Tuning Organelle Specificity and Photodynamic Therapy Efficiency by Molecular Function Design

Efficient organic photosensitizers (PSs) have attracted much attention because of their promising applications in photodynamic therapy (PDT). However, guidelines on their molecular design are rarely reported. In this work, a series of PSs are designed and synthesized based on a triphenylamine-azaflu...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 13; no. 10; pp. 11283 - 11293
Main Authors Liu, Zhiyang, Zou, Hang, Zhao, Zheng, Zhang, Pengfei, Shan, Guo-Gang, Kwok, Ryan T. K, Lam, Jacky W. Y, Zheng, Lei, Tang, Ben Zhong
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 22.10.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Efficient organic photosensitizers (PSs) have attracted much attention because of their promising applications in photodynamic therapy (PDT). However, guidelines on their molecular design are rarely reported. In this work, a series of PSs are designed and synthesized based on a triphenylamine-azafluorenone core. Their structure–property-application relationships are systematically studied. Cationization is an effective strategy to enhance the PDT efficiency of PSs by targeting mitochondria. From the molecularly dispersed state to the aggregate state, the fluorescence and the reactive oxygen species generation efficiency of PSs with aggregation-induced emission (AIE) increase due to the restriction of the intramolecular motions and enhancement of intersystem crossing. Cationized mitochondrion-targeting PSs show higher PDT efficiency than that of nonionized ones targeting lipid droplets. The ability of AIE PSs to kill cancer cells can be further enhanced by combination of PDT with radiotherapy. Such results should trigger research enthusiasm for designing and synthesizing AIE PSs with better PDT efficiency and properties.
AbstractList Efficient organic photosensitizers (PSs) have attracted much attention because of their promising applications in photodynamic therapy (PDT). However, guidelines on their molecular design are rarely reported. In this work, a series of PSs are designed and synthesized based on a triphenylamine-azafluorenone core. Their structure–property-application relationships are systematically studied. Cationization is an effective strategy to enhance the PDT efficiency of PSs by targeting mitochondria. From the molecularly dispersed state to the aggregate state, the fluorescence and the reactive oxygen species generation efficiency of PSs with aggregation-induced emission (AIE) increase due to the restriction of the intramolecular motions and enhancement of intersystem crossing. Cationized mitochondrion-targeting PSs show higher PDT efficiency than that of nonionized ones targeting lipid droplets. The ability of AIE PSs to kill cancer cells can be further enhanced by combination of PDT with radiotherapy. Such results should trigger research enthusiasm for designing and synthesizing AIE PSs with better PDT efficiency and properties.
Efficient organic photosensitizers (PSs) have attracted much attention because of their promising applications in photodynamic therapy (PDT). However, guidelines on their molecular design are rarely reported. In this work, a series of PSs are designed and synthesized based on a triphenylamine-azafluorenone core. Their structure-property-application relationships are systematically studied. Cationization is an effective strategy to enhance the PDT efficiency of PSs by targeting mitochondria. From the molecularly dispersed state to the aggregate state, the fluorescence and the reactive oxygen species generation efficiency of PSs with aggregation-induced emission (AIE) increase due to the restriction of the intramolecular motions and enhancement of intersystem crossing. Cationized mitochondrion-targeting PSs show higher PDT efficiency than that of nonionized ones targeting lipid droplets. The ability of AIE PSs to kill cancer cells can be further enhanced by combination of PDT with radiotherapy. Such results should trigger research enthusiasm for designing and synthesizing AIE PSs with better PDT efficiency and properties.Efficient organic photosensitizers (PSs) have attracted much attention because of their promising applications in photodynamic therapy (PDT). However, guidelines on their molecular design are rarely reported. In this work, a series of PSs are designed and synthesized based on a triphenylamine-azafluorenone core. Their structure-property-application relationships are systematically studied. Cationization is an effective strategy to enhance the PDT efficiency of PSs by targeting mitochondria. From the molecularly dispersed state to the aggregate state, the fluorescence and the reactive oxygen species generation efficiency of PSs with aggregation-induced emission (AIE) increase due to the restriction of the intramolecular motions and enhancement of intersystem crossing. Cationized mitochondrion-targeting PSs show higher PDT efficiency than that of nonionized ones targeting lipid droplets. The ability of AIE PSs to kill cancer cells can be further enhanced by combination of PDT with radiotherapy. Such results should trigger research enthusiasm for designing and synthesizing AIE PSs with better PDT efficiency and properties.
Author Lam, Jacky W. Y
Zou, Hang
Shan, Guo-Gang
Kwok, Ryan T. K
Zhang, Pengfei
Liu, Zhiyang
Zheng, Lei
Zhao, Zheng
Tang, Ben Zhong
AuthorAffiliation Guangdong Key Laboratory of Nanomedicine, Shenzhen, Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics
HKUST Shenzhen Research Institute
Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, Institute of Molecular Functional Materials, Department of Chemical and Biological Engineering and Institute for Advanced Study
Department of Laboratory Medicine, Nanfang Hospital
Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
AuthorAffiliation_xml – name: HKUST Shenzhen Research Institute
– name: Department of Laboratory Medicine, Nanfang Hospital
– name: Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices
– name: Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, Institute of Molecular Functional Materials, Department of Chemical and Biological Engineering and Institute for Advanced Study
– name: Guangdong Key Laboratory of Nanomedicine, Shenzhen, Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics
– name: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
Author_xml – sequence: 1
  givenname: Zhiyang
  orcidid: 0000-0002-5522-2853
  surname: Liu
  fullname: Liu, Zhiyang
  organization: HKUST Shenzhen Research Institute
– sequence: 2
  givenname: Hang
  surname: Zou
  fullname: Zou, Hang
  organization: Department of Laboratory Medicine, Nanfang Hospital
– sequence: 3
  givenname: Zheng
  surname: Zhao
  fullname: Zhao, Zheng
  organization: Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, Institute of Molecular Functional Materials, Department of Chemical and Biological Engineering and Institute for Advanced Study
– sequence: 4
  givenname: Pengfei
  surname: Zhang
  fullname: Zhang, Pengfei
  organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
– sequence: 5
  givenname: Guo-Gang
  surname: Shan
  fullname: Shan, Guo-Gang
  organization: Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, Institute of Molecular Functional Materials, Department of Chemical and Biological Engineering and Institute for Advanced Study
– sequence: 6
  givenname: Ryan T. K
  orcidid: 0000-0002-6866-3877
  surname: Kwok
  fullname: Kwok, Ryan T. K
  organization: Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, Institute of Molecular Functional Materials, Department of Chemical and Biological Engineering and Institute for Advanced Study
– sequence: 7
  givenname: Jacky W. Y
  surname: Lam
  fullname: Lam, Jacky W. Y
  organization: Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, Institute of Molecular Functional Materials, Department of Chemical and Biological Engineering and Institute for Advanced Study
– sequence: 8
  givenname: Lei
  surname: Zheng
  fullname: Zheng, Lei
  email: nfyyzhenglei@smu.edu.cn
  organization: Department of Laboratory Medicine, Nanfang Hospital
– sequence: 9
  givenname: Ben Zhong
  orcidid: 0000-0002-0293-964X
  surname: Tang
  fullname: Tang, Ben Zhong
  email: tangbenz@ust.hk
  organization: Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31525947$$D View this record in MEDLINE/PubMed
BookMark eNp1kE1LAzEURYMo2lbX7iRLQWrzMZmZLEVbFZQKVnAjIZNkamSa1GRmMf_elFYXQlfvwTv3wT1DcOi8MwCcY3SNEcETqaKTzl_zCmUZRQdggDnNx6jM3w__doZPwDDGL4RYURb5MTihmBHGs2IAPhads24J52EpnWkaA1_XRtnaKtv2UDoNXz5963Xv5MoquPg0Qa57OK03hHGqh1UPn31jVNfIAGedU631Dt6ZaJfuFBzVsonmbDdH4G02Xdw-jJ_m94-3N09jSTlvx4aynJV1RgrFC24Izamqa1NXZamIqXi6ZBXXGknFWaYlyXNcFTzXWheM6IKOwOX27zr4787EVqxsVKlO6uS7KAjhFGFMKEnoxQ7tqpXRYh3sSoZe_CpJANsCKvgYg6lFUiE3pdogbSMwEhv1Yqde7NSn3ORf7vf1_sTVNpEO4st3wSVHe-kfeC6Xyw
CitedBy_id crossref_primary_10_1021_acsanm_2c05262
crossref_primary_10_1039_D3RA04013E
crossref_primary_10_1002_adhm_202101607
crossref_primary_10_1039_D3TB00219E
crossref_primary_10_1002_VIW_20200121
crossref_primary_10_1039_D1TB00881A
crossref_primary_10_1038_s41467_024_52458_4
crossref_primary_10_1002_adhm_202101167
crossref_primary_10_1021_acsabm_1c00398
crossref_primary_10_1016_j_bj_2024_100729
crossref_primary_10_1039_D0SC03093G
crossref_primary_10_1002_anie_202301910
crossref_primary_10_1016_j_actbio_2024_05_034
crossref_primary_10_6023_cjoc202104040
crossref_primary_10_1016_j_colsurfb_2020_111346
crossref_primary_10_1039_D1CS01138C
crossref_primary_10_3389_fchem_2022_984268
crossref_primary_10_1002_adhm_202101036
crossref_primary_10_1016_j_gce_2022_07_006
crossref_primary_10_1002_bio_4669
crossref_primary_10_1021_accountsmr_1c00202
crossref_primary_10_1016_j_gce_2022_07_004
crossref_primary_10_1039_D2NR06593B
crossref_primary_10_1016_j_dyepig_2022_110332
crossref_primary_10_1021_acs_jpcc_2c08479
crossref_primary_10_1021_acsabm_2c00370
crossref_primary_10_1039_D2QM00568A
crossref_primary_10_1016_j_apmt_2020_100877
crossref_primary_10_1155_2022_1178039
crossref_primary_10_1021_acs_chemrev_1c00381
crossref_primary_10_1039_D3SM01715J
crossref_primary_10_1002_adhm_202100055
crossref_primary_10_1039_D0TB02801K
crossref_primary_10_1002_ange_202001103
crossref_primary_10_1039_D1CS00647A
crossref_primary_10_1039_D2SC00381C
crossref_primary_10_1039_D2CC01559E
crossref_primary_10_1021_acsami_1c02585
crossref_primary_10_1002_anie_202105607
crossref_primary_10_1021_acs_jpclett_2c00541
crossref_primary_10_1016_j_engreg_2022_01_005
crossref_primary_10_1016_j_ccr_2023_215654
crossref_primary_10_1016_j_ccr_2024_215711
crossref_primary_10_1039_D0TB00888E
crossref_primary_10_1021_acsami_2c14550
crossref_primary_10_1039_D2NR02273G
crossref_primary_10_1039_D2CC02230C
crossref_primary_10_1016_j_biomaterials_2021_121227
crossref_primary_10_1039_D1TB02598H
crossref_primary_10_1016_j_dyepig_2022_110354
crossref_primary_10_1016_j_dyepig_2020_108599
crossref_primary_10_1016_j_biomaterials_2021_120934
crossref_primary_10_3389_fmolb_2021_773162
crossref_primary_10_1021_acsami_1c23156
crossref_primary_10_1016_j_cej_2023_147402
crossref_primary_10_1002_adfm_202104026
crossref_primary_10_1039_D0CC02051F
crossref_primary_10_3390_cancers15030585
crossref_primary_10_3390_bios12090722
crossref_primary_10_3390_molecules26020268
crossref_primary_10_1002_anie_202000845
crossref_primary_10_3389_fonc_2024_1373263
crossref_primary_10_1039_D0NR07342C
crossref_primary_10_1007_s11426_021_1055_0
crossref_primary_10_1021_acsanm_2c00451
crossref_primary_10_1016_j_pdpdt_2021_102254
crossref_primary_10_2174_0109298673300702240805055930
crossref_primary_10_1016_j_jcis_2024_03_197
crossref_primary_10_1021_acs_analchem_0c02298
crossref_primary_10_1016_j_dyepig_2022_110524
crossref_primary_10_1002_smtd_202101247
crossref_primary_10_1002_adtp_202100176
crossref_primary_10_1016_j_biomaterials_2022_121666
crossref_primary_10_1016_j_biomaterials_2021_120870
crossref_primary_10_1016_j_dyepig_2023_111841
crossref_primary_10_1038_s41467_023_41687_8
crossref_primary_10_1039_D4CC02264E
crossref_primary_10_1002_adma_202209529
crossref_primary_10_1039_D2SC00067A
crossref_primary_10_1039_D1SC04124J
crossref_primary_10_1002_anie_202214875
crossref_primary_10_1016_j_mtbio_2025_101564
crossref_primary_10_1016_j_cclet_2023_109190
crossref_primary_10_1002_anie_202013228
crossref_primary_10_1007_s11426_023_1926_9
crossref_primary_10_1016_j_cclet_2022_107805
crossref_primary_10_1002_adhm_202101223
crossref_primary_10_1002_adhm_202100136
crossref_primary_10_1007_s10895_024_03680_2
crossref_primary_10_1016_j_cej_2023_143829
crossref_primary_10_1016_j_mattod_2022_06_008
crossref_primary_10_3390_bios12090745
crossref_primary_10_1007_s11095_022_03216_y
crossref_primary_10_1039_D2DT02410A
crossref_primary_10_1002_smll_202205440
crossref_primary_10_1002_ange_202214875
crossref_primary_10_6023_cjoc202403038
crossref_primary_10_1021_acs_joc_2c01089
crossref_primary_10_1002_adma_202402182
crossref_primary_10_1002_ange_202013228
crossref_primary_10_1039_D2QI00081D
crossref_primary_10_1002_ange_202000845
crossref_primary_10_1021_acsami_1c24329
crossref_primary_10_1002_adma_202303186
crossref_primary_10_1002_agt2_172
crossref_primary_10_1002_smtd_202000046
crossref_primary_10_1021_acsabm_2c00394
crossref_primary_10_1002_anie_201916729
crossref_primary_10_3390_bios12050348
crossref_primary_10_3390_bios12111027
crossref_primary_10_1021_acsnano_1c10019
crossref_primary_10_1039_C9CS00495E
crossref_primary_10_1039_D1BM01780B
crossref_primary_10_1021_acsabm_1c00673
crossref_primary_10_1021_acsnano_3c04564
crossref_primary_10_1016_j_dyepig_2023_111413
crossref_primary_10_1039_D1TB00049G
crossref_primary_10_1021_acsabm_9b01094
crossref_primary_10_1021_acs_inorgchem_3c04350
crossref_primary_10_1039_D0CC07336A
crossref_primary_10_1039_D0TC01836H
crossref_primary_10_1016_j_snb_2024_135432
crossref_primary_10_1002_adhm_202300818
crossref_primary_10_1021_acsnano_1c02882
crossref_primary_10_3390_molecules28114404
crossref_primary_10_1016_j_addr_2022_114536
crossref_primary_10_1016_j_dyepig_2023_111516
crossref_primary_10_1002_anie_202001103
crossref_primary_10_1016_j_actbio_2021_05_048
crossref_primary_10_1039_D1SC04770A
crossref_primary_10_1002_ange_202105607
crossref_primary_10_1002_adom_202402179
crossref_primary_10_1039_D2BM00704E
crossref_primary_10_1039_D0SC04285D
crossref_primary_10_1021_acsami_2c05860
crossref_primary_10_1016_j_bioorg_2023_107020
crossref_primary_10_1021_acsami_0c20283
crossref_primary_10_1016_j_nantod_2023_101920
crossref_primary_10_1021_acsmaterialslett_1c00818
crossref_primary_10_2147_IJN_S384196
crossref_primary_10_1016_j_jcis_2024_09_242
crossref_primary_10_1016_j_msec_2021_112546
crossref_primary_10_1021_acsnano_1c01577
crossref_primary_10_1021_acsabm_3c00298
crossref_primary_10_1021_jacs_3c08579
crossref_primary_10_1039_D3SC00588G
crossref_primary_10_1039_D2TB00719C
crossref_primary_10_1002_advs_202302395
crossref_primary_10_1016_j_mtcomm_2022_103791
crossref_primary_10_1021_acsami_1c23797
crossref_primary_10_1016_j_biomaterials_2020_120598
crossref_primary_10_1186_s12951_022_01553_z
crossref_primary_10_1021_acsnano_0c03080
crossref_primary_10_26599_NTM_2022_9130010
crossref_primary_10_1002_advs_202417179
crossref_primary_10_1021_acsnano_1c03508
crossref_primary_10_1002_adfm_202002546
crossref_primary_10_1016_j_cej_2020_128133
crossref_primary_10_1002_agt2_657
crossref_primary_10_1021_acsmacrolett_3c00500
crossref_primary_10_1016_j_matt_2020_12_005
crossref_primary_10_1016_j_nantod_2024_102327
crossref_primary_10_1039_D1TC04343A
crossref_primary_10_1016_j_jphotochemrev_2024_100665
crossref_primary_10_1002_advs_202304042
crossref_primary_10_1016_j_dyepig_2021_109897
crossref_primary_10_1016_j_dyepig_2022_110122
crossref_primary_10_1093_rb_rbad044
crossref_primary_10_1021_acsabm_2c00681
crossref_primary_10_3389_fmats_2024_1446307
crossref_primary_10_1016_j_jcis_2023_07_133
crossref_primary_10_1002_agt2_540
crossref_primary_10_1021_acsnano_2c01721
crossref_primary_10_1002_ange_201916729
crossref_primary_10_1039_D1CC05483J
crossref_primary_10_1016_j_ccr_2024_216027
crossref_primary_10_1002_ange_202301910
crossref_primary_10_1007_s10853_022_07529_6
crossref_primary_10_1016_j_bioactmat_2021_05_031
crossref_primary_10_1002_bio_4599
crossref_primary_10_1002_adhm_202301022
crossref_primary_10_1016_j_snb_2021_130128
crossref_primary_10_1016_j_jorganchem_2023_122819
crossref_primary_10_1007_s40843_021_1652_2
crossref_primary_10_1039_D2TB02295H
crossref_primary_10_1002_adma_202415673
crossref_primary_10_1016_j_snb_2023_134201
crossref_primary_10_1016_j_talanta_2024_127074
crossref_primary_10_1039_D1QM00752A
crossref_primary_10_1016_j_talanta_2024_125677
crossref_primary_10_1038_s41467_022_30721_w
crossref_primary_10_1021_acs_jmedchem_4c02836
crossref_primary_10_1021_acsnano_0c00586
crossref_primary_10_1002_adhm_202101067
crossref_primary_10_1002_adhm_202101066
crossref_primary_10_1016_j_matdes_2023_111838
crossref_primary_10_1002_adma_202001457
crossref_primary_10_1002_agt2_7
crossref_primary_10_1039_D1CS01167G
crossref_primary_10_1021_acs_analchem_3c03986
crossref_primary_10_1039_D2BM00864E
crossref_primary_10_1021_acs_chemmater_0c01187
crossref_primary_10_1016_j_cclet_2023_108934
crossref_primary_10_1016_j_ccr_2022_214508
crossref_primary_10_1002_adfm_202002057
crossref_primary_10_1002_cphc_202400563
crossref_primary_10_1039_D2SC06445F
crossref_primary_10_1002_anie_201915783
crossref_primary_10_1016_j_mtchem_2022_101261
crossref_primary_10_1016_j_ccr_2023_215337
crossref_primary_10_1002_smll_202409011
crossref_primary_10_1002_adhm_202101055
crossref_primary_10_1002_smll_202307309
crossref_primary_10_1021_jacs_9b12936
crossref_primary_10_1016_j_aca_2020_12_037
crossref_primary_10_1016_j_cej_2025_161664
crossref_primary_10_1002_ange_201915783
crossref_primary_10_1002_agt2_575
crossref_primary_10_1016_j_ejmech_2023_115975
Cites_doi 10.1021/acs.chemrev.7b00042
10.33549/physiolres.932587
10.1021/acsnano.8b08398
10.1039/C6SC04947H
10.1016/j.ccr.2017.08.003
10.1002/anie.201900366
10.1269/jrr.45.181
10.1021/acsnano.8b03138
10.1038/nrc1894
10.1002/adhm.201800477
10.1016/j.biomaterials.2017.10.034
10.1002/adma.201606167
10.1038/nrc1071
10.1016/j.theriogenology.2006.07.021
10.1002/anie.201805446
10.1021/acs.nanolett.8b03936
10.1039/C5TC03933A
10.1002/adma.201102850
10.1007/s12274-017-1728-7
10.1021/cr900300p
10.18632/oncotarget.20189
10.1021/ac403616c
10.1039/C7MH00469A
10.1038/s41467-018-04222-8
10.1039/C6CS00271D
10.1039/C8SC05119D
10.1021/acsami.8b05546
10.1021/acsnano.7b00312
10.1002/anie.201800834
10.1089/cbr.2017.2378
10.1021/cr010371d
10.1089/ars.2012.5000
10.1002/adma.201806331
10.1016/S1011-1344(96)07428-3
10.1016/j.bioorg.2018.09.013
10.1039/C6NR03656B
10.1016/j.biomaterials.2016.05.031
10.1039/C5SC01733E
10.1039/c3cs35531d
10.1063/1.478813
10.1002/adbi.201800074
10.1021/jacs.8b08658
10.1038/nchembio809
10.1039/C7QM00092H
10.1088/1361-6528/aabbdb
10.1016/j.ccr.2017.10.006
10.1021/jacs.7b10150
10.1021/acsami.7b14548
10.1016/S0010-8545(02)00034-6
10.1002/advs.201700085
10.1039/C6CC05130H
10.1111/j.1751-1097.1983.tb04472.x
10.1021/jp075248q
10.1016/S0006-291X(03)00817-9
10.1002/anie.201809641
10.1039/C7SC04963C
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acsnano.9b04430
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 11293
ExternalDocumentID 31525947
10_1021_acsnano_9b04430
b112188057
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
4.4
5VS
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
ID FETCH-LOGICAL-a399t-e35658f427c979e2363cffefb88c2eb9f424b9dd0ac954da2661b796ddd752d73
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 13:41:45 EDT 2025
Thu Jan 02 22:59:03 EST 2025
Tue Jul 01 01:34:30 EDT 2025
Thu Apr 24 23:11:26 EDT 2025
Thu Aug 27 13:41:54 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords aggregation-induced emission
cationization
photodynamic therapy
organelle-specific imaging
reactive oxygen species
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a399t-e35658f427c979e2363cffefb88c2eb9f424b9dd0ac954da2661b796ddd752d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5522-2853
0000-0002-6866-3877
0000-0002-0293-964X
PMID 31525947
PQID 2293011232
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2293011232
pubmed_primary_31525947
crossref_citationtrail_10_1021_acsnano_9b04430
crossref_primary_10_1021_acsnano_9b04430
acs_journals_10_1021_acsnano_9b04430
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-22
PublicationDateYYYYMMDD 2019-10-22
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-22
  day: 22
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref46/cit46
ref49/cit49
ref13/cit13
Favor J. D. L. (ref42/cit42) 2014; 63
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref29/cit29
  doi: 10.1021/acs.chemrev.7b00042
– volume: 63
  start-page: 387
  year: 2014
  ident: ref42/cit42
  publication-title: Physiol. Res.
  doi: 10.33549/physiolres.932587
– ident: ref16/cit16
  doi: 10.1021/acsnano.8b08398
– ident: ref30/cit30
  doi: 10.1039/C6SC04947H
– ident: ref10/cit10
  doi: 10.1016/j.ccr.2017.08.003
– ident: ref13/cit13
  doi: 10.1002/anie.201900366
– ident: ref56/cit56
  doi: 10.1269/jrr.45.181
– ident: ref11/cit11
  doi: 10.1021/acsnano.8b03138
– ident: ref2/cit2
  doi: 10.1038/nrc1894
– ident: ref21/cit21
  doi: 10.1002/adhm.201800477
– ident: ref28/cit28
  doi: 10.1016/j.biomaterials.2017.10.034
– ident: ref54/cit54
  doi: 10.1002/adma.201606167
– ident: ref5/cit5
  doi: 10.1038/nrc1071
– ident: ref40/cit40
  doi: 10.1016/j.theriogenology.2006.07.021
– ident: ref15/cit15
  doi: 10.1002/anie.201805446
– ident: ref12/cit12
  doi: 10.1021/acs.nanolett.8b03936
– ident: ref32/cit32
  doi: 10.1039/C5TC03933A
– ident: ref35/cit35
  doi: 10.1002/adma.201102850
– ident: ref24/cit24
  doi: 10.1007/s12274-017-1728-7
– ident: ref3/cit3
  doi: 10.1021/cr900300p
– ident: ref8/cit8
  doi: 10.18632/oncotarget.20189
– ident: ref51/cit51
  doi: 10.1021/ac403616c
– ident: ref14/cit14
  doi: 10.1039/C7MH00469A
– ident: ref33/cit33
  doi: 10.1038/s41467-018-04222-8
– ident: ref4/cit4
  doi: 10.1039/C6CS00271D
– ident: ref49/cit49
  doi: 10.1039/C8SC05119D
– ident: ref19/cit19
  doi: 10.1021/acsami.8b05546
– ident: ref17/cit17
  doi: 10.1021/acsnano.7b00312
– ident: ref46/cit46
  doi: 10.1002/anie.201800834
– ident: ref1/cit1
  doi: 10.1089/cbr.2017.2378
– ident: ref37/cit37
  doi: 10.1021/cr010371d
– ident: ref55/cit55
  doi: 10.1089/ars.2012.5000
– ident: ref20/cit20
  doi: 10.1002/adma.201806331
– ident: ref23/cit23
  doi: 10.1016/S1011-1344(96)07428-3
– ident: ref31/cit31
  doi: 10.1016/j.bioorg.2018.09.013
– ident: ref47/cit47
  doi: 10.1039/C6NR03656B
– ident: ref53/cit53
  doi: 10.1016/j.biomaterials.2016.05.031
– ident: ref43/cit43
  doi: 10.1039/C5SC01733E
– ident: ref7/cit7
  doi: 10.1039/c3cs35531d
– ident: ref44/cit44
  doi: 10.1063/1.478813
– ident: ref22/cit22
  doi: 10.1002/adbi.201800074
– ident: ref41/cit41
  doi: 10.1021/jacs.8b08658
– ident: ref52/cit52
  doi: 10.1038/nchembio809
– ident: ref18/cit18
  doi: 10.1039/C7QM00092H
– ident: ref27/cit27
  doi: 10.1088/1361-6528/aabbdb
– ident: ref9/cit9
  doi: 10.1016/j.ccr.2017.10.006
– ident: ref34/cit34
  doi: 10.1021/jacs.7b10150
– ident: ref50/cit50
  doi: 10.1021/acsami.7b14548
– ident: ref6/cit6
  doi: 10.1016/S0010-8545(02)00034-6
– ident: ref38/cit38
  doi: 10.1002/advs.201700085
– ident: ref48/cit48
  doi: 10.1039/C6CC05130H
– ident: ref39/cit39
  doi: 10.1111/j.1751-1097.1983.tb04472.x
– ident: ref45/cit45
  doi: 10.1021/jp075248q
– ident: ref36/cit36
  doi: 10.1016/S0006-291X(03)00817-9
– ident: ref25/cit25
  doi: 10.1002/anie.201809641
– ident: ref26/cit26
  doi: 10.1039/C7SC04963C
SSID ssj0057876
Score 2.6550126
Snippet Efficient organic photosensitizers (PSs) have attracted much attention because of their promising applications in photodynamic therapy (PDT). However,...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11283
Title Tuning Organelle Specificity and Photodynamic Therapy Efficiency by Molecular Function Design
URI http://dx.doi.org/10.1021/acsnano.9b04430
https://www.ncbi.nlm.nih.gov/pubmed/31525947
https://www.proquest.com/docview/2293011232
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA4yX_TB-2XeiLAHXzprmjbN45gbQ5gIbrAXKbkiKK3Y7mH-ek_abl7G0Oc2oT05yfednOQ7CLUAEaUUVHuxCH2PCis8EdHQI9SE1ifKN4G7Ozy8jwZjejcJJ19i0b8z-OTmWqg8FWnW5tKnNIDofJ1EMXNxVqf7OF90nd9FVQIZAmRgEQsVn6UOHAyp_CcMreCWJcb0t6vTWXkpTeiOlry0p4Vsq49l4ca_P38HbdVME3cq19hFaybdQ5vf9Af30dNo6rZFcHkh0-3g47IcvROVKGZYpBo_PGdFpquq9XhUKRDgXik74e5sYjnDw3mBXdwHjHTjjG_LYyEHaNzvjboDr6634AmgKYVnAmB3saWEKc64IUEUKGuNlXGsiJEcnlDJtfaF4iHVwmG7ZDzSWrOQaBYcokaapeYYYZ_JkAUWQl4rqYEoW4QMiImVgI1ECtFELTBMUs-XPClT4eQmqa2V1NZqovZ8lBJVa5a70hmvqxtcLRq8VXIdq1-9nA97AlPK5UnA1Nk0TwhQIFj2gGs20VHlD4vOAlcvilN28r8fOEUbwLC4AztCzlCjeJ-ac2Axhbwo_fcT8dPuDg
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB4h9rBwYFme3RdG4sAlJXWcuD6iQtVdWgSiSFxQZMe2kEAJIukBfv2OnaTArirtXpPYcsZjzzcezzcAB2gRlZJMB30ZhwGTVgYyYXFAmYltSLPQRC53eHKejK7Zr5v4ZgnCNhcGB1FiT6UP4r-yC_SO8Fku86IrVMhYhE76B4Qi1Llbx4Ordu916pfUcWT0kxFMzMl8_urAWaOsfG-NFkBMb2qGn-ByPkh_w-S-O6tUN3v5g7_xf_5iHdYa3EmOa0X5DEsm34DVN2yEm3A7nblDEuLTM915PvHF6R3FRPVMZK7JxV1RFbquYU-mNR8BOfUkFC6Dk6hnMmnL7ZIhWkw36-TEXxLZguvh6XQwCprqC4FE0FIFJkIB9y2jPBNcGBolUWatsarfz6hRAt8wJbQOZSZipqWz9IqLRGvNY6p5tA3LeZGbXSAhVzGPLDrAVjGDPreMOcIUq9BSUiVlBw5QMGmzesrUB8ZpL22klTbS6kC3naw0axjMXSGNh8UNDucNHmvyjsWf7rezn-ICc1ETFHUxK1OKgAg3QUSeHdip1WLeWeSqRwnGv_zbD-zBx9F0Mk7HP8_PvsIKYi_hzCCl32C5epqZ74hvKvXDq_Rv4E32bw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iIHrw_VifETx46VrTtNkcRV18I7gLXqQkTYKgtGK7B_31zqTdxQcLem2bkE4mmW8ymW8I2QeLqLXiJuioOAy4cipQCY8Dxm3sQpaFNsLc4Zvb5LzPLx_ihyYpDHNhYBAl9FT6ID6u6lfjGoaBo0N4nqu8aEsdch6Boz6FQTt0uY5P7of7L6pgUseSwVcGQDEi9PnVAVqkrPxukcbATG9uuvOkPxqov2Xy3B5Uup19_OBw_O-fLJC5Bn_S41phFsmEzZfI7BdWwmXy2BvgYQn1aZp4rk99kXqkmqjeqcoNvXsqqsLUtexpr-YloGeejAIzOal-pzfDsru0C5YTZ5-e-ssiK6TfPeudnAdNFYZAAXipAhuBkDuOM5FJIS2Lkihzzjrd6WTMaglvuJbGhCqTMTcKLb4WMjHGiJgZEa2SybzI7TqhodCxiBw4wk5zC763igXAFafBYjKtVIvsg2DSZhWVqQ-Qs6O0kVbaSKtF2sMJS7OGyRwLaryMb3AwavBak3iM_3RvqAEpLDSMnoCoi0GZMgBGsBkCAm2RtVo1Rp1FWEVKcrHxtx_YJdN3p930-uL2apPMAASTaA0Z2yKT1dvAbgPMqfSO1-pP3Of48g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+Organelle+Specificity+and+Photodynamic+Therapy+Efficiency+by+Molecular+Function+Design&rft.jtitle=ACS+nano&rft.au=Liu%2C+Zhiyang&rft.au=Zou%2C+Hang&rft.au=Zhao%2C+Zheng&rft.au=Zhang%2C+Pengfei&rft.date=2019-10-22&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=13&rft.issue=10&rft.spage=11283&rft.epage=11293&rft_id=info:doi/10.1021%2Facsnano.9b04430&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsnano_9b04430
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon