Factors Governing Oxygen Vacancy Formation in Oxide Perovskites

The control of oxygen vacancy (VO) formation is critical to advancing multiple metal-oxide-perovskite-based technologies. We report the construction of a compact linear model for the neutral VO formation energy in ABO3 perovskites that reproduces, with reasonable fidelity, Hubbard-U-corrected densit...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 143; no. 33; pp. 13212 - 13227
Main Authors Wexler, Robert B, Gautam, Gopalakrishnan Sai, Stechel, Ellen B, Carter, Emily A
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 25.08.2021
American Chemical Society (ACS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The control of oxygen vacancy (VO) formation is critical to advancing multiple metal-oxide-perovskite-based technologies. We report the construction of a compact linear model for the neutral VO formation energy in ABO3 perovskites that reproduces, with reasonable fidelity, Hubbard-U-corrected density functional theory calculations based on the state-of-the-art, strongly constrained and appropriately normed exchange-correlation functional. We obtain a mean absolute error of 0.45 eV for perovskites stable at 298 K, an accuracy that holds across a large, electronically diverse set of ABO3 perovskites. Our model considers perovskites containing alkaline-earth metals (Ca, Sr, and Ba) and lanthanides (La and Ce) on the A-site and 3d transition metals (Ti, V, Cr, Mn, Fe, Co, and Ni) on the B-site in six different crystal systems (cubic, tetragonal, orthorhombic, hexagonal, rhombohedral, and monoclinic) common to perovskites. Physically intuitive metrics easily extracted from existing experimental thermochemical data or via inexpensive quantum mechanical calculations, including crystal bond dissociation energies and (solid phase) reduction potentials, are key components of the model. Beyond validation of the model against known experimental trends in materials used in solid oxide fuel cells, the model yields new candidate perovskites not contained in our training data set, such as (Bi,Y)­(Fe,Co)­O3, which we predict may have favorable thermochemical water-splitting properties. The confluence of sufficient accuracy, efficiency, and interpretability afforded by our model not only facilitates high-throughput computational screening for any application that requires the precise control of VO concentrations but also provides a clear picture of the dominant physics governing VO formation in metal-oxide perovskites.
AbstractList The control of oxygen vacancy (VO) formation is critical to advancing multiple metal-oxide-perovskite-based technologies. In this work, we report the construction of a compact linear model for the neutral VO formation energy in ABO3 perovskites that reproduces, with reasonable fidelity, Hubbard-U-corrected density functional theory calculations based on the state-of-the-art, strongly constrained and appropriately normed exchange-correlation functional. We obtain a mean absolute error of 0.45 eV for perovskites stable at 298 K, an accuracy that holds across a large, electronically diverse set of ABO3 perovskites. Our model considers perovskites containing alkaline-earth metals (Ca, Sr, and Ba) and lanthanides (La and Ce) on the A-site and 3d transition metals (Ti, V, Cr, Mn, Fe, Co, and Ni) on the B-site in six different crystal systems (cubic, tetragonal, orthorhombic, hexagonal, rhombohedral, and monoclinic) common to perovskites. Physically intuitive metrics easily extracted from existing experimental thermochemical data or via inexpensive quantum mechanical calculations, including crystal bond dissociation energies and (solid phase) reduction potentials, are key components of the model. Beyond validation of the model against known experimental trends in materials used in solid oxide fuel cells, the model yields new candidate perovskites not contained in our training data set, such as (Bi,Y)(Fe,Co)O3, which we predict may have favorable thermochemical water-splitting properties. The confluence of sufficient accuracy, efficiency, and interpretability afforded by our model not only facilitates high-throughput computational screening for any application that requires the precise control of VO concentrations but also provides a clear picture of the dominant physics governing VO formation in metal-oxide perovskites.
The control of oxygen vacancy (VO) formation is critical to advancing multiple metal-oxide-perovskite-based technologies. We report the construction of a compact linear model for the neutral VO formation energy in ABO3 perovskites that reproduces, with reasonable fidelity, Hubbard-U-corrected density functional theory calculations based on the state-of-the-art, strongly constrained and appropriately normed exchange-correlation functional. We obtain a mean absolute error of 0.45 eV for perovskites stable at 298 K, an accuracy that holds across a large, electronically diverse set of ABO3 perovskites. Our model considers perovskites containing alkaline-earth metals (Ca, Sr, and Ba) and lanthanides (La and Ce) on the A-site and 3d transition metals (Ti, V, Cr, Mn, Fe, Co, and Ni) on the B-site in six different crystal systems (cubic, tetragonal, orthorhombic, hexagonal, rhombohedral, and monoclinic) common to perovskites. Physically intuitive metrics easily extracted from existing experimental thermochemical data or via inexpensive quantum mechanical calculations, including crystal bond dissociation energies and (solid phase) reduction potentials, are key components of the model. Beyond validation of the model against known experimental trends in materials used in solid oxide fuel cells, the model yields new candidate perovskites not contained in our training data set, such as (Bi,Y)­(Fe,Co)­O3, which we predict may have favorable thermochemical water-splitting properties. The confluence of sufficient accuracy, efficiency, and interpretability afforded by our model not only facilitates high-throughput computational screening for any application that requires the precise control of VO concentrations but also provides a clear picture of the dominant physics governing VO formation in metal-oxide perovskites.
The control of oxygen vacancy (VO) formation is critical to advancing multiple metal-oxide-perovskite-based technologies. We report the construction of a compact linear model for the neutral VO formation energy in ABO₃ perovskites that reproduces, with reasonable fidelity, Hubbard-U-corrected density functional theory calculations based on the state-of-the-art, strongly constrained and appropriately normed exchange-correlation functional. We obtain a mean absolute error of 0.45 eV for perovskites stable at 298 K, an accuracy that holds across a large, electronically diverse set of ABO₃ perovskites. Our model considers perovskites containing alkaline-earth metals (Ca, Sr, and Ba) and lanthanides (La and Ce) on the A-site and 3d transition metals (Ti, V, Cr, Mn, Fe, Co, and Ni) on the B-site in six different crystal systems (cubic, tetragonal, orthorhombic, hexagonal, rhombohedral, and monoclinic) common to perovskites. Physically intuitive metrics easily extracted from existing experimental thermochemical data or via inexpensive quantum mechanical calculations, including crystal bond dissociation energies and (solid phase) reduction potentials, are key components of the model. Beyond validation of the model against known experimental trends in materials used in solid oxide fuel cells, the model yields new candidate perovskites not contained in our training data set, such as (Bi,Y)(Fe,Co)O₃, which we predict may have favorable thermochemical water-splitting properties. The confluence of sufficient accuracy, efficiency, and interpretability afforded by our model not only facilitates high-throughput computational screening for any application that requires the precise control of VO concentrations but also provides a clear picture of the dominant physics governing VO formation in metal-oxide perovskites.
The control of oxygen vacancy (VO) formation is critical to advancing multiple metal-oxide-perovskite-based technologies. We report the construction of a compact linear model for the neutral VO formation energy in ABO3 perovskites that reproduces, with reasonable fidelity, Hubbard-U-corrected density functional theory calculations based on the state-of-the-art, strongly constrained and appropriately normed exchange-correlation functional. We obtain a mean absolute error of 0.45 eV for perovskites stable at 298 K, an accuracy that holds across a large, electronically diverse set of ABO3 perovskites. Our model considers perovskites containing alkaline-earth metals (Ca, Sr, and Ba) and lanthanides (La and Ce) on the A-site and 3d transition metals (Ti, V, Cr, Mn, Fe, Co, and Ni) on the B-site in six different crystal systems (cubic, tetragonal, orthorhombic, hexagonal, rhombohedral, and monoclinic) common to perovskites. Physically intuitive metrics easily extracted from existing experimental thermochemical data or via inexpensive quantum mechanical calculations, including crystal bond dissociation energies and (solid phase) reduction potentials, are key components of the model. Beyond validation of the model against known experimental trends in materials used in solid oxide fuel cells, the model yields new candidate perovskites not contained in our training data set, such as (Bi,Y)(Fe,Co)O3, which we predict may have favorable thermochemical water-splitting properties. The confluence of sufficient accuracy, efficiency, and interpretability afforded by our model not only facilitates high-throughput computational screening for any application that requires the precise control of VO concentrations but also provides a clear picture of the dominant physics governing VO formation in metal-oxide perovskites.The control of oxygen vacancy (VO) formation is critical to advancing multiple metal-oxide-perovskite-based technologies. We report the construction of a compact linear model for the neutral VO formation energy in ABO3 perovskites that reproduces, with reasonable fidelity, Hubbard-U-corrected density functional theory calculations based on the state-of-the-art, strongly constrained and appropriately normed exchange-correlation functional. We obtain a mean absolute error of 0.45 eV for perovskites stable at 298 K, an accuracy that holds across a large, electronically diverse set of ABO3 perovskites. Our model considers perovskites containing alkaline-earth metals (Ca, Sr, and Ba) and lanthanides (La and Ce) on the A-site and 3d transition metals (Ti, V, Cr, Mn, Fe, Co, and Ni) on the B-site in six different crystal systems (cubic, tetragonal, orthorhombic, hexagonal, rhombohedral, and monoclinic) common to perovskites. Physically intuitive metrics easily extracted from existing experimental thermochemical data or via inexpensive quantum mechanical calculations, including crystal bond dissociation energies and (solid phase) reduction potentials, are key components of the model. Beyond validation of the model against known experimental trends in materials used in solid oxide fuel cells, the model yields new candidate perovskites not contained in our training data set, such as (Bi,Y)(Fe,Co)O3, which we predict may have favorable thermochemical water-splitting properties. The confluence of sufficient accuracy, efficiency, and interpretability afforded by our model not only facilitates high-throughput computational screening for any application that requires the precise control of VO concentrations but also provides a clear picture of the dominant physics governing VO formation in metal-oxide perovskites.
Author Carter, Emily A
Wexler, Robert B
Gautam, Gopalakrishnan Sai
Stechel, Ellen B
AuthorAffiliation Department of Mechanical and Aerospace Engineering
Office of the Chancellor and Department of Chemical and Biomolecular Engineering
ASU LightWorks and the School of Molecular Sciences
AuthorAffiliation_xml – name: Office of the Chancellor and Department of Chemical and Biomolecular Engineering
– name: ASU LightWorks and the School of Molecular Sciences
– name: Department of Mechanical and Aerospace Engineering
Author_xml – sequence: 1
  givenname: Robert B
  orcidid: 0000-0002-6861-6421
  surname: Wexler
  fullname: Wexler, Robert B
  organization: Department of Mechanical and Aerospace Engineering
– sequence: 2
  givenname: Gopalakrishnan Sai
  orcidid: 0000-0002-1303-0976
  surname: Gautam
  fullname: Gautam, Gopalakrishnan Sai
  organization: Department of Mechanical and Aerospace Engineering
– sequence: 3
  givenname: Ellen B
  orcidid: 0000-0002-5379-2908
  surname: Stechel
  fullname: Stechel, Ellen B
  organization: ASU LightWorks and the School of Molecular Sciences
– sequence: 4
  givenname: Emily A
  orcidid: 0000-0001-7330-7554
  surname: Carter
  fullname: Carter, Emily A
  email: eac@princeton.edu, eac@ucla.edu
  organization: Office of the Chancellor and Department of Chemical and Biomolecular Engineering
BackLink https://www.osti.gov/servlets/purl/1817918$$D View this record in Osti.gov
BookMark eNqNkE1PAjEQQBuDiYDe_AEbTx5c7Me22z0ZYwRNSPCgXptut4vFpcW2EPn3FuFkNPE06cybzswbgJ51VgNwjuAIQYyuF1KFEVKQ0hIegT6iGOYUYdYDfQghzkvOyAkYhLBIzwJz1Ac3Y6mi8yGbuI321th5NvvczrXNXqWSVm2zsfNLGY2zmbGpZhqdPWnvNuHdRB1OwXEru6DPDnEIXsb3z3cP-XQ2eby7neaSVFXM26LQRDeVajkksMWoZKjhsKlbwjnGJeGMpRMYr6muocI15E2t6oTTSpaNIkNwsf_XhWhEUGm2elPOWq2iQByVFeIJutxDK-8-1jpEsTRB6a6TVrt1EJgRRiEk1T9QyoqiImWihwDvUeVdCF63Ik3_NhK9NJ1AUOzsi519cbCfmq5-NK28WUq__Qs_rLNLLtza2yTzd_QLjc2Uyg
CitedBy_id crossref_primary_10_1039_D4CP00874J
crossref_primary_10_1063_5_0135382
crossref_primary_10_1016_j_electacta_2024_145142
crossref_primary_10_1103_PhysRevB_105_224303
crossref_primary_10_3390_cryst12091300
crossref_primary_10_1002_ifm2_8
crossref_primary_10_1002_solr_202300968
crossref_primary_10_1016_j_ceramint_2023_10_248
crossref_primary_10_1016_j_actamat_2022_118428
crossref_primary_10_3390_cryst13050769
crossref_primary_10_1021_acsomega_2c00702
crossref_primary_10_1016_j_jallcom_2022_168482
crossref_primary_10_1142_S0217984923420046
crossref_primary_10_1021_acsenergylett_5c00154
crossref_primary_10_1016_j_jallcom_2024_174656
crossref_primary_10_1016_j_cej_2023_145015
crossref_primary_10_1021_jacs_4c02688
crossref_primary_10_1021_acs_chemmater_3c03038
crossref_primary_10_1021_acs_energyfuels_4c00859
crossref_primary_10_1021_acs_analchem_4c01106
crossref_primary_10_1021_acs_chemmater_2c00459
crossref_primary_10_1002_adts_202200592
crossref_primary_10_1515_ntrev_2024_0104
crossref_primary_10_1016_j_cej_2024_155901
crossref_primary_10_1021_acs_chemmater_4c00519
crossref_primary_10_1021_acsmaterialslett_2c01021
crossref_primary_10_1021_jacs_1c12620
crossref_primary_10_1002_anie_202305385
crossref_primary_10_1016_j_ceramint_2024_01_025
crossref_primary_10_1021_acs_energyfuels_3c00732
crossref_primary_10_1016_j_fuel_2023_129388
crossref_primary_10_1111_jace_18468
crossref_primary_10_1021_acs_inorgchem_4c01198
crossref_primary_10_1039_D3TA08110A
crossref_primary_10_1002_advs_202305799
crossref_primary_10_1021_acsnano_4c03783
crossref_primary_10_1039_D3MA00850A
crossref_primary_10_2139_ssrn_4166665
crossref_primary_10_1016_j_actamat_2024_120636
crossref_primary_10_1038_s43588_023_00510_6
crossref_primary_10_1021_acscatal_2c00920
crossref_primary_10_1016_j_fuel_2024_131588
crossref_primary_10_3390_catal12090963
crossref_primary_10_1021_acsami_4c01336
crossref_primary_10_1088_1361_648X_acd7bc
crossref_primary_10_2139_ssrn_4156626
crossref_primary_10_1002_ange_202305385
crossref_primary_10_1016_j_gee_2024_01_001
crossref_primary_10_1002_aenm_202300174
crossref_primary_10_1016_j_apsusc_2023_159134
crossref_primary_10_1002_adma_202302979
crossref_primary_10_1016_j_jece_2024_113957
crossref_primary_10_34133_energymatadv_0029
crossref_primary_10_1016_j_ssi_2023_116337
crossref_primary_10_1038_s43588_023_00495_2
crossref_primary_10_1016_j_vacuum_2024_113934
crossref_primary_10_1002_smll_202208102
crossref_primary_10_1103_PhysRevMaterials_7_065403
crossref_primary_10_1039_D4DD00250D
crossref_primary_10_3390_encyclopedia3040104
crossref_primary_10_1016_j_mtsust_2022_100162
crossref_primary_10_1002_advs_202401975
crossref_primary_10_1021_acs_chemmater_2c02841
crossref_primary_10_1016_j_jiec_2024_06_007
crossref_primary_10_1021_acs_chemmater_2c01233
crossref_primary_10_1021_acs_chemmater_3c02251
crossref_primary_10_1016_j_apsusc_2022_155896
crossref_primary_10_1002_anie_202216645
crossref_primary_10_1039_D4QI01638F
crossref_primary_10_1016_j_jre_2023_01_002
crossref_primary_10_1002_smll_202404239
crossref_primary_10_1016_j_ijhydene_2022_11_237
crossref_primary_10_1007_s11814_024_00354_4
crossref_primary_10_1038_s41578_022_00433_0
crossref_primary_10_1002_aenm_202203833
crossref_primary_10_1038_s41524_023_01062_z
crossref_primary_10_1002_adfm_202112294
crossref_primary_10_1103_PhysRevMaterials_8_055407
crossref_primary_10_1039_D4TA04049J
crossref_primary_10_1088_2515_7655_ad0b8a
crossref_primary_10_3390_catal14010070
crossref_primary_10_1021_acs_chemmater_4c03028
crossref_primary_10_1016_j_apcatb_2024_124510
crossref_primary_10_1021_acs_nanolett_4c03660
crossref_primary_10_1016_j_apcatb_2025_125192
crossref_primary_10_1103_PhysRevB_109_014431
crossref_primary_10_1016_j_apcatb_2023_122719
crossref_primary_10_1016_j_jallcom_2022_167610
crossref_primary_10_7498_aps_73_20240795
crossref_primary_10_1111_jace_18387
crossref_primary_10_1103_PRXEnergy_3_013008
crossref_primary_10_1016_j_colsurfa_2024_134887
crossref_primary_10_1038_s41524_024_01303_9
crossref_primary_10_1021_acscatal_4c03357
crossref_primary_10_1002_cssc_202401553
crossref_primary_10_1016_j_commatsci_2023_112581
crossref_primary_10_1021_jacs_3c03493
crossref_primary_10_1007_s12274_022_4582_1
crossref_primary_10_1021_acs_inorgchem_4c02115
crossref_primary_10_1038_s41524_024_01259_w
crossref_primary_10_1021_accountsmr_3c00206
crossref_primary_10_1021_acs_jpcc_3c03622
crossref_primary_10_1088_2515_7655_acb2f8
crossref_primary_10_1016_j_ssi_2022_116115
crossref_primary_10_1021_jacs_4c08643
crossref_primary_10_1016_j_fuel_2023_129451
crossref_primary_10_1039_D4RA04105D
crossref_primary_10_1039_D3EE00234A
crossref_primary_10_1002_ange_202216645
crossref_primary_10_1016_j_ceramint_2022_08_207
crossref_primary_10_1021_acsami_3c18420
crossref_primary_10_1039_D3EY00028A
crossref_primary_10_1021_acs_chemmater_3c00505
Cites_doi 10.1039/c0jm01908a
10.1016/0378-7753(93)01789-K
10.1021/jp103604b
10.1021/j100319a005
10.1103/PhysRevB.87.085112
10.1016/j.ijhydene.2016.07.041
10.1063/1.2121547
10.1103/PhysRevB.64.235105
10.1016/j.ssi.2004.07.036
10.1021/jp5076719
10.3390/ma13225123
10.1002/adts.202000112
10.1021/acs.jpclett.6b00739
10.1021/acs.jpcc.8b11279
10.1002/cssc.201500239
10.1021/jp507957n
10.1021/cm300255r
10.1107/97809553602060000524
10.1007/978-3-540-88154-4
10.1103/PhysRevB.81.245204
10.1063/1.5117754
10.1103/PhysRevB.94.134308
10.1103/PhysRevMaterials.4.045401
10.1103/PhysRevB.100.174109
10.1063/1.4812323
10.1007/s11244-011-9684-z
10.1103/PhysRevB.73.195107
10.1103/PhysRevB.62.6241
10.1063/1.5087290
10.1126/science.1206980
10.1039/D0CP00275E
10.1063/1.2345825
10.1021/acs.chemmater.6b02953
10.1038/npjcompumats.2015.10
10.1002/er.3467
10.1002/adma.201100805
10.1103/PhysRevMaterials.2.095401
10.1021/acs.jpclett.5b00710
10.1103/PhysRevB.13.5188
10.1021/jp500352h
10.1111/j.1551-2916.2008.02404.x
10.1021/cr020724o
10.1039/c1cy00199j
10.1016/j.jcat.2012.06.010
10.1103/PhysRevB.79.104432
10.1007/s13204-013-0231-z
10.1002/adma.201203146
10.1039/JR9370000655
10.1002/cssc.201902698
10.1021/ja0540019
10.1088/0022-3719/20/36/016
10.1103/PhysRevB.69.052404
10.1038/s41467-020-17263-9
10.1038/nchem.2535
10.1038/nnano.2011.213
10.1115/1.4023356
10.1016/j.solener.2016.05.031
10.1143/JJAP.47.7579
10.1103/PhysRevB.57.1505
10.1126/sciadv.aav0693
10.1021/jp5034849
10.1016/j.ssi.2004.06.015
10.1103/PhysRevApplied.8.034034
10.1021/ar4003174
10.1016/j.commatsci.2012.02.005
10.1021/acs.jpcc.8b11249
10.1016/j.jssc.2012.05.024
10.1103/PhysRevB.85.115104
10.1103/PhysRevB.85.201201
10.1038/s41566-020-00732-4
10.1002/ente.201800554
10.1063/1.3243077
10.1021/jp903013u
10.1557/mrc.2013.28
10.1021/cm702327g
10.1016/j.solener.2019.06.059
10.1103/PhysRevB.54.11169
10.1039/c3cp50995h
10.1021/cm401052w
10.1016/j.commatsci.2012.10.028
10.1039/D0TA11603C
10.1002/er.1372
10.1021/cs2005482
10.1021/acs.chemmater.6b01182
10.1103/PhysRevB.102.054101
10.1016/j.elecom.2010.01.010
10.1088/0953-8984/25/10/102202
10.1016/j.ceramint.2012.10.079
10.1088/0953-8984/27/28/283203
10.1103/PhysRevB.52.R5467
10.1016/j.solener.2020.01.050
10.1063/1.555845
10.1107/s0108767381089411
10.1038/nmat1860
10.1021/cm201799c
10.1103/PhysRevB.59.1758
10.1103/PhysRevB.80.245119
10.1080/00150199608224091
10.1103/PhysRevB.88.161201
10.1007/s00214-017-2130-y
10.1039/c1ee02032c
10.1016/j.ssi.2016.09.007
10.1103/PhysRevB.58.R13309
10.1039/C7EE03383D
10.1039/C8EE01989D
10.1039/c3ee43874k
10.1016/j.solener.2003.12.012
10.1039/C7TA00315C
10.1002/9783527618002.ch6
10.1016/j.commatsci.2010.05.010
10.1021/cm5033755
10.1063/1.1609399
10.1103/PhysRevB.81.144103
10.1016/j.ijhydene.2020.02.126
10.1021/ja300831k
10.1103/PhysRevB.50.17953
10.1103/PhysRevLett.77.3865
10.1016/j.mseb.2008.12.020
10.1021/ef301923h
10.1103/PhysRevB.47.558
10.1088/0953-8984/9/4/002
10.1016/j.ijhydene.2018.12.135
10.18434/T4FW23
10.1063/1.4746117
10.1080/10584587.2011.574986
10.1038/nature18286
10.1039/c1ee02377b
10.1039/D0TC01695K
10.1021/acs.chemmater.0c02912
10.1016/S0360-3199(01)00177-X
10.1111/j.1151-2916.1983.tb15707.x
10.1021/acscatal.7b04466
10.1103/PhysRevB.44.943
10.1038/nature12340
10.1016/j.apenergy.2018.08.044
10.1063/1.1655537
10.1103/PhysRevB.100.035119
10.1007/s11244-014-0353-x
10.1039/C5EE02179K
10.1007/s11837-013-0755-4
10.1039/C6CP01720G
10.1002/9783527619825
10.1039/b915141a
10.1103/PhysRevLett.115.036402
10.1021/acsami.9b21919
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
CorporateAuthor Princeton Univ., NJ (United States)
CorporateAuthor_xml – sequence: 0
  name: Princeton Univ., NJ (United States)
DBID AAYXX
CITATION
7X8
7S9
L.6
OIOZB
OTOTI
DOI 10.1021/jacs.1c05570
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Engineering
EISSN 1520-5126
EndPage 13227
ExternalDocumentID 1817918
10_1021_jacs_1c05570
b115589794
GroupedDBID -
.K2
02
4.4
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABFRP
ABMVS
ABPPZ
ABPTK
ABUCX
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
ET
F5P
GGK
GNL
IH2
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UNM
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
CITATION
CUPRZ
XSW
YQT
ZCA
~02
7X8
7S9
AAYWT
L.6
OIOZB
OTOTI
ID FETCH-LOGICAL-a399t-f44e3ed9cf8030f21761d80dbf388227386610268b5eb0c2b08dbcbcf859a7dc3
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Thu Dec 05 06:32:16 EST 2024
Mon Jul 21 09:27:36 EDT 2025
Fri Jul 11 01:56:06 EDT 2025
Tue Jul 01 00:44:45 EDT 2025
Thu Apr 24 23:09:55 EDT 2025
Fri Aug 27 15:31:21 EDT 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 33
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a399t-f44e3ed9cf8030f21761d80dbf388227386610268b5eb0c2b08dbcbcf859a7dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Fuel Cell Technologies Office
EE0008090
ORCID 0000-0002-6861-6421
0000-0001-7330-7554
0000-0002-5379-2908
0000-0002-1303-0976
0000000213030976
0000000253792908
0000000268616421
0000000173307554
OpenAccessLink https://www.osti.gov/servlets/purl/1817918
PQID 2564493700
PQPubID 23479
PageCount 16
ParticipantIDs osti_scitechconnect_1817918
proquest_miscellaneous_2636500398
proquest_miscellaneous_2564493700
crossref_citationtrail_10_1021_jacs_1c05570
crossref_primary_10_1021_jacs_1c05570
acs_journals_10_1021_jacs_1c05570
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
GGK
W1F
ABFRP
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-25
PublicationDateYYYYMMDD 2021-08-25
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-25
  day: 25
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2021
Publisher American Chemical Society
American Chemical Society (ACS)
Publisher_xml – sequence: 0
  name: American Chemical Society (ACS)
– name: American Chemical Society
References ref45/cit45
ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
Ritzmann A. M. (ref89/cit89) 2016
ref52/cit52
ref114/cit114
ref23/cit23
ref115/cit115
ref116/cit116
ref2/cit2
ref77/cit77
ref113/cit113
ref71/cit71
ref117/cit117
ref20/cit20
ref48/cit48
ref118/cit118
ref74/cit74
ref119/cit119
ref10/cit10
ref35/cit35
ref19/cit19
ref93/cit93
ref42/cit42
ref96/cit96
ref120/cit120
ref109/cit109
ref13/cit13
ref122/cit122
ref105/cit105
Vanýsek P. (ref106/cit106) 2019
ref61/cit61
ref67/cit67
ref38/cit38
ref128/cit128
ref90/cit90
ref124/cit124
Pedregosa F. (ref104/cit104) 2011; 12
ref64/cit64
ref126/cit126
ref54/cit54
ref6/cit6
ref18/cit18
ref136/cit136
ref137/cit137
ref65/cit65
ref97/cit97
ref101/cit101
ref11/cit11
ref102/cit102
ref29/cit29
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref5/cit5
ref43/cit43
ref80/cit80
ref133/cit133
ref28/cit28
ref132/cit132
ref91/cit91
ref148/cit148
ref55/cit55
ref144/cit144
ref12/cit12
Kübler J. (ref141/cit141) 2017
ref66/cit66
Greenwood N. N. (ref123/cit123) 2012
ref22/cit22
ref121/cit121
ref33/cit33
ref87/cit87
ref140/cit140
ref129/cit129
ref44/cit44
ref70/cit70
ref98/cit98
Togo A. (ref95/cit95) 2018
ref125/cit125
ref9/cit9
ref152/cit152
ref153/cit153
ref154/cit154
ref27/cit27
ref150/cit150
ref63/cit63
ref151/cit151
ref56/cit56
ref92/cit92
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref60/cit60
ref88/cit88
ref17/cit17
ref82/cit82
ref147/cit147
ref143/cit143
ref53/cit53
ref145/cit145
ref21/cit21
ref149/cit149
ref46/cit46
Barin I. (ref108/cit108) 1995
Watson A. (ref111/cit111) 2015
ref49/cit49
ref75/cit75
ref24/cit24
ref50/cit50
ref78/cit78
ref36/cit36
ref83/cit83
ref138/cit138
ref79/cit79
ref139/cit139
ref100/cit100
ref25/cit25
ref103/cit103
ref72/cit72
ref14/cit14
ref57/cit57
ref51/cit51
Kubaschewski O. (ref107/cit107) 1979
ref134/cit134
ref135/cit135
ref40/cit40
ref68/cit68
ref94/cit94
ref130/cit130
ref131/cit131
Chase M. W. (ref110/cit110) 1998
ref146/cit146
ref26/cit26
ref142/cit142
ref73/cit73
ref69/cit69
ref15/cit15
Kittel C. (ref112/cit112) 2004
ref62/cit62
ref41/cit41
ref58/cit58
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref127/cit127
ref1/cit1
ref7/cit7
References_xml – ident: ref67/cit67
  doi: 10.1039/c0jm01908a
– ident: ref32/cit32
  doi: 10.1016/0378-7753(93)01789-K
– ident: ref69/cit69
  doi: 10.1021/jp103604b
– ident: ref118/cit118
  doi: 10.1021/j100319a005
– ident: ref139/cit139
  doi: 10.1103/PhysRevB.87.085112
– ident: ref3/cit3
  doi: 10.1016/j.ijhydene.2016.07.041
– ident: ref101/cit101
  doi: 10.1063/1.2121547
– ident: ref103/cit103
  doi: 10.1103/PhysRevB.64.235105
– ident: ref24/cit24
  doi: 10.1016/j.ssi.2004.07.036
– ident: ref154/cit154
  doi: 10.1021/jp5076719
– ident: ref17/cit17
  doi: 10.3390/ma13225123
– ident: ref87/cit87
  doi: 10.1002/adts.202000112
– ident: ref65/cit65
  doi: 10.1021/acs.jpclett.6b00739
– volume-title: CRC Handbook of Chemistry and Physics
  year: 2019
  ident: ref106/cit106
– ident: ref53/cit53
  doi: 10.1021/acs.jpcc.8b11279
– ident: ref18/cit18
  doi: 10.1002/cssc.201500239
– ident: ref90/cit90
  doi: 10.1021/jp507957n
– ident: ref26/cit26
  doi: 10.1021/cm300255r
– ident: ref93/cit93
  doi: 10.1107/97809553602060000524
– volume-title: Ternary Steel Systems: Phase Diagrams and Phase Transition Data
  year: 2015
  ident: ref111/cit111
  doi: 10.1007/978-3-540-88154-4
– ident: ref152/cit152
  doi: 10.1103/PhysRevB.81.245204
– ident: ref8/cit8
  doi: 10.1063/1.5117754
– ident: ref79/cit79
  doi: 10.1103/PhysRevB.94.134308
– ident: ref78/cit78
  doi: 10.1103/PhysRevMaterials.4.045401
– ident: ref80/cit80
  doi: 10.1103/PhysRevB.100.174109
– ident: ref113/cit113
  doi: 10.1063/1.4812323
– ident: ref121/cit121
  doi: 10.1007/s11244-011-9684-z
– ident: ref71/cit71
  doi: 10.1103/PhysRevB.73.195107
– volume-title: NIST-JANAF Thermochemical Tables
  year: 1998
  ident: ref110/cit110
– ident: ref35/cit35
  doi: 10.1103/PhysRevB.62.6241
– ident: ref148/cit148
  doi: 10.1063/1.5087290
– ident: ref37/cit37
  doi: 10.1126/science.1206980
– ident: ref16/cit16
  doi: 10.1039/D0CP00275E
– ident: ref134/cit134
  doi: 10.1063/1.2345825
– ident: ref51/cit51
  doi: 10.1021/acs.chemmater.6b02953
– ident: ref115/cit115
  doi: 10.1038/npjcompumats.2015.10
– ident: ref10/cit10
  doi: 10.1002/er.3467
– ident: ref127/cit127
  doi: 10.1002/adma.201100805
– ident: ref77/cit77
  doi: 10.1103/PhysRevMaterials.2.095401
– ident: ref66/cit66
  doi: 10.1021/acs.jpclett.5b00710
– ident: ref88/cit88
  doi: 10.1103/PhysRevB.13.5188
– ident: ref43/cit43
  doi: 10.1021/jp500352h
– ident: ref135/cit135
  doi: 10.1111/j.1551-2916.2008.02404.x
– ident: ref19/cit19
  doi: 10.1021/cr020724o
– ident: ref131/cit131
  doi: 10.1039/c1cy00199j
– ident: ref68/cit68
  doi: 10.1016/j.jcat.2012.06.010
– ident: ref120/cit120
  doi: 10.1103/PhysRevB.79.104432
– ident: ref122/cit122
  doi: 10.1007/s13204-013-0231-z
– ident: ref146/cit146
  doi: 10.1002/adma.201203146
– ident: ref91/cit91
  doi: 10.1039/JR9370000655
– ident: ref59/cit59
  doi: 10.1002/cssc.201902698
– ident: ref144/cit144
  doi: 10.1021/ja0540019
– ident: ref34/cit34
  doi: 10.1088/0022-3719/20/36/016
– ident: ref100/cit100
  doi: 10.1103/PhysRevB.69.052404
– ident: ref105/cit105
  doi: 10.1038/s41467-020-17263-9
– ident: ref73/cit73
  doi: 10.1038/nchem.2535
– ident: ref28/cit28
  doi: 10.1038/nnano.2011.213
– ident: ref38/cit38
  doi: 10.1115/1.4023356
– ident: ref11/cit11
  doi: 10.1016/j.solener.2016.05.031
– ident: ref126/cit126
  doi: 10.1143/JJAP.47.7579
– ident: ref84/cit84
  doi: 10.1103/PhysRevB.57.1505
– ident: ref124/cit124
  doi: 10.1126/sciadv.aav0693
– ident: ref2/cit2
  doi: 10.1021/jp5034849
– ident: ref20/cit20
  doi: 10.1016/j.ssi.2004.06.015
– ident: ref130/cit130
  doi: 10.1103/PhysRevApplied.8.034034
– ident: ref22/cit22
  doi: 10.1021/ar4003174
– ident: ref116/cit116
  doi: 10.1016/j.commatsci.2012.02.005
– ident: ref57/cit57
  doi: 10.1021/acs.jpcc.8b11249
– ident: ref30/cit30
  doi: 10.1016/j.jssc.2012.05.024
– ident: ref138/cit138
  doi: 10.1103/PhysRevB.85.115104
– ident: ref153/cit153
  doi: 10.1103/PhysRevB.85.201201
– ident: ref149/cit149
  doi: 10.1038/s41566-020-00732-4
– ident: ref14/cit14
  doi: 10.1002/ente.201800554
– ident: ref49/cit49
  doi: 10.1063/1.3243077
– ident: ref129/cit129
  doi: 10.1021/jp903013u
– ident: ref151/cit151
  doi: 10.1557/mrc.2013.28
– ident: ref97/cit97
  doi: 10.1021/cm702327g
– ident: ref15/cit15
  doi: 10.1016/j.solener.2019.06.059
– ident: ref83/cit83
  doi: 10.1103/PhysRevB.54.11169
– ident: ref47/cit47
  doi: 10.1039/c3cp50995h
– ident: ref42/cit42
  doi: 10.1021/cm401052w
– volume-title: Metallurgical Thermochemistry
  year: 1979
  ident: ref107/cit107
– ident: ref96/cit96
  doi: 10.1016/j.commatsci.2012.10.028
– ident: ref147/cit147
  doi: 10.1039/D0TA11603C
– ident: ref5/cit5
  doi: 10.1002/er.1372
– ident: ref25/cit25
  doi: 10.1021/cs2005482
– ident: ref39/cit39
  doi: 10.1021/acs.chemmater.6b01182
– volume-title: Introduction to Solid State Physics
  year: 2004
  ident: ref112/cit112
– ident: ref92/cit92
  doi: 10.1103/PhysRevB.102.054101
– ident: ref98/cit98
  doi: 10.1016/j.elecom.2010.01.010
– ident: ref81/cit81
  doi: 10.1088/0953-8984/25/10/102202
– ident: ref58/cit58
  doi: 10.1016/j.ceramint.2012.10.079
– ident: ref140/cit140
  doi: 10.1088/0953-8984/27/28/283203
– ident: ref75/cit75
  doi: 10.1103/PhysRevB.52.R5467
– ident: ref12/cit12
  doi: 10.1016/j.solener.2020.01.050
– ident: ref109/cit109
  doi: 10.1063/1.555845
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref104/cit104
  publication-title: J. Mach. Learn. Res.
– ident: ref94/cit94
  doi: 10.1107/s0108767381089411
– ident: ref27/cit27
  doi: 10.1038/nmat1860
– ident: ref45/cit45
  doi: 10.1021/cm201799c
– ident: ref86/cit86
  doi: 10.1103/PhysRevB.59.1758
– ident: ref40/cit40
  doi: 10.1103/PhysRevB.80.245119
– ident: ref29/cit29
  doi: 10.1080/00150199608224091
– ident: ref48/cit48
  doi: 10.1103/PhysRevB.88.161201
– ident: ref54/cit54
  doi: 10.1007/s00214-017-2130-y
– ident: ref33/cit33
  doi: 10.1039/c1ee02032c
– ident: ref41/cit41
  doi: 10.1016/j.ssi.2016.09.007
– ident: ref99/cit99
  doi: 10.1103/PhysRevB.58.R13309
– ident: ref52/cit52
  doi: 10.1039/C7EE03383D
– ident: ref119/cit119
  doi: 10.1039/C8EE01989D
– ident: ref61/cit61
  doi: 10.1039/c3ee43874k
– ident: ref4/cit4
  doi: 10.1016/j.solener.2003.12.012
– ident: ref55/cit55
  doi: 10.1039/C7TA00315C
– ident: ref128/cit128
  doi: 10.1002/9783527618002.ch6
– volume-title: Chemistry of the Elements
  year: 2012
  ident: ref123/cit123
– ident: ref137/cit137
  doi: 10.1016/j.commatsci.2010.05.010
– ident: ref64/cit64
  doi: 10.1021/cm5033755
– ident: ref102/cit102
  doi: 10.1063/1.1609399
– ident: ref136/cit136
  doi: 10.1103/PhysRevB.81.144103
– ident: ref31/cit31
  doi: 10.1016/j.ijhydene.2020.02.126
– ident: ref46/cit46
  doi: 10.1021/ja300831k
– ident: ref85/cit85
  doi: 10.1103/PhysRevB.50.17953
– ident: ref70/cit70
  doi: 10.1103/PhysRevLett.77.3865
– ident: ref132/cit132
  doi: 10.1016/j.mseb.2008.12.020
– ident: ref1/cit1
  doi: 10.1021/ef301923h
– ident: ref82/cit82
  doi: 10.1103/PhysRevB.47.558
– ident: ref76/cit76
  doi: 10.1088/0953-8984/9/4/002
– ident: ref13/cit13
  doi: 10.1016/j.ijhydene.2018.12.135
– ident: ref117/cit117
  doi: 10.18434/T4FW23
– ident: ref63/cit63
  doi: 10.1063/1.4746117
– ident: ref125/cit125
  doi: 10.1080/10584587.2011.574986
– ident: ref36/cit36
  doi: 10.1038/nature18286
– ident: ref23/cit23
  doi: 10.1039/c1ee02377b
– ident: ref50/cit50
  doi: 10.1039/D0TC01695K
– ident: ref7/cit7
  doi: 10.1021/acs.chemmater.0c02912
– ident: ref6/cit6
  doi: 10.1016/S0360-3199(01)00177-X
– ident: ref44/cit44
  doi: 10.1111/j.1151-2916.1983.tb15707.x
– ident: ref142/cit142
  doi: 10.1021/acscatal.7b04466
– ident: ref74/cit74
  doi: 10.1103/PhysRevB.44.943
– ident: ref150/cit150
  doi: 10.1038/nature12340
– year: 2018
  ident: ref95/cit95
  publication-title: arXiv
– ident: ref9/cit9
  doi: 10.1016/j.apenergy.2018.08.044
– volume-title: Theory of Itinerant Electron Magnetism
  year: 2017
  ident: ref141/cit141
– ident: ref145/cit145
  doi: 10.1063/1.1655537
– ident: ref133/cit133
  doi: 10.1103/PhysRevB.100.035119
– ident: ref56/cit56
  doi: 10.1007/s11244-014-0353-x
– ident: ref143/cit143
  doi: 10.1039/C5EE02179K
– ident: ref114/cit114
  doi: 10.1007/s11837-013-0755-4
– volume-title: First Principles Insights Into Oxygen Transport in Solid Oxide Fuel Cell Cathode Materials Based on Lanthanum Strontium Cobalt Ferrite
  year: 2016
  ident: ref89/cit89
– ident: ref60/cit60
  doi: 10.1039/C6CP01720G
– volume-title: Thermochemical Data of Pure Substances
  year: 1995
  ident: ref108/cit108
  doi: 10.1002/9783527619825
– ident: ref21/cit21
  doi: 10.1039/b915141a
– ident: ref72/cit72
  doi: 10.1103/PhysRevLett.115.036402
– ident: ref62/cit62
  doi: 10.1021/acsami.9b21919
SSID ssj0004281
Score 2.6564136
Snippet The control of oxygen vacancy (VO) formation is critical to advancing multiple metal-oxide-perovskite-based technologies. We report the construction of a...
The control of oxygen vacancy (VO) formation is critical to advancing multiple metal-oxide-perovskite-based technologies. In this work, we report the...
SourceID osti
proquest
crossref
acs
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 13212
SubjectTerms 08 HYDROGEN
data collection
defects
density functional theory
dissociation
energy
ENGINEERING
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
lanthanides
linear models
machine learning
MATERIALS SCIENCE
model validation
oxides
oxygen
perovskites
quantum mechanics
SOLAR ENERGY
solar thermochemical hydrogen production
solid oxide fuel cells
thermodynamics
Title Factors Governing Oxygen Vacancy Formation in Oxide Perovskites
URI http://dx.doi.org/10.1021/jacs.1c05570
https://www.proquest.com/docview/2564493700
https://www.proquest.com/docview/2636500398
https://www.osti.gov/servlets/purl/1817918
Volume 143
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZS8NAEF60PuiLt1irEkGfJCXHZrN5klKsRfAArfQtZI9AURJpUlF_vTM5LLZUfU0msNfMfJOdb4aQU_BITgRA3QS4Sk0aM24KpoWJ2DpGZiNzkO98c8v6A3o99IbTBNnZG3wH6wNJTA8qakUtkxWHcR-DrE73Ycp_dLhdw1yfM7dKcJ_9Gh2QzH44oEYKijRnhgvf0tsgVzVDp0wpeW5PctGWn_MFG_8Y9iZZr-Cl0SnPwxZZ0sk2We3WXd12yEWvbLBjlE12wXEZd-8fcIqMp0iipTV6NZ3RGCXwbqS0ca_H6VuG_3mzXTLoXT52-2bVRMGMAHvkZkypdrUKZMxBn2OIQJituKVE7AK4RmIOeGgIxLjwtLCkIyyuhBQg7gWRr6S7RxpJmuh9Yti-dO1IuSyGoE3IgIsA6YYiUtRTduw1yQlMOqyUIAuL-20H4gt8Wi1Fk5zXqx_Kqgo5NsN4WSB99i39WlbfWCDXwo0MATVg6VuJOUIyDwG9-IHNYVz1_oaw2ngjEiU6nWQh4D1KAaBZ1i8yzAUUa7kBP_jH_FpkzcGsFwvsj3dIGvl4oo8AtuTiuDizXx5E5O0
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JSsRAEC10POjFXdxtQU8SSTrLdA4iMjqMu-CCt5heAqJkxGTc_sVf8dusyiSKiuJF8JoUTaW6qutVuhaAJfRIPEagbiFc9SwvCYQlAyMtwtYJVTYGnOqd9w-C1qm3c-6f98BzVQuDTGS4UlZc4r93F6A2QYqyhIqWUWUO5a55vMcILVvb3sTtXOa8uXXSaFnlEAErRt-bW4nnGdfoUCUC9TlBBB44WthaJi6CSypMQQ-FgYiQvpG24tIWWiqJ5H4Y17Vycd1e6EPcwym222gcv5ddcuFU6LouArfMq__MLfk9lX3we7U22u-X079wac0heHkTRpHJcrXayeWqevrUJ_LfSmsYBkswzTa62j8CPSYdhf5GNcNuDNab3XFCrDtSGN00O3x4RJthZ7Eiv8KaVfEmu0zx3aU27Mjctu8y-qudjcPpn_A_AbW0nZpJYE5duU6s3SDBEFWqUMiQiitlrD1fO4k_BYso5Kg0-SwqbvM5RlP0tBT9FKxUmx6psuc6jf64_oZ6-Y36pttr5Bu6GdKfCDESNfpVlBGl8gixWj10BPJVqVWE0qb7nzg17U4WIbr1PISjtv0DTeAiZrfdUEz_4vsWoL91sr8X7W0f7M7AAKd8HxtPXn8Wavltx8whYMvlfGE2DC7-WvNeAfFOR-k
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1bS9xQEB50heqLtVVxteoR6pNEct-Th1JkNaxVt4IXfIs5N1iU7LLJtuq_6V_pL3Mmm1hUlL4IviZDOJlzJt83mRvAV0QkN0WibiFd9S3fhNwSoRYWcWtDlY2hS_XOR92wc-b_uAguJuBPXQuDi8jxSXkZxCerHihTdRigVkGSMoXKtlFVHuWBvv2NXlr-bX8Xt3TTdeO903bHqgYJWCnib2EZ39eeVpE0HM-0QRYeOorbShgPCSYVpyBKoTPCRaCFLV1hcyWkQPEgSltKevjcSZiiCCH5dzvtk3-lly53aobd4qFX5dY_XS1hn8wfYV-jjzb8DAFKWIs_wt8HhZTZLFfbo0Jsy7snvSLftcbmYLYi1WxnbAWfYEJnn2G6Xc-ym4fv8XisEBuPFka4Zj9vbtF22HkqCV9YXBdxsl6G93pKs2M97P_K6e92vgBnb7L-RWhk_UwvAXNa0nNS5YUGXVUhIy4iKrIUqfID5ZigCRuo5KQy_Twpo_ouelV0tVJ9E7bqjU9k1XudRoBcvyC9-SA9GPcceUFuhc5QglyJGv5KyoySRYKcrRU5HNdVH60EtU1xoDTT_VGeIMv1faSltv2KTOghd7e9iC__x_utw4fj3Tg53O8erMCMS2k_Nn6Agy_QKIYjvYq8rRBrpeUwuHzrg3cP3shKbA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Factors+Governing+Oxygen+Vacancy+Formation+in+Oxide+Perovskites&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Wexler%2C+Robert+B.&rft.au=Gautam%2C+Gopalakrishnan+Sai&rft.au=Stechel%2C+Ellen+B.&rft.au=Carter%2C+Emily+A.&rft.date=2021-08-25&rft.pub=American+Chemical+Society+%28ACS%29&rft.issn=0002-7863&rft.volume=143&rft.issue=33&rft_id=info:doi/10.1021%2Fjacs.1c05570&rft.externalDocID=1817918
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon