Multifunctional Latex/Polytetrafluoroethylene-Based Triboelectric Nanogenerator for Self-Powered Organ-like MXene/Metal–Organic Framework-Derived CuO Nanohybrid Ammonia Sensor
Self-powered sensors are crucial in the field of wearable devices and the Internet of Things (IoT). In this paper, an organ-like Ti3C2T x MXene/metal–organic framework-derived copper oxide (CuO) gas sensor was powered by a triboelectric nanogenerator (TENG) based on latex and polytetrafluoroethylene...
Saved in:
Published in | ACS nano Vol. 15; no. 2; pp. 2911 - 2919 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
23.02.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Self-powered sensors are crucial in the field of wearable devices and the Internet of Things (IoT). In this paper, an organ-like Ti3C2T x MXene/metal–organic framework-derived copper oxide (CuO) gas sensor was powered by a triboelectric nanogenerator (TENG) based on latex and polytetrafluoroethylene for the detection of ammonia (NH3) at room temperature. The peak-to-peak value of open-circuit voltage and short-circuit current generated by the prepared TENG can reach up to 810 V and 34 μA, respectively. The TENG can support a maximum peak power density of 10.84 W·m–2 and light at least 480 LEDs. Moreover, a flexible TENG under a single-electrode working mode was demonstrated for human movement stimulation, which exhibits great potential in wearable devices. The self-powered NH3 sensor driven by TENG has an excellent response (V g/V a = 24.8 @ 100 ppm) at room temperature and exhibits a great potential in monitoring pork quality. Ti3C2T x MXene and CuO were characterized by SEM, TEM, EDS, XRD, and XPS to analyze the properties of the materials. The NH3 sensing performance of the self-powered sensor based on MXene/CuO was greatly improved, and the mechanism of the enhanced sensing properties was systematically discussed. |
---|---|
AbstractList | Self-powered sensors are crucial in the field of wearable devices and the Internet of Things (IoT). In this paper, an organ-like Ti3C2T x MXene/metal–organic framework-derived copper oxide (CuO) gas sensor was powered by a triboelectric nanogenerator (TENG) based on latex and polytetrafluoroethylene for the detection of ammonia (NH3) at room temperature. The peak-to-peak value of open-circuit voltage and short-circuit current generated by the prepared TENG can reach up to 810 V and 34 μA, respectively. The TENG can support a maximum peak power density of 10.84 W·m–2 and light at least 480 LEDs. Moreover, a flexible TENG under a single-electrode working mode was demonstrated for human movement stimulation, which exhibits great potential in wearable devices. The self-powered NH3 sensor driven by TENG has an excellent response (V g/V a = 24.8 @ 100 ppm) at room temperature and exhibits a great potential in monitoring pork quality. Ti3C2T x MXene and CuO were characterized by SEM, TEM, EDS, XRD, and XPS to analyze the properties of the materials. The NH3 sensing performance of the self-powered sensor based on MXene/CuO was greatly improved, and the mechanism of the enhanced sensing properties was systematically discussed. Self-powered sensors are crucial in the field of wearable devices and the Internet of Things (IoT). In this paper, an organ-like Ti3C2Tx MXene/metal-organic framework-derived copper oxide (CuO) gas sensor was powered by a triboelectric nanogenerator (TENG) based on latex and polytetrafluoroethylene for the detection of ammonia (NH3) at room temperature. The peak-to-peak value of open-circuit voltage and short-circuit current generated by the prepared TENG can reach up to 810 V and 34 μA, respectively. The TENG can support a maximum peak power density of 10.84 W·m-2 and light at least 480 LEDs. Moreover, a flexible TENG under a single-electrode working mode was demonstrated for human movement stimulation, which exhibits great potential in wearable devices. The self-powered NH3 sensor driven by TENG has an excellent response (Vg/Va = 24.8 @ 100 ppm) at room temperature and exhibits a great potential in monitoring pork quality. Ti3C2Tx MXene and CuO were characterized by SEM, TEM, EDS, XRD, and XPS to analyze the properties of the materials. The NH3 sensing performance of the self-powered sensor based on MXene/CuO was greatly improved, and the mechanism of the enhanced sensing properties was systematically discussed.Self-powered sensors are crucial in the field of wearable devices and the Internet of Things (IoT). In this paper, an organ-like Ti3C2Tx MXene/metal-organic framework-derived copper oxide (CuO) gas sensor was powered by a triboelectric nanogenerator (TENG) based on latex and polytetrafluoroethylene for the detection of ammonia (NH3) at room temperature. The peak-to-peak value of open-circuit voltage and short-circuit current generated by the prepared TENG can reach up to 810 V and 34 μA, respectively. The TENG can support a maximum peak power density of 10.84 W·m-2 and light at least 480 LEDs. Moreover, a flexible TENG under a single-electrode working mode was demonstrated for human movement stimulation, which exhibits great potential in wearable devices. The self-powered NH3 sensor driven by TENG has an excellent response (Vg/Va = 24.8 @ 100 ppm) at room temperature and exhibits a great potential in monitoring pork quality. Ti3C2Tx MXene and CuO were characterized by SEM, TEM, EDS, XRD, and XPS to analyze the properties of the materials. The NH3 sensing performance of the self-powered sensor based on MXene/CuO was greatly improved, and the mechanism of the enhanced sensing properties was systematically discussed. Self-powered sensors are crucial in the field of wearable devices and the Internet of Things (IoT). In this paper, an organ-like Ti C T MXene/metal-organic framework-derived copper oxide (CuO) gas sensor was powered by a triboelectric nanogenerator (TENG) based on latex and polytetrafluoroethylene for the detection of ammonia (NH ) at room temperature. The peak-to-peak value of open-circuit voltage and short-circuit current generated by the prepared TENG can reach up to 810 V and 34 μA, respectively. The TENG can support a maximum peak power density of 10.84 W·m and light at least 480 LEDs. Moreover, a flexible TENG under a single-electrode working mode was demonstrated for human movement stimulation, which exhibits great potential in wearable devices. The self-powered NH sensor driven by TENG has an excellent response ( / = 24.8 @ 100 ppm) at room temperature and exhibits a great potential in monitoring pork quality. Ti C T MXene and CuO were characterized by SEM, TEM, EDS, XRD, and XPS to analyze the properties of the materials. The NH sensing performance of the self-powered sensor based on MXene/CuO was greatly improved, and the mechanism of the enhanced sensing properties was systematically discussed. |
Author | Yang, Yan Zhang, Jianhua Mi, Qian Zhang, Dongzhi Yu, Liandong Wang, Dongyue |
AuthorAffiliation | College of Control Science and Engineering |
AuthorAffiliation_xml | – name: College of Control Science and Engineering |
Author_xml | – sequence: 1 givenname: Dongyue surname: Wang fullname: Wang, Dongyue – sequence: 2 givenname: Dongzhi orcidid: 0000-0001-9238-4176 surname: Zhang fullname: Zhang, Dongzhi email: dzzhang@upc.edu.cn – sequence: 3 givenname: Yan surname: Yang fullname: Yang, Yan – sequence: 4 givenname: Qian surname: Mi fullname: Mi, Qian – sequence: 5 givenname: Jianhua surname: Zhang fullname: Zhang, Jianhua – sequence: 6 givenname: Liandong surname: Yu fullname: Yu, Liandong email: liandongyu@upc.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33554603$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1u1DAURi1URH9gzQ5liYTSsZ2JnSzLQAFphqlEkbqL7jjXrVvHLrZDmR3vwJPwSjwJbmfaRSVYWLb0ne_qymef7DjvkJCXjB4yytkEVHTg_CFVtKWsfkL2WFuJkjbibOfhXbNdsh_jJaW1bKR4Rnarqq6nglZ75PditMno0alkvANbzCHhj8mJt-uEKYC2ow8e08XaosPyLUTsi9NgVh4tqhSMKj7nBc5zGCD5UOh8vqDV5Ym_wZDhZTgHV1pzhcXiLGOTBSawf37-ugty_zjAgDc-XJXvMJjvuTIbl3dTL9arYPriaBi8M5DHuujDc_JUg434YnsfkK_H709nH8v58sOn2dG8hKptU6lbgaCbmlJR9Y3QDGS7ElL1jK_qXutGcs44k33DARvBW5B0WikJTFdSAK0OyOvN3Ovgv40YUzeYqNBacOjH2PFpI6e84Yxl9NUWHVcD9t11MAOEdXf_zRmYbAAVfIwB9QPCaHcrstuK7LYic6N-1FAmwa2jLMXY__TebHo56C79GLLT-E_6L2m1t-Q |
CitedBy_id | crossref_primary_10_2139_ssrn_3986052 crossref_primary_10_3390_nano14060537 crossref_primary_10_1016_j_cplett_2023_140749 crossref_primary_10_1016_j_snb_2024_136019 crossref_primary_10_1016_j_ijhydene_2022_09_292 crossref_primary_10_1109_JSEN_2022_3168803 crossref_primary_10_1016_j_nanoms_2023_02_001 crossref_primary_10_1016_j_mtsust_2024_100801 crossref_primary_10_1021_acssuschemeng_3c03173 crossref_primary_10_1016_j_ceramint_2021_11_209 crossref_primary_10_1002_admt_202200284 crossref_primary_10_1021_acs_analchem_1c02183 crossref_primary_10_20517_energymater_2023_121 crossref_primary_10_1021_acssensors_2c00658 crossref_primary_10_1016_j_flatc_2022_100418 crossref_primary_10_1109_JSEN_2022_3221437 crossref_primary_10_1002_smll_202207879 crossref_primary_10_1016_j_snb_2022_132681 crossref_primary_10_1039_D2CS00173J crossref_primary_10_1016_j_cej_2023_143752 crossref_primary_10_1016_j_cej_2023_141458 crossref_primary_10_1016_j_cej_2024_151795 crossref_primary_10_1016_j_jallcom_2022_167566 crossref_primary_10_1016_j_cej_2024_150100 crossref_primary_10_1002_smll_202400593 crossref_primary_10_1109_JSEN_2022_3211646 crossref_primary_10_1021_acs_langmuir_4c04247 crossref_primary_10_1126_sciadv_ads2291 crossref_primary_10_1021_acsami_2c10292 crossref_primary_10_1021_acs_analchem_3c01283 crossref_primary_10_1016_j_snb_2022_132565 crossref_primary_10_1021_acsanm_2c03650 crossref_primary_10_1063_5_0250284 crossref_primary_10_1039_D2RA03474C crossref_primary_10_1007_s10853_023_08696_w crossref_primary_10_1002_adfm_202103559 crossref_primary_10_1002_smm2_1130 crossref_primary_10_1016_j_vacuum_2024_112956 crossref_primary_10_1002_pc_28484 crossref_primary_10_1016_j_cej_2024_154923 crossref_primary_10_1016_j_jallcom_2024_174674 crossref_primary_10_1016_j_device_2024_100571 crossref_primary_10_1016_j_ijhydene_2024_12_257 crossref_primary_10_1039_D3MA00890H crossref_primary_10_1016_j_nanoso_2023_100995 crossref_primary_10_1063_10_0017693 crossref_primary_10_3390_nanoenergyadv3010001 crossref_primary_10_1021_acssensors_4c01936 crossref_primary_10_1021_acsomega_3c03765 crossref_primary_10_1016_j_jcis_2023_06_157 crossref_primary_10_1007_s40820_023_01094_6 crossref_primary_10_1002_adma_202314380 crossref_primary_10_1039_D3TC00300K crossref_primary_10_1016_j_nanoen_2022_106944 crossref_primary_10_1002_pssr_202400015 crossref_primary_10_1007_s13204_024_03071_w crossref_primary_10_1021_acsaelm_1c00608 crossref_primary_10_1016_j_nanoen_2021_106409 crossref_primary_10_1016_j_apmt_2024_102115 crossref_primary_10_1016_j_snb_2022_131573 crossref_primary_10_1021_acs_langmuir_3c02650 crossref_primary_10_2139_ssrn_4020639 crossref_primary_10_1002_adem_202301380 crossref_primary_10_1016_j_apmt_2024_102163 crossref_primary_10_1016_j_nanoen_2025_110713 crossref_primary_10_1021_acsami_4c00454 crossref_primary_10_1016_j_nanoen_2025_110711 crossref_primary_10_1016_j_talanta_2024_126700 crossref_primary_10_1039_D2NJ02958H crossref_primary_10_1088_1361_6528_ad7d14 crossref_primary_10_1016_j_jallcom_2022_168563 crossref_primary_10_1016_j_est_2023_110293 crossref_primary_10_1109_JSEN_2022_3185176 crossref_primary_10_1016_j_nanoen_2023_108358 crossref_primary_10_1016_j_jphotochem_2024_115666 crossref_primary_10_1016_j_snb_2023_133987 crossref_primary_10_1088_2051_672X_ac210e crossref_primary_10_1016_j_desal_2023_116910 crossref_primary_10_1016_j_snb_2022_132481 crossref_primary_10_1016_j_nanoen_2024_109672 crossref_primary_10_1021_acsami_4c00201 crossref_primary_10_1021_acsomega_2c05099 crossref_primary_10_1002_admt_202100872 crossref_primary_10_1021_acsanm_3c03485 crossref_primary_10_1016_j_jallcom_2022_168690 crossref_primary_10_1007_s00604_025_07075_3 crossref_primary_10_1039_D3DT02401F crossref_primary_10_1016_j_nanoen_2021_106628 crossref_primary_10_1016_j_cej_2025_161722 crossref_primary_10_1016_j_nanoen_2022_107099 crossref_primary_10_1002_adfm_202401631 crossref_primary_10_1002_aenm_202300387 crossref_primary_10_1063_5_0165812 crossref_primary_10_1002_smtd_202300316 crossref_primary_10_1021_acsomega_3c02125 crossref_primary_10_1016_j_mssp_2023_107645 crossref_primary_10_1038_s41598_023_48928_2 crossref_primary_10_1016_j_matchemphys_2022_126404 crossref_primary_10_1039_D3MA00227F crossref_primary_10_1016_j_nanoen_2021_106828 crossref_primary_10_1016_j_est_2024_111447 crossref_primary_10_1021_acsanm_2c01998 crossref_primary_10_1002_admt_202100789 crossref_primary_10_1016_j_snb_2024_136194 crossref_primary_10_1021_acs_iecr_3c01629 crossref_primary_10_1016_j_snb_2023_134815 crossref_primary_10_1002_smtd_202200581 crossref_primary_10_1021_acsami_2c14863 crossref_primary_10_1016_j_snb_2021_131068 crossref_primary_10_1016_j_nanoen_2023_109224 crossref_primary_10_1016_j_ccr_2025_216506 crossref_primary_10_1016_j_diamond_2022_109040 crossref_primary_10_1016_j_ijhydene_2024_05_388 crossref_primary_10_2174_1573413719666230829142724 crossref_primary_10_1109_JSEN_2022_3189991 crossref_primary_10_1007_s00604_024_06750_1 crossref_primary_10_1021_acsami_3c08512 crossref_primary_10_1002_admt_202100655 crossref_primary_10_1039_D3TC02192K crossref_primary_10_1016_j_jallcom_2022_167585 crossref_primary_10_1515_polyeng_2022_0106 crossref_primary_10_1002_aenm_202202691 crossref_primary_10_1002_mog2_67 crossref_primary_10_1016_j_flatc_2022_100364 crossref_primary_10_1016_j_snb_2021_131077 crossref_primary_10_1039_D2TA01788A crossref_primary_10_1021_acsami_2c17904 crossref_primary_10_1021_acsami_3c00903 crossref_primary_10_1109_JSEN_2025_3526256 crossref_primary_10_1016_j_compositesa_2023_107639 crossref_primary_10_1016_j_eurpolymj_2024_113180 crossref_primary_10_1016_j_compscitech_2022_109884 crossref_primary_10_2139_ssrn_4051155 crossref_primary_10_1109_JSEN_2024_3503715 crossref_primary_10_1016_j_snb_2024_135681 crossref_primary_10_1016_j_compositesb_2021_109513 crossref_primary_10_1016_j_snb_2021_130150 crossref_primary_10_1021_acs_inorgchem_4c02147 crossref_primary_10_1016_j_compositesb_2023_110622 crossref_primary_10_1039_D2EN00035K crossref_primary_10_3390_polym14235312 crossref_primary_10_1016_j_nanoen_2024_110353 crossref_primary_10_1016_j_nanoen_2022_107509 crossref_primary_10_1007_s10854_024_13030_4 crossref_primary_10_1016_j_trac_2023_117096 crossref_primary_10_1016_j_surfin_2024_104290 crossref_primary_10_1016_j_sna_2024_115038 crossref_primary_10_1021_acsapm_3c00771 crossref_primary_10_1021_acs_langmuir_2c01982 crossref_primary_10_1016_j_jcis_2024_11_158 crossref_primary_10_1039_D4MH01348D crossref_primary_10_1016_j_sna_2022_113662 crossref_primary_10_1016_j_cej_2022_138065 crossref_primary_10_1016_j_jallcom_2022_164693 crossref_primary_10_3390_nano13212880 crossref_primary_10_1016_j_jcis_2023_06_092 crossref_primary_10_1021_acs_analchem_2c01692 crossref_primary_10_1016_j_snb_2022_131634 crossref_primary_10_1038_s41378_023_00605_0 crossref_primary_10_1016_j_snb_2022_131632 crossref_primary_10_1080_01932691_2022_2033123 crossref_primary_10_1016_j_chemosphere_2024_142530 crossref_primary_10_1016_j_jallcom_2022_165878 crossref_primary_10_1016_j_saa_2022_122092 crossref_primary_10_1016_j_compositesb_2021_109537 crossref_primary_10_1007_s12598_022_02031_z crossref_primary_10_1021_acsami_2c02119 crossref_primary_10_1016_j_microc_2023_109176 crossref_primary_10_1016_j_jallcom_2024_173986 crossref_primary_10_1109_JSEN_2023_3282277 crossref_primary_10_1002_admi_202201366 crossref_primary_10_1016_j_nanoen_2022_107884 crossref_primary_10_1002_adem_202101388 crossref_primary_10_1021_acsami_2c18989 crossref_primary_10_1007_s12598_022_02162_3 crossref_primary_10_1016_j_nxmate_2023_100092 crossref_primary_10_1016_j_nanoen_2022_107762 crossref_primary_10_1016_j_nanoen_2024_110323 crossref_primary_10_1109_JSEN_2022_3226042 crossref_primary_10_1109_JSEN_2022_3170930 crossref_primary_10_1021_acsami_3c02570 crossref_primary_10_1016_j_jes_2024_07_027 crossref_primary_10_1016_j_ssi_2025_116814 crossref_primary_10_1021_acsami_4c20096 crossref_primary_10_1021_acsanm_2c00998 crossref_primary_10_1039_D3TA02002A crossref_primary_10_1002_cnma_202200209 crossref_primary_10_1021_acsanm_3c00986 crossref_primary_10_1016_j_nanoen_2021_106242 crossref_primary_10_2139_ssrn_4000521 crossref_primary_10_1016_j_nanoen_2022_107511 crossref_primary_10_1002_pat_5704 crossref_primary_10_2139_ssrn_4003913 crossref_primary_10_1016_j_nanoen_2024_109335 crossref_primary_10_3390_s21113806 crossref_primary_10_1021_acsaelm_3c01204 crossref_primary_10_1016_j_jallcom_2022_166663 crossref_primary_10_3390_nano12234274 crossref_primary_10_1021_acsami_3c06864 crossref_primary_10_1007_s40820_024_01430_4 crossref_primary_10_1002_adma_202206783 crossref_primary_10_1002_inf2_12412 crossref_primary_10_1016_j_cej_2021_134212 crossref_primary_10_1021_acsaelm_4c00213 crossref_primary_10_1016_j_cej_2024_156800 crossref_primary_10_1021_acs_analchem_2c04532 crossref_primary_10_1016_j_apsadv_2022_100349 crossref_primary_10_1016_j_cej_2022_136914 crossref_primary_10_1016_j_cej_2024_154628 crossref_primary_10_1021_acsomega_3c03708 crossref_primary_10_1016_j_apmt_2024_102570 crossref_primary_10_1016_j_chemosphere_2024_141234 crossref_primary_10_1002_adsr_202200058 crossref_primary_10_1016_j_compositesb_2023_110931 crossref_primary_10_3390_nano13050850 crossref_primary_10_1039_D3SE00714F crossref_primary_10_1049_hve2_12262 crossref_primary_10_1109_JSEN_2022_3197182 crossref_primary_10_1016_j_mtsust_2024_100839 crossref_primary_10_1016_j_cej_2025_160597 crossref_primary_10_1016_j_cej_2025_160598 crossref_primary_10_1016_j_nanoen_2021_106461 crossref_primary_10_1016_j_nanoen_2022_107931 crossref_primary_10_1039_D1TC04085E crossref_primary_10_1039_D2TC00679K crossref_primary_10_1016_j_sna_2022_113622 crossref_primary_10_1016_j_snb_2021_130486 crossref_primary_10_1021_acssuschemeng_3c01369 crossref_primary_10_1016_j_compositesb_2023_110928 crossref_primary_10_1016_j_carbon_2022_01_054 crossref_primary_10_1021_acsami_3c05870 crossref_primary_10_1039_D2CS00257D crossref_primary_10_1049_hve2_12376 crossref_primary_10_1002_bio_4487 crossref_primary_10_3390_chemosensors10110484 crossref_primary_10_3390_s21248422 crossref_primary_10_1080_23746149_2023_2288353 crossref_primary_10_1002_adfm_202204686 crossref_primary_10_1016_j_jhazmat_2022_129419 crossref_primary_10_1149_1945_7111_ac7eee crossref_primary_10_1002_adsu_202300452 crossref_primary_10_2139_ssrn_3986123 crossref_primary_10_1016_j_cej_2023_144989 crossref_primary_10_1021_acsanm_2c01927 crossref_primary_10_1039_D2DT03477H crossref_primary_10_1016_j_cej_2023_145959 crossref_primary_10_1016_j_nanoms_2023_09_001 crossref_primary_10_1021_acsami_2c06749 crossref_primary_10_1039_D3TA02179C crossref_primary_10_1039_D4CP04241G crossref_primary_10_1007_s11431_024_2804_x crossref_primary_10_20964_2022_05_60 crossref_primary_10_1016_j_snb_2022_131419 crossref_primary_10_1016_j_ceramint_2024_07_450 crossref_primary_10_1016_j_jallcom_2023_171170 crossref_primary_10_1021_acs_langmuir_2c00566 crossref_primary_10_1002_smll_202206000 crossref_primary_10_1016_j_nanoen_2022_107711 crossref_primary_10_1016_j_snb_2024_136101 crossref_primary_10_1016_j_jallcom_2023_173230 crossref_primary_10_1021_acsanm_2c04050 crossref_primary_10_1109_LSENS_2023_3267510 crossref_primary_10_1088_2515_7639_acc550 crossref_primary_10_1016_j_ijbiomac_2023_127737 crossref_primary_10_1039_D2RA04063H crossref_primary_10_1016_j_snb_2022_131918 crossref_primary_10_1016_j_ccr_2023_215542 crossref_primary_10_2139_ssrn_4166721 crossref_primary_10_1016_j_jics_2025_101631 crossref_primary_10_1021_acsami_4c01077 crossref_primary_10_1016_j_est_2023_108213 crossref_primary_10_1016_j_greeac_2022_100009 crossref_primary_10_1016_j_compositesa_2022_106914 crossref_primary_10_1007_s40820_021_00779_0 crossref_primary_10_1016_j_jhazmat_2021_127160 crossref_primary_10_1016_j_nanoen_2022_107462 crossref_primary_10_1109_JSEN_2022_3229835 crossref_primary_10_1002_admt_202200841 crossref_primary_10_1016_j_mtchem_2022_101361 crossref_primary_10_1016_j_foodchem_2024_140939 crossref_primary_10_3390_chemosensors11090477 crossref_primary_10_3390_s24134092 crossref_primary_10_1016_j_sna_2022_114113 crossref_primary_10_1007_s10854_021_06483_4 crossref_primary_10_1002_smsc_202400611 crossref_primary_10_1109_JSEN_2022_3224165 crossref_primary_10_1039_D1TA03739K crossref_primary_10_1016_j_compositesb_2023_110574 crossref_primary_10_1021_acsanm_3c00576 crossref_primary_10_1002_aenm_202402781 crossref_primary_10_1021_acssensors_3c01963 crossref_primary_10_1021_acsanm_3c04927 crossref_primary_10_1021_acsami_3c14842 crossref_primary_10_1039_D2SE00405D crossref_primary_10_1039_D4TA01960A crossref_primary_10_1364_OME_448295 crossref_primary_10_1039_D2TA04357B crossref_primary_10_1515_phys_2022_0232 crossref_primary_10_1016_j_snb_2023_134128 crossref_primary_10_1016_j_mtchem_2023_101664 crossref_primary_10_1016_j_ijhydene_2024_08_263 crossref_primary_10_1016_j_apsusc_2022_154877 crossref_primary_10_1016_j_nanoen_2022_107454 crossref_primary_10_1016_j_cej_2025_161293 crossref_primary_10_1016_j_jechem_2025_01_012 crossref_primary_10_1016_j_snb_2023_133360 crossref_primary_10_3390_chemosensors11090483 crossref_primary_10_1109_JSEN_2024_3350873 crossref_primary_10_1021_acsnano_1c10676 crossref_primary_10_1039_D3TA00377A crossref_primary_10_1109_JSEN_2022_3214210 crossref_primary_10_1016_j_ceramint_2023_04_032 crossref_primary_10_1016_j_nanoen_2023_108737 crossref_primary_10_1021_acsanm_3c00117 crossref_primary_10_1088_2632_959X_ac3636 crossref_primary_10_1016_j_ijbiomac_2025_142427 crossref_primary_10_1016_j_nanoen_2023_108732 crossref_primary_10_1016_j_snb_2023_134579 crossref_primary_10_1016_j_psep_2024_06_126 crossref_primary_10_1021_acsami_3c00432 crossref_primary_10_1016_j_nanoso_2023_101046 crossref_primary_10_1016_j_sna_2023_114991 crossref_primary_10_1016_j_microc_2022_107410 crossref_primary_10_1039_D3TA04974D crossref_primary_10_1021_acsanm_3c04826 crossref_primary_10_1109_JSEN_2024_3397821 crossref_primary_10_1021_acsami_2c22609 crossref_primary_10_1039_D1TA08630H crossref_primary_10_1016_j_mtener_2023_101393 crossref_primary_10_1021_acsanm_3c03615 crossref_primary_10_1002_cben_202300043 crossref_primary_10_1016_j_nanoen_2023_108504 crossref_primary_10_1002_adma_202008276 crossref_primary_10_1016_j_jece_2024_115294 crossref_primary_10_1039_D2TA01825J crossref_primary_10_1016_j_ijhydene_2022_06_291 crossref_primary_10_1016_j_snb_2024_136612 crossref_primary_10_1002_adsu_202300385 crossref_primary_10_3389_fchem_2024_1532018 crossref_primary_10_1002_advs_202401578 crossref_primary_10_1002_adfm_202105110 crossref_primary_10_1021_acsomega_2c04313 crossref_primary_10_1002_adma_202209895 crossref_primary_10_1021_acs_langmuir_4c01566 crossref_primary_10_1016_j_cej_2022_140219 crossref_primary_10_1039_D3TC00806A crossref_primary_10_1016_j_cej_2024_154226 crossref_primary_10_1016_j_nanoen_2022_107549 crossref_primary_10_1109_LSENS_2023_3241329 crossref_primary_10_1016_j_snb_2022_131605 crossref_primary_10_1021_acssensors_4c01280 crossref_primary_10_1016_j_nanoen_2022_107785 crossref_primary_10_1109_TED_2022_3225129 crossref_primary_10_1002_admi_202300166 crossref_primary_10_1016_j_snb_2024_135993 crossref_primary_10_1016_j_matchemphys_2023_128694 crossref_primary_10_1016_j_ceramint_2023_11_144 crossref_primary_10_1021_acssensors_4c01394 crossref_primary_10_1039_D1TA01724A crossref_primary_10_1016_j_cej_2024_156871 crossref_primary_10_1021_acssensors_4c01397 crossref_primary_10_1039_D1TC06029E crossref_primary_10_1039_D2NJ04758F crossref_primary_10_1016_j_jallcom_2023_171476 crossref_primary_10_1016_j_nanoen_2023_108924 crossref_primary_10_1016_j_materresbull_2022_112053 crossref_primary_10_1016_j_mtchem_2023_101747 crossref_primary_10_1016_j_jallcom_2022_166828 crossref_primary_10_1016_j_colsurfa_2022_129254 crossref_primary_10_1016_j_rinp_2023_106864 crossref_primary_10_1021_acsapm_2c02019 crossref_primary_10_20517_ss_2023_13 crossref_primary_10_1021_acsanm_4c02395 crossref_primary_10_1016_j_apsusc_2023_157146 crossref_primary_10_1039_D2EN00624C crossref_primary_10_1080_00032719_2023_2220842 crossref_primary_10_1016_j_trac_2024_117707 crossref_primary_10_1021_acsanm_3c01649 crossref_primary_10_1039_D2TA04433A crossref_primary_10_1063_5_0234645 crossref_primary_10_1016_j_jallcom_2023_170358 crossref_primary_10_1016_j_snb_2024_135429 crossref_primary_10_1002_adfm_202206900 crossref_primary_10_1039_D2AN01143C crossref_primary_10_1016_j_jallcom_2024_178035 crossref_primary_10_1039_D2TC03147G crossref_primary_10_1021_acsomega_4c03554 crossref_primary_10_1016_j_cej_2022_137192 crossref_primary_10_1038_s41598_023_34313_6 crossref_primary_10_1109_LED_2023_3261895 crossref_primary_10_1016_j_jcis_2022_10_059 crossref_primary_10_1039_D2TC03583A crossref_primary_10_1039_D2TA00837H crossref_primary_10_1016_j_nanoen_2023_108707 crossref_primary_10_1016_j_snb_2022_131812 crossref_primary_10_1021_acsanm_3c01638 crossref_primary_10_1016_j_snb_2021_130423 crossref_primary_10_1021_acsaelm_2c01281 crossref_primary_10_1016_j_nanoen_2022_107317 crossref_primary_10_1016_j_jece_2022_109211 crossref_primary_10_1021_acsanm_3c01637 crossref_primary_10_1360_TB_2021_1340 crossref_primary_10_1016_j_nanoen_2023_108670 crossref_primary_10_1109_TDEI_2023_3298754 crossref_primary_10_1021_acsanm_3c04787 crossref_primary_10_1039_D4NR04681A crossref_primary_10_1016_j_jallcom_2022_168006 crossref_primary_10_1016_j_cej_2023_141505 crossref_primary_10_1021_acsaelm_3c00712 crossref_primary_10_1021_acssensors_4c01642 crossref_primary_10_1021_acssensors_4c00793 crossref_primary_10_1039_D3CP01813J crossref_primary_10_1002_adsr_202300035 crossref_primary_10_1021_acs_analchem_2c05143 crossref_primary_10_1002_asia_202300505 crossref_primary_10_1016_j_jhazmat_2023_131158 crossref_primary_10_1021_acssensors_1c01374 crossref_primary_10_1021_acsanm_2c02153 crossref_primary_10_1016_j_snb_2023_134755 crossref_primary_10_1039_D1TA02828F crossref_primary_10_1021_acsami_2c06291 crossref_primary_10_1021_acssensors_3c00475 crossref_primary_10_1002_adfm_202108959 crossref_primary_10_1016_j_jhazmat_2022_128821 crossref_primary_10_1016_j_sna_2023_114330 crossref_primary_10_1016_j_sna_2023_114331 crossref_primary_10_1016_j_sna_2022_114076 crossref_primary_10_26599_JAC_2023_9220810 crossref_primary_10_1016_j_cej_2024_150982 crossref_primary_10_1039_D2MA00587E crossref_primary_10_1016_j_mser_2024_100866 crossref_primary_10_1002_aisy_202200396 crossref_primary_10_1016_j_cej_2022_135230 crossref_primary_10_1016_j_cej_2022_136449 crossref_primary_10_1016_j_nanoen_2023_108687 crossref_primary_10_1016_j_sna_2021_112710 crossref_primary_10_1039_D3MA00631J crossref_primary_10_1007_s12274_023_5959_5 crossref_primary_10_1021_acsanm_3c01059 crossref_primary_10_1109_JSEN_2022_3210007 crossref_primary_10_1002_adma_202409440 crossref_primary_10_1007_s40089_021_00361_x crossref_primary_10_1002_adsr_202300129 crossref_primary_10_3390_s23218674 crossref_primary_10_1016_j_bioadv_2023_213364 crossref_primary_10_1016_j_ceramint_2024_12_163 crossref_primary_10_1007_s11664_024_11146_1 crossref_primary_10_1002_smll_202303277 crossref_primary_10_1016_j_ijbiomac_2024_131649 crossref_primary_10_1016_j_nanoen_2022_108164 crossref_primary_10_1039_D3CP03353H crossref_primary_10_2139_ssrn_4075418 crossref_primary_10_1016_j_sna_2024_115509 crossref_primary_10_1021_acsaelm_2c00717 crossref_primary_10_1109_LSENS_2023_3235890 crossref_primary_10_1016_j_ces_2024_120878 crossref_primary_10_1002_advs_202203428 crossref_primary_10_1007_s10854_022_07969_5 crossref_primary_10_1016_j_apsusc_2023_156816 crossref_primary_10_1002_advs_202101834 crossref_primary_10_1016_j_nanoen_2023_108345 crossref_primary_10_1016_j_snb_2023_134620 crossref_primary_10_1021_acs_jpclett_2c03765 crossref_primary_10_1016_j_snb_2023_133584 crossref_primary_10_1016_j_nanoen_2022_108110 crossref_primary_10_1021_acssensors_3c02684 crossref_primary_10_1016_j_mtchem_2024_102384 crossref_primary_10_1007_s10853_023_08321_w crossref_primary_10_1021_acsomega_2c06335 crossref_primary_10_1002_aesr_202300233 crossref_primary_10_1016_j_snb_2021_129923 crossref_primary_10_1021_acsanm_2c02235 crossref_primary_10_1007_s12274_023_5784_x crossref_primary_10_1002_eem2_12654 crossref_primary_10_1002_eem2_12414 crossref_primary_10_1007_s12274_023_5420_1 crossref_primary_10_2139_ssrn_4172914 crossref_primary_10_1016_j_snb_2022_133053 crossref_primary_10_1016_j_snb_2023_133594 crossref_primary_10_2139_ssrn_3993237 crossref_primary_10_1021_acsnano_1c06402 crossref_primary_10_1016_j_ccr_2023_215118 crossref_primary_10_1016_j_sna_2023_114890 crossref_primary_10_1007_s12274_022_5233_2 crossref_primary_10_1002_pat_6143 crossref_primary_10_1016_j_inoche_2022_109506 crossref_primary_10_1002_admt_202101565 crossref_primary_10_1016_j_jallcom_2023_170538 crossref_primary_10_1109_JSEN_2022_3166706 crossref_primary_10_1016_j_cej_2022_140865 crossref_primary_10_1021_acs_analchem_2c05059 crossref_primary_10_1002_advs_202402705 crossref_primary_10_1016_j_jallcom_2024_177796 crossref_primary_10_1002_smtd_202400480 crossref_primary_10_1021_acssensors_2c02104 crossref_primary_10_1016_j_cej_2023_147233 crossref_primary_10_1016_j_ijoes_2024_100658 crossref_primary_10_1002_smll_202305250 crossref_primary_10_1002_adfm_202208131 crossref_primary_10_1016_j_elstat_2025_104037 crossref_primary_10_1016_j_surfin_2024_104831 crossref_primary_10_1016_j_carbpol_2024_123074 crossref_primary_10_1016_j_ccr_2023_215208 crossref_primary_10_1021_acssensors_4c02313 crossref_primary_10_1016_j_compositesb_2024_111615 crossref_primary_10_1039_D4TA01888E crossref_primary_10_1016_j_nanoen_2023_108415 crossref_primary_10_1021_acsaenm_3c00529 crossref_primary_10_1016_j_nanoen_2024_109700 crossref_primary_10_1016_j_nanoen_2022_107271 crossref_primary_10_1021_acs_energyfuels_2c01121 crossref_primary_10_1002_admt_202301895 crossref_primary_10_1002_app_55092 crossref_primary_10_1016_j_carbon_2022_11_033 crossref_primary_10_1109_JSEN_2024_3424312 crossref_primary_10_3390_ma16083249 crossref_primary_10_1002_ente_202300984 crossref_primary_10_1080_24701556_2022_2078363 crossref_primary_10_1016_j_cej_2022_138568 crossref_primary_10_1109_JSEN_2023_3321930 crossref_primary_10_1016_j_apsusc_2022_153564 crossref_primary_10_1016_j_cej_2024_158519 crossref_primary_10_1021_acsanm_2c02581 crossref_primary_10_1016_j_sna_2022_114138 crossref_primary_10_1109_JSEN_2023_3283957 |
Cites_doi | 10.1016/j.nanoen.2018.02.031 10.1007/s40843-019-9445-9 10.1016/j.snb.2018.05.173 10.1021/acsami.5b11973 10.1039/C9TA11550A 10.1016/j.ccr.2020.213272 10.1021/acsnano.8b06136 10.1002/advs.201903390 10.1016/j.snb.2020.127828 10.1016/j.nanoen.2012.01.004 10.1002/aenm.202001041 10.1039/C7LC00810D 10.1002/aenm.202000965 10.1021/acsami.0c01530 10.1021/acsnano.8b08274 10.1039/C8TA06928J 10.1039/C8RA03077D 10.1016/j.nanoen.2018.06.041 10.1038/s41586-020-2270-4 10.1016/j.nanoen.2019.02.052 10.1016/j.cej.2020.125786 10.1021/acsnano.9b09802 10.1038/s41586-019-1134-2 10.1016/j.nanoen.2018.04.033 10.1002/adfm.202005727 10.1016/j.snb.2020.127815 10.1007/s12274-017-1951-2 10.1016/j.apcatb.2019.04.026 10.1021/acssuschemeng.8b01147 10.1021/acs.cgd.7b00102 10.1039/D0TA01698E 10.1021/acsnano.9b08496 10.1016/j.cej.2019.01.185 10.1002/adma.201908385 10.1038/s41467-020-18196-z 10.1016/j.jcis.2016.07.004 10.1021/acsami.8b09169 10.1021/acsnano.0c00524 10.1002/aenm.201700105 10.1088/0957-4484/27/44/445702 10.1021/acsami.7b11055 10.1016/j.compositesb.2019.04.050 10.1002/aenm.202000470 10.1016/j.nanoen.2019.01.042 10.1021/acsami.6b06455 10.1021/acssensors.9b01308 10.1016/j.apsusc.2016.05.060 10.3390/ma11122457 10.1016/j.nanoen.2019.103974 10.1002/aenm.201902824 |
ContentType | Journal Article |
Copyright | 2021 American Chemical Society |
Copyright_xml | – notice: 2021 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acsnano.0c09015 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 2919 |
ExternalDocumentID | 33554603 10_1021_acsnano_0c09015 d33558570 |
Genre | Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 5VS 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ F5P GNL IH9 IHE JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 4.4 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 |
ID | FETCH-LOGICAL-a399t-f96eaf850063d86f1a79b67cd12b5dff87221217d82ae8629a7043c7a1f376a03 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Fri Jul 11 06:27:26 EDT 2025 Thu Jan 02 22:58:04 EST 2025 Tue Jul 01 03:37:06 EDT 2025 Thu Apr 24 22:59:20 EDT 2025 Thu Feb 25 04:42:15 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | flexible electronics Ti3C2T x MXene NH3 sensor triboelectric nanogenerator self-powered sensor Ti3C2Tx MXene |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a399t-f96eaf850063d86f1a79b67cd12b5dff87221217d82ae8629a7043c7a1f376a03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9238-4176 |
PMID | 33554603 |
PQID | 2487428211 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2487428211 pubmed_primary_33554603 crossref_primary_10_1021_acsnano_0c09015 crossref_citationtrail_10_1021_acsnano_0c09015 acs_journals_10_1021_acsnano_0c09015 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-23 |
PublicationDateYYYYMMDD | 2021-02-23 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref17/cit17 doi: 10.1016/j.nanoen.2018.02.031 – ident: ref18/cit18 doi: 10.1007/s40843-019-9445-9 – ident: ref36/cit36 doi: 10.1016/j.snb.2018.05.173 – ident: ref30/cit30 doi: 10.1021/acsami.5b11973 – ident: ref5/cit5 doi: 10.1039/C9TA11550A – ident: ref26/cit26 doi: 10.1016/j.ccr.2020.213272 – ident: ref21/cit21 doi: 10.1021/acsnano.8b06136 – ident: ref7/cit7 doi: 10.1002/advs.201903390 – ident: ref28/cit28 doi: 10.1016/j.snb.2020.127828 – ident: ref9/cit9 doi: 10.1016/j.nanoen.2012.01.004 – ident: ref10/cit10 doi: 10.1002/aenm.202001041 – ident: ref27/cit27 doi: 10.1039/C7LC00810D – ident: ref8/cit8 doi: 10.1002/aenm.202000965 – ident: ref44/cit44 doi: 10.1021/acsami.0c01530 – ident: ref12/cit12 doi: 10.1021/acsnano.8b08274 – ident: ref47/cit47 doi: 10.1039/C8TA06928J – ident: ref22/cit22 doi: 10.1039/C8RA03077D – ident: ref48/cit48 doi: 10.1016/j.nanoen.2018.06.041 – ident: ref3/cit3 doi: 10.1038/s41586-020-2270-4 – ident: ref42/cit42 doi: 10.1016/j.nanoen.2019.02.052 – ident: ref23/cit23 doi: 10.1016/j.cej.2020.125786 – ident: ref19/cit19 doi: 10.1021/acsnano.9b09802 – ident: ref1/cit1 doi: 10.1038/s41586-019-1134-2 – ident: ref49/cit49 doi: 10.1016/j.nanoen.2018.04.033 – ident: ref4/cit4 doi: 10.1002/adfm.202005727 – ident: ref39/cit39 doi: 10.1016/j.snb.2020.127815 – ident: ref29/cit29 doi: 10.1007/s12274-017-1951-2 – ident: ref37/cit37 doi: 10.1016/j.apcatb.2019.04.026 – ident: ref33/cit33 doi: 10.1021/acssuschemeng.8b01147 – ident: ref31/cit31 doi: 10.1021/acs.cgd.7b00102 – ident: ref15/cit15 doi: 10.1039/D0TA01698E – ident: ref13/cit13 doi: 10.1021/acsnano.9b08496 – ident: ref38/cit38 doi: 10.1016/j.cej.2019.01.185 – ident: ref50/cit50 doi: 10.1002/adma.201908385 – ident: ref2/cit2 doi: 10.1038/s41467-020-18196-z – ident: ref46/cit46 doi: 10.1016/j.jcis.2016.07.004 – ident: ref6/cit6 doi: 10.1021/acsami.8b09169 – ident: ref11/cit11 doi: 10.1021/acsnano.0c00524 – ident: ref34/cit34 doi: 10.1002/aenm.201700105 – ident: ref43/cit43 doi: 10.1088/0957-4484/27/44/445702 – ident: ref24/cit24 doi: 10.1021/acsami.7b11055 – ident: ref35/cit35 doi: 10.1016/j.compositesb.2019.04.050 – ident: ref20/cit20 doi: 10.1002/aenm.202000470 – ident: ref16/cit16 doi: 10.1016/j.nanoen.2019.01.042 – ident: ref40/cit40 doi: 10.1021/acsami.6b06455 – ident: ref25/cit25 doi: 10.1021/acssensors.9b01308 – ident: ref32/cit32 doi: 10.1016/j.apsusc.2016.05.060 – ident: ref41/cit41 doi: 10.3390/ma11122457 – ident: ref45/cit45 doi: 10.1016/j.nanoen.2019.103974 – ident: ref14/cit14 doi: 10.1002/aenm.201902824 |
SSID | ssj0057876 |
Score | 2.7189167 |
Snippet | Self-powered sensors are crucial in the field of wearable devices and the Internet of Things (IoT). In this paper, an organ-like Ti3C2T x MXene/metal–organic... Self-powered sensors are crucial in the field of wearable devices and the Internet of Things (IoT). In this paper, an organ-like Ti C T MXene/metal-organic... Self-powered sensors are crucial in the field of wearable devices and the Internet of Things (IoT). In this paper, an organ-like Ti3C2Tx MXene/metal-organic... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2911 |
Title | Multifunctional Latex/Polytetrafluoroethylene-Based Triboelectric Nanogenerator for Self-Powered Organ-like MXene/Metal–Organic Framework-Derived CuO Nanohybrid Ammonia Sensor |
URI | http://dx.doi.org/10.1021/acsnano.0c09015 https://www.ncbi.nlm.nih.gov/pubmed/33554603 https://www.proquest.com/docview/2487428211 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagXODA-7G8ZKQeuHg3iRM7OZaFVYVYqFQq7S1ynHFZNYrRJkGUU_9Dfwl_qb-k4zi7PKoV3G0rycx4vsnMfEPIrjQCJQ0xIrcMWCyDjBU6EaxUSSJKzsETmM4_iv2j-P0iWfwii_47gx-FE6WbWtV2HOjA-a7r5EYk0IQdCpoeri9dp3fCJ5AxQEYUsWHxuXKAc0O6-dMNbcGWvY-Z3fHVWU1PTehKS07GXVuM9Y-rxI3_fvy75PaANOmeV4175BrU98mt3_gHH5Cfffutc23-jyD9gMjz--TAVqcttCtlqs6uLKAs0TcBe4Mer6SOa8T66TlLTfF2tsc9dTUG7xQRMD2EyrADN3wNF_etnqxangCdL3DZZA6I9i_Ozn0PqKazdXEYe4sP9Q23TLtP_alfTl0zGd1zhrJUeGzd2NVDcjR793m6z4YZDkwh9GmZyQQokyYOCpWpMKGSWSGkLsOoSEpjUhmh8wxlmUYKMLrKlAxirqUKDV59KuCPyE5ta3hCaCFMGfGi4CmYWHE0AQOQmSABqWWiyxHZxY-dDzbY5H16PQrzQQL5IIERGa8ln-uBB92N46i2b3i92fDVU4BsX_pqrUo5mqnLvagabNfkEQaGGOlhuD0ij72ObQ7jDvOJgD_9vxd4Rm5GrrDG9dXz52SnXXXwApFRW7zsbeISjfMO3g |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELaW5QAcludCeRppD1zcJnFiJ8dSqAq0y6LdlXqLHGcM1UYJapIVy4n_wC_hL_FLGOdRXqoE18geOZkZzzcZz2dCDqQRqGnwEblFwHzpRCzRgWCpCgKRcg4tgeniUMxO_dfLYLlDnL4XBhdRoqSyKeL_ZBdwR_gsV3kxdLRjQ9glchmhiGdtejw57vdea36irSNjnoxgYkPm85cAG410-Xs02gIxm1AzvU7ebRbZnDA5G9ZVMtSf_-Bv_J-3uEH2OtxJx62h3CQ7kN8i135hI7xNvjXNuDbQtf8H6Rxx6KfRUZFdVFCtlcnqYl0AahYjFbDnGP9SaplHivYunZWmuFcX7xsia0zlKeJhegyZYUf2KjYc3DR-smx1BnSxxGGjBSD2__7la9sRqum0PyrGXuCiznHKpH7bSP1wYVvL6Ni6zUqh2Lws1nfI6fTlyWTGuhsdmEIgVDETCVAmDCwwSkNhXCWjREidul4SpMaE0sNQ6so09BRgrhUp6fhcS-Ua3AiVw_fJbl7kcI_QRJjU40nCQzC-4ugQBiAyTgBSy0CnA3KAHzvuPLKMm2K758adBuJOAwMy7A0g1h0rur2cI9s-4dlmwseWEGT70Ke9RcXotLYSo3Io6jL2ME3EvA-T7wG525raRhi3CFA4_P6_vcATcmV2spjH81eHbx6Qq549cmM77vlDsluta3iEmKlKHjdu8gPFvxc_ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NjtMwELZgkRAc-F8ov0baAxe3SZzYybF0qRbYLpWWSr1Fjj2GaqNk1SSI5cQ78CS8Ek_COEkrflQJrpE9cjIznm8yns-EHEgrUNMQInJLgIXSS1imI8GMiiJhOIeOwHR2Io4W4ZtltOybwlwvDC6iQklVW8R3Xn1ubM8w4I_weaGKcuhpz4Wxy-SKK9o5ux5PTjf7rzNB0dWSMVdGQLEl9PlLgItIuvo9Iu2AmW24md4ki-1C21MmZ8Omzob6yx8cjv_7JrfIjR5_0nFnMLfJJSjukOu_sBLeJd_bplwX8Lr_hPQY8ejn0bzML2qo18rmTbkuATWMEQvYS4yDhjoGkrK7U2elKe7Z5YeW0BpTeoq4mJ5CbtncXcmGg9sGUJavzoDOljhsNAPMAX58_dZ1hmo63RwZY4e4qE84ZdK8a6V-vHAtZnTs3GelUGxRlet7ZDF99X5yxPqbHZhCQFQzmwhQNo4cQDKxsL6SSSakNn6QRcbaWAYYUn1p4kAB5lyJkl7ItVS-xQ1ReXyf7BVlAQ8IzYQ1Ac8yHoMNFUfHsACJ9SKQWkbaDMgBfuy098wqbYvugZ_2Gkh7DQzIcGMEqe7Z0d0lHfnuCS-2E847YpDdQ59vrCpF53UVGVVA2VRpgOki5n-YhA_I_c7ctsK4Q4LC4w__7QWekavzw2l6_Prk7SNyLXAnb1zjPX9M9up1A08QOtXZ09ZTfgKMahnC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multifunctional+Latex%2FPolytetrafluoroethylene-Based+Triboelectric+Nanogenerator+for+Self-Powered+Organ-like+MXene%2FMetal-Organic+Framework-Derived+CuO+Nanohybrid+Ammonia+Sensor&rft.jtitle=ACS+nano&rft.au=Wang%2C+Dongyue&rft.au=Zhang%2C+Dongzhi&rft.au=Yang%2C+Yan&rft.au=Mi%2C+Qian&rft.date=2021-02-23&rft.eissn=1936-086X&rft.volume=15&rft.issue=2&rft.spage=2911&rft_id=info:doi/10.1021%2Facsnano.0c09015&rft_id=info%3Apmid%2F33554603&rft.externalDocID=33554603 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |