A Review on Advanced FeNi-Based Catalysts for Water Splitting Reaction

Water splitting as an advanced energy conversion technology driven by sustainable energy is attracting ever-increasing attention for clean hydrogen fuel generation from water. Two fundamental reactions, hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), are involved, and cost-eff...

Full description

Saved in:
Bibliographic Details
Published inEnergy & fuels Vol. 34; no. 11; pp. 13491 - 13522
Main Authors Li, Dongze, Liu, Hui, Feng, Ligang
Format Journal Article
LanguageEnglish
Published American Chemical Society 19.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Water splitting as an advanced energy conversion technology driven by sustainable energy is attracting ever-increasing attention for clean hydrogen fuel generation from water. Two fundamental reactions, hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), are involved, and cost-effective catalysts are required to fulfill the energy transfer process. Non-precious-metal catalysts have been proposed as the mainstay for future commercial applications. Among them, iron–nickel (FeNi)-based catalysts are very promising benefiting from the FeNi synergistic interaction in promoting the basic reactions. With the help of rational structure design, composition optimization, and electronic state tuning, advanced catalysts based on FeNi have been extensively reported. Herein, we focus on the varied FeNi-based catalysts for water splitting reactions. Before reviewing the literature, some descriptors and perspective comments are first given in the parameter evaluation part that might be helpful for understating the catalytic capability. In light of the extensive reports, some typical examples of FeNi-based catalysts classified into FeNi-alloy, phosphides, oxides, layered double hydroxides, sulfides, tellurides, selenides, and fluorides are introduced in detail. Combined with these advanced catalysts and the performance evaluation, this review will be helpful for readers in understanding the advanced progress on FeNi-based catalysts for water splitting reaction. Problems and challenges are also discussed demonstrating that efficient catalysts that can maintain high activity and stability are still highly desired. A brief perspective on FeNi-based catalysts is proposed that we hope can be a good complement to the existing literature for a better understanding of FeNi-based catalysts for water splitting reaction.
AbstractList Water splitting as an advanced energy conversion technology driven by sustainable energy is attracting ever-increasing attention for clean hydrogen fuel generation from water. Two fundamental reactions, hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), are involved, and cost-effective catalysts are required to fulfill the energy transfer process. Non-precious-metal catalysts have been proposed as the mainstay for future commercial applications. Among them, iron–nickel (FeNi)-based catalysts are very promising benefiting from the FeNi synergistic interaction in promoting the basic reactions. With the help of rational structure design, composition optimization, and electronic state tuning, advanced catalysts based on FeNi have been extensively reported. Herein, we focus on the varied FeNi-based catalysts for water splitting reactions. Before reviewing the literature, some descriptors and perspective comments are first given in the parameter evaluation part that might be helpful for understating the catalytic capability. In light of the extensive reports, some typical examples of FeNi-based catalysts classified into FeNi-alloy, phosphides, oxides, layered double hydroxides, sulfides, tellurides, selenides, and fluorides are introduced in detail. Combined with these advanced catalysts and the performance evaluation, this review will be helpful for readers in understanding the advanced progress on FeNi-based catalysts for water splitting reaction. Problems and challenges are also discussed demonstrating that efficient catalysts that can maintain high activity and stability are still highly desired. A brief perspective on FeNi-based catalysts is proposed that we hope can be a good complement to the existing literature for a better understanding of FeNi-based catalysts for water splitting reaction.
Author Feng, Ligang
Liu, Hui
Li, Dongze
AuthorAffiliation School of Chemistry and Chemical Engineering
AuthorAffiliation_xml – name: School of Chemistry and Chemical Engineering
Author_xml – sequence: 1
  givenname: Dongze
  surname: Li
  fullname: Li, Dongze
– sequence: 2
  givenname: Hui
  surname: Liu
  fullname: Liu, Hui
– sequence: 3
  givenname: Ligang
  orcidid: 0000-0001-9879-0773
  surname: Feng
  fullname: Feng, Ligang
  email: ligang.feng@yzu.edu.cn
BookMark eNqNkEtPAjEUhRuDiYD-BmfpZvC2M53HwgUSUROiiY-4bC6dO6Rk6GBbMPx7h8DCuNHVPYvzndx8A9azrSXGLjmMOAh-jdqPyJJb7OoNNX4EGhIo0hPW51JALEGUPdaHoshjyER6xgbeLwEgSwrZZ9Nx9EJbQ19Ra6NxtUWrqYqm9GTiW_RdnGDAZueDj-rWRR8YyEWv68aEYOyiY1EH09pzdlpj4-nieIfsfXr3NnmIZ8_3j5PxLMYUIMRCVFhQhvVcUlJplLzOc52KsgBNIivnGZ-nQpcVCYFpIiueAQngdUYJr5EnQ3Z12F279nNDPqiV8ZqaBi21G6-6JZkXkEnRVW8OVe1a7x3VSpuA-2eDQ9MoDmrvT3X-1A9_6uiv4_Nf_NqZFbrdP8jkQO4Ly3bjbKfkT-obXOePVw
CitedBy_id crossref_primary_10_1016_j_cej_2024_149107
crossref_primary_10_1039_D4DT00710G
crossref_primary_10_1016_j_cej_2021_130686
crossref_primary_10_1021_acsaenm_2c00257
crossref_primary_10_1021_acs_energyfuels_1c03446
crossref_primary_10_1155_2022_1552334
crossref_primary_10_1021_acs_energyfuels_1c02111
crossref_primary_10_1039_D1NR01669E
crossref_primary_10_1002_cctc_202401749
crossref_primary_10_1016_j_apsusc_2021_150681
crossref_primary_10_2139_ssrn_4072321
crossref_primary_10_1595_205651321X16067419458185
crossref_primary_10_1016_j_ijhydene_2022_12_356
crossref_primary_10_1007_s12274_021_3800_6
crossref_primary_10_1039_D3DT03695B
crossref_primary_10_1016_j_jallcom_2022_166113
crossref_primary_10_1016_j_rser_2025_115385
crossref_primary_10_1016_j_ijhydene_2023_07_177
crossref_primary_10_1016_j_ijhydene_2025_02_234
crossref_primary_10_3390_molecules27041241
crossref_primary_10_1016_j_cej_2022_136165
crossref_primary_10_1039_D0CS01079K
crossref_primary_10_1002_ange_202110352
crossref_primary_10_1002_smll_202500081
crossref_primary_10_1002_sstr_202300012
crossref_primary_10_1021_acs_energyfuels_3c02773
crossref_primary_10_1016_j_carbon_2021_03_007
crossref_primary_10_1016_j_est_2023_107825
crossref_primary_10_1016_j_jechem_2021_08_042
crossref_primary_10_1016_j_xcrp_2023_101526
crossref_primary_10_1007_s12274_022_5207_4
crossref_primary_10_1002_slct_202100727
crossref_primary_10_1016_j_ijhydene_2023_09_304
crossref_primary_10_1021_acs_energyfuels_3c04026
crossref_primary_10_1021_acs_energyfuels_2c01562
crossref_primary_10_1007_s12034_022_02838_7
crossref_primary_10_1016_j_diamond_2024_111362
crossref_primary_10_1016_j_ijhydene_2024_07_332
crossref_primary_10_1021_acs_energyfuels_4c02061
crossref_primary_10_1021_acs_energyfuels_4c03150
crossref_primary_10_1002_slct_202201464
crossref_primary_10_1007_s11426_024_2077_2
crossref_primary_10_1002_adfm_202208718
crossref_primary_10_1016_j_molstruc_2024_140852
crossref_primary_10_1039_D3NH00156C
crossref_primary_10_3390_pr13030644
crossref_primary_10_1016_j_mtcomm_2025_111669
crossref_primary_10_1016_j_jelechem_2023_117703
crossref_primary_10_1021_acsomega_3c04882
crossref_primary_10_1002_ange_202015738
crossref_primary_10_1002_celc_202100984
crossref_primary_10_1016_j_cej_2021_131576
crossref_primary_10_1021_acs_energyfuels_1c02706
crossref_primary_10_1016_j_ijhydene_2021_09_003
crossref_primary_10_1021_acs_energyfuels_1c01854
crossref_primary_10_1039_D1NJ04509A
crossref_primary_10_1002_cey2_553
crossref_primary_10_1021_acs_energyfuels_2c01429
crossref_primary_10_1021_acs_inorgchem_1c00295
crossref_primary_10_3390_molecules28031475
crossref_primary_10_1016_j_ccr_2024_216304
crossref_primary_10_1039_D4TA03268C
crossref_primary_10_1039_D2RA05922C
crossref_primary_10_1002_celc_202101387
crossref_primary_10_1021_acs_inorgchem_2c01867
crossref_primary_10_1016_j_ijhydene_2023_04_023
crossref_primary_10_1016_S1003_6326_23_66380_0
crossref_primary_10_1002_cey2_206
crossref_primary_10_1016_j_chemosphere_2021_131893
crossref_primary_10_1039_D3YA00450C
crossref_primary_10_1039_D2DT02729A
crossref_primary_10_1039_D3TA04580C
crossref_primary_10_1002_cite_202100160
crossref_primary_10_1021_acs_energyfuels_1c02056
crossref_primary_10_1016_j_jcis_2023_10_003
crossref_primary_10_1002_adsu_202400011
crossref_primary_10_1016_j_ijhydene_2024_03_098
crossref_primary_10_1039_D3NJ01546G
crossref_primary_10_1039_D3TA02390G
crossref_primary_10_1016_j_apcatb_2021_120462
crossref_primary_10_2139_ssrn_4087320
crossref_primary_10_1021_acsami_4c16113
crossref_primary_10_1016_j_cis_2022_102708
crossref_primary_10_3390_ma15020458
crossref_primary_10_1016_j_apmate_2022_01_003
crossref_primary_10_1016_j_cclet_2022_02_046
crossref_primary_10_1016_j_apcatb_2021_120474
crossref_primary_10_1016_j_jelechem_2022_116633
crossref_primary_10_1016_j_ijhydene_2025_01_213
crossref_primary_10_1039_D4TA05738D
crossref_primary_10_1007_s13538_024_01679_5
crossref_primary_10_1016_j_fuel_2023_129087
crossref_primary_10_1016_j_cej_2021_130168
crossref_primary_10_1021_acsaem_3c01117
crossref_primary_10_1016_j_colsurfa_2021_127934
crossref_primary_10_1016_j_ijhydene_2022_07_163
crossref_primary_10_1039_D1TA03809E
crossref_primary_10_1002_cphc_202400701
crossref_primary_10_1021_acs_langmuir_2c00097
crossref_primary_10_3390_coatings13061127
crossref_primary_10_1016_j_fuel_2022_123947
crossref_primary_10_1039_D0TA12152E
crossref_primary_10_1002_metm_11
crossref_primary_10_1016_j_ijhydene_2024_07_030
crossref_primary_10_1002_anie_202015738
crossref_primary_10_3390_molecules29071481
crossref_primary_10_1021_acs_cgd_2c00168
crossref_primary_10_1007_s11581_021_04396_0
crossref_primary_10_1016_j_cej_2021_129987
crossref_primary_10_1021_acs_energyfuels_3c00749
crossref_primary_10_1002_celc_202400457
crossref_primary_10_1016_j_ccr_2023_215274
crossref_primary_10_1039_D2RA07901A
crossref_primary_10_1021_acs_energyfuels_2c01061
crossref_primary_10_1021_acs_energyfuels_4c04534
crossref_primary_10_1016_j_jallcom_2024_173709
crossref_primary_10_1039_D4TA02785J
crossref_primary_10_3390_molecules29061215
crossref_primary_10_1016_j_diamond_2024_111655
crossref_primary_10_1016_j_cej_2023_145882
crossref_primary_10_1039_D3CY01514A
crossref_primary_10_1021_acs_iecr_2c04643
crossref_primary_10_1021_acs_energyfuels_3c00732
crossref_primary_10_2166_wst_2021_336
crossref_primary_10_1039_D1NR07254D
crossref_primary_10_1016_j_jssc_2023_124369
crossref_primary_10_1002_smll_202302866
crossref_primary_10_1016_j_ijhydene_2023_04_257
crossref_primary_10_1002_adsu_202400571
crossref_primary_10_1021_acsomega_4c05651
crossref_primary_10_1016_j_mtener_2022_101123
crossref_primary_10_1021_acs_energyfuels_2c02017
crossref_primary_10_1016_j_colsurfa_2021_127142
crossref_primary_10_1016_j_ijhydene_2023_11_310
crossref_primary_10_1021_acs_energyfuels_2c02013
crossref_primary_10_1002_anie_202110352
crossref_primary_10_1039_D1EE02798K
crossref_primary_10_1016_j_jallcom_2022_165883
crossref_primary_10_1016_j_apcata_2022_118786
crossref_primary_10_1016_j_cej_2022_140959
crossref_primary_10_1002_cplu_202200338
crossref_primary_10_14710_jksa_26_10_391_403
crossref_primary_10_1016_j_ijhydene_2024_06_014
crossref_primary_10_1016_j_jallcom_2023_170842
crossref_primary_10_1016_j_ijhydene_2021_02_173
crossref_primary_10_1016_j_matchar_2022_112311
crossref_primary_10_1039_D1NJ04439G
crossref_primary_10_1039_D1SE01193F
crossref_primary_10_1002_celc_202400005
crossref_primary_10_1016_j_cej_2023_144418
crossref_primary_10_1021_acs_langmuir_4c00633
crossref_primary_10_1016_j_jechem_2025_02_042
crossref_primary_10_1016_j_vacuum_2023_112413
crossref_primary_10_1016_j_catcom_2022_106401
crossref_primary_10_1039_D2NR01259F
crossref_primary_10_3740_MRSK_2022_32_2_98
crossref_primary_10_1016_j_ijhydene_2023_01_341
crossref_primary_10_1021_acs_energyfuels_1c00367
crossref_primary_10_1016_j_electacta_2025_146042
crossref_primary_10_1016_j_ijhydene_2024_03_351
crossref_primary_10_3390_ijms232314768
crossref_primary_10_1016_j_ijhydene_2022_04_151
crossref_primary_10_1002_adma_202404658
crossref_primary_10_1039_D4CY00727A
crossref_primary_10_1007_s11581_023_05213_6
crossref_primary_10_1016_S1872_2067_23_64490_0
crossref_primary_10_1016_j_mtsust_2023_100451
crossref_primary_10_1016_j_jallcom_2023_171746
crossref_primary_10_1021_acs_inorgchem_3c01572
crossref_primary_10_1016_j_elecom_2020_106901
crossref_primary_10_1016_j_nanoen_2021_106463
crossref_primary_10_1016_j_mtsust_2021_100060
crossref_primary_10_1021_acsaenm_3c00534
crossref_primary_10_1021_acsanm_3c03670
crossref_primary_10_1002_eem2_12441
crossref_primary_10_1016_j_jcis_2023_03_176
crossref_primary_10_1016_j_jallcom_2022_165799
crossref_primary_10_1039_D2NJ00947A
crossref_primary_10_26599_POM_2023_9140037
crossref_primary_10_1016_j_jtice_2024_105356
crossref_primary_10_1021_acs_energyfuels_1c00823
crossref_primary_10_1016_j_jcis_2023_10_088
crossref_primary_10_1016_j_jallcom_2024_177225
crossref_primary_10_1016_j_ijhydene_2022_08_231
crossref_primary_10_1021_acsaem_2c00663
crossref_primary_10_1039_D1DT01468D
crossref_primary_10_1016_j_fuel_2024_131790
crossref_primary_10_1039_D3CC00652B
crossref_primary_10_1016_j_ijhydene_2022_11_295
crossref_primary_10_2139_ssrn_4047624
crossref_primary_10_1016_j_apt_2021_09_031
crossref_primary_10_1177_17475198221103519
crossref_primary_10_1002_adma_202107072
crossref_primary_10_1016_j_ijhydene_2023_11_118
crossref_primary_10_1016_j_ccr_2022_214864
crossref_primary_10_1016_j_est_2023_108824
crossref_primary_10_1016_j_jallcom_2024_175275
Cites_doi 10.1039/D0DT01520B
10.1039/C8CC08511K
10.1149/1.2100463
10.1021/acs.nanolett.7b05314
10.1039/C5RA01414J
10.1016/j.apcatb.2020.119165
10.1039/C9SE00700H
10.1002/advs.201800064
10.1039/C6TA05907D
10.1016/j.cej.2020.126371
10.1002/anie.201902446
10.1016/j.ijhydene.2019.09.116
10.1021/am500988p
10.1002/aenm.201502333
10.1039/C7EE03457A
10.34133/2020/3976278
10.1002/cssc.201801103
10.1039/C9SC04027G
10.1039/D0CC03422C
10.1021/acs.inorgchem.7b02947
10.1021/acs.energyfuels.0c01559
10.1016/j.jpowsour.2019.03.089
10.1016/j.ijhydene.2018.09.018
10.1021/jacs.7b07044
10.1016/j.apcatb.2019.118324
10.1002/celc.201700439
10.1016/j.jpowsour.2020.227837
10.1039/C5TA07586F
10.1039/C7TA03163G
10.1016/j.ijhydene.2019.10.229
10.1021/jacs.5b06814
10.1016/j.apcatb.2020.118988
10.1002/aenm.201600621
10.1016/j.cej.2020.125500
10.1039/C9TA00598F
10.1002/anie.201809689
10.1021/ja301018q
10.1146/annurev.anchem.012809.102211
10.1016/j.nanoen.2018.03.010
10.1021/acs.energyfuels.9b02934
10.1002/adma.201806769
10.1007/s10008-018-4061-5
10.1007/s12274-019-2284-0
10.1038/ncomms12324
10.1039/C8NR00426A
10.1016/j.jcis.2019.11.033
10.1016/j.apcatb.2020.118729
10.1002/adma.201700017
10.1016/j.electacta.2020.136516
10.1021/cs3002644
10.1021/acsaem.9b01965
10.1021/acs.energyfuels.0c00793
10.1038/s41560-019-0462-7
10.1039/C8TA10083G
10.1021/ja104587v
10.1016/j.apcatb.2019.118268
10.1016/j.elecom.2017.11.008
10.1016/j.jechem.2019.01.017
10.1039/C8CC02872A
10.1021/jacs.8b05382
10.1021/jacs.7b01482
10.1039/C7SC04569G
10.1002/adfm.201702513
10.1002/chem.201701391
10.1039/C4CC01625D
10.1021/cs401013v
10.1039/C5EE01155H
10.1039/C5TA02974K
10.1038/ncomms5695
10.1016/j.nanoen.2018.10.008
10.1039/C6CS00328A
10.1039/C8TA00622A
10.1039/C9CC07651D
10.1016/j.ijhydene.2017.08.098
10.1016/j.apcatb.2020.119281
10.1016/j.jcat.2014.12.033
10.1016/j.apcatb.2019.01.082
10.1039/C9CC04429A
10.1021/ja511559d
10.1021/acsami.7b00019
10.1021/acsami.0c03823
10.1039/C8CC09993F
10.1039/C9TA08594G
10.1021/acsami.9b09344
10.1038/s41467-019-13415-8
10.1021/acsami.8b11688
10.1039/C9TA03201K
10.1002/adma.201903909
10.1016/j.cej.2020.125507
10.1021/acsami.9b15208
10.1002/adma.201606570
10.1038/s41560-019-0407-1
10.1021/cr200434v
10.1039/C9TA13637A
10.1016/j.ijhydene.2018.06.109
10.1007/s12274-014-0591-z
10.1039/D0NR01386B
10.1016/j.apcatb.2019.05.009
10.1002/adma.201807134
10.1016/j.isci.2019.01.004
10.1016/j.carbon.2019.05.058
10.1002/anie.201306166
10.1038/ncomms12269
10.1016/j.ijhydene.2014.05.016
10.1007/s12274-019-2389-5
10.1039/C7TA04438K
10.1016/S1452-3981(23)15531-3
10.1039/C8TA06529B
10.1002/cctc.201900570
10.1021/acscatal.6b03497
10.1039/C6EE02375D
10.1039/c3ee42413h
10.1039/C6TA08075H
10.1039/C8TA00447A
10.1038/srep13801
10.1016/j.electacta.2019.134656
10.1016/j.matlet.2019.03.131
10.1002/cssc.201200507
10.1021/cs401245q
10.1021/acsenergylett.7b00206
10.1039/C9DT04755G
10.1021/acsami.7b10609
10.1021/acscatal.8b00413
10.1016/j.ijhydene.2015.07.165
10.1016/j.apcatb.2018.09.064
10.1016/j.jcis.2020.06.044
10.1016/j.matlet.2018.03.142
10.1039/C7TA02968C
10.1039/C9CC09187D
10.1039/C8NR05587D
10.1021/acsami.8b00069
10.1021/acscatal.7b02617
10.1016/j.jelechem.2007.08.022
10.1016/j.apcatb.2020.118627
10.1016/j.cclet.2019.01.009
10.1016/j.nanoen.2018.02.017
10.1002/adma.201706279
10.1039/C8CC09893J
10.1021/ja510442p
10.1016/j.nanoen.2018.11.090
10.1007/s12274-016-1211-x
10.1002/admi.201600368
10.1039/C5EE02460A
10.1021/ac0001535
10.1002/smll.201802824
10.1016/j.electacta.2019.134652
10.1016/j.nanoen.2019.02.024
10.1016/j.apcatb.2019.118193
10.1016/j.elecom.2018.05.020
10.1002/cssc.201801250
10.1098/rsos.161016
10.1016/j.cej.2020.125170
10.1039/C6TA04499A
10.1038/s41467-019-11765-x
10.1002/adma.201900510
10.1021/acscatal.7b03191
10.1016/j.cej.2020.124408
10.1039/C4CS00160E
10.1039/C8TA00536B
10.1021/acsami.7b16430
10.1007/s40843-019-1215-9
10.1038/s41598-018-27477-z
10.1002/cctc.201900886
10.1039/C9NR06976C
10.1021/nn5069836
10.1021/acssuschemeng.7b04743
10.1016/j.apcatb.2020.119396
10.1039/C5EE03440J
10.1021/acsami.6b03392
10.1002/cssc.201901828
10.1002/celc.201901420
10.1016/j.apcatb.2018.04.009
10.1021/ja4027715
10.1002/celc.201900481
10.1038/nchem.1853
10.1016/j.jechem.2019.12.008
10.1039/D0TA04388E
10.1016/S1872-2067(18)63150-X
10.1021/acs.energyfuels.0c00953
10.1016/0368-1874(85)85756-7
10.1039/C9CY00191C
10.1007/s12274-014-0677-7
10.1039/C9NR05204F
10.1002/anie.201606290
10.1021/acs.energyfuels.0c00526
10.1021/acssuschemeng.0c02636
10.1016/j.jpowsour.2018.04.090
10.1016/j.cattod.2019.09.046
10.1002/smll.201700610
10.1021/acscatal.7b02991
10.1039/C6TA03177C
10.1038/ncomms7616
10.1039/C8CC03223H
10.1039/C6TA10509B
10.1016/j.electacta.2019.06.060
10.1039/c4cp00482e
10.1021/acs.energyfuels.0c01493
10.1021/acsami.7b08922
10.1039/C8TA06051G
10.1016/j.nanoen.2018.11.047
10.1016/j.jpowsour.2019.227375
10.1002/cssc.201901153
10.1021/acs.jpcc.5b00105
10.1039/C8TA11072G
10.1016/j.ijhydene.2014.01.141
10.1039/C8CC08251K
10.1016/j.jallcom.2019.153346
ContentType Journal Article
Copyright 2020 American Chemical Society
Copyright_xml – notice: 2020 American Chemical Society
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1021/acs.energyfuels.0c03084
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-5029
EndPage 13522
ExternalDocumentID 10_1021_acs_energyfuels_0c03084
i3847916
GroupedDBID 02
55A
5GY
5VS
7~N
AABXI
ABFLS
ABMVS
ABUCX
ACGFS
ACJ
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED
ED~
F5P
GNL
IH9
JG
JG~
LG6
P2P
ROL
TAE
TN5
UI2
VF5
VG9
W1F
X
-~X
.DC
4.4
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AGXLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
ZCA
~02
7S9
L.6
ID FETCH-LOGICAL-a400t-22da8e6afb5e3dca51f77c42980ce269b61b42c9de22a435d160e201f6e31fa13
IEDL.DBID ACS
ISSN 0887-0624
1520-5029
IngestDate Fri Jul 11 03:11:43 EDT 2025
Thu Apr 24 23:02:14 EDT 2025
Tue Jul 01 02:27:30 EDT 2025
Sat Nov 21 06:54:30 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a400t-22da8e6afb5e3dca51f77c42980ce269b61b42c9de22a435d160e201f6e31fa13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9879-0773
PQID 2985780652
PQPubID 24069
PageCount 32
ParticipantIDs proquest_miscellaneous_2985780652
crossref_citationtrail_10_1021_acs_energyfuels_0c03084
crossref_primary_10_1021_acs_energyfuels_0c03084
acs_journals_10_1021_acs_energyfuels_0c03084
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-19
PublicationDateYYYYMMDD 2020-11-19
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-19
  day: 19
PublicationDecade 2020
PublicationTitle Energy & fuels
PublicationTitleAlternate Energy Fuels
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
ref185/cit185
ref23/cit23
ref115/cit115
ref187/cit187
ref181/cit181
ref111/cit111
ref113/cit113
ref183/cit183
ref117/cit117
ref48/cit48
ref74/cit74
ref189/cit189
ref119/cit119
ref10/cit10
ref35/cit35
ref93/cit93
ref42/cit42
ref120/cit120
ref178/cit178
ref122/cit122
ref61/cit61
ref176/cit176
ref67/cit67
ref128/cit128
ref124/cit124
ref126/cit126
ref54/cit54
ref137/cit137
ref11/cit11
ref102/cit102
ref29/cit29
ref174/cit174
ref86/cit86
ref170/cit170
ref5/cit5
ref43/cit43
ref80/cit80
ref133/cit133
ref207/cit207
ref28/cit28
ref203/cit203
ref148/cit148
ref55/cit55
ref144/cit144
ref167/cit167
ref163/cit163
ref66/cit66
ref22/cit22
ref87/cit87
ref106/cit106
ref190/cit190
ref140/cit140
ref198/cit198
ref194/cit194
ref98/cit98
ref150/cit150
ref63/cit63
ref56/cit56
ref155/cit155
ref156/cit156
ref158/cit158
ref8/cit8
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref60/cit60
ref17/cit17
ref82/cit82
ref147/cit147
ref145/cit145
ref21/cit21
ref166/cit166
ref164/cit164
ref78/cit78
ref36/cit36
ref83/cit83
ref79/cit79
ref139/cit139
ref172/cit172
ref200/cit200
ref14/cit14
ref57/cit57
ref169/cit169
ref134/cit134
ref40/cit40
ref131/cit131
ref205/cit205
ref161/cit161
ref142/cit142
ref15/cit15
ref180/cit180
ref62/cit62
ref41/cit41
ref58/cit58
ref104/cit104
ref177/cit177
ref84/cit84
ref1/cit1
ref123/cit123
ref196/cit196
ref7/cit7
ref45/cit45
ref52/cit52
ref184/cit184
ref114/cit114
ref186/cit186
ref116/cit116
ref110/cit110
ref182/cit182
ref2/cit2
ref112/cit112
ref77/cit77
ref71/cit71
ref188/cit188
ref20/cit20
ref118/cit118
ref89/cit89
ref19/cit19
ref96/cit96
ref107/cit107
ref191/cit191
ref109/cit109
ref13/cit13
ref193/cit193
ref105/cit105
ref197/cit197
ref38/cit38
ref199/cit199
ref90/cit90
ref195/cit195
ref64/cit64
ref6/cit6
ref18/cit18
ref136/cit136
ref65/cit65
ref171/cit171
ref97/cit97
ref101/cit101
ref76/cit76
ref32/cit32
ref39/cit39
ref202/cit202
ref168/cit168
ref206/cit206
ref132/cit132
ref91/cit91
ref12/cit12
ref179/cit179
ref121/cit121
ref175/cit175
ref33/cit33
ref129/cit129
ref44/cit44
ref70/cit70
ref125/cit125
ref9/cit9
ref152/cit152
ref154/cit154
ref27/cit27
ref151/cit151
ref159/cit159
ref92/cit92
ref157/cit157
ref31/cit31
Lyons M. E. G. (ref153/cit153) 2008; 3
ref88/cit88
ref160/cit160
ref143/cit143
ref53/cit53
ref149/cit149
ref162/cit162
ref46/cit46
ref49/cit49
ref75/cit75
ref24/cit24
ref141/cit141
ref50/cit50
ref138/cit138
ref100/cit100
ref25/cit25
ref173/cit173
ref103/cit103
ref72/cit72
ref201/cit201
ref51/cit51
ref135/cit135
ref68/cit68
ref94/cit94
ref130/cit130
ref204/cit204
ref146/cit146
ref26/cit26
ref73/cit73
ref69/cit69
ref165/cit165
ref95/cit95
ref108/cit108
ref192/cit192
ref4/cit4
ref30/cit30
ref47/cit47
ref127/cit127
References_xml – ident: ref110/cit110
  doi: 10.1039/D0DT01520B
– ident: ref152/cit152
  doi: 10.1039/C8CC08511K
– ident: ref43/cit43
  doi: 10.1149/1.2100463
– ident: ref170/cit170
  doi: 10.1021/acs.nanolett.7b05314
– ident: ref113/cit113
  doi: 10.1039/C5RA01414J
– ident: ref19/cit19
  doi: 10.1016/j.apcatb.2020.119165
– ident: ref111/cit111
  doi: 10.1039/C9SE00700H
– ident: ref163/cit163
  doi: 10.1002/advs.201800064
– ident: ref147/cit147
  doi: 10.1039/C6TA05907D
– ident: ref67/cit67
  doi: 10.1016/j.cej.2020.126371
– ident: ref133/cit133
  doi: 10.1002/anie.201902446
– ident: ref107/cit107
  doi: 10.1016/j.ijhydene.2019.09.116
– ident: ref143/cit143
  doi: 10.1021/am500988p
– ident: ref114/cit114
  doi: 10.1002/aenm.201502333
– ident: ref74/cit74
  doi: 10.1039/C7EE03457A
– ident: ref162/cit162
  doi: 10.34133/2020/3976278
– ident: ref53/cit53
  doi: 10.1002/cssc.201801103
– ident: ref188/cit188
  doi: 10.1039/C9SC04027G
– ident: ref192/cit192
  doi: 10.1039/D0CC03422C
– ident: ref122/cit122
  doi: 10.1021/acs.inorgchem.7b02947
– ident: ref20/cit20
  doi: 10.1021/acs.energyfuels.0c01559
– ident: ref191/cit191
  doi: 10.1016/j.jpowsour.2019.03.089
– ident: ref126/cit126
  doi: 10.1016/j.ijhydene.2018.09.018
– ident: ref115/cit115
  doi: 10.1021/jacs.7b07044
– ident: ref89/cit89
  doi: 10.1016/j.apcatb.2019.118324
– ident: ref202/cit202
  doi: 10.1002/celc.201700439
– ident: ref63/cit63
  doi: 10.1016/j.jpowsour.2020.227837
– ident: ref51/cit51
  doi: 10.1039/C5TA07586F
– ident: ref194/cit194
  doi: 10.1039/C7TA03163G
– ident: ref92/cit92
  doi: 10.1016/j.ijhydene.2019.10.229
– ident: ref42/cit42
  doi: 10.1021/jacs.5b06814
– ident: ref123/cit123
  doi: 10.1016/j.apcatb.2020.118988
– ident: ref161/cit161
  doi: 10.1002/aenm.201600621
– ident: ref25/cit25
  doi: 10.1016/j.cej.2020.125500
– ident: ref4/cit4
  doi: 10.1039/C9TA00598F
– ident: ref166/cit166
  doi: 10.1002/anie.201809689
– ident: ref154/cit154
  doi: 10.1021/ja301018q
– ident: ref68/cit68
  doi: 10.1146/annurev.anchem.012809.102211
– ident: ref182/cit182
  doi: 10.1016/j.nanoen.2018.03.010
– ident: ref22/cit22
  doi: 10.1021/acs.energyfuels.9b02934
– ident: ref5/cit5
  doi: 10.1002/adma.201806769
– ident: ref138/cit138
  doi: 10.1007/s10008-018-4061-5
– ident: ref167/cit167
  doi: 10.1007/s12274-019-2284-0
– ident: ref183/cit183
  doi: 10.1038/ncomms12324
– ident: ref184/cit184
  doi: 10.1039/C8NR00426A
– ident: ref136/cit136
  doi: 10.1016/j.jcis.2019.11.033
– ident: ref76/cit76
  doi: 10.1016/j.apcatb.2020.118729
– ident: ref104/cit104
  doi: 10.1002/adma.201700017
– ident: ref146/cit146
  doi: 10.1016/j.electacta.2020.136516
– ident: ref144/cit144
  doi: 10.1021/cs3002644
– ident: ref50/cit50
  doi: 10.1021/acsaem.9b01965
– ident: ref29/cit29
  doi: 10.1021/acs.energyfuels.0c00793
– ident: ref77/cit77
  doi: 10.1038/s41560-019-0462-7
– ident: ref80/cit80
  doi: 10.1039/C8TA10083G
– ident: ref55/cit55
  doi: 10.1021/ja104587v
– ident: ref1/cit1
  doi: 10.1016/j.apcatb.2019.118268
– ident: ref178/cit178
  doi: 10.1016/j.elecom.2017.11.008
– ident: ref46/cit46
  doi: 10.1016/j.jechem.2019.01.017
– ident: ref109/cit109
  doi: 10.1039/C8CC02872A
– ident: ref18/cit18
  doi: 10.1021/jacs.8b05382
– ident: ref70/cit70
  doi: 10.1021/jacs.7b01482
– ident: ref90/cit90
  doi: 10.1039/C7SC04569G
– ident: ref200/cit200
  doi: 10.1002/adfm.201702513
– ident: ref24/cit24
  doi: 10.1002/chem.201701391
– ident: ref165/cit165
  doi: 10.1039/C4CC01625D
– ident: ref48/cit48
  doi: 10.1021/cs401013v
– ident: ref2/cit2
  doi: 10.1039/C5EE01155H
– ident: ref39/cit39
  doi: 10.1039/C5TA02974K
– ident: ref157/cit157
  doi: 10.1038/ncomms5695
– ident: ref17/cit17
  doi: 10.1016/j.nanoen.2018.10.008
– ident: ref64/cit64
  doi: 10.1039/C6CS00328A
– ident: ref201/cit201
  doi: 10.1039/C8TA00622A
– ident: ref99/cit99
  doi: 10.1039/C9CC07651D
– ident: ref121/cit121
  doi: 10.1016/j.ijhydene.2017.08.098
– ident: ref7/cit7
  doi: 10.1016/j.apcatb.2020.119281
– ident: ref16/cit16
  doi: 10.1016/j.jcat.2014.12.033
– ident: ref179/cit179
  doi: 10.1016/j.apcatb.2019.01.082
– ident: ref38/cit38
  doi: 10.1039/C9CC04429A
– ident: ref40/cit40
  doi: 10.1021/ja511559d
– ident: ref100/cit100
  doi: 10.1021/acsami.7b00019
– ident: ref28/cit28
  doi: 10.1021/acsami.0c03823
– ident: ref73/cit73
  doi: 10.1039/C8CC09993F
– ident: ref84/cit84
  doi: 10.1039/C9TA08594G
– ident: ref149/cit149
  doi: 10.1021/acsami.9b09344
– ident: ref95/cit95
  doi: 10.1038/s41467-019-13415-8
– ident: ref105/cit105
  doi: 10.1021/acsami.8b11688
– ident: ref69/cit69
  doi: 10.1039/C9TA03201K
– ident: ref169/cit169
  doi: 10.1002/adma.201903909
– ident: ref171/cit171
  doi: 10.1016/j.cej.2020.125507
– ident: ref33/cit33
  doi: 10.1021/acsami.9b15208
– ident: ref196/cit196
  doi: 10.1002/adma.201606570
– ident: ref12/cit12
  doi: 10.1038/s41560-019-0407-1
– ident: ref158/cit158
  doi: 10.1021/cr200434v
– ident: ref35/cit35
  doi: 10.1039/C9TA13637A
– ident: ref132/cit132
  doi: 10.1016/j.ijhydene.2018.06.109
– ident: ref30/cit30
  doi: 10.1007/s12274-014-0591-z
– ident: ref6/cit6
  doi: 10.1039/D0NR01386B
– ident: ref203/cit203
  doi: 10.1016/j.apcatb.2019.05.009
– ident: ref112/cit112
  doi: 10.1002/adma.201807134
– ident: ref59/cit59
  doi: 10.1016/j.isci.2019.01.004
– ident: ref78/cit78
  doi: 10.1016/j.carbon.2019.05.058
– ident: ref57/cit57
  doi: 10.1002/anie.201306166
– ident: ref116/cit116
  doi: 10.1038/ncomms12269
– ident: ref82/cit82
  doi: 10.1016/j.ijhydene.2014.05.016
– ident: ref96/cit96
  doi: 10.1007/s12274-019-2389-5
– ident: ref120/cit120
  doi: 10.1039/C7TA04438K
– volume: 3
  start-page: 1386
  year: 2008
  ident: ref153/cit153
  publication-title: Inr. J. Electrochem. Sci.
  doi: 10.1016/S1452-3981(23)15531-3
– ident: ref45/cit45
  doi: 10.1039/C8TA06529B
– ident: ref124/cit124
  doi: 10.1002/cctc.201900570
– ident: ref199/cit199
  doi: 10.1021/acscatal.6b03497
– ident: ref131/cit131
  doi: 10.1039/C6EE02375D
– ident: ref125/cit125
  doi: 10.1039/c3ee42413h
– ident: ref206/cit206
  doi: 10.1039/C6TA08075H
– ident: ref97/cit97
  doi: 10.1039/C8TA00447A
– ident: ref49/cit49
  doi: 10.1038/srep13801
– ident: ref156/cit156
  doi: 10.1016/j.electacta.2019.134656
– ident: ref127/cit127
  doi: 10.1016/j.matlet.2019.03.131
– ident: ref83/cit83
  doi: 10.1002/cssc.201200507
– ident: ref155/cit155
  doi: 10.1021/cs401245q
– ident: ref198/cit198
  doi: 10.1021/acsenergylett.7b00206
– ident: ref129/cit129
  doi: 10.1039/C9DT04755G
– ident: ref27/cit27
  doi: 10.1021/acsami.7b10609
– ident: ref172/cit172
  doi: 10.1021/acscatal.8b00413
– ident: ref145/cit145
  doi: 10.1016/j.ijhydene.2015.07.165
– ident: ref3/cit3
  doi: 10.1016/j.apcatb.2018.09.064
– ident: ref137/cit137
  doi: 10.1016/j.jcis.2020.06.044
– ident: ref148/cit148
  doi: 10.1016/j.matlet.2018.03.142
– ident: ref197/cit197
  doi: 10.1039/C7TA02968C
– ident: ref21/cit21
  doi: 10.1039/C9CC09187D
– ident: ref140/cit140
  doi: 10.1039/C8NR05587D
– ident: ref205/cit205
  doi: 10.1021/acsami.8b00069
– ident: ref117/cit117
  doi: 10.1021/acscatal.7b02617
– ident: ref81/cit81
  doi: 10.1016/j.jelechem.2007.08.022
– ident: ref106/cit106
  doi: 10.1016/j.apcatb.2020.118627
– ident: ref93/cit93
  doi: 10.1016/j.cclet.2019.01.009
– ident: ref102/cit102
  doi: 10.1016/j.nanoen.2018.02.017
– ident: ref108/cit108
  doi: 10.1002/adma.201706279
– ident: ref168/cit168
  doi: 10.1039/C8CC09893J
– ident: ref72/cit72
  doi: 10.1021/ja510442p
– ident: ref62/cit62
  doi: 10.1016/j.nanoen.2018.11.090
– ident: ref118/cit118
  doi: 10.1007/s12274-016-1211-x
– ident: ref164/cit164
  doi: 10.1002/admi.201600368
– ident: ref61/cit61
  doi: 10.1039/C5EE02460A
– ident: ref65/cit65
  doi: 10.1021/ac0001535
– ident: ref71/cit71
  doi: 10.1002/smll.201802824
– ident: ref98/cit98
  doi: 10.1016/j.electacta.2019.134652
– ident: ref88/cit88
  doi: 10.1016/j.nanoen.2019.02.024
– ident: ref151/cit151
  doi: 10.1016/j.apcatb.2019.118193
– ident: ref85/cit85
  doi: 10.1016/j.elecom.2018.05.020
– ident: ref139/cit139
  doi: 10.1002/cssc.201801250
– ident: ref79/cit79
  doi: 10.1098/rsos.161016
– ident: ref141/cit141
  doi: 10.1016/j.cej.2020.125170
– ident: ref119/cit119
  doi: 10.1039/C6TA04499A
– ident: ref9/cit9
  doi: 10.1038/s41467-019-11765-x
– ident: ref13/cit13
  doi: 10.1002/adma.201900510
– ident: ref32/cit32
  doi: 10.1021/acscatal.7b03191
– ident: ref204/cit204
  doi: 10.1016/j.cej.2020.124408
– ident: ref159/cit159
  doi: 10.1039/C4CS00160E
– ident: ref180/cit180
  doi: 10.1039/C8TA00536B
– ident: ref14/cit14
  doi: 10.1021/acsami.7b16430
– ident: ref173/cit173
  doi: 10.1007/s40843-019-1215-9
– ident: ref175/cit175
  doi: 10.1038/s41598-018-27477-z
– ident: ref11/cit11
  doi: 10.1002/cctc.201900886
– ident: ref128/cit128
  doi: 10.1039/C9NR06976C
– ident: ref103/cit103
  doi: 10.1021/nn5069836
– ident: ref94/cit94
  doi: 10.1021/acssuschemeng.7b04743
– ident: ref75/cit75
  doi: 10.1016/j.apcatb.2020.119396
– ident: ref101/cit101
  doi: 10.1039/C5EE03440J
– ident: ref181/cit181
  doi: 10.1021/acsami.6b03392
– ident: ref44/cit44
  doi: 10.1002/cssc.201901828
– ident: ref87/cit87
  doi: 10.1002/celc.201901420
– ident: ref134/cit134
  doi: 10.1016/j.apcatb.2018.04.009
– ident: ref160/cit160
  doi: 10.1021/ja4027715
– ident: ref174/cit174
  doi: 10.1002/celc.201900481
– ident: ref56/cit56
  doi: 10.1038/nchem.1853
– ident: ref190/cit190
  doi: 10.1016/j.jechem.2019.12.008
– ident: ref10/cit10
  doi: 10.1039/D0TA04388E
– ident: ref37/cit37
  doi: 10.1016/S1872-2067(18)63150-X
– ident: ref8/cit8
  doi: 10.1021/acs.energyfuels.0c00953
– ident: ref52/cit52
  doi: 10.1016/0368-1874(85)85756-7
– ident: ref15/cit15
  doi: 10.1039/C9CY00191C
– ident: ref60/cit60
  doi: 10.1007/s12274-014-0677-7
– ident: ref193/cit193
  doi: 10.1039/C9NR05204F
– ident: ref58/cit58
  doi: 10.1002/anie.201606290
– ident: ref23/cit23
  doi: 10.1021/acs.energyfuels.0c00526
– ident: ref66/cit66
  doi: 10.1021/acssuschemeng.0c02636
– ident: ref34/cit34
  doi: 10.1016/j.jpowsour.2018.04.090
– ident: ref41/cit41
  doi: 10.1016/j.cattod.2019.09.046
– ident: ref176/cit176
  doi: 10.1002/smll.201700610
– ident: ref187/cit187
  doi: 10.1021/acscatal.7b02991
– ident: ref177/cit177
  doi: 10.1039/C6TA03177C
– ident: ref150/cit150
  doi: 10.1038/ncomms7616
– ident: ref186/cit186
  doi: 10.1039/C8CC03223H
– ident: ref195/cit195
  doi: 10.1039/C6TA10509B
– ident: ref91/cit91
  doi: 10.1016/j.electacta.2019.06.060
– ident: ref54/cit54
  doi: 10.1039/c4cp00482e
– ident: ref26/cit26
  doi: 10.1021/acs.energyfuels.0c01493
– ident: ref135/cit135
  doi: 10.1021/acsami.7b08922
– ident: ref36/cit36
  doi: 10.1039/C8TA06051G
– ident: ref86/cit86
  doi: 10.1016/j.nanoen.2018.11.047
– ident: ref47/cit47
  doi: 10.1016/j.jpowsour.2019.227375
– ident: ref189/cit189
  doi: 10.1002/cssc.201901153
– ident: ref130/cit130
  doi: 10.1021/acs.jpcc.5b00105
– ident: ref185/cit185
  doi: 10.1039/C8TA11072G
– ident: ref142/cit142
  doi: 10.1016/j.ijhydene.2014.01.141
– ident: ref31/cit31
  doi: 10.1039/C8CC08251K
– ident: ref207/cit207
  doi: 10.1016/j.jallcom.2019.153346
SSID ssj0006385
Score 2.6597285
Snippet Water splitting as an advanced energy conversion technology driven by sustainable energy is attracting ever-increasing attention for clean hydrogen fuel...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 13491
SubjectTerms cost effectiveness
energy conversion
energy transfer
hydrogen fuels
hydrogen production
oxygen production
phosphides
selenides
synergism
Title A Review on Advanced FeNi-Based Catalysts for Water Splitting Reaction
URI http://dx.doi.org/10.1021/acs.energyfuels.0c03084
https://www.proquest.com/docview/2985780652
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50PagH3-L6IoJHW5s0TXeP62IRQQ-uoreSpAmI0pVt96C_3kkfy4qIei2d0k5m5vvSeQTglGUI01pwr6ej0OMRU54ySnuI7TRWuCOxVfvYza24euDXT9HTAtAfMviMnktd-Kbqg7NThAs_0G7ECl-EJSbQlR0bGo5mwRfNKWqHewaC8bak6-cHOVjSxVdY-hqVK6hJ1uGubdipK0xe_GmpfP3xfX7j379iA9Ya4kkGtaVswoLJt2B52J73tgWrc6MJtyEZkDptQMY5GTSFAiQxt8_eBQJfRobuv897URYEaS95RMo6ISNktFUdNcrWDRM78JBc3g-vvObMBU-iN5ceY5nsGSGtikyYaRlRG8caQasXaMNEXwmqONP9zDAmkWplVAQGSYQVJqRW0nAXOvk4N3tAYhnhjTxQ3AoehLbPpJaSMmVji6Qi7MIZaiVtfKZIq3Q4o6m7OKeqtFFVF0S7Qqlu5pe7YzRefxcMZoJv9QiP30VOWhNIcRVcDkXmZjwtUlQExjjkbWz_f69_ACvMbdVdBWH_EDrlZGqOkM-U6riy4E9OJvOh
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xHAoHdkRZjcSRlNhxnPZYKqqy9VIQcIpsx5YQKEVNeoCvZ5wmZZEQgqvlsZzx2O85sxjgiCUI01pwr6nDwOMhU54ySnuI7TRSeCOxRfrYdV_0bvnFfXg_A80qFwYnkeFIWeHE_6guQE9cmynS4ewYUaPha1dphc_CPFIS5my73RlMz2C0qrCq8ekLxqvIrp8Hcuiks6_o9PVwLhCnuwwP07kWgSZPjXGuGvrtWxnH_3zMCiyVNJS0J3azCjMmXYNap3r9bQ0WPxUqXIdum0ycCGSYknYZNkC6pv_onSIMJqTj_gK9ZnlGkASTOySwIzJAfltEVaPsJH1iA267Zzednle-wOBJ3Nu5x1gim0ZIq0ITJFqG1EaRRghr-tow0VKCKs50KzGMSSReCRW-QUphhQmolTTYhLl0mJotIJEMsSP3FbeC-4FtMamlpEzZyCLFCOpwjFqJyx2UxYVznNHYNX5SVVyqqg6iWqhYl9XM3aMaz78L-lPBl0lBj99FDitLiHEVnEdFpmY4zmJUBJ54yOLY9t-mfwC13s31VXx13r_cgQXmLvEutrC1C3P5aGz2kOnkar8w6nez9vwC
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH64gMvBXdyN4NGOTZqmM-BlHC2ug6CiFylJmoAoHbGdg_56XzrtoIKIXkNeSF9e8n3pWwKwy1KEaS2419Rh4PGQKU8ZpT3EdhopvJHYMn3ssitObvnZfXg_Agd1LgxOIseR8tKJ73b1S2qrCgN037WbMiXO9hE5Gr521Vb4KIw7552z73bnengOo2WFdZ1PXzBeR3f9PJBDKJ1_RaivB3SJOvEsPAznWwabPDX6hWro92-lHP_7QXMwU9FR0h7YzzyMmGwBJjv1K3ALMP2pYOEixG0ycCaQXkbaVfgAiU330TtEOExJx_0NesuLnCAZJndIZF_JNfLcMroaZQdpFEtwGx_fdE686iUGT-IeLzzGUtk0QloVmiDVMqQ2ijRCWdPXhomWElRxplupYUwiAUup8A1SCytMQK2kwTKMZb3MrACJZIgdua-4FdwPbItJLSVlykYWqUawCnuolaTaSXlSOskZTVzjJ1UllapWQdSLleiqqrl7XOP5d0F_KPgyKOzxu8hObQ0JroLzrMjM9Pp5gorAkw_ZHFv72_S3YeLqKE4uTrvn6zDF3F3ehRi2NmCseO2bTSQ8hdoq7foDxyf-hQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+on+Advanced+FeNi-Based+Catalysts+for+Water+Splitting+Reaction&rft.jtitle=Energy+%26+fuels&rft.au=Li%2C+Dongze&rft.au=Liu%2C+Hui&rft.au=Feng%2C+Ligang&rft.date=2020-11-19&rft.pub=American+Chemical+Society&rft.issn=0887-0624&rft.eissn=1520-5029&rft.volume=34&rft.issue=11&rft.spage=13491&rft.epage=13522&rft_id=info:doi/10.1021%2Facs.energyfuels.0c03084&rft.externalDocID=i3847916
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-0624&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-0624&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-0624&client=summon