Multifunctional Latex/Polytetrafluoroethylene-Based Triboelectric Nanogenerator for Self-Powered Organ-like MXene/Metal–Organic Framework-Derived CuO Nanohybrid Ammonia Sensor

Self-powered sensors are crucial in the field of wearable devices and the Internet of Things (IoT). In this paper, an organ-like Ti3C2T x MXene/metal–organic framework-derived copper oxide (CuO) gas sensor was powered by a triboelectric nanogenerator (TENG) based on latex and polytetrafluoroethylene...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 15; no. 2; pp. 2911 - 2919
Main Authors Wang, Dongyue, Zhang, Dongzhi, Yang, Yan, Mi, Qian, Zhang, Jianhua, Yu, Liandong
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 23.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Self-powered sensors are crucial in the field of wearable devices and the Internet of Things (IoT). In this paper, an organ-like Ti3C2T x MXene/metal–organic framework-derived copper oxide (CuO) gas sensor was powered by a triboelectric nanogenerator (TENG) based on latex and polytetrafluoroethylene for the detection of ammonia (NH3) at room temperature. The peak-to-peak value of open-circuit voltage and short-circuit current generated by the prepared TENG can reach up to 810 V and 34 μA, respectively. The TENG can support a maximum peak power density of 10.84 W·m–2 and light at least 480 LEDs. Moreover, a flexible TENG under a single-electrode working mode was demonstrated for human movement stimulation, which exhibits great potential in wearable devices. The self-powered NH3 sensor driven by TENG has an excellent response (V g/V a = 24.8 @ 100 ppm) at room temperature and exhibits a great potential in monitoring pork quality. Ti3C2T x MXene and CuO were characterized by SEM, TEM, EDS, XRD, and XPS to analyze the properties of the materials. The NH3 sensing performance of the self-powered sensor based on MXene/CuO was greatly improved, and the mechanism of the enhanced sensing properties was systematically discussed.
AbstractList Self-powered sensors are crucial in the field of wearable devices and the Internet of Things (IoT). In this paper, an organ-like Ti3C2T x MXene/metal–organic framework-derived copper oxide (CuO) gas sensor was powered by a triboelectric nanogenerator (TENG) based on latex and polytetrafluoroethylene for the detection of ammonia (NH3) at room temperature. The peak-to-peak value of open-circuit voltage and short-circuit current generated by the prepared TENG can reach up to 810 V and 34 μA, respectively. The TENG can support a maximum peak power density of 10.84 W·m–2 and light at least 480 LEDs. Moreover, a flexible TENG under a single-electrode working mode was demonstrated for human movement stimulation, which exhibits great potential in wearable devices. The self-powered NH3 sensor driven by TENG has an excellent response (V g/V a = 24.8 @ 100 ppm) at room temperature and exhibits a great potential in monitoring pork quality. Ti3C2T x MXene and CuO were characterized by SEM, TEM, EDS, XRD, and XPS to analyze the properties of the materials. The NH3 sensing performance of the self-powered sensor based on MXene/CuO was greatly improved, and the mechanism of the enhanced sensing properties was systematically discussed.
Self-powered sensors are crucial in the field of wearable devices and the Internet of Things (IoT). In this paper, an organ-like Ti3C2Tx MXene/metal-organic framework-derived copper oxide (CuO) gas sensor was powered by a triboelectric nanogenerator (TENG) based on latex and polytetrafluoroethylene for the detection of ammonia (NH3) at room temperature. The peak-to-peak value of open-circuit voltage and short-circuit current generated by the prepared TENG can reach up to 810 V and 34 μA, respectively. The TENG can support a maximum peak power density of 10.84 W·m-2 and light at least 480 LEDs. Moreover, a flexible TENG under a single-electrode working mode was demonstrated for human movement stimulation, which exhibits great potential in wearable devices. The self-powered NH3 sensor driven by TENG has an excellent response (Vg/Va = 24.8 @ 100 ppm) at room temperature and exhibits a great potential in monitoring pork quality. Ti3C2Tx MXene and CuO were characterized by SEM, TEM, EDS, XRD, and XPS to analyze the properties of the materials. The NH3 sensing performance of the self-powered sensor based on MXene/CuO was greatly improved, and the mechanism of the enhanced sensing properties was systematically discussed.Self-powered sensors are crucial in the field of wearable devices and the Internet of Things (IoT). In this paper, an organ-like Ti3C2Tx MXene/metal-organic framework-derived copper oxide (CuO) gas sensor was powered by a triboelectric nanogenerator (TENG) based on latex and polytetrafluoroethylene for the detection of ammonia (NH3) at room temperature. The peak-to-peak value of open-circuit voltage and short-circuit current generated by the prepared TENG can reach up to 810 V and 34 μA, respectively. The TENG can support a maximum peak power density of 10.84 W·m-2 and light at least 480 LEDs. Moreover, a flexible TENG under a single-electrode working mode was demonstrated for human movement stimulation, which exhibits great potential in wearable devices. The self-powered NH3 sensor driven by TENG has an excellent response (Vg/Va = 24.8 @ 100 ppm) at room temperature and exhibits a great potential in monitoring pork quality. Ti3C2Tx MXene and CuO were characterized by SEM, TEM, EDS, XRD, and XPS to analyze the properties of the materials. The NH3 sensing performance of the self-powered sensor based on MXene/CuO was greatly improved, and the mechanism of the enhanced sensing properties was systematically discussed.
Self-powered sensors are crucial in the field of wearable devices and the Internet of Things (IoT). In this paper, an organ-like Ti C T MXene/metal-organic framework-derived copper oxide (CuO) gas sensor was powered by a triboelectric nanogenerator (TENG) based on latex and polytetrafluoroethylene for the detection of ammonia (NH ) at room temperature. The peak-to-peak value of open-circuit voltage and short-circuit current generated by the prepared TENG can reach up to 810 V and 34 μA, respectively. The TENG can support a maximum peak power density of 10.84 W·m and light at least 480 LEDs. Moreover, a flexible TENG under a single-electrode working mode was demonstrated for human movement stimulation, which exhibits great potential in wearable devices. The self-powered NH sensor driven by TENG has an excellent response ( / = 24.8 @ 100 ppm) at room temperature and exhibits a great potential in monitoring pork quality. Ti C T MXene and CuO were characterized by SEM, TEM, EDS, XRD, and XPS to analyze the properties of the materials. The NH sensing performance of the self-powered sensor based on MXene/CuO was greatly improved, and the mechanism of the enhanced sensing properties was systematically discussed.
Author Yang, Yan
Zhang, Jianhua
Mi, Qian
Zhang, Dongzhi
Yu, Liandong
Wang, Dongyue
AuthorAffiliation College of Control Science and Engineering
AuthorAffiliation_xml – name: College of Control Science and Engineering
Author_xml – sequence: 1
  givenname: Dongyue
  surname: Wang
  fullname: Wang, Dongyue
– sequence: 2
  givenname: Dongzhi
  orcidid: 0000-0001-9238-4176
  surname: Zhang
  fullname: Zhang, Dongzhi
  email: dzzhang@upc.edu.cn
– sequence: 3
  givenname: Yan
  surname: Yang
  fullname: Yang, Yan
– sequence: 4
  givenname: Qian
  surname: Mi
  fullname: Mi, Qian
– sequence: 5
  givenname: Jianhua
  surname: Zhang
  fullname: Zhang, Jianhua
– sequence: 6
  givenname: Liandong
  surname: Yu
  fullname: Yu, Liandong
  email: liandongyu@upc.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33554603$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAURi1URH9gzQ5liYTSsZ2JnSzLQAFphqlEkbqL7jjXrVvHLrZDmR3vwJPwSjwJbmfaRSVYWLb0ne_qymef7DjvkJCXjB4yytkEVHTg_CFVtKWsfkL2WFuJkjbibOfhXbNdsh_jJaW1bKR4Rnarqq6nglZ75PditMno0alkvANbzCHhj8mJt-uEKYC2ow8e08XaosPyLUTsi9NgVh4tqhSMKj7nBc5zGCD5UOh8vqDV5Ym_wZDhZTgHV1pzhcXiLGOTBSawf37-ugty_zjAgDc-XJXvMJjvuTIbl3dTL9arYPriaBi8M5DHuujDc_JUg434YnsfkK_H709nH8v58sOn2dG8hKptU6lbgaCbmlJR9Y3QDGS7ElL1jK_qXutGcs44k33DARvBW5B0WikJTFdSAK0OyOvN3Ovgv40YUzeYqNBacOjH2PFpI6e84Yxl9NUWHVcD9t11MAOEdXf_zRmYbAAVfIwB9QPCaHcrstuK7LYic6N-1FAmwa2jLMXY__TebHo56C79GLLT-E_6L2m1t-Q
CitedBy_id crossref_primary_10_2139_ssrn_3986052
crossref_primary_10_3390_nano14060537
crossref_primary_10_1016_j_cplett_2023_140749
crossref_primary_10_1016_j_snb_2024_136019
crossref_primary_10_1016_j_ijhydene_2022_09_292
crossref_primary_10_1109_JSEN_2022_3168803
crossref_primary_10_1016_j_nanoms_2023_02_001
crossref_primary_10_1016_j_mtsust_2024_100801
crossref_primary_10_1021_acssuschemeng_3c03173
crossref_primary_10_1016_j_ceramint_2021_11_209
crossref_primary_10_1002_admt_202200284
crossref_primary_10_1021_acs_analchem_1c02183
crossref_primary_10_20517_energymater_2023_121
crossref_primary_10_1021_acssensors_2c00658
crossref_primary_10_1016_j_flatc_2022_100418
crossref_primary_10_1109_JSEN_2022_3221437
crossref_primary_10_1002_smll_202207879
crossref_primary_10_1016_j_snb_2022_132681
crossref_primary_10_1039_D2CS00173J
crossref_primary_10_1016_j_cej_2023_143752
crossref_primary_10_1016_j_cej_2023_141458
crossref_primary_10_1016_j_cej_2024_151795
crossref_primary_10_1016_j_jallcom_2022_167566
crossref_primary_10_1016_j_cej_2024_150100
crossref_primary_10_1002_smll_202400593
crossref_primary_10_1109_JSEN_2022_3211646
crossref_primary_10_1021_acs_langmuir_4c04247
crossref_primary_10_1126_sciadv_ads2291
crossref_primary_10_1021_acsami_2c10292
crossref_primary_10_1021_acs_analchem_3c01283
crossref_primary_10_1016_j_snb_2022_132565
crossref_primary_10_1021_acsanm_2c03650
crossref_primary_10_1063_5_0250284
crossref_primary_10_1039_D2RA03474C
crossref_primary_10_1007_s10853_023_08696_w
crossref_primary_10_1002_adfm_202103559
crossref_primary_10_1002_smm2_1130
crossref_primary_10_1016_j_vacuum_2024_112956
crossref_primary_10_1002_pc_28484
crossref_primary_10_1016_j_cej_2024_154923
crossref_primary_10_1016_j_jallcom_2024_174674
crossref_primary_10_1016_j_device_2024_100571
crossref_primary_10_1016_j_ijhydene_2024_12_257
crossref_primary_10_1039_D3MA00890H
crossref_primary_10_1016_j_nanoso_2023_100995
crossref_primary_10_1063_10_0017693
crossref_primary_10_3390_nanoenergyadv3010001
crossref_primary_10_1021_acssensors_4c01936
crossref_primary_10_1021_acsomega_3c03765
crossref_primary_10_1016_j_jcis_2023_06_157
crossref_primary_10_1007_s40820_023_01094_6
crossref_primary_10_1002_adma_202314380
crossref_primary_10_1039_D3TC00300K
crossref_primary_10_1016_j_nanoen_2022_106944
crossref_primary_10_1002_pssr_202400015
crossref_primary_10_1007_s13204_024_03071_w
crossref_primary_10_1021_acsaelm_1c00608
crossref_primary_10_1016_j_nanoen_2021_106409
crossref_primary_10_1016_j_apmt_2024_102115
crossref_primary_10_1016_j_snb_2022_131573
crossref_primary_10_1021_acs_langmuir_3c02650
crossref_primary_10_2139_ssrn_4020639
crossref_primary_10_1002_adem_202301380
crossref_primary_10_1016_j_apmt_2024_102163
crossref_primary_10_1016_j_nanoen_2025_110713
crossref_primary_10_1021_acsami_4c00454
crossref_primary_10_1016_j_nanoen_2025_110711
crossref_primary_10_1016_j_talanta_2024_126700
crossref_primary_10_1039_D2NJ02958H
crossref_primary_10_1088_1361_6528_ad7d14
crossref_primary_10_1016_j_jallcom_2022_168563
crossref_primary_10_1016_j_est_2023_110293
crossref_primary_10_1109_JSEN_2022_3185176
crossref_primary_10_1016_j_nanoen_2023_108358
crossref_primary_10_1016_j_jphotochem_2024_115666
crossref_primary_10_1016_j_snb_2023_133987
crossref_primary_10_1088_2051_672X_ac210e
crossref_primary_10_1016_j_desal_2023_116910
crossref_primary_10_1016_j_snb_2022_132481
crossref_primary_10_1016_j_nanoen_2024_109672
crossref_primary_10_1021_acsami_4c00201
crossref_primary_10_1021_acsomega_2c05099
crossref_primary_10_1002_admt_202100872
crossref_primary_10_1021_acsanm_3c03485
crossref_primary_10_1016_j_jallcom_2022_168690
crossref_primary_10_1007_s00604_025_07075_3
crossref_primary_10_1039_D3DT02401F
crossref_primary_10_1016_j_nanoen_2021_106628
crossref_primary_10_1016_j_cej_2025_161722
crossref_primary_10_1016_j_nanoen_2022_107099
crossref_primary_10_1002_adfm_202401631
crossref_primary_10_1002_aenm_202300387
crossref_primary_10_1063_5_0165812
crossref_primary_10_1002_smtd_202300316
crossref_primary_10_1021_acsomega_3c02125
crossref_primary_10_1016_j_mssp_2023_107645
crossref_primary_10_1038_s41598_023_48928_2
crossref_primary_10_1016_j_matchemphys_2022_126404
crossref_primary_10_1039_D3MA00227F
crossref_primary_10_1016_j_nanoen_2021_106828
crossref_primary_10_1016_j_est_2024_111447
crossref_primary_10_1021_acsanm_2c01998
crossref_primary_10_1002_admt_202100789
crossref_primary_10_1016_j_snb_2024_136194
crossref_primary_10_1021_acs_iecr_3c01629
crossref_primary_10_1016_j_snb_2023_134815
crossref_primary_10_1002_smtd_202200581
crossref_primary_10_1021_acsami_2c14863
crossref_primary_10_1016_j_snb_2021_131068
crossref_primary_10_1016_j_nanoen_2023_109224
crossref_primary_10_1016_j_ccr_2025_216506
crossref_primary_10_1016_j_diamond_2022_109040
crossref_primary_10_1016_j_ijhydene_2024_05_388
crossref_primary_10_2174_1573413719666230829142724
crossref_primary_10_1109_JSEN_2022_3189991
crossref_primary_10_1007_s00604_024_06750_1
crossref_primary_10_1021_acsami_3c08512
crossref_primary_10_1002_admt_202100655
crossref_primary_10_1039_D3TC02192K
crossref_primary_10_1016_j_jallcom_2022_167585
crossref_primary_10_1515_polyeng_2022_0106
crossref_primary_10_1002_aenm_202202691
crossref_primary_10_1002_mog2_67
crossref_primary_10_1016_j_flatc_2022_100364
crossref_primary_10_1016_j_snb_2021_131077
crossref_primary_10_1039_D2TA01788A
crossref_primary_10_1021_acsami_2c17904
crossref_primary_10_1021_acsami_3c00903
crossref_primary_10_1109_JSEN_2025_3526256
crossref_primary_10_1016_j_compositesa_2023_107639
crossref_primary_10_1016_j_eurpolymj_2024_113180
crossref_primary_10_1016_j_compscitech_2022_109884
crossref_primary_10_2139_ssrn_4051155
crossref_primary_10_1109_JSEN_2024_3503715
crossref_primary_10_1016_j_snb_2024_135681
crossref_primary_10_1016_j_compositesb_2021_109513
crossref_primary_10_1016_j_snb_2021_130150
crossref_primary_10_1021_acs_inorgchem_4c02147
crossref_primary_10_1016_j_compositesb_2023_110622
crossref_primary_10_1039_D2EN00035K
crossref_primary_10_3390_polym14235312
crossref_primary_10_1016_j_nanoen_2024_110353
crossref_primary_10_1016_j_nanoen_2022_107509
crossref_primary_10_1007_s10854_024_13030_4
crossref_primary_10_1016_j_trac_2023_117096
crossref_primary_10_1016_j_surfin_2024_104290
crossref_primary_10_1016_j_sna_2024_115038
crossref_primary_10_1021_acsapm_3c00771
crossref_primary_10_1021_acs_langmuir_2c01982
crossref_primary_10_1016_j_jcis_2024_11_158
crossref_primary_10_1039_D4MH01348D
crossref_primary_10_1016_j_sna_2022_113662
crossref_primary_10_1016_j_cej_2022_138065
crossref_primary_10_1016_j_jallcom_2022_164693
crossref_primary_10_3390_nano13212880
crossref_primary_10_1016_j_jcis_2023_06_092
crossref_primary_10_1021_acs_analchem_2c01692
crossref_primary_10_1016_j_snb_2022_131634
crossref_primary_10_1038_s41378_023_00605_0
crossref_primary_10_1016_j_snb_2022_131632
crossref_primary_10_1080_01932691_2022_2033123
crossref_primary_10_1016_j_chemosphere_2024_142530
crossref_primary_10_1016_j_jallcom_2022_165878
crossref_primary_10_1016_j_saa_2022_122092
crossref_primary_10_1016_j_compositesb_2021_109537
crossref_primary_10_1007_s12598_022_02031_z
crossref_primary_10_1021_acsami_2c02119
crossref_primary_10_1016_j_microc_2023_109176
crossref_primary_10_1016_j_jallcom_2024_173986
crossref_primary_10_1109_JSEN_2023_3282277
crossref_primary_10_1002_admi_202201366
crossref_primary_10_1016_j_nanoen_2022_107884
crossref_primary_10_1002_adem_202101388
crossref_primary_10_1021_acsami_2c18989
crossref_primary_10_1007_s12598_022_02162_3
crossref_primary_10_1016_j_nxmate_2023_100092
crossref_primary_10_1016_j_nanoen_2022_107762
crossref_primary_10_1016_j_nanoen_2024_110323
crossref_primary_10_1109_JSEN_2022_3226042
crossref_primary_10_1109_JSEN_2022_3170930
crossref_primary_10_1021_acsami_3c02570
crossref_primary_10_1016_j_jes_2024_07_027
crossref_primary_10_1016_j_ssi_2025_116814
crossref_primary_10_1021_acsami_4c20096
crossref_primary_10_1021_acsanm_2c00998
crossref_primary_10_1039_D3TA02002A
crossref_primary_10_1002_cnma_202200209
crossref_primary_10_1021_acsanm_3c00986
crossref_primary_10_1016_j_nanoen_2021_106242
crossref_primary_10_2139_ssrn_4000521
crossref_primary_10_1016_j_nanoen_2022_107511
crossref_primary_10_1002_pat_5704
crossref_primary_10_2139_ssrn_4003913
crossref_primary_10_1016_j_nanoen_2024_109335
crossref_primary_10_3390_s21113806
crossref_primary_10_1021_acsaelm_3c01204
crossref_primary_10_1016_j_jallcom_2022_166663
crossref_primary_10_3390_nano12234274
crossref_primary_10_1021_acsami_3c06864
crossref_primary_10_1007_s40820_024_01430_4
crossref_primary_10_1002_adma_202206783
crossref_primary_10_1002_inf2_12412
crossref_primary_10_1016_j_cej_2021_134212
crossref_primary_10_1021_acsaelm_4c00213
crossref_primary_10_1016_j_cej_2024_156800
crossref_primary_10_1021_acs_analchem_2c04532
crossref_primary_10_1016_j_apsadv_2022_100349
crossref_primary_10_1016_j_cej_2022_136914
crossref_primary_10_1016_j_cej_2024_154628
crossref_primary_10_1021_acsomega_3c03708
crossref_primary_10_1016_j_apmt_2024_102570
crossref_primary_10_1016_j_chemosphere_2024_141234
crossref_primary_10_1002_adsr_202200058
crossref_primary_10_1016_j_compositesb_2023_110931
crossref_primary_10_3390_nano13050850
crossref_primary_10_1039_D3SE00714F
crossref_primary_10_1049_hve2_12262
crossref_primary_10_1109_JSEN_2022_3197182
crossref_primary_10_1016_j_mtsust_2024_100839
crossref_primary_10_1016_j_cej_2025_160597
crossref_primary_10_1016_j_cej_2025_160598
crossref_primary_10_1016_j_nanoen_2021_106461
crossref_primary_10_1016_j_nanoen_2022_107931
crossref_primary_10_1039_D1TC04085E
crossref_primary_10_1039_D2TC00679K
crossref_primary_10_1016_j_sna_2022_113622
crossref_primary_10_1016_j_snb_2021_130486
crossref_primary_10_1021_acssuschemeng_3c01369
crossref_primary_10_1016_j_compositesb_2023_110928
crossref_primary_10_1016_j_carbon_2022_01_054
crossref_primary_10_1021_acsami_3c05870
crossref_primary_10_1039_D2CS00257D
crossref_primary_10_1049_hve2_12376
crossref_primary_10_1002_bio_4487
crossref_primary_10_3390_chemosensors10110484
crossref_primary_10_3390_s21248422
crossref_primary_10_1080_23746149_2023_2288353
crossref_primary_10_1002_adfm_202204686
crossref_primary_10_1016_j_jhazmat_2022_129419
crossref_primary_10_1149_1945_7111_ac7eee
crossref_primary_10_1002_adsu_202300452
crossref_primary_10_2139_ssrn_3986123
crossref_primary_10_1016_j_cej_2023_144989
crossref_primary_10_1021_acsanm_2c01927
crossref_primary_10_1039_D2DT03477H
crossref_primary_10_1016_j_cej_2023_145959
crossref_primary_10_1016_j_nanoms_2023_09_001
crossref_primary_10_1021_acsami_2c06749
crossref_primary_10_1039_D3TA02179C
crossref_primary_10_1039_D4CP04241G
crossref_primary_10_1007_s11431_024_2804_x
crossref_primary_10_20964_2022_05_60
crossref_primary_10_1016_j_snb_2022_131419
crossref_primary_10_1016_j_ceramint_2024_07_450
crossref_primary_10_1016_j_jallcom_2023_171170
crossref_primary_10_1021_acs_langmuir_2c00566
crossref_primary_10_1002_smll_202206000
crossref_primary_10_1016_j_nanoen_2022_107711
crossref_primary_10_1016_j_snb_2024_136101
crossref_primary_10_1016_j_jallcom_2023_173230
crossref_primary_10_1021_acsanm_2c04050
crossref_primary_10_1109_LSENS_2023_3267510
crossref_primary_10_1088_2515_7639_acc550
crossref_primary_10_1016_j_ijbiomac_2023_127737
crossref_primary_10_1039_D2RA04063H
crossref_primary_10_1016_j_snb_2022_131918
crossref_primary_10_1016_j_ccr_2023_215542
crossref_primary_10_2139_ssrn_4166721
crossref_primary_10_1016_j_jics_2025_101631
crossref_primary_10_1021_acsami_4c01077
crossref_primary_10_1016_j_est_2023_108213
crossref_primary_10_1016_j_greeac_2022_100009
crossref_primary_10_1016_j_compositesa_2022_106914
crossref_primary_10_1007_s40820_021_00779_0
crossref_primary_10_1016_j_jhazmat_2021_127160
crossref_primary_10_1016_j_nanoen_2022_107462
crossref_primary_10_1109_JSEN_2022_3229835
crossref_primary_10_1002_admt_202200841
crossref_primary_10_1016_j_mtchem_2022_101361
crossref_primary_10_1016_j_foodchem_2024_140939
crossref_primary_10_3390_chemosensors11090477
crossref_primary_10_3390_s24134092
crossref_primary_10_1016_j_sna_2022_114113
crossref_primary_10_1007_s10854_021_06483_4
crossref_primary_10_1002_smsc_202400611
crossref_primary_10_1109_JSEN_2022_3224165
crossref_primary_10_1039_D1TA03739K
crossref_primary_10_1016_j_compositesb_2023_110574
crossref_primary_10_1021_acsanm_3c00576
crossref_primary_10_1002_aenm_202402781
crossref_primary_10_1021_acssensors_3c01963
crossref_primary_10_1021_acsanm_3c04927
crossref_primary_10_1021_acsami_3c14842
crossref_primary_10_1039_D2SE00405D
crossref_primary_10_1039_D4TA01960A
crossref_primary_10_1364_OME_448295
crossref_primary_10_1039_D2TA04357B
crossref_primary_10_1515_phys_2022_0232
crossref_primary_10_1016_j_snb_2023_134128
crossref_primary_10_1016_j_mtchem_2023_101664
crossref_primary_10_1016_j_ijhydene_2024_08_263
crossref_primary_10_1016_j_apsusc_2022_154877
crossref_primary_10_1016_j_nanoen_2022_107454
crossref_primary_10_1016_j_cej_2025_161293
crossref_primary_10_1016_j_jechem_2025_01_012
crossref_primary_10_1016_j_snb_2023_133360
crossref_primary_10_3390_chemosensors11090483
crossref_primary_10_1109_JSEN_2024_3350873
crossref_primary_10_1021_acsnano_1c10676
crossref_primary_10_1039_D3TA00377A
crossref_primary_10_1109_JSEN_2022_3214210
crossref_primary_10_1016_j_ceramint_2023_04_032
crossref_primary_10_1016_j_nanoen_2023_108737
crossref_primary_10_1021_acsanm_3c00117
crossref_primary_10_1088_2632_959X_ac3636
crossref_primary_10_1016_j_ijbiomac_2025_142427
crossref_primary_10_1016_j_nanoen_2023_108732
crossref_primary_10_1016_j_snb_2023_134579
crossref_primary_10_1016_j_psep_2024_06_126
crossref_primary_10_1021_acsami_3c00432
crossref_primary_10_1016_j_nanoso_2023_101046
crossref_primary_10_1016_j_sna_2023_114991
crossref_primary_10_1016_j_microc_2022_107410
crossref_primary_10_1039_D3TA04974D
crossref_primary_10_1021_acsanm_3c04826
crossref_primary_10_1109_JSEN_2024_3397821
crossref_primary_10_1021_acsami_2c22609
crossref_primary_10_1039_D1TA08630H
crossref_primary_10_1016_j_mtener_2023_101393
crossref_primary_10_1021_acsanm_3c03615
crossref_primary_10_1002_cben_202300043
crossref_primary_10_1016_j_nanoen_2023_108504
crossref_primary_10_1002_adma_202008276
crossref_primary_10_1016_j_jece_2024_115294
crossref_primary_10_1039_D2TA01825J
crossref_primary_10_1016_j_ijhydene_2022_06_291
crossref_primary_10_1016_j_snb_2024_136612
crossref_primary_10_1002_adsu_202300385
crossref_primary_10_3389_fchem_2024_1532018
crossref_primary_10_1002_advs_202401578
crossref_primary_10_1002_adfm_202105110
crossref_primary_10_1021_acsomega_2c04313
crossref_primary_10_1002_adma_202209895
crossref_primary_10_1021_acs_langmuir_4c01566
crossref_primary_10_1016_j_cej_2022_140219
crossref_primary_10_1039_D3TC00806A
crossref_primary_10_1016_j_cej_2024_154226
crossref_primary_10_1016_j_nanoen_2022_107549
crossref_primary_10_1109_LSENS_2023_3241329
crossref_primary_10_1016_j_snb_2022_131605
crossref_primary_10_1021_acssensors_4c01280
crossref_primary_10_1016_j_nanoen_2022_107785
crossref_primary_10_1109_TED_2022_3225129
crossref_primary_10_1002_admi_202300166
crossref_primary_10_1016_j_snb_2024_135993
crossref_primary_10_1016_j_matchemphys_2023_128694
crossref_primary_10_1016_j_ceramint_2023_11_144
crossref_primary_10_1021_acssensors_4c01394
crossref_primary_10_1039_D1TA01724A
crossref_primary_10_1016_j_cej_2024_156871
crossref_primary_10_1021_acssensors_4c01397
crossref_primary_10_1039_D1TC06029E
crossref_primary_10_1039_D2NJ04758F
crossref_primary_10_1016_j_jallcom_2023_171476
crossref_primary_10_1016_j_nanoen_2023_108924
crossref_primary_10_1016_j_materresbull_2022_112053
crossref_primary_10_1016_j_mtchem_2023_101747
crossref_primary_10_1016_j_jallcom_2022_166828
crossref_primary_10_1016_j_colsurfa_2022_129254
crossref_primary_10_1016_j_rinp_2023_106864
crossref_primary_10_1021_acsapm_2c02019
crossref_primary_10_20517_ss_2023_13
crossref_primary_10_1021_acsanm_4c02395
crossref_primary_10_1016_j_apsusc_2023_157146
crossref_primary_10_1039_D2EN00624C
crossref_primary_10_1080_00032719_2023_2220842
crossref_primary_10_1016_j_trac_2024_117707
crossref_primary_10_1021_acsanm_3c01649
crossref_primary_10_1039_D2TA04433A
crossref_primary_10_1063_5_0234645
crossref_primary_10_1016_j_jallcom_2023_170358
crossref_primary_10_1016_j_snb_2024_135429
crossref_primary_10_1002_adfm_202206900
crossref_primary_10_1039_D2AN01143C
crossref_primary_10_1016_j_jallcom_2024_178035
crossref_primary_10_1039_D2TC03147G
crossref_primary_10_1021_acsomega_4c03554
crossref_primary_10_1016_j_cej_2022_137192
crossref_primary_10_1038_s41598_023_34313_6
crossref_primary_10_1109_LED_2023_3261895
crossref_primary_10_1016_j_jcis_2022_10_059
crossref_primary_10_1039_D2TC03583A
crossref_primary_10_1039_D2TA00837H
crossref_primary_10_1016_j_nanoen_2023_108707
crossref_primary_10_1016_j_snb_2022_131812
crossref_primary_10_1021_acsanm_3c01638
crossref_primary_10_1016_j_snb_2021_130423
crossref_primary_10_1021_acsaelm_2c01281
crossref_primary_10_1016_j_nanoen_2022_107317
crossref_primary_10_1016_j_jece_2022_109211
crossref_primary_10_1021_acsanm_3c01637
crossref_primary_10_1360_TB_2021_1340
crossref_primary_10_1016_j_nanoen_2023_108670
crossref_primary_10_1109_TDEI_2023_3298754
crossref_primary_10_1021_acsanm_3c04787
crossref_primary_10_1039_D4NR04681A
crossref_primary_10_1016_j_jallcom_2022_168006
crossref_primary_10_1016_j_cej_2023_141505
crossref_primary_10_1021_acsaelm_3c00712
crossref_primary_10_1021_acssensors_4c01642
crossref_primary_10_1021_acssensors_4c00793
crossref_primary_10_1039_D3CP01813J
crossref_primary_10_1002_adsr_202300035
crossref_primary_10_1021_acs_analchem_2c05143
crossref_primary_10_1002_asia_202300505
crossref_primary_10_1016_j_jhazmat_2023_131158
crossref_primary_10_1021_acssensors_1c01374
crossref_primary_10_1021_acsanm_2c02153
crossref_primary_10_1016_j_snb_2023_134755
crossref_primary_10_1039_D1TA02828F
crossref_primary_10_1021_acsami_2c06291
crossref_primary_10_1021_acssensors_3c00475
crossref_primary_10_1002_adfm_202108959
crossref_primary_10_1016_j_jhazmat_2022_128821
crossref_primary_10_1016_j_sna_2023_114330
crossref_primary_10_1016_j_sna_2023_114331
crossref_primary_10_1016_j_sna_2022_114076
crossref_primary_10_26599_JAC_2023_9220810
crossref_primary_10_1016_j_cej_2024_150982
crossref_primary_10_1039_D2MA00587E
crossref_primary_10_1016_j_mser_2024_100866
crossref_primary_10_1002_aisy_202200396
crossref_primary_10_1016_j_cej_2022_135230
crossref_primary_10_1016_j_cej_2022_136449
crossref_primary_10_1016_j_nanoen_2023_108687
crossref_primary_10_1016_j_sna_2021_112710
crossref_primary_10_1039_D3MA00631J
crossref_primary_10_1007_s12274_023_5959_5
crossref_primary_10_1021_acsanm_3c01059
crossref_primary_10_1109_JSEN_2022_3210007
crossref_primary_10_1002_adma_202409440
crossref_primary_10_1007_s40089_021_00361_x
crossref_primary_10_1002_adsr_202300129
crossref_primary_10_3390_s23218674
crossref_primary_10_1016_j_bioadv_2023_213364
crossref_primary_10_1016_j_ceramint_2024_12_163
crossref_primary_10_1007_s11664_024_11146_1
crossref_primary_10_1002_smll_202303277
crossref_primary_10_1016_j_ijbiomac_2024_131649
crossref_primary_10_1016_j_nanoen_2022_108164
crossref_primary_10_1039_D3CP03353H
crossref_primary_10_2139_ssrn_4075418
crossref_primary_10_1016_j_sna_2024_115509
crossref_primary_10_1021_acsaelm_2c00717
crossref_primary_10_1109_LSENS_2023_3235890
crossref_primary_10_1016_j_ces_2024_120878
crossref_primary_10_1002_advs_202203428
crossref_primary_10_1007_s10854_022_07969_5
crossref_primary_10_1016_j_apsusc_2023_156816
crossref_primary_10_1002_advs_202101834
crossref_primary_10_1016_j_nanoen_2023_108345
crossref_primary_10_1016_j_snb_2023_134620
crossref_primary_10_1021_acs_jpclett_2c03765
crossref_primary_10_1016_j_snb_2023_133584
crossref_primary_10_1016_j_nanoen_2022_108110
crossref_primary_10_1021_acssensors_3c02684
crossref_primary_10_1016_j_mtchem_2024_102384
crossref_primary_10_1007_s10853_023_08321_w
crossref_primary_10_1021_acsomega_2c06335
crossref_primary_10_1002_aesr_202300233
crossref_primary_10_1016_j_snb_2021_129923
crossref_primary_10_1021_acsanm_2c02235
crossref_primary_10_1007_s12274_023_5784_x
crossref_primary_10_1002_eem2_12654
crossref_primary_10_1002_eem2_12414
crossref_primary_10_1007_s12274_023_5420_1
crossref_primary_10_2139_ssrn_4172914
crossref_primary_10_1016_j_snb_2022_133053
crossref_primary_10_1016_j_snb_2023_133594
crossref_primary_10_2139_ssrn_3993237
crossref_primary_10_1021_acsnano_1c06402
crossref_primary_10_1016_j_ccr_2023_215118
crossref_primary_10_1016_j_sna_2023_114890
crossref_primary_10_1007_s12274_022_5233_2
crossref_primary_10_1002_pat_6143
crossref_primary_10_1016_j_inoche_2022_109506
crossref_primary_10_1002_admt_202101565
crossref_primary_10_1016_j_jallcom_2023_170538
crossref_primary_10_1109_JSEN_2022_3166706
crossref_primary_10_1016_j_cej_2022_140865
crossref_primary_10_1021_acs_analchem_2c05059
crossref_primary_10_1002_advs_202402705
crossref_primary_10_1016_j_jallcom_2024_177796
crossref_primary_10_1002_smtd_202400480
crossref_primary_10_1021_acssensors_2c02104
crossref_primary_10_1016_j_cej_2023_147233
crossref_primary_10_1016_j_ijoes_2024_100658
crossref_primary_10_1002_smll_202305250
crossref_primary_10_1002_adfm_202208131
crossref_primary_10_1016_j_elstat_2025_104037
crossref_primary_10_1016_j_surfin_2024_104831
crossref_primary_10_1016_j_carbpol_2024_123074
crossref_primary_10_1016_j_ccr_2023_215208
crossref_primary_10_1021_acssensors_4c02313
crossref_primary_10_1016_j_compositesb_2024_111615
crossref_primary_10_1039_D4TA01888E
crossref_primary_10_1016_j_nanoen_2023_108415
crossref_primary_10_1021_acsaenm_3c00529
crossref_primary_10_1016_j_nanoen_2024_109700
crossref_primary_10_1016_j_nanoen_2022_107271
crossref_primary_10_1021_acs_energyfuels_2c01121
crossref_primary_10_1002_admt_202301895
crossref_primary_10_1002_app_55092
crossref_primary_10_1016_j_carbon_2022_11_033
crossref_primary_10_1109_JSEN_2024_3424312
crossref_primary_10_3390_ma16083249
crossref_primary_10_1002_ente_202300984
crossref_primary_10_1080_24701556_2022_2078363
crossref_primary_10_1016_j_cej_2022_138568
crossref_primary_10_1109_JSEN_2023_3321930
crossref_primary_10_1016_j_apsusc_2022_153564
crossref_primary_10_1016_j_cej_2024_158519
crossref_primary_10_1021_acsanm_2c02581
crossref_primary_10_1016_j_sna_2022_114138
crossref_primary_10_1109_JSEN_2023_3283957
Cites_doi 10.1016/j.nanoen.2018.02.031
10.1007/s40843-019-9445-9
10.1016/j.snb.2018.05.173
10.1021/acsami.5b11973
10.1039/C9TA11550A
10.1016/j.ccr.2020.213272
10.1021/acsnano.8b06136
10.1002/advs.201903390
10.1016/j.snb.2020.127828
10.1016/j.nanoen.2012.01.004
10.1002/aenm.202001041
10.1039/C7LC00810D
10.1002/aenm.202000965
10.1021/acsami.0c01530
10.1021/acsnano.8b08274
10.1039/C8TA06928J
10.1039/C8RA03077D
10.1016/j.nanoen.2018.06.041
10.1038/s41586-020-2270-4
10.1016/j.nanoen.2019.02.052
10.1016/j.cej.2020.125786
10.1021/acsnano.9b09802
10.1038/s41586-019-1134-2
10.1016/j.nanoen.2018.04.033
10.1002/adfm.202005727
10.1016/j.snb.2020.127815
10.1007/s12274-017-1951-2
10.1016/j.apcatb.2019.04.026
10.1021/acssuschemeng.8b01147
10.1021/acs.cgd.7b00102
10.1039/D0TA01698E
10.1021/acsnano.9b08496
10.1016/j.cej.2019.01.185
10.1002/adma.201908385
10.1038/s41467-020-18196-z
10.1016/j.jcis.2016.07.004
10.1021/acsami.8b09169
10.1021/acsnano.0c00524
10.1002/aenm.201700105
10.1088/0957-4484/27/44/445702
10.1021/acsami.7b11055
10.1016/j.compositesb.2019.04.050
10.1002/aenm.202000470
10.1016/j.nanoen.2019.01.042
10.1021/acsami.6b06455
10.1021/acssensors.9b01308
10.1016/j.apsusc.2016.05.060
10.3390/ma11122457
10.1016/j.nanoen.2019.103974
10.1002/aenm.201902824
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acsnano.0c09015
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 2919
ExternalDocumentID 33554603
10_1021_acsnano_0c09015
d33558570
Genre Journal Article
GroupedDBID -
23M
53G
55A
5GY
5VS
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
F5P
GNL
IH9
IHE
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
4.4
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
ID FETCH-LOGICAL-a399t-f96eaf850063d86f1a79b67cd12b5dff87221217d82ae8629a7043c7a1f376a03
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 06:27:26 EDT 2025
Thu Jan 02 22:58:04 EST 2025
Tue Jul 01 03:37:06 EDT 2025
Thu Apr 24 22:59:20 EDT 2025
Thu Feb 25 04:42:15 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords flexible electronics
Ti3C2T x MXene
NH3 sensor
triboelectric nanogenerator
self-powered sensor
Ti3C2Tx MXene
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a399t-f96eaf850063d86f1a79b67cd12b5dff87221217d82ae8629a7043c7a1f376a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9238-4176
PMID 33554603
PQID 2487428211
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2487428211
pubmed_primary_33554603
crossref_primary_10_1021_acsnano_0c09015
crossref_citationtrail_10_1021_acsnano_0c09015
acs_journals_10_1021_acsnano_0c09015
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-23
PublicationDateYYYYMMDD 2021-02-23
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-23
  day: 23
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref17/cit17
  doi: 10.1016/j.nanoen.2018.02.031
– ident: ref18/cit18
  doi: 10.1007/s40843-019-9445-9
– ident: ref36/cit36
  doi: 10.1016/j.snb.2018.05.173
– ident: ref30/cit30
  doi: 10.1021/acsami.5b11973
– ident: ref5/cit5
  doi: 10.1039/C9TA11550A
– ident: ref26/cit26
  doi: 10.1016/j.ccr.2020.213272
– ident: ref21/cit21
  doi: 10.1021/acsnano.8b06136
– ident: ref7/cit7
  doi: 10.1002/advs.201903390
– ident: ref28/cit28
  doi: 10.1016/j.snb.2020.127828
– ident: ref9/cit9
  doi: 10.1016/j.nanoen.2012.01.004
– ident: ref10/cit10
  doi: 10.1002/aenm.202001041
– ident: ref27/cit27
  doi: 10.1039/C7LC00810D
– ident: ref8/cit8
  doi: 10.1002/aenm.202000965
– ident: ref44/cit44
  doi: 10.1021/acsami.0c01530
– ident: ref12/cit12
  doi: 10.1021/acsnano.8b08274
– ident: ref47/cit47
  doi: 10.1039/C8TA06928J
– ident: ref22/cit22
  doi: 10.1039/C8RA03077D
– ident: ref48/cit48
  doi: 10.1016/j.nanoen.2018.06.041
– ident: ref3/cit3
  doi: 10.1038/s41586-020-2270-4
– ident: ref42/cit42
  doi: 10.1016/j.nanoen.2019.02.052
– ident: ref23/cit23
  doi: 10.1016/j.cej.2020.125786
– ident: ref19/cit19
  doi: 10.1021/acsnano.9b09802
– ident: ref1/cit1
  doi: 10.1038/s41586-019-1134-2
– ident: ref49/cit49
  doi: 10.1016/j.nanoen.2018.04.033
– ident: ref4/cit4
  doi: 10.1002/adfm.202005727
– ident: ref39/cit39
  doi: 10.1016/j.snb.2020.127815
– ident: ref29/cit29
  doi: 10.1007/s12274-017-1951-2
– ident: ref37/cit37
  doi: 10.1016/j.apcatb.2019.04.026
– ident: ref33/cit33
  doi: 10.1021/acssuschemeng.8b01147
– ident: ref31/cit31
  doi: 10.1021/acs.cgd.7b00102
– ident: ref15/cit15
  doi: 10.1039/D0TA01698E
– ident: ref13/cit13
  doi: 10.1021/acsnano.9b08496
– ident: ref38/cit38
  doi: 10.1016/j.cej.2019.01.185
– ident: ref50/cit50
  doi: 10.1002/adma.201908385
– ident: ref2/cit2
  doi: 10.1038/s41467-020-18196-z
– ident: ref46/cit46
  doi: 10.1016/j.jcis.2016.07.004
– ident: ref6/cit6
  doi: 10.1021/acsami.8b09169
– ident: ref11/cit11
  doi: 10.1021/acsnano.0c00524
– ident: ref34/cit34
  doi: 10.1002/aenm.201700105
– ident: ref43/cit43
  doi: 10.1088/0957-4484/27/44/445702
– ident: ref24/cit24
  doi: 10.1021/acsami.7b11055
– ident: ref35/cit35
  doi: 10.1016/j.compositesb.2019.04.050
– ident: ref20/cit20
  doi: 10.1002/aenm.202000470
– ident: ref16/cit16
  doi: 10.1016/j.nanoen.2019.01.042
– ident: ref40/cit40
  doi: 10.1021/acsami.6b06455
– ident: ref25/cit25
  doi: 10.1021/acssensors.9b01308
– ident: ref32/cit32
  doi: 10.1016/j.apsusc.2016.05.060
– ident: ref41/cit41
  doi: 10.3390/ma11122457
– ident: ref45/cit45
  doi: 10.1016/j.nanoen.2019.103974
– ident: ref14/cit14
  doi: 10.1002/aenm.201902824
SSID ssj0057876
Score 2.7189167
Snippet Self-powered sensors are crucial in the field of wearable devices and the Internet of Things (IoT). In this paper, an organ-like Ti3C2T x MXene/metal–organic...
Self-powered sensors are crucial in the field of wearable devices and the Internet of Things (IoT). In this paper, an organ-like Ti C T MXene/metal-organic...
Self-powered sensors are crucial in the field of wearable devices and the Internet of Things (IoT). In this paper, an organ-like Ti3C2Tx MXene/metal-organic...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2911
Title Multifunctional Latex/Polytetrafluoroethylene-Based Triboelectric Nanogenerator for Self-Powered Organ-like MXene/Metal–Organic Framework-Derived CuO Nanohybrid Ammonia Sensor
URI http://dx.doi.org/10.1021/acsnano.0c09015
https://www.ncbi.nlm.nih.gov/pubmed/33554603
https://www.proquest.com/docview/2487428211
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagXODA-7G8ZKQeuHg3iRM7OZaFVYVYqFQq7S1ynHFZNYrRJkGUU_9Dfwl_qb-k4zi7PKoV3G0rycx4vsnMfEPIrjQCJQ0xIrcMWCyDjBU6EaxUSSJKzsETmM4_iv2j-P0iWfwii_47gx-FE6WbWtV2HOjA-a7r5EYk0IQdCpoeri9dp3fCJ5AxQEYUsWHxuXKAc0O6-dMNbcGWvY-Z3fHVWU1PTehKS07GXVuM9Y-rxI3_fvy75PaANOmeV4175BrU98mt3_gHH5Cfffutc23-jyD9gMjz--TAVqcttCtlqs6uLKAs0TcBe4Mer6SOa8T66TlLTfF2tsc9dTUG7xQRMD2EyrADN3wNF_etnqxangCdL3DZZA6I9i_Ozn0PqKazdXEYe4sP9Q23TLtP_alfTl0zGd1zhrJUeGzd2NVDcjR793m6z4YZDkwh9GmZyQQokyYOCpWpMKGSWSGkLsOoSEpjUhmh8wxlmUYKMLrKlAxirqUKDV59KuCPyE5ta3hCaCFMGfGi4CmYWHE0AQOQmSABqWWiyxHZxY-dDzbY5H16PQrzQQL5IIERGa8ln-uBB92N46i2b3i92fDVU4BsX_pqrUo5mqnLvagabNfkEQaGGOlhuD0ij72ObQ7jDvOJgD_9vxd4Rm5GrrDG9dXz52SnXXXwApFRW7zsbeISjfMO3g
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELaW5QAcludCeRppD1zcJnFiJ8dSqAq0y6LdlXqLHGcM1UYJapIVy4n_wC_hL_FLGOdRXqoE18geOZkZzzcZz2dCDqQRqGnwEblFwHzpRCzRgWCpCgKRcg4tgeniUMxO_dfLYLlDnL4XBhdRoqSyKeL_ZBdwR_gsV3kxdLRjQ9glchmhiGdtejw57vdea36irSNjnoxgYkPm85cAG410-Xs02gIxm1AzvU7ebRbZnDA5G9ZVMtSf_-Bv_J-3uEH2OtxJx62h3CQ7kN8i135hI7xNvjXNuDbQtf8H6Rxx6KfRUZFdVFCtlcnqYl0AahYjFbDnGP9SaplHivYunZWmuFcX7xsia0zlKeJhegyZYUf2KjYc3DR-smx1BnSxxGGjBSD2__7la9sRqum0PyrGXuCiznHKpH7bSP1wYVvL6Ni6zUqh2Lws1nfI6fTlyWTGuhsdmEIgVDETCVAmDCwwSkNhXCWjREidul4SpMaE0sNQ6so09BRgrhUp6fhcS-Ua3AiVw_fJbl7kcI_QRJjU40nCQzC-4ugQBiAyTgBSy0CnA3KAHzvuPLKMm2K758adBuJOAwMy7A0g1h0rur2cI9s-4dlmwseWEGT70Ke9RcXotLYSo3Io6jL2ME3EvA-T7wG525raRhi3CFA4_P6_vcATcmV2spjH81eHbx6Qq549cmM77vlDsluta3iEmKlKHjdu8gPFvxc_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NjtMwELZgkRAc-F8ov0baAxe3SZzYybF0qRbYLpWWSr1Fjj2GaqNk1SSI5cQ78CS8Ek_COEkrflQJrpE9cjIznm8yns-EHEgrUNMQInJLgIXSS1imI8GMiiJhOIeOwHR2Io4W4ZtltOybwlwvDC6iQklVW8R3Xn1ubM8w4I_weaGKcuhpz4Wxy-SKK9o5ux5PTjf7rzNB0dWSMVdGQLEl9PlLgItIuvo9Iu2AmW24md4ki-1C21MmZ8Omzob6yx8cjv_7JrfIjR5_0nFnMLfJJSjukOu_sBLeJd_bplwX8Lr_hPQY8ejn0bzML2qo18rmTbkuATWMEQvYS4yDhjoGkrK7U2elKe7Z5YeW0BpTeoq4mJ5CbtncXcmGg9sGUJavzoDOljhsNAPMAX58_dZ1hmo63RwZY4e4qE84ZdK8a6V-vHAtZnTs3GelUGxRlet7ZDF99X5yxPqbHZhCQFQzmwhQNo4cQDKxsL6SSSakNn6QRcbaWAYYUn1p4kAB5lyJkl7ItVS-xQ1ReXyf7BVlAQ8IzYQ1Ac8yHoMNFUfHsACJ9SKQWkbaDMgBfuy098wqbYvugZ_2Gkh7DQzIcGMEqe7Z0d0lHfnuCS-2E847YpDdQ59vrCpF53UVGVVA2VRpgOki5n-YhA_I_c7ctsK4Q4LC4w__7QWekavzw2l6_Prk7SNyLXAnb1zjPX9M9up1A08QOtXZ09ZTfgKMahnC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multifunctional+Latex%2FPolytetrafluoroethylene-Based+Triboelectric+Nanogenerator+for+Self-Powered+Organ-like+MXene%2FMetal-Organic+Framework-Derived+CuO+Nanohybrid+Ammonia+Sensor&rft.jtitle=ACS+nano&rft.au=Wang%2C+Dongyue&rft.au=Zhang%2C+Dongzhi&rft.au=Yang%2C+Yan&rft.au=Mi%2C+Qian&rft.date=2021-02-23&rft.eissn=1936-086X&rft.volume=15&rft.issue=2&rft.spage=2911&rft_id=info:doi/10.1021%2Facsnano.0c09015&rft_id=info%3Apmid%2F33554603&rft.externalDocID=33554603
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon