Factors Governing Oxygen Vacancy Formation in Oxide Perovskites
The control of oxygen vacancy (VO) formation is critical to advancing multiple metal-oxide-perovskite-based technologies. We report the construction of a compact linear model for the neutral VO formation energy in ABO3 perovskites that reproduces, with reasonable fidelity, Hubbard-U-corrected densit...
Saved in:
Published in | Journal of the American Chemical Society Vol. 143; no. 33; pp. 13212 - 13227 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
25.08.2021
American Chemical Society (ACS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The control of oxygen vacancy (VO) formation is critical to advancing multiple metal-oxide-perovskite-based technologies. We report the construction of a compact linear model for the neutral VO formation energy in ABO3 perovskites that reproduces, with reasonable fidelity, Hubbard-U-corrected density functional theory calculations based on the state-of-the-art, strongly constrained and appropriately normed exchange-correlation functional. We obtain a mean absolute error of 0.45 eV for perovskites stable at 298 K, an accuracy that holds across a large, electronically diverse set of ABO3 perovskites. Our model considers perovskites containing alkaline-earth metals (Ca, Sr, and Ba) and lanthanides (La and Ce) on the A-site and 3d transition metals (Ti, V, Cr, Mn, Fe, Co, and Ni) on the B-site in six different crystal systems (cubic, tetragonal, orthorhombic, hexagonal, rhombohedral, and monoclinic) common to perovskites. Physically intuitive metrics easily extracted from existing experimental thermochemical data or via inexpensive quantum mechanical calculations, including crystal bond dissociation energies and (solid phase) reduction potentials, are key components of the model. Beyond validation of the model against known experimental trends in materials used in solid oxide fuel cells, the model yields new candidate perovskites not contained in our training data set, such as (Bi,Y)(Fe,Co)O3, which we predict may have favorable thermochemical water-splitting properties. The confluence of sufficient accuracy, efficiency, and interpretability afforded by our model not only facilitates high-throughput computational screening for any application that requires the precise control of VO concentrations but also provides a clear picture of the dominant physics governing VO formation in metal-oxide perovskites. |
---|---|
AbstractList | The control of oxygen vacancy (VO) formation is critical to advancing multiple metal-oxide-perovskite-based technologies. In this work, we report the construction of a compact linear model for the neutral VO formation energy in ABO3 perovskites that reproduces, with reasonable fidelity, Hubbard-U-corrected density functional theory calculations based on the state-of-the-art, strongly constrained and appropriately normed exchange-correlation functional. We obtain a mean absolute error of 0.45 eV for perovskites stable at 298 K, an accuracy that holds across a large, electronically diverse set of ABO3 perovskites. Our model considers perovskites containing alkaline-earth metals (Ca, Sr, and Ba) and lanthanides (La and Ce) on the A-site and 3d transition metals (Ti, V, Cr, Mn, Fe, Co, and Ni) on the B-site in six different crystal systems (cubic, tetragonal, orthorhombic, hexagonal, rhombohedral, and monoclinic) common to perovskites. Physically intuitive metrics easily extracted from existing experimental thermochemical data or via inexpensive quantum mechanical calculations, including crystal bond dissociation energies and (solid phase) reduction potentials, are key components of the model. Beyond validation of the model against known experimental trends in materials used in solid oxide fuel cells, the model yields new candidate perovskites not contained in our training data set, such as (Bi,Y)(Fe,Co)O3, which we predict may have favorable thermochemical water-splitting properties. The confluence of sufficient accuracy, efficiency, and interpretability afforded by our model not only facilitates high-throughput computational screening for any application that requires the precise control of VO concentrations but also provides a clear picture of the dominant physics governing VO formation in metal-oxide perovskites. The control of oxygen vacancy (VO) formation is critical to advancing multiple metal-oxide-perovskite-based technologies. We report the construction of a compact linear model for the neutral VO formation energy in ABO3 perovskites that reproduces, with reasonable fidelity, Hubbard-U-corrected density functional theory calculations based on the state-of-the-art, strongly constrained and appropriately normed exchange-correlation functional. We obtain a mean absolute error of 0.45 eV for perovskites stable at 298 K, an accuracy that holds across a large, electronically diverse set of ABO3 perovskites. Our model considers perovskites containing alkaline-earth metals (Ca, Sr, and Ba) and lanthanides (La and Ce) on the A-site and 3d transition metals (Ti, V, Cr, Mn, Fe, Co, and Ni) on the B-site in six different crystal systems (cubic, tetragonal, orthorhombic, hexagonal, rhombohedral, and monoclinic) common to perovskites. Physically intuitive metrics easily extracted from existing experimental thermochemical data or via inexpensive quantum mechanical calculations, including crystal bond dissociation energies and (solid phase) reduction potentials, are key components of the model. Beyond validation of the model against known experimental trends in materials used in solid oxide fuel cells, the model yields new candidate perovskites not contained in our training data set, such as (Bi,Y)(Fe,Co)O3, which we predict may have favorable thermochemical water-splitting properties. The confluence of sufficient accuracy, efficiency, and interpretability afforded by our model not only facilitates high-throughput computational screening for any application that requires the precise control of VO concentrations but also provides a clear picture of the dominant physics governing VO formation in metal-oxide perovskites. The control of oxygen vacancy (VO) formation is critical to advancing multiple metal-oxide-perovskite-based technologies. We report the construction of a compact linear model for the neutral VO formation energy in ABO₃ perovskites that reproduces, with reasonable fidelity, Hubbard-U-corrected density functional theory calculations based on the state-of-the-art, strongly constrained and appropriately normed exchange-correlation functional. We obtain a mean absolute error of 0.45 eV for perovskites stable at 298 K, an accuracy that holds across a large, electronically diverse set of ABO₃ perovskites. Our model considers perovskites containing alkaline-earth metals (Ca, Sr, and Ba) and lanthanides (La and Ce) on the A-site and 3d transition metals (Ti, V, Cr, Mn, Fe, Co, and Ni) on the B-site in six different crystal systems (cubic, tetragonal, orthorhombic, hexagonal, rhombohedral, and monoclinic) common to perovskites. Physically intuitive metrics easily extracted from existing experimental thermochemical data or via inexpensive quantum mechanical calculations, including crystal bond dissociation energies and (solid phase) reduction potentials, are key components of the model. Beyond validation of the model against known experimental trends in materials used in solid oxide fuel cells, the model yields new candidate perovskites not contained in our training data set, such as (Bi,Y)(Fe,Co)O₃, which we predict may have favorable thermochemical water-splitting properties. The confluence of sufficient accuracy, efficiency, and interpretability afforded by our model not only facilitates high-throughput computational screening for any application that requires the precise control of VO concentrations but also provides a clear picture of the dominant physics governing VO formation in metal-oxide perovskites. The control of oxygen vacancy (VO) formation is critical to advancing multiple metal-oxide-perovskite-based technologies. We report the construction of a compact linear model for the neutral VO formation energy in ABO3 perovskites that reproduces, with reasonable fidelity, Hubbard-U-corrected density functional theory calculations based on the state-of-the-art, strongly constrained and appropriately normed exchange-correlation functional. We obtain a mean absolute error of 0.45 eV for perovskites stable at 298 K, an accuracy that holds across a large, electronically diverse set of ABO3 perovskites. Our model considers perovskites containing alkaline-earth metals (Ca, Sr, and Ba) and lanthanides (La and Ce) on the A-site and 3d transition metals (Ti, V, Cr, Mn, Fe, Co, and Ni) on the B-site in six different crystal systems (cubic, tetragonal, orthorhombic, hexagonal, rhombohedral, and monoclinic) common to perovskites. Physically intuitive metrics easily extracted from existing experimental thermochemical data or via inexpensive quantum mechanical calculations, including crystal bond dissociation energies and (solid phase) reduction potentials, are key components of the model. Beyond validation of the model against known experimental trends in materials used in solid oxide fuel cells, the model yields new candidate perovskites not contained in our training data set, such as (Bi,Y)(Fe,Co)O3, which we predict may have favorable thermochemical water-splitting properties. The confluence of sufficient accuracy, efficiency, and interpretability afforded by our model not only facilitates high-throughput computational screening for any application that requires the precise control of VO concentrations but also provides a clear picture of the dominant physics governing VO formation in metal-oxide perovskites.The control of oxygen vacancy (VO) formation is critical to advancing multiple metal-oxide-perovskite-based technologies. We report the construction of a compact linear model for the neutral VO formation energy in ABO3 perovskites that reproduces, with reasonable fidelity, Hubbard-U-corrected density functional theory calculations based on the state-of-the-art, strongly constrained and appropriately normed exchange-correlation functional. We obtain a mean absolute error of 0.45 eV for perovskites stable at 298 K, an accuracy that holds across a large, electronically diverse set of ABO3 perovskites. Our model considers perovskites containing alkaline-earth metals (Ca, Sr, and Ba) and lanthanides (La and Ce) on the A-site and 3d transition metals (Ti, V, Cr, Mn, Fe, Co, and Ni) on the B-site in six different crystal systems (cubic, tetragonal, orthorhombic, hexagonal, rhombohedral, and monoclinic) common to perovskites. Physically intuitive metrics easily extracted from existing experimental thermochemical data or via inexpensive quantum mechanical calculations, including crystal bond dissociation energies and (solid phase) reduction potentials, are key components of the model. Beyond validation of the model against known experimental trends in materials used in solid oxide fuel cells, the model yields new candidate perovskites not contained in our training data set, such as (Bi,Y)(Fe,Co)O3, which we predict may have favorable thermochemical water-splitting properties. The confluence of sufficient accuracy, efficiency, and interpretability afforded by our model not only facilitates high-throughput computational screening for any application that requires the precise control of VO concentrations but also provides a clear picture of the dominant physics governing VO formation in metal-oxide perovskites. |
Author | Carter, Emily A Wexler, Robert B Gautam, Gopalakrishnan Sai Stechel, Ellen B |
AuthorAffiliation | Department of Mechanical and Aerospace Engineering Office of the Chancellor and Department of Chemical and Biomolecular Engineering ASU LightWorks and the School of Molecular Sciences |
AuthorAffiliation_xml | – name: Office of the Chancellor and Department of Chemical and Biomolecular Engineering – name: ASU LightWorks and the School of Molecular Sciences – name: Department of Mechanical and Aerospace Engineering |
Author_xml | – sequence: 1 givenname: Robert B orcidid: 0000-0002-6861-6421 surname: Wexler fullname: Wexler, Robert B organization: Department of Mechanical and Aerospace Engineering – sequence: 2 givenname: Gopalakrishnan Sai orcidid: 0000-0002-1303-0976 surname: Gautam fullname: Gautam, Gopalakrishnan Sai organization: Department of Mechanical and Aerospace Engineering – sequence: 3 givenname: Ellen B orcidid: 0000-0002-5379-2908 surname: Stechel fullname: Stechel, Ellen B organization: ASU LightWorks and the School of Molecular Sciences – sequence: 4 givenname: Emily A orcidid: 0000-0001-7330-7554 surname: Carter fullname: Carter, Emily A email: eac@princeton.edu, eac@ucla.edu organization: Office of the Chancellor and Department of Chemical and Biomolecular Engineering |
BackLink | https://www.osti.gov/servlets/purl/1817918$$D View this record in Osti.gov |
BookMark | eNqNkE1PAjEQQBuDiYDe_AEbTx5c7Me22z0ZYwRNSPCgXptut4vFpcW2EPn3FuFkNPE06cybzswbgJ51VgNwjuAIQYyuF1KFEVKQ0hIegT6iGOYUYdYDfQghzkvOyAkYhLBIzwJz1Ac3Y6mi8yGbuI321th5NvvczrXNXqWSVm2zsfNLGY2zmbGpZhqdPWnvNuHdRB1OwXEru6DPDnEIXsb3z3cP-XQ2eby7neaSVFXM26LQRDeVajkksMWoZKjhsKlbwjnGJeGMpRMYr6muocI15E2t6oTTSpaNIkNwsf_XhWhEUGm2elPOWq2iQByVFeIJutxDK-8-1jpEsTRB6a6TVrt1EJgRRiEk1T9QyoqiImWihwDvUeVdCF63Ik3_NhK9NJ1AUOzsi519cbCfmq5-NK28WUq__Qs_rLNLLtza2yTzd_QLjc2Uyg |
CitedBy_id | crossref_primary_10_1039_D4CP00874J crossref_primary_10_1063_5_0135382 crossref_primary_10_1016_j_electacta_2024_145142 crossref_primary_10_1103_PhysRevB_105_224303 crossref_primary_10_3390_cryst12091300 crossref_primary_10_1002_ifm2_8 crossref_primary_10_1002_solr_202300968 crossref_primary_10_1016_j_ceramint_2023_10_248 crossref_primary_10_1016_j_actamat_2022_118428 crossref_primary_10_3390_cryst13050769 crossref_primary_10_1021_acsomega_2c00702 crossref_primary_10_1016_j_jallcom_2022_168482 crossref_primary_10_1142_S0217984923420046 crossref_primary_10_1021_acsenergylett_5c00154 crossref_primary_10_1016_j_jallcom_2024_174656 crossref_primary_10_1016_j_cej_2023_145015 crossref_primary_10_1021_jacs_4c02688 crossref_primary_10_1021_acs_chemmater_3c03038 crossref_primary_10_1021_acs_energyfuels_4c00859 crossref_primary_10_1021_acs_analchem_4c01106 crossref_primary_10_1021_acs_chemmater_2c00459 crossref_primary_10_1002_adts_202200592 crossref_primary_10_1515_ntrev_2024_0104 crossref_primary_10_1016_j_cej_2024_155901 crossref_primary_10_1021_acs_chemmater_4c00519 crossref_primary_10_1021_acsmaterialslett_2c01021 crossref_primary_10_1021_jacs_1c12620 crossref_primary_10_1002_anie_202305385 crossref_primary_10_1016_j_ceramint_2024_01_025 crossref_primary_10_1021_acs_energyfuels_3c00732 crossref_primary_10_1016_j_fuel_2023_129388 crossref_primary_10_1111_jace_18468 crossref_primary_10_1021_acs_inorgchem_4c01198 crossref_primary_10_1039_D3TA08110A crossref_primary_10_1002_advs_202305799 crossref_primary_10_1021_acsnano_4c03783 crossref_primary_10_1039_D3MA00850A crossref_primary_10_2139_ssrn_4166665 crossref_primary_10_1016_j_actamat_2024_120636 crossref_primary_10_1038_s43588_023_00510_6 crossref_primary_10_1021_acscatal_2c00920 crossref_primary_10_1016_j_fuel_2024_131588 crossref_primary_10_3390_catal12090963 crossref_primary_10_1021_acsami_4c01336 crossref_primary_10_1088_1361_648X_acd7bc crossref_primary_10_2139_ssrn_4156626 crossref_primary_10_1002_ange_202305385 crossref_primary_10_1016_j_gee_2024_01_001 crossref_primary_10_1002_aenm_202300174 crossref_primary_10_1016_j_apsusc_2023_159134 crossref_primary_10_1002_adma_202302979 crossref_primary_10_1016_j_jece_2024_113957 crossref_primary_10_34133_energymatadv_0029 crossref_primary_10_1016_j_ssi_2023_116337 crossref_primary_10_1038_s43588_023_00495_2 crossref_primary_10_1016_j_vacuum_2024_113934 crossref_primary_10_1002_smll_202208102 crossref_primary_10_1103_PhysRevMaterials_7_065403 crossref_primary_10_1039_D4DD00250D crossref_primary_10_3390_encyclopedia3040104 crossref_primary_10_1016_j_mtsust_2022_100162 crossref_primary_10_1002_advs_202401975 crossref_primary_10_1021_acs_chemmater_2c02841 crossref_primary_10_1016_j_jiec_2024_06_007 crossref_primary_10_1021_acs_chemmater_2c01233 crossref_primary_10_1021_acs_chemmater_3c02251 crossref_primary_10_1016_j_apsusc_2022_155896 crossref_primary_10_1002_anie_202216645 crossref_primary_10_1039_D4QI01638F crossref_primary_10_1016_j_jre_2023_01_002 crossref_primary_10_1002_smll_202404239 crossref_primary_10_1016_j_ijhydene_2022_11_237 crossref_primary_10_1007_s11814_024_00354_4 crossref_primary_10_1038_s41578_022_00433_0 crossref_primary_10_1002_aenm_202203833 crossref_primary_10_1038_s41524_023_01062_z crossref_primary_10_1002_adfm_202112294 crossref_primary_10_1103_PhysRevMaterials_8_055407 crossref_primary_10_1039_D4TA04049J crossref_primary_10_1088_2515_7655_ad0b8a crossref_primary_10_3390_catal14010070 crossref_primary_10_1021_acs_chemmater_4c03028 crossref_primary_10_1016_j_apcatb_2024_124510 crossref_primary_10_1021_acs_nanolett_4c03660 crossref_primary_10_1016_j_apcatb_2025_125192 crossref_primary_10_1103_PhysRevB_109_014431 crossref_primary_10_1016_j_apcatb_2023_122719 crossref_primary_10_1016_j_jallcom_2022_167610 crossref_primary_10_7498_aps_73_20240795 crossref_primary_10_1111_jace_18387 crossref_primary_10_1103_PRXEnergy_3_013008 crossref_primary_10_1016_j_colsurfa_2024_134887 crossref_primary_10_1038_s41524_024_01303_9 crossref_primary_10_1021_acscatal_4c03357 crossref_primary_10_1002_cssc_202401553 crossref_primary_10_1016_j_commatsci_2023_112581 crossref_primary_10_1021_jacs_3c03493 crossref_primary_10_1007_s12274_022_4582_1 crossref_primary_10_1021_acs_inorgchem_4c02115 crossref_primary_10_1038_s41524_024_01259_w crossref_primary_10_1021_accountsmr_3c00206 crossref_primary_10_1021_acs_jpcc_3c03622 crossref_primary_10_1088_2515_7655_acb2f8 crossref_primary_10_1016_j_ssi_2022_116115 crossref_primary_10_1021_jacs_4c08643 crossref_primary_10_1016_j_fuel_2023_129451 crossref_primary_10_1039_D4RA04105D crossref_primary_10_1039_D3EE00234A crossref_primary_10_1002_ange_202216645 crossref_primary_10_1016_j_ceramint_2022_08_207 crossref_primary_10_1021_acsami_3c18420 crossref_primary_10_1039_D3EY00028A crossref_primary_10_1021_acs_chemmater_3c00505 |
Cites_doi | 10.1039/c0jm01908a 10.1016/0378-7753(93)01789-K 10.1021/jp103604b 10.1021/j100319a005 10.1103/PhysRevB.87.085112 10.1016/j.ijhydene.2016.07.041 10.1063/1.2121547 10.1103/PhysRevB.64.235105 10.1016/j.ssi.2004.07.036 10.1021/jp5076719 10.3390/ma13225123 10.1002/adts.202000112 10.1021/acs.jpclett.6b00739 10.1021/acs.jpcc.8b11279 10.1002/cssc.201500239 10.1021/jp507957n 10.1021/cm300255r 10.1107/97809553602060000524 10.1007/978-3-540-88154-4 10.1103/PhysRevB.81.245204 10.1063/1.5117754 10.1103/PhysRevB.94.134308 10.1103/PhysRevMaterials.4.045401 10.1103/PhysRevB.100.174109 10.1063/1.4812323 10.1007/s11244-011-9684-z 10.1103/PhysRevB.73.195107 10.1103/PhysRevB.62.6241 10.1063/1.5087290 10.1126/science.1206980 10.1039/D0CP00275E 10.1063/1.2345825 10.1021/acs.chemmater.6b02953 10.1038/npjcompumats.2015.10 10.1002/er.3467 10.1002/adma.201100805 10.1103/PhysRevMaterials.2.095401 10.1021/acs.jpclett.5b00710 10.1103/PhysRevB.13.5188 10.1021/jp500352h 10.1111/j.1551-2916.2008.02404.x 10.1021/cr020724o 10.1039/c1cy00199j 10.1016/j.jcat.2012.06.010 10.1103/PhysRevB.79.104432 10.1007/s13204-013-0231-z 10.1002/adma.201203146 10.1039/JR9370000655 10.1002/cssc.201902698 10.1021/ja0540019 10.1088/0022-3719/20/36/016 10.1103/PhysRevB.69.052404 10.1038/s41467-020-17263-9 10.1038/nchem.2535 10.1038/nnano.2011.213 10.1115/1.4023356 10.1016/j.solener.2016.05.031 10.1143/JJAP.47.7579 10.1103/PhysRevB.57.1505 10.1126/sciadv.aav0693 10.1021/jp5034849 10.1016/j.ssi.2004.06.015 10.1103/PhysRevApplied.8.034034 10.1021/ar4003174 10.1016/j.commatsci.2012.02.005 10.1021/acs.jpcc.8b11249 10.1016/j.jssc.2012.05.024 10.1103/PhysRevB.85.115104 10.1103/PhysRevB.85.201201 10.1038/s41566-020-00732-4 10.1002/ente.201800554 10.1063/1.3243077 10.1021/jp903013u 10.1557/mrc.2013.28 10.1021/cm702327g 10.1016/j.solener.2019.06.059 10.1103/PhysRevB.54.11169 10.1039/c3cp50995h 10.1021/cm401052w 10.1016/j.commatsci.2012.10.028 10.1039/D0TA11603C 10.1002/er.1372 10.1021/cs2005482 10.1021/acs.chemmater.6b01182 10.1103/PhysRevB.102.054101 10.1016/j.elecom.2010.01.010 10.1088/0953-8984/25/10/102202 10.1016/j.ceramint.2012.10.079 10.1088/0953-8984/27/28/283203 10.1103/PhysRevB.52.R5467 10.1016/j.solener.2020.01.050 10.1063/1.555845 10.1107/s0108767381089411 10.1038/nmat1860 10.1021/cm201799c 10.1103/PhysRevB.59.1758 10.1103/PhysRevB.80.245119 10.1080/00150199608224091 10.1103/PhysRevB.88.161201 10.1007/s00214-017-2130-y 10.1039/c1ee02032c 10.1016/j.ssi.2016.09.007 10.1103/PhysRevB.58.R13309 10.1039/C7EE03383D 10.1039/C8EE01989D 10.1039/c3ee43874k 10.1016/j.solener.2003.12.012 10.1039/C7TA00315C 10.1002/9783527618002.ch6 10.1016/j.commatsci.2010.05.010 10.1021/cm5033755 10.1063/1.1609399 10.1103/PhysRevB.81.144103 10.1016/j.ijhydene.2020.02.126 10.1021/ja300831k 10.1103/PhysRevB.50.17953 10.1103/PhysRevLett.77.3865 10.1016/j.mseb.2008.12.020 10.1021/ef301923h 10.1103/PhysRevB.47.558 10.1088/0953-8984/9/4/002 10.1016/j.ijhydene.2018.12.135 10.18434/T4FW23 10.1063/1.4746117 10.1080/10584587.2011.574986 10.1038/nature18286 10.1039/c1ee02377b 10.1039/D0TC01695K 10.1021/acs.chemmater.0c02912 10.1016/S0360-3199(01)00177-X 10.1111/j.1151-2916.1983.tb15707.x 10.1021/acscatal.7b04466 10.1103/PhysRevB.44.943 10.1038/nature12340 10.1016/j.apenergy.2018.08.044 10.1063/1.1655537 10.1103/PhysRevB.100.035119 10.1007/s11244-014-0353-x 10.1039/C5EE02179K 10.1007/s11837-013-0755-4 10.1039/C6CP01720G 10.1002/9783527619825 10.1039/b915141a 10.1103/PhysRevLett.115.036402 10.1021/acsami.9b21919 |
ContentType | Journal Article |
Copyright | 2021 American Chemical Society |
Copyright_xml | – notice: 2021 American Chemical Society |
CorporateAuthor | Princeton Univ., NJ (United States) |
CorporateAuthor_xml | – sequence: 0 name: Princeton Univ., NJ (United States) |
DBID | AAYXX CITATION 7X8 7S9 L.6 OIOZB OTOTI |
DOI | 10.1021/jacs.1c05570 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Engineering |
EISSN | 1520-5126 |
EndPage | 13227 |
ExternalDocumentID | 1817918 10_1021_jacs_1c05570 b115589794 |
GroupedDBID | - .K2 02 4.4 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABFRP ABMVS ABPPZ ABPTK ABUCX ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ ET F5P GGK GNL IH2 IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UNM UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV CITATION CUPRZ XSW YQT ZCA ~02 7X8 7S9 AAYWT L.6 OIOZB OTOTI |
ID | FETCH-LOGICAL-a399t-f44e3ed9cf8030f21761d80dbf388227386610268b5eb0c2b08dbcbcf859a7dc3 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Thu Dec 05 06:32:16 EST 2024 Mon Jul 21 09:27:36 EDT 2025 Fri Jul 11 01:56:06 EDT 2025 Tue Jul 01 00:44:45 EDT 2025 Thu Apr 24 23:09:55 EDT 2025 Fri Aug 27 15:31:21 EDT 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 33 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a399t-f44e3ed9cf8030f21761d80dbf388227386610268b5eb0c2b08dbcbcf859a7dc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Fuel Cell Technologies Office EE0008090 |
ORCID | 0000-0002-6861-6421 0000-0001-7330-7554 0000-0002-5379-2908 0000-0002-1303-0976 0000000213030976 0000000253792908 0000000268616421 0000000173307554 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1817918 |
PQID | 2564493700 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | osti_scitechconnect_1817918 proquest_miscellaneous_2636500398 proquest_miscellaneous_2564493700 crossref_citationtrail_10_1021_jacs_1c05570 crossref_primary_10_1021_jacs_1c05570 acs_journals_10_1021_jacs_1c05570 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 GGK W1F ABFRP ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-25 |
PublicationDateYYYYMMDD | 2021-08-25 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2021 |
Publisher | American Chemical Society American Chemical Society (ACS) |
Publisher_xml | – sequence: 0 name: American Chemical Society (ACS) – name: American Chemical Society |
References | ref45/cit45 ref99/cit99 ref3/cit3 ref81/cit81 ref16/cit16 Ritzmann A. M. (ref89/cit89) 2016 ref52/cit52 ref114/cit114 ref23/cit23 ref115/cit115 ref116/cit116 ref2/cit2 ref77/cit77 ref113/cit113 ref71/cit71 ref117/cit117 ref20/cit20 ref48/cit48 ref118/cit118 ref74/cit74 ref119/cit119 ref10/cit10 ref35/cit35 ref19/cit19 ref93/cit93 ref42/cit42 ref96/cit96 ref120/cit120 ref109/cit109 ref13/cit13 ref122/cit122 ref105/cit105 Vanýsek P. (ref106/cit106) 2019 ref61/cit61 ref67/cit67 ref38/cit38 ref128/cit128 ref90/cit90 ref124/cit124 Pedregosa F. (ref104/cit104) 2011; 12 ref64/cit64 ref126/cit126 ref54/cit54 ref6/cit6 ref18/cit18 ref136/cit136 ref137/cit137 ref65/cit65 ref97/cit97 ref101/cit101 ref11/cit11 ref102/cit102 ref29/cit29 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref5/cit5 ref43/cit43 ref80/cit80 ref133/cit133 ref28/cit28 ref132/cit132 ref91/cit91 ref148/cit148 ref55/cit55 ref144/cit144 ref12/cit12 Kübler J. (ref141/cit141) 2017 ref66/cit66 Greenwood N. N. (ref123/cit123) 2012 ref22/cit22 ref121/cit121 ref33/cit33 ref87/cit87 ref140/cit140 ref129/cit129 ref44/cit44 ref70/cit70 ref98/cit98 Togo A. (ref95/cit95) 2018 ref125/cit125 ref9/cit9 ref152/cit152 ref153/cit153 ref154/cit154 ref27/cit27 ref150/cit150 ref63/cit63 ref151/cit151 ref56/cit56 ref92/cit92 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref60/cit60 ref88/cit88 ref17/cit17 ref82/cit82 ref147/cit147 ref143/cit143 ref53/cit53 ref145/cit145 ref21/cit21 ref149/cit149 ref46/cit46 Barin I. (ref108/cit108) 1995 Watson A. (ref111/cit111) 2015 ref49/cit49 ref75/cit75 ref24/cit24 ref50/cit50 ref78/cit78 ref36/cit36 ref83/cit83 ref138/cit138 ref79/cit79 ref139/cit139 ref100/cit100 ref25/cit25 ref103/cit103 ref72/cit72 ref14/cit14 ref57/cit57 ref51/cit51 Kubaschewski O. (ref107/cit107) 1979 ref134/cit134 ref135/cit135 ref40/cit40 ref68/cit68 ref94/cit94 ref130/cit130 ref131/cit131 Chase M. W. (ref110/cit110) 1998 ref146/cit146 ref26/cit26 ref142/cit142 ref73/cit73 ref69/cit69 ref15/cit15 Kittel C. (ref112/cit112) 2004 ref62/cit62 ref41/cit41 ref58/cit58 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref127/cit127 ref1/cit1 ref7/cit7 |
References_xml | – ident: ref67/cit67 doi: 10.1039/c0jm01908a – ident: ref32/cit32 doi: 10.1016/0378-7753(93)01789-K – ident: ref69/cit69 doi: 10.1021/jp103604b – ident: ref118/cit118 doi: 10.1021/j100319a005 – ident: ref139/cit139 doi: 10.1103/PhysRevB.87.085112 – ident: ref3/cit3 doi: 10.1016/j.ijhydene.2016.07.041 – ident: ref101/cit101 doi: 10.1063/1.2121547 – ident: ref103/cit103 doi: 10.1103/PhysRevB.64.235105 – ident: ref24/cit24 doi: 10.1016/j.ssi.2004.07.036 – ident: ref154/cit154 doi: 10.1021/jp5076719 – ident: ref17/cit17 doi: 10.3390/ma13225123 – ident: ref87/cit87 doi: 10.1002/adts.202000112 – ident: ref65/cit65 doi: 10.1021/acs.jpclett.6b00739 – volume-title: CRC Handbook of Chemistry and Physics year: 2019 ident: ref106/cit106 – ident: ref53/cit53 doi: 10.1021/acs.jpcc.8b11279 – ident: ref18/cit18 doi: 10.1002/cssc.201500239 – ident: ref90/cit90 doi: 10.1021/jp507957n – ident: ref26/cit26 doi: 10.1021/cm300255r – ident: ref93/cit93 doi: 10.1107/97809553602060000524 – volume-title: Ternary Steel Systems: Phase Diagrams and Phase Transition Data year: 2015 ident: ref111/cit111 doi: 10.1007/978-3-540-88154-4 – ident: ref152/cit152 doi: 10.1103/PhysRevB.81.245204 – ident: ref8/cit8 doi: 10.1063/1.5117754 – ident: ref79/cit79 doi: 10.1103/PhysRevB.94.134308 – ident: ref78/cit78 doi: 10.1103/PhysRevMaterials.4.045401 – ident: ref80/cit80 doi: 10.1103/PhysRevB.100.174109 – ident: ref113/cit113 doi: 10.1063/1.4812323 – ident: ref121/cit121 doi: 10.1007/s11244-011-9684-z – ident: ref71/cit71 doi: 10.1103/PhysRevB.73.195107 – volume-title: NIST-JANAF Thermochemical Tables year: 1998 ident: ref110/cit110 – ident: ref35/cit35 doi: 10.1103/PhysRevB.62.6241 – ident: ref148/cit148 doi: 10.1063/1.5087290 – ident: ref37/cit37 doi: 10.1126/science.1206980 – ident: ref16/cit16 doi: 10.1039/D0CP00275E – ident: ref134/cit134 doi: 10.1063/1.2345825 – ident: ref51/cit51 doi: 10.1021/acs.chemmater.6b02953 – ident: ref115/cit115 doi: 10.1038/npjcompumats.2015.10 – ident: ref10/cit10 doi: 10.1002/er.3467 – ident: ref127/cit127 doi: 10.1002/adma.201100805 – ident: ref77/cit77 doi: 10.1103/PhysRevMaterials.2.095401 – ident: ref66/cit66 doi: 10.1021/acs.jpclett.5b00710 – ident: ref88/cit88 doi: 10.1103/PhysRevB.13.5188 – ident: ref43/cit43 doi: 10.1021/jp500352h – ident: ref135/cit135 doi: 10.1111/j.1551-2916.2008.02404.x – ident: ref19/cit19 doi: 10.1021/cr020724o – ident: ref131/cit131 doi: 10.1039/c1cy00199j – ident: ref68/cit68 doi: 10.1016/j.jcat.2012.06.010 – ident: ref120/cit120 doi: 10.1103/PhysRevB.79.104432 – ident: ref122/cit122 doi: 10.1007/s13204-013-0231-z – ident: ref146/cit146 doi: 10.1002/adma.201203146 – ident: ref91/cit91 doi: 10.1039/JR9370000655 – ident: ref59/cit59 doi: 10.1002/cssc.201902698 – ident: ref144/cit144 doi: 10.1021/ja0540019 – ident: ref34/cit34 doi: 10.1088/0022-3719/20/36/016 – ident: ref100/cit100 doi: 10.1103/PhysRevB.69.052404 – ident: ref105/cit105 doi: 10.1038/s41467-020-17263-9 – ident: ref73/cit73 doi: 10.1038/nchem.2535 – ident: ref28/cit28 doi: 10.1038/nnano.2011.213 – ident: ref38/cit38 doi: 10.1115/1.4023356 – ident: ref11/cit11 doi: 10.1016/j.solener.2016.05.031 – ident: ref126/cit126 doi: 10.1143/JJAP.47.7579 – ident: ref84/cit84 doi: 10.1103/PhysRevB.57.1505 – ident: ref124/cit124 doi: 10.1126/sciadv.aav0693 – ident: ref2/cit2 doi: 10.1021/jp5034849 – ident: ref20/cit20 doi: 10.1016/j.ssi.2004.06.015 – ident: ref130/cit130 doi: 10.1103/PhysRevApplied.8.034034 – ident: ref22/cit22 doi: 10.1021/ar4003174 – ident: ref116/cit116 doi: 10.1016/j.commatsci.2012.02.005 – ident: ref57/cit57 doi: 10.1021/acs.jpcc.8b11249 – ident: ref30/cit30 doi: 10.1016/j.jssc.2012.05.024 – ident: ref138/cit138 doi: 10.1103/PhysRevB.85.115104 – ident: ref153/cit153 doi: 10.1103/PhysRevB.85.201201 – ident: ref149/cit149 doi: 10.1038/s41566-020-00732-4 – ident: ref14/cit14 doi: 10.1002/ente.201800554 – ident: ref49/cit49 doi: 10.1063/1.3243077 – ident: ref129/cit129 doi: 10.1021/jp903013u – ident: ref151/cit151 doi: 10.1557/mrc.2013.28 – ident: ref97/cit97 doi: 10.1021/cm702327g – ident: ref15/cit15 doi: 10.1016/j.solener.2019.06.059 – ident: ref83/cit83 doi: 10.1103/PhysRevB.54.11169 – ident: ref47/cit47 doi: 10.1039/c3cp50995h – ident: ref42/cit42 doi: 10.1021/cm401052w – volume-title: Metallurgical Thermochemistry year: 1979 ident: ref107/cit107 – ident: ref96/cit96 doi: 10.1016/j.commatsci.2012.10.028 – ident: ref147/cit147 doi: 10.1039/D0TA11603C – ident: ref5/cit5 doi: 10.1002/er.1372 – ident: ref25/cit25 doi: 10.1021/cs2005482 – ident: ref39/cit39 doi: 10.1021/acs.chemmater.6b01182 – volume-title: Introduction to Solid State Physics year: 2004 ident: ref112/cit112 – ident: ref92/cit92 doi: 10.1103/PhysRevB.102.054101 – ident: ref98/cit98 doi: 10.1016/j.elecom.2010.01.010 – ident: ref81/cit81 doi: 10.1088/0953-8984/25/10/102202 – ident: ref58/cit58 doi: 10.1016/j.ceramint.2012.10.079 – ident: ref140/cit140 doi: 10.1088/0953-8984/27/28/283203 – ident: ref75/cit75 doi: 10.1103/PhysRevB.52.R5467 – ident: ref12/cit12 doi: 10.1016/j.solener.2020.01.050 – ident: ref109/cit109 doi: 10.1063/1.555845 – volume: 12 start-page: 2825 year: 2011 ident: ref104/cit104 publication-title: J. Mach. Learn. Res. – ident: ref94/cit94 doi: 10.1107/s0108767381089411 – ident: ref27/cit27 doi: 10.1038/nmat1860 – ident: ref45/cit45 doi: 10.1021/cm201799c – ident: ref86/cit86 doi: 10.1103/PhysRevB.59.1758 – ident: ref40/cit40 doi: 10.1103/PhysRevB.80.245119 – ident: ref29/cit29 doi: 10.1080/00150199608224091 – ident: ref48/cit48 doi: 10.1103/PhysRevB.88.161201 – ident: ref54/cit54 doi: 10.1007/s00214-017-2130-y – ident: ref33/cit33 doi: 10.1039/c1ee02032c – ident: ref41/cit41 doi: 10.1016/j.ssi.2016.09.007 – ident: ref99/cit99 doi: 10.1103/PhysRevB.58.R13309 – ident: ref52/cit52 doi: 10.1039/C7EE03383D – ident: ref119/cit119 doi: 10.1039/C8EE01989D – ident: ref61/cit61 doi: 10.1039/c3ee43874k – ident: ref4/cit4 doi: 10.1016/j.solener.2003.12.012 – ident: ref55/cit55 doi: 10.1039/C7TA00315C – ident: ref128/cit128 doi: 10.1002/9783527618002.ch6 – volume-title: Chemistry of the Elements year: 2012 ident: ref123/cit123 – ident: ref137/cit137 doi: 10.1016/j.commatsci.2010.05.010 – ident: ref64/cit64 doi: 10.1021/cm5033755 – ident: ref102/cit102 doi: 10.1063/1.1609399 – ident: ref136/cit136 doi: 10.1103/PhysRevB.81.144103 – ident: ref31/cit31 doi: 10.1016/j.ijhydene.2020.02.126 – ident: ref46/cit46 doi: 10.1021/ja300831k – ident: ref85/cit85 doi: 10.1103/PhysRevB.50.17953 – ident: ref70/cit70 doi: 10.1103/PhysRevLett.77.3865 – ident: ref132/cit132 doi: 10.1016/j.mseb.2008.12.020 – ident: ref1/cit1 doi: 10.1021/ef301923h – ident: ref82/cit82 doi: 10.1103/PhysRevB.47.558 – ident: ref76/cit76 doi: 10.1088/0953-8984/9/4/002 – ident: ref13/cit13 doi: 10.1016/j.ijhydene.2018.12.135 – ident: ref117/cit117 doi: 10.18434/T4FW23 – ident: ref63/cit63 doi: 10.1063/1.4746117 – ident: ref125/cit125 doi: 10.1080/10584587.2011.574986 – ident: ref36/cit36 doi: 10.1038/nature18286 – ident: ref23/cit23 doi: 10.1039/c1ee02377b – ident: ref50/cit50 doi: 10.1039/D0TC01695K – ident: ref7/cit7 doi: 10.1021/acs.chemmater.0c02912 – ident: ref6/cit6 doi: 10.1016/S0360-3199(01)00177-X – ident: ref44/cit44 doi: 10.1111/j.1151-2916.1983.tb15707.x – ident: ref142/cit142 doi: 10.1021/acscatal.7b04466 – ident: ref74/cit74 doi: 10.1103/PhysRevB.44.943 – ident: ref150/cit150 doi: 10.1038/nature12340 – year: 2018 ident: ref95/cit95 publication-title: arXiv – ident: ref9/cit9 doi: 10.1016/j.apenergy.2018.08.044 – volume-title: Theory of Itinerant Electron Magnetism year: 2017 ident: ref141/cit141 – ident: ref145/cit145 doi: 10.1063/1.1655537 – ident: ref133/cit133 doi: 10.1103/PhysRevB.100.035119 – ident: ref56/cit56 doi: 10.1007/s11244-014-0353-x – ident: ref143/cit143 doi: 10.1039/C5EE02179K – ident: ref114/cit114 doi: 10.1007/s11837-013-0755-4 – volume-title: First Principles Insights Into Oxygen Transport in Solid Oxide Fuel Cell Cathode Materials Based on Lanthanum Strontium Cobalt Ferrite year: 2016 ident: ref89/cit89 – ident: ref60/cit60 doi: 10.1039/C6CP01720G – volume-title: Thermochemical Data of Pure Substances year: 1995 ident: ref108/cit108 doi: 10.1002/9783527619825 – ident: ref21/cit21 doi: 10.1039/b915141a – ident: ref72/cit72 doi: 10.1103/PhysRevLett.115.036402 – ident: ref62/cit62 doi: 10.1021/acsami.9b21919 |
SSID | ssj0004281 |
Score | 2.6564136 |
Snippet | The control of oxygen vacancy (VO) formation is critical to advancing multiple metal-oxide-perovskite-based technologies. We report the construction of a... The control of oxygen vacancy (VO) formation is critical to advancing multiple metal-oxide-perovskite-based technologies. In this work, we report the... |
SourceID | osti proquest crossref acs |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 13212 |
SubjectTerms | 08 HYDROGEN data collection defects density functional theory dissociation energy ENGINEERING INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY lanthanides linear models machine learning MATERIALS SCIENCE model validation oxides oxygen perovskites quantum mechanics SOLAR ENERGY solar thermochemical hydrogen production solid oxide fuel cells thermodynamics |
Title | Factors Governing Oxygen Vacancy Formation in Oxide Perovskites |
URI | http://dx.doi.org/10.1021/jacs.1c05570 https://www.proquest.com/docview/2564493700 https://www.proquest.com/docview/2636500398 https://www.osti.gov/servlets/purl/1817918 |
Volume | 143 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZS8NAEF60PuiLt1irEkGfJCXHZrN5klKsRfAArfQtZI9AURJpUlF_vTM5LLZUfU0msNfMfJOdb4aQU_BITgRA3QS4Sk0aM24KpoWJ2DpGZiNzkO98c8v6A3o99IbTBNnZG3wH6wNJTA8qakUtkxWHcR-DrE73Ycp_dLhdw1yfM7dKcJ_9Gh2QzH44oEYKijRnhgvf0tsgVzVDp0wpeW5PctGWn_MFG_8Y9iZZr-Cl0SnPwxZZ0sk2We3WXd12yEWvbLBjlE12wXEZd-8fcIqMp0iipTV6NZ3RGCXwbqS0ca_H6VuG_3mzXTLoXT52-2bVRMGMAHvkZkypdrUKZMxBn2OIQJituKVE7AK4RmIOeGgIxLjwtLCkIyyuhBQg7gWRr6S7RxpJmuh9Yti-dO1IuSyGoE3IgIsA6YYiUtRTduw1yQlMOqyUIAuL-20H4gt8Wi1Fk5zXqx_Kqgo5NsN4WSB99i39WlbfWCDXwo0MATVg6VuJOUIyDwG9-IHNYVz1_oaw2ngjEiU6nWQh4D1KAaBZ1i8yzAUUa7kBP_jH_FpkzcGsFwvsj3dIGvl4oo8AtuTiuDizXx5E5O0 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JSsRAEC10POjFXdxtQU8SSTrLdA4iMjqMu-CCt5heAqJkxGTc_sVf8dusyiSKiuJF8JoUTaW6qutVuhaAJfRIPEagbiFc9SwvCYQlAyMtwtYJVTYGnOqd9w-C1qm3c-6f98BzVQuDTGS4UlZc4r93F6A2QYqyhIqWUWUO5a55vMcILVvb3sTtXOa8uXXSaFnlEAErRt-bW4nnGdfoUCUC9TlBBB44WthaJi6CSypMQQ-FgYiQvpG24tIWWiqJ5H4Y17Vycd1e6EPcwym222gcv5ddcuFU6LouArfMq__MLfk9lX3we7U22u-X079wac0heHkTRpHJcrXayeWqevrUJ_LfSmsYBkswzTa62j8CPSYdhf5GNcNuDNab3XFCrDtSGN00O3x4RJthZ7Eiv8KaVfEmu0zx3aU27Mjctu8y-qudjcPpn_A_AbW0nZpJYE5duU6s3SDBEFWqUMiQiitlrD1fO4k_BYso5Kg0-SwqbvM5RlP0tBT9FKxUmx6psuc6jf64_oZ6-Y36pttr5Bu6GdKfCDESNfpVlBGl8gixWj10BPJVqVWE0qb7nzg17U4WIbr1PISjtv0DTeAiZrfdUEz_4vsWoL91sr8X7W0f7M7AAKd8HxtPXn8Wavltx8whYMvlfGE2DC7-WvNeAfFOR-k |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1bS9xQEB50heqLtVVxteoR6pNEct-Th1JkNaxVt4IXfIs5N1iU7LLJtuq_6V_pL3Mmm1hUlL4IviZDOJlzJt83mRvAV0QkN0WibiFd9S3fhNwSoRYWcWtDlY2hS_XOR92wc-b_uAguJuBPXQuDi8jxSXkZxCerHihTdRigVkGSMoXKtlFVHuWBvv2NXlr-bX8Xt3TTdeO903bHqgYJWCnib2EZ39eeVpE0HM-0QRYeOorbShgPCSYVpyBKoTPCRaCFLV1hcyWkQPEgSltKevjcSZiiCCH5dzvtk3-lly53aobd4qFX5dY_XS1hn8wfYV-jjzb8DAFKWIs_wt8HhZTZLFfbo0Jsy7snvSLftcbmYLYi1WxnbAWfYEJnn2G6Xc-ym4fv8XisEBuPFka4Zj9vbtF22HkqCV9YXBdxsl6G93pKs2M97P_K6e92vgBnb7L-RWhk_UwvAXNa0nNS5YUGXVUhIy4iKrIUqfID5ZigCRuo5KQy_Twpo_ouelV0tVJ9E7bqjU9k1XudRoBcvyC9-SA9GPcceUFuhc5QglyJGv5KyoySRYKcrRU5HNdVH60EtU1xoDTT_VGeIMv1faSltv2KTOghd7e9iC__x_utw4fj3Tg53O8erMCMS2k_Nn6Agy_QKIYjvYq8rRBrpeUwuHzrg3cP3shKbA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Factors+Governing+Oxygen+Vacancy+Formation+in+Oxide+Perovskites&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Wexler%2C+Robert+B.&rft.au=Gautam%2C+Gopalakrishnan+Sai&rft.au=Stechel%2C+Ellen+B.&rft.au=Carter%2C+Emily+A.&rft.date=2021-08-25&rft.pub=American+Chemical+Society+%28ACS%29&rft.issn=0002-7863&rft.volume=143&rft.issue=33&rft_id=info:doi/10.1021%2Fjacs.1c05570&rft.externalDocID=1817918 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |