Tuning Organelle Specificity and Photodynamic Therapy Efficiency by Molecular Function Design
Efficient organic photosensitizers (PSs) have attracted much attention because of their promising applications in photodynamic therapy (PDT). However, guidelines on their molecular design are rarely reported. In this work, a series of PSs are designed and synthesized based on a triphenylamine-azaflu...
Saved in:
Published in | ACS nano Vol. 13; no. 10; pp. 11283 - 11293 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
22.10.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Efficient organic photosensitizers (PSs) have attracted much attention because of their promising applications in photodynamic therapy (PDT). However, guidelines on their molecular design are rarely reported. In this work, a series of PSs are designed and synthesized based on a triphenylamine-azafluorenone core. Their structure–property-application relationships are systematically studied. Cationization is an effective strategy to enhance the PDT efficiency of PSs by targeting mitochondria. From the molecularly dispersed state to the aggregate state, the fluorescence and the reactive oxygen species generation efficiency of PSs with aggregation-induced emission (AIE) increase due to the restriction of the intramolecular motions and enhancement of intersystem crossing. Cationized mitochondrion-targeting PSs show higher PDT efficiency than that of nonionized ones targeting lipid droplets. The ability of AIE PSs to kill cancer cells can be further enhanced by combination of PDT with radiotherapy. Such results should trigger research enthusiasm for designing and synthesizing AIE PSs with better PDT efficiency and properties. |
---|---|
AbstractList | Efficient organic photosensitizers (PSs) have attracted much attention because of their promising applications in photodynamic therapy (PDT). However, guidelines on their molecular design are rarely reported. In this work, a series of PSs are designed and synthesized based on a triphenylamine-azafluorenone core. Their structure–property-application relationships are systematically studied. Cationization is an effective strategy to enhance the PDT efficiency of PSs by targeting mitochondria. From the molecularly dispersed state to the aggregate state, the fluorescence and the reactive oxygen species generation efficiency of PSs with aggregation-induced emission (AIE) increase due to the restriction of the intramolecular motions and enhancement of intersystem crossing. Cationized mitochondrion-targeting PSs show higher PDT efficiency than that of nonionized ones targeting lipid droplets. The ability of AIE PSs to kill cancer cells can be further enhanced by combination of PDT with radiotherapy. Such results should trigger research enthusiasm for designing and synthesizing AIE PSs with better PDT efficiency and properties. Efficient organic photosensitizers (PSs) have attracted much attention because of their promising applications in photodynamic therapy (PDT). However, guidelines on their molecular design are rarely reported. In this work, a series of PSs are designed and synthesized based on a triphenylamine-azafluorenone core. Their structure-property-application relationships are systematically studied. Cationization is an effective strategy to enhance the PDT efficiency of PSs by targeting mitochondria. From the molecularly dispersed state to the aggregate state, the fluorescence and the reactive oxygen species generation efficiency of PSs with aggregation-induced emission (AIE) increase due to the restriction of the intramolecular motions and enhancement of intersystem crossing. Cationized mitochondrion-targeting PSs show higher PDT efficiency than that of nonionized ones targeting lipid droplets. The ability of AIE PSs to kill cancer cells can be further enhanced by combination of PDT with radiotherapy. Such results should trigger research enthusiasm for designing and synthesizing AIE PSs with better PDT efficiency and properties.Efficient organic photosensitizers (PSs) have attracted much attention because of their promising applications in photodynamic therapy (PDT). However, guidelines on their molecular design are rarely reported. In this work, a series of PSs are designed and synthesized based on a triphenylamine-azafluorenone core. Their structure-property-application relationships are systematically studied. Cationization is an effective strategy to enhance the PDT efficiency of PSs by targeting mitochondria. From the molecularly dispersed state to the aggregate state, the fluorescence and the reactive oxygen species generation efficiency of PSs with aggregation-induced emission (AIE) increase due to the restriction of the intramolecular motions and enhancement of intersystem crossing. Cationized mitochondrion-targeting PSs show higher PDT efficiency than that of nonionized ones targeting lipid droplets. The ability of AIE PSs to kill cancer cells can be further enhanced by combination of PDT with radiotherapy. Such results should trigger research enthusiasm for designing and synthesizing AIE PSs with better PDT efficiency and properties. |
Author | Lam, Jacky W. Y Zou, Hang Shan, Guo-Gang Kwok, Ryan T. K Zhang, Pengfei Liu, Zhiyang Zheng, Lei Zhao, Zheng Tang, Ben Zhong |
AuthorAffiliation | Guangdong Key Laboratory of Nanomedicine, Shenzhen, Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics HKUST Shenzhen Research Institute Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, Institute of Molecular Functional Materials, Department of Chemical and Biological Engineering and Institute for Advanced Study Department of Laboratory Medicine, Nanfang Hospital Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences |
AuthorAffiliation_xml | – name: HKUST Shenzhen Research Institute – name: Department of Laboratory Medicine, Nanfang Hospital – name: Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices – name: Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, Institute of Molecular Functional Materials, Department of Chemical and Biological Engineering and Institute for Advanced Study – name: Guangdong Key Laboratory of Nanomedicine, Shenzhen, Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics – name: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences |
Author_xml | – sequence: 1 givenname: Zhiyang orcidid: 0000-0002-5522-2853 surname: Liu fullname: Liu, Zhiyang organization: HKUST Shenzhen Research Institute – sequence: 2 givenname: Hang surname: Zou fullname: Zou, Hang organization: Department of Laboratory Medicine, Nanfang Hospital – sequence: 3 givenname: Zheng surname: Zhao fullname: Zhao, Zheng organization: Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, Institute of Molecular Functional Materials, Department of Chemical and Biological Engineering and Institute for Advanced Study – sequence: 4 givenname: Pengfei surname: Zhang fullname: Zhang, Pengfei organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences – sequence: 5 givenname: Guo-Gang surname: Shan fullname: Shan, Guo-Gang organization: Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, Institute of Molecular Functional Materials, Department of Chemical and Biological Engineering and Institute for Advanced Study – sequence: 6 givenname: Ryan T. K orcidid: 0000-0002-6866-3877 surname: Kwok fullname: Kwok, Ryan T. K organization: Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, Institute of Molecular Functional Materials, Department of Chemical and Biological Engineering and Institute for Advanced Study – sequence: 7 givenname: Jacky W. Y surname: Lam fullname: Lam, Jacky W. Y organization: Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, Institute of Molecular Functional Materials, Department of Chemical and Biological Engineering and Institute for Advanced Study – sequence: 8 givenname: Lei surname: Zheng fullname: Zheng, Lei email: nfyyzhenglei@smu.edu.cn organization: Department of Laboratory Medicine, Nanfang Hospital – sequence: 9 givenname: Ben Zhong orcidid: 0000-0002-0293-964X surname: Tang fullname: Tang, Ben Zhong email: tangbenz@ust.hk organization: Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31525947$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kE1LAzEURYMo2lbX7iRLQWrzMZmZLEVbFZQKVnAjIZNkamSa1GRmMf_elFYXQlfvwTv3wT1DcOi8MwCcY3SNEcETqaKTzl_zCmUZRQdggDnNx6jM3w__doZPwDDGL4RYURb5MTihmBHGs2IAPhads24J52EpnWkaA1_XRtnaKtv2UDoNXz5963Xv5MoquPg0Qa57OK03hHGqh1UPn31jVNfIAGedU631Dt6ZaJfuFBzVsonmbDdH4G02Xdw-jJ_m94-3N09jSTlvx4aynJV1RgrFC24Izamqa1NXZamIqXi6ZBXXGknFWaYlyXNcFTzXWheM6IKOwOX27zr4787EVqxsVKlO6uS7KAjhFGFMKEnoxQ7tqpXRYh3sSoZe_CpJANsCKvgYg6lFUiE3pdogbSMwEhv1Yqde7NSn3ORf7vf1_sTVNpEO4st3wSVHe-kfeC6Xyw |
CitedBy_id | crossref_primary_10_1021_acsanm_2c05262 crossref_primary_10_1039_D3RA04013E crossref_primary_10_1002_adhm_202101607 crossref_primary_10_1039_D3TB00219E crossref_primary_10_1002_VIW_20200121 crossref_primary_10_1039_D1TB00881A crossref_primary_10_1038_s41467_024_52458_4 crossref_primary_10_1002_adhm_202101167 crossref_primary_10_1021_acsabm_1c00398 crossref_primary_10_1016_j_bj_2024_100729 crossref_primary_10_1039_D0SC03093G crossref_primary_10_1002_anie_202301910 crossref_primary_10_1016_j_actbio_2024_05_034 crossref_primary_10_6023_cjoc202104040 crossref_primary_10_1016_j_colsurfb_2020_111346 crossref_primary_10_1039_D1CS01138C crossref_primary_10_3389_fchem_2022_984268 crossref_primary_10_1002_adhm_202101036 crossref_primary_10_1016_j_gce_2022_07_006 crossref_primary_10_1002_bio_4669 crossref_primary_10_1021_accountsmr_1c00202 crossref_primary_10_1016_j_gce_2022_07_004 crossref_primary_10_1039_D2NR06593B crossref_primary_10_1016_j_dyepig_2022_110332 crossref_primary_10_1021_acs_jpcc_2c08479 crossref_primary_10_1021_acsabm_2c00370 crossref_primary_10_1039_D2QM00568A crossref_primary_10_1016_j_apmt_2020_100877 crossref_primary_10_1155_2022_1178039 crossref_primary_10_1021_acs_chemrev_1c00381 crossref_primary_10_1039_D3SM01715J crossref_primary_10_1002_adhm_202100055 crossref_primary_10_1039_D0TB02801K crossref_primary_10_1002_ange_202001103 crossref_primary_10_1039_D1CS00647A crossref_primary_10_1039_D2SC00381C crossref_primary_10_1039_D2CC01559E crossref_primary_10_1021_acsami_1c02585 crossref_primary_10_1002_anie_202105607 crossref_primary_10_1021_acs_jpclett_2c00541 crossref_primary_10_1016_j_engreg_2022_01_005 crossref_primary_10_1016_j_ccr_2023_215654 crossref_primary_10_1016_j_ccr_2024_215711 crossref_primary_10_1039_D0TB00888E crossref_primary_10_1021_acsami_2c14550 crossref_primary_10_1039_D2NR02273G crossref_primary_10_1039_D2CC02230C crossref_primary_10_1016_j_biomaterials_2021_121227 crossref_primary_10_1039_D1TB02598H crossref_primary_10_1016_j_dyepig_2022_110354 crossref_primary_10_1016_j_dyepig_2020_108599 crossref_primary_10_1016_j_biomaterials_2021_120934 crossref_primary_10_3389_fmolb_2021_773162 crossref_primary_10_1021_acsami_1c23156 crossref_primary_10_1016_j_cej_2023_147402 crossref_primary_10_1002_adfm_202104026 crossref_primary_10_1039_D0CC02051F crossref_primary_10_3390_cancers15030585 crossref_primary_10_3390_bios12090722 crossref_primary_10_3390_molecules26020268 crossref_primary_10_1002_anie_202000845 crossref_primary_10_3389_fonc_2024_1373263 crossref_primary_10_1039_D0NR07342C crossref_primary_10_1007_s11426_021_1055_0 crossref_primary_10_1021_acsanm_2c00451 crossref_primary_10_1016_j_pdpdt_2021_102254 crossref_primary_10_2174_0109298673300702240805055930 crossref_primary_10_1016_j_jcis_2024_03_197 crossref_primary_10_1021_acs_analchem_0c02298 crossref_primary_10_1016_j_dyepig_2022_110524 crossref_primary_10_1002_smtd_202101247 crossref_primary_10_1002_adtp_202100176 crossref_primary_10_1016_j_biomaterials_2022_121666 crossref_primary_10_1016_j_biomaterials_2021_120870 crossref_primary_10_1016_j_dyepig_2023_111841 crossref_primary_10_1038_s41467_023_41687_8 crossref_primary_10_1039_D4CC02264E crossref_primary_10_1002_adma_202209529 crossref_primary_10_1039_D2SC00067A crossref_primary_10_1039_D1SC04124J crossref_primary_10_1002_anie_202214875 crossref_primary_10_1016_j_mtbio_2025_101564 crossref_primary_10_1016_j_cclet_2023_109190 crossref_primary_10_1002_anie_202013228 crossref_primary_10_1007_s11426_023_1926_9 crossref_primary_10_1016_j_cclet_2022_107805 crossref_primary_10_1002_adhm_202101223 crossref_primary_10_1002_adhm_202100136 crossref_primary_10_1007_s10895_024_03680_2 crossref_primary_10_1016_j_cej_2023_143829 crossref_primary_10_1016_j_mattod_2022_06_008 crossref_primary_10_3390_bios12090745 crossref_primary_10_1007_s11095_022_03216_y crossref_primary_10_1039_D2DT02410A crossref_primary_10_1002_smll_202205440 crossref_primary_10_1002_ange_202214875 crossref_primary_10_6023_cjoc202403038 crossref_primary_10_1021_acs_joc_2c01089 crossref_primary_10_1002_adma_202402182 crossref_primary_10_1002_ange_202013228 crossref_primary_10_1039_D2QI00081D crossref_primary_10_1002_ange_202000845 crossref_primary_10_1021_acsami_1c24329 crossref_primary_10_1002_adma_202303186 crossref_primary_10_1002_agt2_172 crossref_primary_10_1002_smtd_202000046 crossref_primary_10_1021_acsabm_2c00394 crossref_primary_10_1002_anie_201916729 crossref_primary_10_3390_bios12050348 crossref_primary_10_3390_bios12111027 crossref_primary_10_1021_acsnano_1c10019 crossref_primary_10_1039_C9CS00495E crossref_primary_10_1039_D1BM01780B crossref_primary_10_1021_acsabm_1c00673 crossref_primary_10_1021_acsnano_3c04564 crossref_primary_10_1016_j_dyepig_2023_111413 crossref_primary_10_1039_D1TB00049G crossref_primary_10_1021_acsabm_9b01094 crossref_primary_10_1021_acs_inorgchem_3c04350 crossref_primary_10_1039_D0CC07336A crossref_primary_10_1039_D0TC01836H crossref_primary_10_1016_j_snb_2024_135432 crossref_primary_10_1002_adhm_202300818 crossref_primary_10_1021_acsnano_1c02882 crossref_primary_10_3390_molecules28114404 crossref_primary_10_1016_j_addr_2022_114536 crossref_primary_10_1016_j_dyepig_2023_111516 crossref_primary_10_1002_anie_202001103 crossref_primary_10_1016_j_actbio_2021_05_048 crossref_primary_10_1039_D1SC04770A crossref_primary_10_1002_ange_202105607 crossref_primary_10_1002_adom_202402179 crossref_primary_10_1039_D2BM00704E crossref_primary_10_1039_D0SC04285D crossref_primary_10_1021_acsami_2c05860 crossref_primary_10_1016_j_bioorg_2023_107020 crossref_primary_10_1021_acsami_0c20283 crossref_primary_10_1016_j_nantod_2023_101920 crossref_primary_10_1021_acsmaterialslett_1c00818 crossref_primary_10_2147_IJN_S384196 crossref_primary_10_1016_j_jcis_2024_09_242 crossref_primary_10_1016_j_msec_2021_112546 crossref_primary_10_1021_acsnano_1c01577 crossref_primary_10_1021_acsabm_3c00298 crossref_primary_10_1021_jacs_3c08579 crossref_primary_10_1039_D3SC00588G crossref_primary_10_1039_D2TB00719C crossref_primary_10_1002_advs_202302395 crossref_primary_10_1016_j_mtcomm_2022_103791 crossref_primary_10_1021_acsami_1c23797 crossref_primary_10_1016_j_biomaterials_2020_120598 crossref_primary_10_1186_s12951_022_01553_z crossref_primary_10_1021_acsnano_0c03080 crossref_primary_10_26599_NTM_2022_9130010 crossref_primary_10_1002_advs_202417179 crossref_primary_10_1021_acsnano_1c03508 crossref_primary_10_1002_adfm_202002546 crossref_primary_10_1016_j_cej_2020_128133 crossref_primary_10_1002_agt2_657 crossref_primary_10_1021_acsmacrolett_3c00500 crossref_primary_10_1016_j_matt_2020_12_005 crossref_primary_10_1016_j_nantod_2024_102327 crossref_primary_10_1039_D1TC04343A crossref_primary_10_1016_j_jphotochemrev_2024_100665 crossref_primary_10_1002_advs_202304042 crossref_primary_10_1016_j_dyepig_2021_109897 crossref_primary_10_1016_j_dyepig_2022_110122 crossref_primary_10_1093_rb_rbad044 crossref_primary_10_1021_acsabm_2c00681 crossref_primary_10_3389_fmats_2024_1446307 crossref_primary_10_1016_j_jcis_2023_07_133 crossref_primary_10_1002_agt2_540 crossref_primary_10_1021_acsnano_2c01721 crossref_primary_10_1002_ange_201916729 crossref_primary_10_1039_D1CC05483J crossref_primary_10_1016_j_ccr_2024_216027 crossref_primary_10_1002_ange_202301910 crossref_primary_10_1007_s10853_022_07529_6 crossref_primary_10_1016_j_bioactmat_2021_05_031 crossref_primary_10_1002_bio_4599 crossref_primary_10_1002_adhm_202301022 crossref_primary_10_1016_j_snb_2021_130128 crossref_primary_10_1016_j_jorganchem_2023_122819 crossref_primary_10_1007_s40843_021_1652_2 crossref_primary_10_1039_D2TB02295H crossref_primary_10_1002_adma_202415673 crossref_primary_10_1016_j_snb_2023_134201 crossref_primary_10_1016_j_talanta_2024_127074 crossref_primary_10_1039_D1QM00752A crossref_primary_10_1016_j_talanta_2024_125677 crossref_primary_10_1038_s41467_022_30721_w crossref_primary_10_1021_acs_jmedchem_4c02836 crossref_primary_10_1021_acsnano_0c00586 crossref_primary_10_1002_adhm_202101067 crossref_primary_10_1002_adhm_202101066 crossref_primary_10_1016_j_matdes_2023_111838 crossref_primary_10_1002_adma_202001457 crossref_primary_10_1002_agt2_7 crossref_primary_10_1039_D1CS01167G crossref_primary_10_1021_acs_analchem_3c03986 crossref_primary_10_1039_D2BM00864E crossref_primary_10_1021_acs_chemmater_0c01187 crossref_primary_10_1016_j_cclet_2023_108934 crossref_primary_10_1016_j_ccr_2022_214508 crossref_primary_10_1002_adfm_202002057 crossref_primary_10_1002_cphc_202400563 crossref_primary_10_1039_D2SC06445F crossref_primary_10_1002_anie_201915783 crossref_primary_10_1016_j_mtchem_2022_101261 crossref_primary_10_1016_j_ccr_2023_215337 crossref_primary_10_1002_smll_202409011 crossref_primary_10_1002_adhm_202101055 crossref_primary_10_1002_smll_202307309 crossref_primary_10_1021_jacs_9b12936 crossref_primary_10_1016_j_aca_2020_12_037 crossref_primary_10_1016_j_cej_2025_161664 crossref_primary_10_1002_ange_201915783 crossref_primary_10_1002_agt2_575 crossref_primary_10_1016_j_ejmech_2023_115975 |
Cites_doi | 10.1021/acs.chemrev.7b00042 10.33549/physiolres.932587 10.1021/acsnano.8b08398 10.1039/C6SC04947H 10.1016/j.ccr.2017.08.003 10.1002/anie.201900366 10.1269/jrr.45.181 10.1021/acsnano.8b03138 10.1038/nrc1894 10.1002/adhm.201800477 10.1016/j.biomaterials.2017.10.034 10.1002/adma.201606167 10.1038/nrc1071 10.1016/j.theriogenology.2006.07.021 10.1002/anie.201805446 10.1021/acs.nanolett.8b03936 10.1039/C5TC03933A 10.1002/adma.201102850 10.1007/s12274-017-1728-7 10.1021/cr900300p 10.18632/oncotarget.20189 10.1021/ac403616c 10.1039/C7MH00469A 10.1038/s41467-018-04222-8 10.1039/C6CS00271D 10.1039/C8SC05119D 10.1021/acsami.8b05546 10.1021/acsnano.7b00312 10.1002/anie.201800834 10.1089/cbr.2017.2378 10.1021/cr010371d 10.1089/ars.2012.5000 10.1002/adma.201806331 10.1016/S1011-1344(96)07428-3 10.1016/j.bioorg.2018.09.013 10.1039/C6NR03656B 10.1016/j.biomaterials.2016.05.031 10.1039/C5SC01733E 10.1039/c3cs35531d 10.1063/1.478813 10.1002/adbi.201800074 10.1021/jacs.8b08658 10.1038/nchembio809 10.1039/C7QM00092H 10.1088/1361-6528/aabbdb 10.1016/j.ccr.2017.10.006 10.1021/jacs.7b10150 10.1021/acsami.7b14548 10.1016/S0010-8545(02)00034-6 10.1002/advs.201700085 10.1039/C6CC05130H 10.1111/j.1751-1097.1983.tb04472.x 10.1021/jp075248q 10.1016/S0006-291X(03)00817-9 10.1002/anie.201809641 10.1039/C7SC04963C |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acsnano.9b04430 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 11293 |
ExternalDocumentID | 31525947 10_1021_acsnano_9b04430 b112188057 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 4.4 5VS 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 |
ID | FETCH-LOGICAL-a399t-e35658f427c979e2363cffefb88c2eb9f424b9dd0ac954da2661b796ddd752d73 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Fri Jul 11 13:41:45 EDT 2025 Thu Jan 02 22:59:03 EST 2025 Tue Jul 01 01:34:30 EDT 2025 Thu Apr 24 23:11:26 EDT 2025 Thu Aug 27 13:41:54 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | aggregation-induced emission cationization photodynamic therapy organelle-specific imaging reactive oxygen species |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a399t-e35658f427c979e2363cffefb88c2eb9f424b9dd0ac954da2661b796ddd752d73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5522-2853 0000-0002-6866-3877 0000-0002-0293-964X |
PMID | 31525947 |
PQID | 2293011232 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2293011232 pubmed_primary_31525947 crossref_citationtrail_10_1021_acsnano_9b04430 crossref_primary_10_1021_acsnano_9b04430 acs_journals_10_1021_acsnano_9b04430 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-22 |
PublicationDateYYYYMMDD | 2019-10-22 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-22 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref46/cit46 ref49/cit49 ref13/cit13 Favor J. D. L. (ref42/cit42) 2014; 63 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref29/cit29 doi: 10.1021/acs.chemrev.7b00042 – volume: 63 start-page: 387 year: 2014 ident: ref42/cit42 publication-title: Physiol. Res. doi: 10.33549/physiolres.932587 – ident: ref16/cit16 doi: 10.1021/acsnano.8b08398 – ident: ref30/cit30 doi: 10.1039/C6SC04947H – ident: ref10/cit10 doi: 10.1016/j.ccr.2017.08.003 – ident: ref13/cit13 doi: 10.1002/anie.201900366 – ident: ref56/cit56 doi: 10.1269/jrr.45.181 – ident: ref11/cit11 doi: 10.1021/acsnano.8b03138 – ident: ref2/cit2 doi: 10.1038/nrc1894 – ident: ref21/cit21 doi: 10.1002/adhm.201800477 – ident: ref28/cit28 doi: 10.1016/j.biomaterials.2017.10.034 – ident: ref54/cit54 doi: 10.1002/adma.201606167 – ident: ref5/cit5 doi: 10.1038/nrc1071 – ident: ref40/cit40 doi: 10.1016/j.theriogenology.2006.07.021 – ident: ref15/cit15 doi: 10.1002/anie.201805446 – ident: ref12/cit12 doi: 10.1021/acs.nanolett.8b03936 – ident: ref32/cit32 doi: 10.1039/C5TC03933A – ident: ref35/cit35 doi: 10.1002/adma.201102850 – ident: ref24/cit24 doi: 10.1007/s12274-017-1728-7 – ident: ref3/cit3 doi: 10.1021/cr900300p – ident: ref8/cit8 doi: 10.18632/oncotarget.20189 – ident: ref51/cit51 doi: 10.1021/ac403616c – ident: ref14/cit14 doi: 10.1039/C7MH00469A – ident: ref33/cit33 doi: 10.1038/s41467-018-04222-8 – ident: ref4/cit4 doi: 10.1039/C6CS00271D – ident: ref49/cit49 doi: 10.1039/C8SC05119D – ident: ref19/cit19 doi: 10.1021/acsami.8b05546 – ident: ref17/cit17 doi: 10.1021/acsnano.7b00312 – ident: ref46/cit46 doi: 10.1002/anie.201800834 – ident: ref1/cit1 doi: 10.1089/cbr.2017.2378 – ident: ref37/cit37 doi: 10.1021/cr010371d – ident: ref55/cit55 doi: 10.1089/ars.2012.5000 – ident: ref20/cit20 doi: 10.1002/adma.201806331 – ident: ref23/cit23 doi: 10.1016/S1011-1344(96)07428-3 – ident: ref31/cit31 doi: 10.1016/j.bioorg.2018.09.013 – ident: ref47/cit47 doi: 10.1039/C6NR03656B – ident: ref53/cit53 doi: 10.1016/j.biomaterials.2016.05.031 – ident: ref43/cit43 doi: 10.1039/C5SC01733E – ident: ref7/cit7 doi: 10.1039/c3cs35531d – ident: ref44/cit44 doi: 10.1063/1.478813 – ident: ref22/cit22 doi: 10.1002/adbi.201800074 – ident: ref41/cit41 doi: 10.1021/jacs.8b08658 – ident: ref52/cit52 doi: 10.1038/nchembio809 – ident: ref18/cit18 doi: 10.1039/C7QM00092H – ident: ref27/cit27 doi: 10.1088/1361-6528/aabbdb – ident: ref9/cit9 doi: 10.1016/j.ccr.2017.10.006 – ident: ref34/cit34 doi: 10.1021/jacs.7b10150 – ident: ref50/cit50 doi: 10.1021/acsami.7b14548 – ident: ref6/cit6 doi: 10.1016/S0010-8545(02)00034-6 – ident: ref38/cit38 doi: 10.1002/advs.201700085 – ident: ref48/cit48 doi: 10.1039/C6CC05130H – ident: ref39/cit39 doi: 10.1111/j.1751-1097.1983.tb04472.x – ident: ref45/cit45 doi: 10.1021/jp075248q – ident: ref36/cit36 doi: 10.1016/S0006-291X(03)00817-9 – ident: ref25/cit25 doi: 10.1002/anie.201809641 – ident: ref26/cit26 doi: 10.1039/C7SC04963C |
SSID | ssj0057876 |
Score | 2.6550126 |
Snippet | Efficient organic photosensitizers (PSs) have attracted much attention because of their promising applications in photodynamic therapy (PDT). However,... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 11283 |
Title | Tuning Organelle Specificity and Photodynamic Therapy Efficiency by Molecular Function Design |
URI | http://dx.doi.org/10.1021/acsnano.9b04430 https://www.ncbi.nlm.nih.gov/pubmed/31525947 https://www.proquest.com/docview/2293011232 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA4yX_TB-2XeiLAHXzprmjbN45gbQ5gIbrAXKbkiKK3Y7mH-ek_abl7G0Oc2oT05yfednOQ7CLUAEaUUVHuxCH2PCis8EdHQI9SE1ifKN4G7Ozy8jwZjejcJJ19i0b8z-OTmWqg8FWnW5tKnNIDofJ1EMXNxVqf7OF90nd9FVQIZAmRgEQsVn6UOHAyp_CcMreCWJcb0t6vTWXkpTeiOlry0p4Vsq49l4ca_P38HbdVME3cq19hFaybdQ5vf9Af30dNo6rZFcHkh0-3g47IcvROVKGZYpBo_PGdFpquq9XhUKRDgXik74e5sYjnDw3mBXdwHjHTjjG_LYyEHaNzvjboDr6634AmgKYVnAmB3saWEKc64IUEUKGuNlXGsiJEcnlDJtfaF4iHVwmG7ZDzSWrOQaBYcokaapeYYYZ_JkAUWQl4rqYEoW4QMiImVgI1ECtFELTBMUs-XPClT4eQmqa2V1NZqovZ8lBJVa5a70hmvqxtcLRq8VXIdq1-9nA97AlPK5UnA1Nk0TwhQIFj2gGs20VHlD4vOAlcvilN28r8fOEUbwLC4AztCzlCjeJ-ac2Axhbwo_fcT8dPuDg |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB4h9rBwYFme3RdG4sAlJXWcuD6iQtVdWgSiSFxQZMe2kEAJIukBfv2OnaTArirtXpPYcsZjzzcezzcAB2gRlZJMB30ZhwGTVgYyYXFAmYltSLPQRC53eHKejK7Zr5v4ZgnCNhcGB1FiT6UP4r-yC_SO8Fku86IrVMhYhE76B4Qi1Llbx4Ordu916pfUcWT0kxFMzMl8_urAWaOsfG-NFkBMb2qGn-ByPkh_w-S-O6tUN3v5g7_xf_5iHdYa3EmOa0X5DEsm34DVN2yEm3A7nblDEuLTM915PvHF6R3FRPVMZK7JxV1RFbquYU-mNR8BOfUkFC6Dk6hnMmnL7ZIhWkw36-TEXxLZguvh6XQwCprqC4FE0FIFJkIB9y2jPBNcGBolUWatsarfz6hRAt8wJbQOZSZipqWz9IqLRGvNY6p5tA3LeZGbXSAhVzGPLDrAVjGDPreMOcIUq9BSUiVlBw5QMGmzesrUB8ZpL22klTbS6kC3naw0axjMXSGNh8UNDucNHmvyjsWf7rezn-ICc1ETFHUxK1OKgAg3QUSeHdip1WLeWeSqRwnGv_zbD-zBx9F0Mk7HP8_PvsIKYi_hzCCl32C5epqZ74hvKvXDq_Rv4E32bw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iIHrw_VifETx46VrTtNkcRV18I7gLXqQkTYKgtGK7B_31zqTdxQcLem2bkE4mmW8ymW8I2QeLqLXiJuioOAy4cipQCY8Dxm3sQpaFNsLc4Zvb5LzPLx_ihyYpDHNhYBAl9FT6ID6u6lfjGoaBo0N4nqu8aEsdch6Boz6FQTt0uY5P7of7L6pgUseSwVcGQDEi9PnVAVqkrPxukcbATG9uuvOkPxqov2Xy3B5Uup19_OBw_O-fLJC5Bn_S41phFsmEzZfI7BdWwmXy2BvgYQn1aZp4rk99kXqkmqjeqcoNvXsqqsLUtexpr-YloGeejAIzOal-pzfDsru0C5YTZ5-e-ssiK6TfPeudnAdNFYZAAXipAhuBkDuOM5FJIS2Lkihzzjrd6WTMaglvuJbGhCqTMTcKLb4WMjHGiJgZEa2SybzI7TqhodCxiBw4wk5zC763igXAFafBYjKtVIvsg2DSZhWVqQ-Qs6O0kVbaSKtF2sMJS7OGyRwLaryMb3AwavBak3iM_3RvqAEpLDSMnoCoi0GZMgBGsBkCAm2RtVo1Rp1FWEVKcrHxtx_YJdN3p930-uL2apPMAASTaA0Z2yKT1dvAbgPMqfSO1-pP3Of48g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+Organelle+Specificity+and+Photodynamic+Therapy+Efficiency+by+Molecular+Function+Design&rft.jtitle=ACS+nano&rft.au=Liu%2C+Zhiyang&rft.au=Zou%2C+Hang&rft.au=Zhao%2C+Zheng&rft.au=Zhang%2C+Pengfei&rft.date=2019-10-22&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=13&rft.issue=10&rft.spage=11283&rft.epage=11293&rft_id=info:doi/10.1021%2Facsnano.9b04430&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsnano_9b04430 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |