Structural Defects Modulate Electronic and Nanomechanical Properties of 2D Materials

Two-dimensional materials such as graphene and molybdenum disulfide are often subject to out-of-plane deformation, but its influence on electronic and nanomechanical properties remains poorly understood. These physical distortions modulate important properties which can be studied by atomic force mi...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 15; no. 2; pp. 2520 - 2531
Main Authors Tripathi, Manoj, Lee, Frank, Michail, Antonios, Anestopoulos, Dimitris, McHugh, James G, Ogilvie, Sean P, Large, Matthew J, Graf, Aline Amorim, Lynch, Peter J, Parthenios, John, Papagelis, Konstantinos, Roy, Soumyabrata, Saadi, M. A. S. R, Rahman, Muhammad M, Pugno, Nicola Maria, King, Alice A. K, Ajayan, Pulickel M, Dalton, Alan B
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 23.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Two-dimensional materials such as graphene and molybdenum disulfide are often subject to out-of-plane deformation, but its influence on electronic and nanomechanical properties remains poorly understood. These physical distortions modulate important properties which can be studied by atomic force microscopy and Raman spectroscopic mapping. Herein, we have identified and investigated different geometries of line defects in graphene and molybdenum disulfide such as standing collapsed wrinkles, folded wrinkles, and grain boundaries that exhibit distinct strain and doping. In addition, we apply nanomechanical atomic force microscopy to determine the influence of these defects on local stiffness. For wrinkles of similar height, the stiffness of graphene was found to be higher than that of molybdenum disulfide by 10–15% due to stronger in-plane covalent bonding. Interestingly, deflated graphene nanobubbles exhibited entirely different characteristics from wrinkles and exhibit the lowest stiffness of all graphene defects. Density functional theory reveals alteration of the bandstructures of graphene and MoS2 due to the wrinkled structure; such modulation is higher in MoS2 compared to graphene. Using this approach, we can ascertain that wrinkles are subject to significant strain but minimal doping, while edges show significant doping and minimal strain. Furthermore, defects in graphene predominantly show compressive strain and increased carrier density. Defects in molybdenum disulfide predominantly show tensile strain and reduced carrier density, with increasing tensile strain minimizing doping across all defects in both materials. The present work provides critical fundamental insights into the electronic and nanomechanical influence of intrinsic structural defects at the nanoscale, which will be valuable in straintronic device engineering.
AbstractList Two-dimensional materials such as graphene and molybdenum disulfide are often subject to out-of-plane deformation, but its influence on electronic and nanomechanical properties remains poorly understood. These physical distortions modulate important properties which can be studied by atomic force microscopy and Raman spectroscopic mapping. Herein, we have identified and investigated different geometries of line defects in graphene and molybdenum disulfide such as standing collapsed wrinkles, folded wrinkles, and grain boundaries that exhibit distinct strain and doping. In addition, we apply nanomechanical atomic force microscopy to determine the influence of these defects on local stiffness. For wrinkles of similar height, the stiffness of graphene was found to be higher than that of molybdenum disulfide by 10-15% due to stronger in-plane covalent bonding. Interestingly, deflated graphene nanobubbles exhibited entirely different characteristics from wrinkles and exhibit the lowest stiffness of all graphene defects. Density functional theory reveals alteration of the bandstructures of graphene and MoS2 due to the wrinkled structure; such modulation is higher in MoS2 compared to graphene. Using this approach, we can ascertain that wrinkles are subject to significant strain but minimal doping, while edges show significant doping and minimal strain. Furthermore, defects in graphene predominantly show compressive strain and increased carrier density. Defects in molybdenum disulfide predominantly show tensile strain and reduced carrier density, with increasing tensile strain minimizing doping across all defects in both materials. The present work provides critical fundamental insights into the electronic and nanomechanical influence of intrinsic structural defects at the nanoscale, which will be valuable in straintronic device engineering.Two-dimensional materials such as graphene and molybdenum disulfide are often subject to out-of-plane deformation, but its influence on electronic and nanomechanical properties remains poorly understood. These physical distortions modulate important properties which can be studied by atomic force microscopy and Raman spectroscopic mapping. Herein, we have identified and investigated different geometries of line defects in graphene and molybdenum disulfide such as standing collapsed wrinkles, folded wrinkles, and grain boundaries that exhibit distinct strain and doping. In addition, we apply nanomechanical atomic force microscopy to determine the influence of these defects on local stiffness. For wrinkles of similar height, the stiffness of graphene was found to be higher than that of molybdenum disulfide by 10-15% due to stronger in-plane covalent bonding. Interestingly, deflated graphene nanobubbles exhibited entirely different characteristics from wrinkles and exhibit the lowest stiffness of all graphene defects. Density functional theory reveals alteration of the bandstructures of graphene and MoS2 due to the wrinkled structure; such modulation is higher in MoS2 compared to graphene. Using this approach, we can ascertain that wrinkles are subject to significant strain but minimal doping, while edges show significant doping and minimal strain. Furthermore, defects in graphene predominantly show compressive strain and increased carrier density. Defects in molybdenum disulfide predominantly show tensile strain and reduced carrier density, with increasing tensile strain minimizing doping across all defects in both materials. The present work provides critical fundamental insights into the electronic and nanomechanical influence of intrinsic structural defects at the nanoscale, which will be valuable in straintronic device engineering.
Two-dimensional materials such as graphene and molybdenum disulfide are often subject to out-of-plane deformation, but its influence on electronic and nanomechanical properties remains poorly understood. These physical distortions modulate important properties which can be studied by atomic force microscopy and Raman spectroscopic mapping. Herein, we have identified and investigated different geometries of line defects in graphene and molybdenum disulfide such as standing collapsed wrinkles, folded wrinkles, and grain boundaries that exhibit distinct strain and doping. In addition, we apply nanomechanical atomic force microscopy to determine the influence of these defects on local stiffness. For wrinkles of similar height, the stiffness of graphene was found to be higher than that of molybdenum disulfide by 10-15% due to stronger in-plane covalent bonding. Interestingly, deflated graphene nanobubbles exhibited entirely different characteristics from wrinkles and exhibit the lowest stiffness of all graphene defects. Density functional theory reveals alteration of the bandstructures of graphene and MoS due to the wrinkled structure; such modulation is higher in MoS compared to graphene. Using this approach, we can ascertain that wrinkles are subject to significant strain but minimal doping, while edges show significant doping and minimal strain. Furthermore, defects in graphene predominantly show compressive strain and increased carrier density. Defects in molybdenum disulfide predominantly show tensile strain and reduced carrier density, with increasing tensile strain minimizing doping across all defects in both materials. The present work provides critical fundamental insights into the electronic and nanomechanical influence of intrinsic structural defects at the nanoscale, which will be valuable in straintronic device engineering.
Two-dimensional materials such as graphene and molybdenum disulfide are often subject to out-of-plane deformation, but its influence on electronic and nanomechanical properties remains poorly understood. These physical distortions modulate important properties which can be studied by atomic force microscopy and Raman spectroscopic mapping. Herein, we have identified and investigated different geometries of line defects in graphene and molybdenum disulfide such as standing collapsed wrinkles, folded wrinkles, and grain boundaries that exhibit distinct strain and doping. In addition, we apply nanomechanical atomic force microscopy to determine the influence of these defects on local stiffness. For wrinkles of similar height, the stiffness of graphene was found to be higher than that of molybdenum disulfide by 10–15% due to stronger in-plane covalent bonding. Interestingly, deflated graphene nanobubbles exhibited entirely different characteristics from wrinkles and exhibit the lowest stiffness of all graphene defects. Density functional theory reveals alteration of the bandstructures of graphene and MoS2 due to the wrinkled structure; such modulation is higher in MoS2 compared to graphene. Using this approach, we can ascertain that wrinkles are subject to significant strain but minimal doping, while edges show significant doping and minimal strain. Furthermore, defects in graphene predominantly show compressive strain and increased carrier density. Defects in molybdenum disulfide predominantly show tensile strain and reduced carrier density, with increasing tensile strain minimizing doping across all defects in both materials. The present work provides critical fundamental insights into the electronic and nanomechanical influence of intrinsic structural defects at the nanoscale, which will be valuable in straintronic device engineering.
Author Tripathi, Manoj
McHugh, James G
King, Alice A. K
Graf, Aline Amorim
Parthenios, John
Saadi, M. A. S. R
Papagelis, Konstantinos
Lee, Frank
Roy, Soumyabrata
Large, Matthew J
Lynch, Peter J
Dalton, Alan B
Michail, Antonios
Anestopoulos, Dimitris
Ajayan, Pulickel M
Rahman, Muhammad M
Pugno, Nicola Maria
Ogilvie, Sean P
AuthorAffiliation Department of Chemistry
Department of Materials Science and NanoEngineering
Queen Mary University of London
Laboratory of Bio-inspired, Bionic, Nano, Meta Materials & Mechanics
Department of Physics and Astronomy
School of Physics, Department of Solid State Physics
School of Engineering and Materials Science
Department of Physics
University of Patras
Institute of Chemical Engineering Sciences
Foundation for Research and Technology- Hellas (FORTH/ICE-HT)
AuthorAffiliation_xml – name: Laboratory of Bio-inspired, Bionic, Nano, Meta Materials & Mechanics
– name: University of Patras
– name: Department of Chemistry
– name: Department of Materials Science and NanoEngineering
– name: Department of Physics and Astronomy
– name: Department of Physics
– name: School of Physics, Department of Solid State Physics
– name: School of Engineering and Materials Science
– name: Queen Mary University of London
– name: Institute of Chemical Engineering Sciences
– name: Foundation for Research and Technology- Hellas (FORTH/ICE-HT)
Author_xml – sequence: 1
  givenname: Manoj
  orcidid: 0000-0002-8052-428X
  surname: Tripathi
  fullname: Tripathi, Manoj
  email: m.tripathi@sussex.ac.uk
  organization: Department of Physics and Astronomy
– sequence: 2
  givenname: Frank
  surname: Lee
  fullname: Lee, Frank
  organization: Department of Physics and Astronomy
– sequence: 3
  givenname: Antonios
  surname: Michail
  fullname: Michail, Antonios
  organization: Foundation for Research and Technology- Hellas (FORTH/ICE-HT)
– sequence: 4
  givenname: Dimitris
  surname: Anestopoulos
  fullname: Anestopoulos, Dimitris
  organization: Foundation for Research and Technology- Hellas (FORTH/ICE-HT)
– sequence: 5
  givenname: James G
  surname: McHugh
  fullname: McHugh, James G
  organization: Department of Chemistry
– sequence: 6
  givenname: Sean P
  orcidid: 0000-0002-0433-8186
  surname: Ogilvie
  fullname: Ogilvie, Sean P
  organization: Department of Physics and Astronomy
– sequence: 7
  givenname: Matthew J
  surname: Large
  fullname: Large, Matthew J
  organization: Department of Physics and Astronomy
– sequence: 8
  givenname: Aline Amorim
  orcidid: 0000-0003-3071-2255
  surname: Graf
  fullname: Graf, Aline Amorim
  organization: Department of Physics and Astronomy
– sequence: 9
  givenname: Peter J
  surname: Lynch
  fullname: Lynch, Peter J
  organization: Department of Physics and Astronomy
– sequence: 10
  givenname: John
  orcidid: 0000-0001-6066-7120
  surname: Parthenios
  fullname: Parthenios, John
  organization: Foundation for Research and Technology- Hellas (FORTH/ICE-HT)
– sequence: 11
  givenname: Konstantinos
  orcidid: 0000-0001-5094-9837
  surname: Papagelis
  fullname: Papagelis, Konstantinos
  organization: School of Physics, Department of Solid State Physics
– sequence: 12
  givenname: Soumyabrata
  surname: Roy
  fullname: Roy, Soumyabrata
  organization: Department of Materials Science and NanoEngineering
– sequence: 13
  givenname: M. A. S. R
  surname: Saadi
  fullname: Saadi, M. A. S. R
  organization: Department of Materials Science and NanoEngineering
– sequence: 14
  givenname: Muhammad M
  surname: Rahman
  fullname: Rahman, Muhammad M
  organization: Department of Materials Science and NanoEngineering
– sequence: 15
  givenname: Nicola Maria
  orcidid: 0000-0003-2136-2396
  surname: Pugno
  fullname: Pugno, Nicola Maria
  organization: Queen Mary University of London
– sequence: 16
  givenname: Alice A. K
  orcidid: 0000-0002-1637-757X
  surname: King
  fullname: King, Alice A. K
  organization: Department of Physics and Astronomy
– sequence: 17
  givenname: Pulickel M
  surname: Ajayan
  fullname: Ajayan, Pulickel M
  email: pma2@rice.edu
  organization: Department of Materials Science and NanoEngineering
– sequence: 18
  givenname: Alan B
  orcidid: 0000-0001-8043-1377
  surname: Dalton
  fullname: Dalton, Alan B
  email: a.b.dalton@sussex.ac.uk
  organization: Department of Physics and Astronomy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33492930$$D View this record in MEDLINE/PubMed
BookMark eNp1kM9LwzAUx4NM3KaevUmOgnTLj7Zpj7LNH7Cp4ARvIU0T7OiSmaQH_3sj6zwIO73kvc_3PfiMwcBYowC4wmiCEcFTIb0Rxk6QRDlD-ASMcEnzBBX5x-DvneEhGHu_QShjBcvPwJDStCQlRSOwfguuk6FzooVzpZUMHq5s3bUiKLho499Z00goTA2f46Wtkp8iNiL-6uxOudAoD62GZA5XMeMa0foLcKpjUZd9PQfv94v17DFZvjw8ze6WiaBlGZKapTqrMKWF1gUuCaspKhQWJE01KXSZ0qpKmcywkmUtdY5JiohguZCa6Vwoeg5u9nt3zn51yge-bbxUbSuMsp3nJC0wJjkpWESve7SrtqrmO9dshfvmBxMRyPaAdNZ7pzSXTRChsSY40bQcI_5rnPfGeW885qb_cofVxxO3-0Qc8I3tnImOjtI_i4eTxA
CitedBy_id crossref_primary_10_1039_D4TB02525C
crossref_primary_10_1063_5_0223644
crossref_primary_10_1021_acs_chemrev_3c00389
crossref_primary_10_1088_2053_1583_ac92ec
crossref_primary_10_1039_D1CP02328D
crossref_primary_10_1039_D2TB02816F
crossref_primary_10_1016_j_matchemphys_2021_125615
crossref_primary_10_1039_D4NH00049H
crossref_primary_10_1021_acsaem_3c02409
crossref_primary_10_1039_D2CS00931E
crossref_primary_10_1021_acs_inorgchem_1c02839
crossref_primary_10_1021_acsaelm_4c02119
crossref_primary_10_1016_j_apsusc_2022_156306
crossref_primary_10_1002_sstr_202300025
crossref_primary_10_1021_acs_langmuir_1c01136
crossref_primary_10_1039_D3MH01625K
crossref_primary_10_1007_s40430_025_05397_0
crossref_primary_10_1016_j_mtla_2022_101493
crossref_primary_10_1016_j_apsusc_2023_156483
crossref_primary_10_1021_acsaelm_3c01810
crossref_primary_10_1039_D4SC00067F
crossref_primary_10_1515_revic_2023_0036
crossref_primary_10_1002_adma_202205365
crossref_primary_10_1002_adom_202301355
crossref_primary_10_1021_acsanm_4c00954
crossref_primary_10_1021_acs_nanolett_1c02524
crossref_primary_10_1038_s41586_021_03753_3
crossref_primary_10_1016_j_seppur_2023_123467
crossref_primary_10_1021_acs_jpcb_2c00896
crossref_primary_10_1039_D2TA01140A
crossref_primary_10_1557_s43580_024_00800_9
crossref_primary_10_1016_j_commatsci_2023_112030
crossref_primary_10_1021_acsnano_1c02757
crossref_primary_10_1088_1361_6528_ac622d
crossref_primary_10_1016_j_mcat_2023_113205
crossref_primary_10_1039_D2NR07252A
crossref_primary_10_1088_1674_1056_ac272f
crossref_primary_10_1039_D4CP03522D
crossref_primary_10_1002_smtd_202200347
crossref_primary_10_1002_adfm_202408870
crossref_primary_10_1016_j_mser_2025_100971
crossref_primary_10_1016_j_bioactmat_2025_02_017
crossref_primary_10_1002_adfm_202203555
crossref_primary_10_1002_smll_202303238
crossref_primary_10_1021_acs_macromol_3c00396
crossref_primary_10_1039_D2CP03492A
crossref_primary_10_1016_j_micron_2024_103703
crossref_primary_10_1007_s11664_023_10392_z
crossref_primary_10_1088_1361_6528_acf8ce
crossref_primary_10_1002_adfm_202302265
crossref_primary_10_3390_ma16175798
crossref_primary_10_1002_smll_202104487
crossref_primary_10_1088_2053_1583_ad3cec
crossref_primary_10_1103_PhysRevB_103_195436
crossref_primary_10_1021_acsnano_2c05512
crossref_primary_10_1016_j_mssp_2022_106835
crossref_primary_10_1016_j_carbon_2021_02_071
crossref_primary_10_1002_smll_202308357
crossref_primary_10_1063_5_0075599
crossref_primary_10_1103_PhysRevA_107_043308
Cites_doi 10.1021/ar500280m
10.1021/nl203359n
10.1038/s41699-018-0053-7
10.1038/ncomms2022
10.1063/1.4804265
10.1103/PhysRevLett.77.3865
10.1103/PhysRevLett.104.166805
10.1039/C8NH00112J
10.1021/nn203879f
10.1002/adfm.201102111
10.1038/nphoton.2010.186
10.1021/nl9023935
10.1021/acs.nanolett.7b03627
10.1103/PhysRevLett.120.186104
10.1038/ncomms6246
10.1021/nl300563h
10.1126/sciadv.1700162
10.1088/2053-1583/aa90b3
10.1109/TED.2015.2461617
10.1038/nnano.2014.176
10.1039/C7NR06463B
10.1038/s41598-017-16969-z
10.1021/nl503097u
10.1039/c3ra45724a
10.1063/1.1674108
10.1103/PhysRevB.41.7892
10.1038/ncomms12587
10.1021/nn1003937
10.1021/acs.nanolett.8b00273
10.1039/C5NR07755A
10.1063/1.4759146
10.1021/acsami.6b04853
10.3938/jkps.74.1032
10.1038/ncomms9789
10.1007/s12274-011-0183-0
10.1103/PhysRevB.99.195401
10.1039/c3nr34009k
10.1021/acs.nanolett.9b01829
10.1126/science.1218948
10.1039/C7RA10983K
10.1088/2053-1583/aac610
10.1103/PhysRevLett.97.266407
10.1007/s10853-010-4673-3
10.1103/PhysRevLett.111.196802
10.1063/1.4948357
10.1038/s41598-019-46372-9
10.1063/1.4958948
10.1021/nl402875m
10.1016/j.eml.2017.01.008
10.1021/jp902214f
10.1063/1.4826905
10.1039/C6CP08535K
10.1088/1361-648X/aa8f79
10.1063/1.373050
10.1088/0953-8984/21/39/395502
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acsnano.0c06701
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 2531
ExternalDocumentID 33492930
10_1021_acsnano_0c06701
b604456384
Genre Journal Article
GroupedDBID -
23M
53G
55A
5GY
5VS
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
F5P
GNL
IH9
IHE
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
4.4
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
ID FETCH-LOGICAL-a399t-d74f5b1338ff81927d308e1a244f28f943bb47c51ec9dcf612402a76acf7f6ae3
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 01:58:36 EDT 2025
Thu Jan 02 22:58:03 EST 2025
Tue Jul 01 03:37:06 EDT 2025
Thu Apr 24 23:12:43 EDT 2025
Thu Feb 25 04:42:15 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords wrinkles
strain
doping
stiffness
2D materials
defects
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a399t-d74f5b1338ff81927d308e1a244f28f943bb47c51ec9dcf612402a76acf7f6ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3071-2255
0000-0001-8043-1377
0000-0002-0433-8186
0000-0003-2136-2396
0000-0001-6066-7120
0000-0002-8052-428X
0000-0001-5094-9837
0000-0002-1637-757X
PMID 33492930
PQID 2481126287
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2481126287
pubmed_primary_33492930
crossref_citationtrail_10_1021_acsnano_0c06701
crossref_primary_10_1021_acsnano_0c06701
acs_journals_10_1021_acsnano_0c06701
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-23
PublicationDateYYYYMMDD 2021-02-23
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-23
  day: 23
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref23/cit23
  doi: 10.1021/ar500280m
– ident: ref46/cit46
  doi: 10.1021/nl203359n
– ident: ref17/cit17
  doi: 10.1038/s41699-018-0053-7
– ident: ref19/cit19
  doi: 10.1038/ncomms2022
– ident: ref42/cit42
  doi: 10.1063/1.4804265
– ident: ref54/cit54
  doi: 10.1103/PhysRevLett.77.3865
– ident: ref41/cit41
  doi: 10.1103/PhysRevLett.104.166805
– ident: ref8/cit8
  doi: 10.1039/C8NH00112J
– ident: ref48/cit48
  doi: 10.1021/nn203879f
– ident: ref36/cit36
  doi: 10.1002/adfm.201102111
– ident: ref2/cit2
  doi: 10.1038/nphoton.2010.186
– ident: ref24/cit24
  doi: 10.1021/nl9023935
– ident: ref38/cit38
  doi: 10.1021/acs.nanolett.7b03627
– ident: ref47/cit47
  doi: 10.1103/PhysRevLett.120.186104
– ident: ref9/cit9
  doi: 10.1038/ncomms6246
– ident: ref43/cit43
  doi: 10.1021/nl300563h
– ident: ref50/cit50
  doi: 10.1126/sciadv.1700162
– ident: ref13/cit13
  doi: 10.1088/2053-1583/aa90b3
– ident: ref40/cit40
  doi: 10.1109/TED.2015.2461617
– ident: ref4/cit4
  doi: 10.1038/nnano.2014.176
– ident: ref16/cit16
  doi: 10.1039/C7NR06463B
– ident: ref28/cit28
  doi: 10.1038/s41598-017-16969-z
– ident: ref10/cit10
  doi: 10.1021/nl503097u
– ident: ref39/cit39
  doi: 10.1039/c3ra45724a
– ident: ref37/cit37
  doi: 10.1063/1.1674108
– ident: ref55/cit55
  doi: 10.1103/PhysRevB.41.7892
– ident: ref14/cit14
  doi: 10.1038/ncomms12587
– ident: ref35/cit35
  doi: 10.1021/nn1003937
– ident: ref26/cit26
  doi: 10.1021/acs.nanolett.8b00273
– ident: ref11/cit11
  doi: 10.1039/C5NR07755A
– ident: ref15/cit15
  doi: 10.1063/1.4759146
– ident: ref45/cit45
  doi: 10.1021/acsami.6b04853
– ident: ref30/cit30
  doi: 10.3938/jkps.74.1032
– ident: ref29/cit29
  doi: 10.1038/ncomms9789
– ident: ref12/cit12
  doi: 10.1007/s12274-011-0183-0
– ident: ref27/cit27
  doi: 10.1103/PhysRevB.99.195401
– ident: ref6/cit6
  doi: 10.1039/c3nr34009k
– ident: ref31/cit31
  doi: 10.1021/acs.nanolett.9b01829
– ident: ref7/cit7
  doi: 10.1126/science.1218948
– ident: ref33/cit33
  doi: 10.1039/C7RA10983K
– ident: ref51/cit51
  doi: 10.1088/2053-1583/aac610
– ident: ref21/cit21
  doi: 10.1103/PhysRevLett.97.266407
– ident: ref20/cit20
  doi: 10.1007/s10853-010-4673-3
– ident: ref18/cit18
  doi: 10.1103/PhysRevLett.111.196802
– ident: ref22/cit22
  doi: 10.1063/1.4948357
– ident: ref44/cit44
  doi: 10.1038/s41598-019-46372-9
– ident: ref3/cit3
  doi: 10.1063/1.4958948
– ident: ref25/cit25
  doi: 10.1021/nl402875m
– ident: ref49/cit49
  doi: 10.1016/j.eml.2017.01.008
– ident: ref1/cit1
  doi: 10.1021/jp902214f
– ident: ref5/cit5
  doi: 10.1063/1.4826905
– ident: ref34/cit34
  doi: 10.1039/C6CP08535K
– ident: ref53/cit53
  doi: 10.1088/1361-648X/aa8f79
– ident: ref32/cit32
  doi: 10.1063/1.373050
– ident: ref52/cit52
  doi: 10.1088/0953-8984/21/39/395502
SSID ssj0057876
Score 2.5699306
Snippet Two-dimensional materials such as graphene and molybdenum disulfide are often subject to out-of-plane deformation, but its influence on electronic and...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2520
Title Structural Defects Modulate Electronic and Nanomechanical Properties of 2D Materials
URI http://dx.doi.org/10.1021/acsnano.0c06701
https://www.ncbi.nlm.nih.gov/pubmed/33492930
https://www.proquest.com/docview/2481126287
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELYQLDDwfpSXjNSBJSF2nLgZUR-qkIqQ2krdIsexFyBBJF349dwlaXlUFSyZYsvxnX3f5e6-I6QdMi2lscLBqBo8rHaiQIPPEwrrS59rW0XwR4_hcCoeZsHsiyz6dwSfszuli0xluetpLCkBR2eLh3CEEQV1x4tLF_UurAPI4CADiliy-KxMgGZIFz_N0BpsWdmYwV6dnVVU1ISYWvLszsvE1R-rxI1_L3-f7DZIk97XqnFANkx2SHa-8Q8ekcm4Yo9F5g3aM1ViBx3lKXb0MrS_bJBDVZZSuIbzV4N1wihW-oQ_8d-RjZXmlvIeHamyVuZjMh30J92h07RZcBSgk9JJpbBBgr6qtUiPJlPf6ximwPBb3rGR8JNESB0wo6NUW4BE4HMqGSptpQ2V8U_IZpZn5oxQL0mQTodbZqVIWZCkTGOsEmAe46lnWqQN-xE3x6SIqwg4Z3GzSXGzSS3iLoQT64aqHDtmvKwfcLsc8FazdKx_9WYh7RhOEoZHVGbyeRFz0cF6KnAhW-S0VoPlZD6SOEa-d_6_D7gg2xxzX7D03b8kmyBMcwXgpUyuK7X9BKjN6NM
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED4hGICB96M8jdSBJSV2Hm5HRIsKtAhEkdgix7EXIEGkLPx67pI0vFQJlgxRbNl3Z_u7nO87gGbItZTG-g5F1fBhtdMJNPo8oW896Qltiwj-8Drs3_uXD8HDDLiTXBgcRI495UUQ_5NdgJ_gu1SlWcvVlFmC_s4cQhFBNn16djfZe8n8wjKOjH4ygomazOdXB3Qa6fz7aTQFYhZHzfky3NaDLG6YPLbexnFLv__gb_zPLFZgqcKd7LQ0lFWYMekaLH5hI1yH0V3BJUs8HKxrimsebJglVN_LsF5dLoepNGG4KWfPhrKGScnshn7pvxI3K8ssE102VOPStDfg_rw3Ous7VdEFRyFWGTuJ9G0Qk-dqLZGlycRz24YrhAFWtG3H9-LYlzrgRncSbREgoQeqZKi0lTZUxtuE2TRLzTYwN46JXEdYbqWf8CBOuKbIJYI-LhLXNKCJ8oiqRZNHRTxc8KgSUlQJqQGtiY4iXRGXU_2Mp-kNjusGLyVnx_RPjyZKj3BdUbBEpSZ7yyPhtym7Ch3KBmyV1lB35hGlY8dzd_42gUOY74-Gg2hwcX21CwuCbsVQUry3B7OoWLOPsGYcHxSW_AEcRfE0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JasMwEBUlhdIeui_pqkIOvTi1vCk5hiykS0IgCeRmZC2Xtnaok0u_vjO2Y7oQaC8-GEtImpH0xk_zREgtYJJzbTwLWTV4GGk1fQkxT-AZl7uONBmDPxgG_an3OPNnRVIY5sJAI1KoKc1IfJzVc2UKhQF2D-9jESd1W2J2CcQ8m0jaoV-32uPV-osuGORcMsTKAChKQZ9fFeCOJNPvO9IamJltN709Mi0bmp0yeakvF1FdfvzQcPxvT_bJboE_aSt3mAOyoeNDsvNFlfCITMaZpizqcdCOzo570EGi8J4vTbvltTlUxIrC4py8acweRmPTEf7af0eNVpoY6nToQCxyFz8m01530u5bxeULlgDMsrAU94wfYQRrDIqmceXaDc0EwAHjNEzTc6PI49JnWjaVNACUIBIVPBDScBMI7Z6QSpzE-oxQO4pQZMcxzHBPMT9STCKDCeCPOcrWVVKD8QiLyZOGGS_usLAYpLAYpCqpr-wUykLAHO_ReF1f4K4sMM-1O9Z_ersyfAjzC0kTEetkmYaO18AsKwgsq-Q094iyMhelHZuuff63DtyQrVGnFz4_DJ8uyLaDh2MwN969JBWwq74CdLOIrjNn_gT9u_O3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+Defects+Modulate+Electronic+and+Nanomechanical+Properties+of+2D+Materials&rft.jtitle=ACS+nano&rft.au=Tripathi%2C+Manoj&rft.au=Lee%2C+Frank&rft.au=Michail%2C+Antonios&rft.au=Anestopoulos%2C+Dimitris&rft.date=2021-02-23&rft.eissn=1936-086X&rft.volume=15&rft.issue=2&rft.spage=2520&rft_id=info:doi/10.1021%2Facsnano.0c06701&rft_id=info%3Apmid%2F33492930&rft.externalDocID=33492930
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon