cit58 ref104/cit104 ref177/cit177 ref84/cit84 ref1/cit1 ref123/cit123 ref196/cit196 ref7/cit7 ref45/cit45 ref52/cit52 ref184/cit184 ref114/cit114 ref186/cit186 ref116/cit116 ref110/cit110 ref182/cit182 ref2/cit2 ref112/cit112 ref77/cit77 ref71/cit71 ref188/cit188 ref20/cit20 ref118/cit118 ref89/cit89 ref19/cit19 ref96/cit96 ref107/cit107 ref191/cit191 ref109/cit109 ref13/cit13 ref193/cit193 ref105/cit105 ref197/cit197 ref38/cit38 ref199/cit199 ref90/cit90 ref195/cit195 ref64/cit64 ref6/cit6 ref18/cit18 ref136/cit136 ref65/cit65 ref171/cit171 ref97/cit97 ref101/cit101 ref76/cit76 ref32/cit32 ref39/cit39 ref202/cit202 ref168/cit168 ref206/cit206 ref132/cit132 ref91/cit91 ref12/cit12 ref179/cit179 ref121/cit121 ref175/cit175 ref33/cit33 ref129/cit129 ref44/cit44 ref70/cit70 ref125/cit125 ref9/cit9 ref152/cit152 ref154/cit154 ref27/cit27 ref151/cit151 ref159/cit159 ref92/cit92 ref157/cit157 ref31/cit31 Lyons M. E. G. (ref153/cit153) 2008; 3 ref88/cit88 ref160/cit160 ref143/cit143 ref53/cit53 ref149/cit149 ref162/cit162 ref46/cit46 ref49/cit49 ref75/cit75 ref24/cit24 ref141/cit141 ref50/cit50 ref138/cit138 ref100/cit100 ref25/cit25 ref173/cit173 ref103/cit103 ref72/cit72 ref201/cit201 ref51/cit51 ref135/cit135 ref68/cit68 ref94/cit94 ref130/cit130 ref204/cit204 ref146/cit146 ref26/cit26 ref73/cit73 ref69/cit69 ref165/cit165 ref95/cit95 ref108/cit108 ref192/cit192 ref4/cit4 ref30/cit30 ref47/cit47 ref127/cit127 |
References_xml | – ident: ref110/cit110 doi: 10.1039/D0DT01520B – ident: ref152/cit152 doi: 10.1039/C8CC08511K – ident: ref43/cit43 doi: 10.1149/1.2100463 – ident: ref170/cit170 doi: 10.1021/acs.nanolett.7b05314 – ident: ref113/cit113 doi: 10.1039/C5RA01414J – ident: ref19/cit19 doi: 10.1016/j.apcatb.2020.119165 – ident: ref111/cit111 doi: 10.1039/C9SE00700H – ident: ref163/cit163 doi: 10.1002/advs.201800064 – ident: ref147/cit147 doi: 10.1039/C6TA05907D – ident: ref67/cit67 doi: 10.1016/j.cej.2020.126371 – ident: ref133/cit133 doi: 10.1002/anie.201902446 – ident: ref107/cit107 doi: 10.1016/j.ijhydene.2019.09.116 – ident: ref143/cit143 doi: 10.1021/am500988p – ident: ref114/cit114 doi: 10.1002/aenm.201502333 – ident: ref74/cit74 doi: 10.1039/C7EE03457A – ident: ref162/cit162 doi: 10.34133/2020/3976278 – ident: ref53/cit53 doi: 10.1002/cssc.201801103 – ident: ref188/cit188 doi: 10.1039/C9SC04027G – ident: ref192/cit192 doi: 10.1039/D0CC03422C – ident: ref122/cit122 doi: 10.1021/acs.inorgchem.7b02947 – ident: ref20/cit20 doi: 10.1021/acs.energyfuels.0c01559 – ident: ref191/cit191 doi: 10.1016/j.jpowsour.2019.03.089 – ident: ref126/cit126 doi: 10.1016/j.ijhydene.2018.09.018 – ident: ref115/cit115 doi: 10.1021/jacs.7b07044 – ident: ref89/cit89 doi: 10.1016/j.apcatb.2019.118324 – ident: ref202/cit202 doi: 10.1002/celc.201700439 – ident: ref63/cit63 doi: 10.1016/j.jpowsour.2020.227837 – ident: ref51/cit51 doi: 10.1039/C5TA07586F – ident: ref194/cit194 doi: 10.1039/C7TA03163G – ident: ref92/cit92 doi: 10.1016/j.ijhydene.2019.10.229 – ident: ref42/cit42 doi: 10.1021/jacs.5b06814 – ident: ref123/cit123 doi: 10.1016/j.apcatb.2020.118988 – ident: ref161/cit161 doi: 10.1002/aenm.201600621 – ident: ref25/cit25 doi: 10.1016/j.cej.2020.125500 – ident: ref4/cit4 doi: 10.1039/C9TA00598F – ident: ref166/cit166 doi: 10.1002/anie.201809689 – ident: ref154/cit154 doi: 10.1021/ja301018q – ident: ref68/cit68 doi: 10.1146/annurev.anchem.012809.102211 – ident: ref182/cit182 doi: 10.1016/j.nanoen.2018.03.010 – ident: ref22/cit22 doi: 10.1021/acs.energyfuels.9b02934 – ident: ref5/cit5 doi: 10.1002/adma.201806769 – ident: ref138/cit138 doi: 10.1007/s10008-018-4061-5 – ident: ref167/cit167 doi: 10.1007/s12274-019-2284-0 – ident: ref183/cit183 doi: 10.1038/ncomms12324 – ident: ref184/cit184 doi: 10.1039/C8NR00426A – ident: ref136/cit136 doi: 10.1016/j.jcis.2019.11.033 – ident: ref76/cit76 doi: 10.1016/j.apcatb.2020.118729 – ident: ref104/cit104 doi: 10.1002/adma.201700017 – ident: ref146/cit146 doi: 10.1016/j.electacta.2020.136516 – ident: ref144/cit144 doi: 10.1021/cs3002644 – ident: ref50/cit50 doi: 10.1021/acsaem.9b01965 – ident: ref29/cit29 doi: 10.1021/acs.energyfuels.0c00793 – ident: ref77/cit77 doi: 10.1038/s41560-019-0462-7 – ident: ref80/cit80 doi: 10.1039/C8TA10083G – ident: ref55/cit55 doi: 10.1021/ja104587v – ident: ref1/cit1 doi: 10.1016/j.apcatb.2019.118268 – ident: ref178/cit178 doi: 10.1016/j.elecom.2017.11.008 – ident: ref46/cit46 doi: 10.1016/j.jechem.2019.01.017 – ident: ref109/cit109 doi: 10.1039/C8CC02872A – ident: ref18/cit18 doi: 10.1021/jacs.8b05382 – ident: ref70/cit70 doi: 10.1021/jacs.7b01482 – ident: ref90/cit90 doi: 10.1039/C7SC04569G – ident: ref200/cit200 doi: 10.1002/adfm.201702513 – ident: ref24/cit24 doi: 10.1002/chem.201701391 – ident: ref165/cit165 doi: 10.1039/C4CC01625D – ident: ref48/cit48 doi: 10.1021/cs401013v – ident: ref2/cit2 doi: 10.1039/C5EE01155H – ident: ref39/cit39 doi: 10.1039/C5TA02974K – ident: ref157/cit157 doi: 10.1038/ncomms5695 – ident: ref17/cit17 doi: 10.1016/j.nanoen.2018.10.008 – ident: ref64/cit64 doi: 10.1039/C6CS00328A – ident: ref201/cit201 doi: 10.1039/C8TA00622A – ident: ref99/cit99 doi: 10.1039/C9CC07651D – ident: ref121/cit121 doi: 10.1016/j.ijhydene.2017.08.098 – ident: ref7/cit7 doi: 10.1016/j.apcatb.2020.119281 – ident: ref16/cit16 doi: 10.1016/j.jcat.2014.12.033 – ident: ref179/cit179 doi: 10.1016/j.apcatb.2019.01.082 – ident: ref38/cit38 doi: 10.1039/C9CC04429A – ident: ref40/cit40 doi: 10.1021/ja511559d – ident: ref100/cit100 doi: 10.1021/acsami.7b00019 – ident: ref28/cit28 doi: 10.1021/acsami.0c03823 – ident: ref73/cit73 doi: 10.1039/C8CC09993F – ident: ref84/cit84 doi: 10.1039/C9TA08594G – ident: ref149/cit149 doi: 10.1021/acsami.9b09344 – ident: ref95/cit95 doi: 10.1038/s41467-019-13415-8 – ident: ref105/cit105 doi: 10.1021/acsami.8b11688 – ident: ref69/cit69 doi: 10.1039/C9TA03201K – ident: ref169/cit169 doi: 10.1002/adma.201903909 – ident: ref171/cit171 doi: 10.1016/j.cej.2020.125507 – ident: ref33/cit33 doi: 10.1021/acsami.9b15208 – ident: ref196/cit196 doi: 10.1002/adma.201606570 – ident: ref12/cit12 doi: 10.1038/s41560-019-0407-1 – ident: ref158/cit158 doi: 10.1021/cr200434v – ident: ref35/cit35 doi: 10.1039/C9TA13637A – ident: ref132/cit132 doi: 10.1016/j.ijhydene.2018.06.109 – ident: ref30/cit30 doi: 10.1007/s12274-014-0591-z – ident: ref6/cit6 doi: 10.1039/D0NR01386B – ident: ref203/cit203 doi: 10.1016/j.apcatb.2019.05.009 – ident: ref112/cit112 doi: 10.1002/adma.201807134 – ident: ref59/cit59 doi: 10.1016/j.isci.2019.01.004 – ident: ref78/cit78 doi: 10.1016/j.carbon.2019.05.058 – ident: ref57/cit57 doi: 10.1002/anie.201306166 – ident: ref116/cit116 doi: 10.1038/ncomms12269 – ident: ref82/cit82 doi: 10.1016/j.ijhydene.2014.05.016 – ident: ref96/cit96 doi: 10.1007/s12274-019-2389-5 – ident: ref120/cit120 doi: 10.1039/C7TA04438K – volume: 3 start-page: 1386 year: 2008 ident: ref153/cit153 publication-title: Inr. J. Electrochem. Sci. doi: 10.1016/S1452-3981(23)15531-3 – ident: ref45/cit45 doi: 10.1039/C8TA06529B – ident: ref124/cit124 doi: 10.1002/cctc.201900570 – ident: ref199/cit199 doi: 10.1021/acscatal.6b03497 – ident: ref131/cit131 doi: 10.1039/C6EE02375D – ident: ref125/cit125 doi: 10.1039/c3ee42413h – ident: ref206/cit206 doi: 10.1039/C6TA08075H – ident: ref97/cit97 doi: 10.1039/C8TA00447A – ident: ref49/cit49 doi: 10.1038/srep13801 – ident: ref156/cit156 doi: 10.1016/j.electacta.2019.134656 – ident: ref127/cit127 doi: 10.1016/j.matlet.2019.03.131 – ident: ref83/cit83 doi: 10.1002/cssc.201200507 – ident: ref155/cit155 doi: 10.1021/cs401245q – ident: ref198/cit198 doi: 10.1021/acsenergylett.7b00206 – ident: ref129/cit129 doi: 10.1039/C9DT04755G – ident: ref27/cit27 doi: 10.1021/acsami.7b10609 – ident: ref172/cit172 doi: 10.1021/acscatal.8b00413 – ident: ref145/cit145 doi: 10.1016/j.ijhydene.2015.07.165 – ident: ref3/cit3 doi: 10.1016/j.apcatb.2018.09.064 – ident: ref137/cit137 doi: 10.1016/j.jcis.2020.06.044 – ident: ref148/cit148 doi: 10.1016/j.matlet.2018.03.142 – ident: ref197/cit197 doi: 10.1039/C7TA02968C – ident: ref21/cit21 doi: 10.1039/C9CC09187D – ident: ref140/cit140 doi: 10.1039/C8NR05587D – ident: ref205/cit205 doi: 10.1021/acsami.8b00069 – ident: ref117/cit117 doi: 10.1021/acscatal.7b02617 – ident: ref81/cit81 doi: 10.1016/j.jelechem.2007.08.022 – ident: ref106/cit106 doi: 10.1016/j.apcatb.2020.118627 – ident: ref93/cit93 doi: 10.1016/j.cclet.2019.01.009 – ident: ref102/cit102 doi: 10.1016/j.nanoen.2018.02.017 – ident: ref108/cit108 doi: 10.1002/adma.201706279 – ident: ref168/cit168 doi: 10.1039/C8CC09893J – ident: ref72/cit72 doi: 10.1021/ja510442p – ident: ref62/cit62 doi: 10.1016/j.nanoen.2018.11.090 – ident: ref118/cit118 doi: 10.1007/s12274-016-1211-x – ident: ref164/cit164 doi: 10.1002/admi.201600368 – ident: ref61/cit61 doi: 10.1039/C5EE02460A – ident: ref65/cit65 doi: 10.1021/ac0001535 – ident: ref71/cit71 doi: 10.1002/smll.201802824 – ident: ref98/cit98 doi: 10.1016/j.electacta.2019.134652 – ident: ref88/cit88 doi: 10.1016/j.nanoen.2019.02.024 – ident: ref151/cit151 doi: 10.1016/j.apcatb.2019.118193 – ident: ref85/cit85 doi: 10.1016/j.elecom.2018.05.020 – ident: ref139/cit139 doi: 10.1002/cssc.201801250 – ident: ref79/cit79 doi: 10.1098/rsos.161016 – ident: ref141/cit141 doi: 10.1016/j.cej.2020.125170 – ident: ref119/cit119 doi: 10.1039/C6TA04499A – ident: ref9/cit9 doi: 10.1038/s41467-019-11765-x – ident: ref13/cit13 doi: 10.1002/adma.201900510 – ident: ref32/cit32 doi: 10.1021/acscatal.7b03191 – ident: ref204/cit204 doi: 10.1016/j.cej.2020.124408 – ident: ref159/cit159 doi: 10.1039/C4CS00160E – ident: ref180/cit180 doi: 10.1039/C8TA00536B – ident: ref14/cit14 doi: 10.1021/acsami.7b16430 – ident: ref173/cit173 doi: 10.1007/s40843-019-1215-9 – ident: ref175/cit175 doi: 10.1038/s41598-018-27477-z – ident: ref11/cit11 doi: 10.1002/cctc.201900886 – ident: ref128/cit128 doi: 10.1039/C9NR06976C – ident: ref103/cit103 doi: 10.1021/nn5069836 – ident: ref94/cit94 doi: 10.1021/acssuschemeng.7b04743 – ident: ref75/cit75 doi: 10.1016/j.apcatb.2020.119396 – ident: ref101/cit101 doi: 10.1039/C5EE03440J – ident: ref181/cit181 doi: 10.1021/acsami.6b03392 – ident: ref44/cit44 doi: 10.1002/cssc.201901828 – ident: ref87/cit87 doi: 10.1002/celc.201901420 – ident: ref134/cit134 doi: 10.1016/j.apcatb.2018.04.009 – ident: ref160/cit160 doi: 10.1021/ja4027715 – ident: ref174/cit174 doi: 10.1002/celc.201900481 – ident: ref56/cit56 doi: 10.1038/nchem.1853 – ident: ref190/cit190 doi: 10.1016/j.jechem.2019.12.008 – ident: ref10/cit10 doi: 10.1039/D0TA04388E – ident: ref37/cit37 doi: 10.1016/S1872-2067(18)63150-X – ident: ref8/cit8 doi: 10.1021/acs.energyfuels.0c00953 – ident: ref52/cit52 doi: 10.1016/0368-1874(85)85756-7 – ident: ref15/cit15 doi: 10.1039/C9CY00191C – ident: ref60/cit60 doi: 10.1007/s12274-014-0677-7 – ident: ref193/cit193 doi: 10.1039/C9NR05204F – ident: ref58/cit58 doi: 10.1002/anie.201606290 – ident: ref23/cit23 doi: 10.1021/acs.energyfuels.0c00526 – ident: ref66/cit66 doi: 10.1021/acssuschemeng.0c02636 – ident: ref34/cit34 doi: 10.1016/j.jpowsour.2018.04.090 – ident: ref41/cit41 doi: 10.1016/j.cattod.2019.09.046 – ident: ref176/cit176 doi: 10.1002/smll.201700610 – ident: ref187/cit187 doi: 10.1021/acscatal.7b02991 – ident: ref177/cit177 doi: 10.1039/C6TA03177C – ident: ref150/cit150 doi: 10.1038/ncomms7616 – ident: ref186/cit186 doi: 10.1039/C8CC03223H – ident: ref195/cit195 doi: 10.1039/C6TA10509B – ident: ref91/cit91 doi: 10.1016/j.electacta.2019.06.060 – ident: ref54/cit54 doi: 10.1039/c4cp00482e – ident: ref26/cit26 doi: 10.1021/acs.energyfuels.0c01493 – ident: ref135/cit135 doi: 10.1021/acsami.7b08922 – ident: ref36/cit36 doi: 10.1039/C8TA06051G – ident: ref86/cit86 doi: 10.1016/j.nanoen.2018.11.047 – ident: ref47/cit47 doi: 10.1016/j.jpowsour.2019.227375 – ident: ref189/cit189 doi: 10.1002/cssc.201901153 – ident: ref130/cit130 doi: 10.1021/acs.jpcc.5b00105 – ident: ref185/cit185 doi: 10.1039/C8TA11072G – ident: ref142/cit142 doi: 10.1016/j.ijhydene.2014.01.141 – ident: ref31/cit31 doi: 10.1039/C8CC08251K – ident: ref207/cit207 doi: 10.1016/j.jallcom.2019.153346 |
SSID | ssj0006385 |
Score | 2.6597285 |
Snippet | Water splitting as an advanced energy conversion technology driven by sustainable energy is attracting ever-increasing attention for clean hydrogen fuel... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 13491 |
SubjectTerms | cost effectiveness energy conversion energy transfer hydrogen fuels hydrogen production oxygen production phosphides selenides synergism |
Title | A Review on Advanced FeNi-Based Catalysts for Water Splitting Reaction |
URI | http://dx.doi.org/10.1021/acs.energyfuels.0c03084 https://www.proquest.com/docview/2985780652 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50PagH3-L6IoJHW5s0TXeP62IRQQ-uoreSpAmI0pVt96C_3kkfy4qIei2d0k5m5vvSeQTglGUI01pwr6ej0OMRU54ySnuI7TRWuCOxVfvYza24euDXT9HTAtAfMviMnktd-Kbqg7NThAs_0G7ECl-EJSbQlR0bGo5mwRfNKWqHewaC8bak6-cHOVjSxVdY-hqVK6hJ1uGubdipK0xe_GmpfP3xfX7j379iA9Ya4kkGtaVswoLJt2B52J73tgWrc6MJtyEZkDptQMY5GTSFAiQxt8_eBQJfRobuv897URYEaS95RMo6ISNktFUdNcrWDRM78JBc3g-vvObMBU-iN5ceY5nsGSGtikyYaRlRG8caQasXaMNEXwmqONP9zDAmkWplVAQGSYQVJqRW0nAXOvk4N3tAYhnhjTxQ3AoehLbPpJaSMmVji6Qi7MIZaiVtfKZIq3Q4o6m7OKeqtFFVF0S7Qqlu5pe7YzRefxcMZoJv9QiP30VOWhNIcRVcDkXmZjwtUlQExjjkbWz_f69_ACvMbdVdBWH_EDrlZGqOkM-U6riy4E9OJvOh |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xHAoHdkRZjcSRlNhxnPZYKqqy9VIQcIpsx5YQKEVNeoCvZ5wmZZEQgqvlsZzx2O85sxjgiCUI01pwr6nDwOMhU54ySnuI7TRSeCOxRfrYdV_0bvnFfXg_A80qFwYnkeFIWeHE_6guQE9cmynS4ewYUaPha1dphc_CPFIS5my73RlMz2C0qrCq8ekLxqvIrp8Hcuiks6_o9PVwLhCnuwwP07kWgSZPjXGuGvrtWxnH_3zMCiyVNJS0J3azCjMmXYNap3r9bQ0WPxUqXIdum0ycCGSYknYZNkC6pv_onSIMJqTj_gK9ZnlGkASTOySwIzJAfltEVaPsJH1iA267Zzednle-wOBJ3Nu5x1gim0ZIq0ITJFqG1EaRRghr-tow0VKCKs50KzGMSSReCRW-QUphhQmolTTYhLl0mJotIJEMsSP3FbeC-4FtMamlpEzZyCLFCOpwjFqJyx2UxYVznNHYNX5SVVyqqg6iWqhYl9XM3aMaz78L-lPBl0lBj99FDitLiHEVnEdFpmY4zmJUBJ54yOLY9t-mfwC13s31VXx13r_cgQXmLvEutrC1C3P5aGz2kOnkar8w6nez9vwC |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH64gMvBXdyN4NGOTZqmM-BlHC2ug6CiFylJmoAoHbGdg_56XzrtoIKIXkNeSF9e8n3pWwKwy1KEaS2419Rh4PGQKU8ZpT3EdhopvJHYMn3ssitObvnZfXg_Agd1LgxOIseR8tKJ73b1S2qrCgN037WbMiXO9hE5Gr521Vb4KIw7552z73bnengOo2WFdZ1PXzBeR3f9PJBDKJ1_RaivB3SJOvEsPAznWwabPDX6hWro92-lHP_7QXMwU9FR0h7YzzyMmGwBJjv1K3ALMP2pYOEixG0ycCaQXkbaVfgAiU330TtEOExJx_0NesuLnCAZJndIZF_JNfLcMroaZQdpFEtwGx_fdE686iUGT-IeLzzGUtk0QloVmiDVMqQ2ijRCWdPXhomWElRxplupYUwiAUup8A1SCytMQK2kwTKMZb3MrACJZIgdua-4FdwPbItJLSVlykYWqUawCnuolaTaSXlSOskZTVzjJ1UllapWQdSLleiqqrl7XOP5d0F_KPgyKOzxu8hObQ0JroLzrMjM9Pp5gorAkw_ZHFv72_S3YeLqKE4uTrvn6zDF3F3ehRi2NmCseO2bTSQ8hdoq7foDxyf-hQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+on+Advanced+FeNi-Based+Catalysts+for+Water+Splitting+Reaction&rft.jtitle=Energy+%26+fuels&rft.au=Li%2C+Dongze&rft.au=Liu%2C+Hui&rft.au=Feng%2C+Ligang&rft.date=2020-11-19&rft.pub=American+Chemical+Society&rft.issn=0887-0624&rft.eissn=1520-5029&rft.volume=34&rft.issue=11&rft.spage=13491&rft.epage=13522&rft_id=info:doi/10.1021%2Facs.energyfuels.0c03084&rft.externalDocID=i3847916 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-0624&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-0624&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-0624&client=summon |