Force-Induced Rupture of a DNA Duplex: From Fundamentals to Force Sensors

The rupture of double-stranded DNA under stress is a key process in biophysics and nanotechnology. In this article, we consider the shear-induced rupture of short DNA duplexes, a system that has been given new importance by recently designed force sensors and nanotechnological devices. We argue that...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 9; no. 12; pp. 11993 - 12003
Main Authors Mosayebi, Majid, Louis, Ard A, Doye, Jonathan P. K, Ouldridge, Thomas E
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 22.12.2015
Subjects
Online AccessGet full text
ISSN1936-0851
1936-086X
1936-086X
DOI10.1021/acsnano.5b04726

Cover

Abstract The rupture of double-stranded DNA under stress is a key process in biophysics and nanotechnology. In this article, we consider the shear-induced rupture of short DNA duplexes, a system that has been given new importance by recently designed force sensors and nanotechnological devices. We argue that rupture must be understood as an activated process, where the duplex state is metastable and the strands will separate in a finite time that depends on the duplex length and the force applied. Thus, the critical shearing force required to rupture a duplex depends strongly on the time scale of observation. We use simple models of DNA to show that this approach naturally captures the observed dependence of the force required to rupture a duplex within a given time on duplex length. In particular, this critical force is zero for the shortest duplexes, before rising sharply and then plateauing in the long length limit. The prevailing approach, based on identifying when the presence of each additional base pair within the duplex is thermodynamically unfavorable rather than allowing for metastability, does not predict a time-scale-dependent critical force and does not naturally incorporate a critical force of zero for the shortest duplexes. We demonstrate that our findings have important consequences for the behavior of a new force-sensing nanodevice, which operates in a mixed mode that interpolates between shearing and unzipping. At a fixed time scale and duplex length, the critical force exhibits a sigmoidal dependence on the fraction of the duplex that is subject to shearing.
AbstractList The rupture of double-stranded DNA under stress is a key process in biophysics and nanotechnology. In this article, we consider the shear-induced rupture of short DNA duplexes, a system that has been given new importance by recently designed force sensors and nanotechnological devices. We argue that rupture must be understood as an activated process, where the duplex state is metastable and the strands will separate in a finite time that depends on the duplex length and the force applied. Thus, the critical shearing force required to rupture a duplex depends strongly on the time scale of observation. We use simple models of DNA to show that this approach naturally captures the observed dependence of the force required to rupture a duplex within a given time on duplex length. In particular, this critical force is zero for the shortest duplexes, before rising sharply and then plateauing in the long length limit. The prevailing approach, based on identifying when the presence of each additional base pair within the duplex is thermodynamically unfavorable rather than allowing for metastability, does not predict a time-scale-dependent critical force and does not naturally incorporate a critical force of zero for the shortest duplexes. We demonstrate that our findings have important consequences for the behavior of a new force-sensing nanodevice, which operates in a mixed mode that interpolates between shearing and unzipping. At a fixed time scale and duplex length, the critical force exhibits a sigmoidal dependence on the fraction of the duplex that is subject to shearing.
The rupture of double-stranded DNA under stress is a key process in biophysics and nanotechnology. In this article, we consider the shear-induced rupture of short DNA duplexes, a system that has been given new importance by recently designed force sensors and nanotechnological devices. We argue that rupture must be understood as an activated process, where the duplex state is metastable and the strands will separate in a finite time that depends on the duplex length and the force applied. Thus, the critical shearing force required to rupture a duplex depends strongly on the time scale of observation. We use simple models of DNA to show that this approach naturally captures the observed dependence of the force required to rupture a duplex within a given time on duplex length. In particular, this critical force is zero for the shortest duplexes, before rising sharply and then plateauing in the long length limit. The prevailing approach, based on identifying when the presence of each additional base pair within the duplex is thermodynamically unfavorable rather than allowing for metastability, does not predict a time-scale-dependent critical force and does not naturally incorporate a critical force of zero for the shortest duplexes. We demonstrate that our findings have important consequences for the behavior of a new force-sensing nanodevice, which operates in a mixed mode that interpolates between shearing and unzipping. At a fixed time scale and duplex length, the critical force exhibits a sigmoidal dependence on the fraction of the duplex that is subject to shearing.The rupture of double-stranded DNA under stress is a key process in biophysics and nanotechnology. In this article, we consider the shear-induced rupture of short DNA duplexes, a system that has been given new importance by recently designed force sensors and nanotechnological devices. We argue that rupture must be understood as an activated process, where the duplex state is metastable and the strands will separate in a finite time that depends on the duplex length and the force applied. Thus, the critical shearing force required to rupture a duplex depends strongly on the time scale of observation. We use simple models of DNA to show that this approach naturally captures the observed dependence of the force required to rupture a duplex within a given time on duplex length. In particular, this critical force is zero for the shortest duplexes, before rising sharply and then plateauing in the long length limit. The prevailing approach, based on identifying when the presence of each additional base pair within the duplex is thermodynamically unfavorable rather than allowing for metastability, does not predict a time-scale-dependent critical force and does not naturally incorporate a critical force of zero for the shortest duplexes. We demonstrate that our findings have important consequences for the behavior of a new force-sensing nanodevice, which operates in a mixed mode that interpolates between shearing and unzipping. At a fixed time scale and duplex length, the critical force exhibits a sigmoidal dependence on the fraction of the duplex that is subject to shearing.
Author Louis, Ard A
Doye, Jonathan P. K
Ouldridge, Thomas E
Mosayebi, Majid
AuthorAffiliation Institute for Research in Fundamental Sciences (IPM)
Rudolf Peierls Centre for Theoretical Physics
School of Physics
Physical and Theoretical Chemistry Laboratory, Department of Chemistry
University of Oxford
Department of Mathematics
Imperial College
AuthorAffiliation_xml – name: Imperial College
– name: University of Oxford
– name: Institute for Research in Fundamental Sciences (IPM)
– name: Physical and Theoretical Chemistry Laboratory, Department of Chemistry
– name: Rudolf Peierls Centre for Theoretical Physics
– name: Department of Mathematics
– name: School of Physics
Author_xml – sequence: 1
  givenname: Majid
  surname: Mosayebi
  fullname: Mosayebi, Majid
  email: majid.mosayebi@chem.ox.ac.uk, t.ouldridge@imperial.ac.uk
– sequence: 2
  givenname: Ard A
  surname: Louis
  fullname: Louis, Ard A
– sequence: 3
  givenname: Jonathan P. K
  surname: Doye
  fullname: Doye, Jonathan P. K
– sequence: 4
  givenname: Thomas E
  surname: Ouldridge
  fullname: Ouldridge, Thomas E
  email: majid.mosayebi@chem.ox.ac.uk, t.ouldridge@imperial.ac.uk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26575598$$D View this record in MEDLINE/PubMed
BookMark eNp1kE1LJDEQhoO4-DHr2ZvkKCyt-egkHW-iOzowKOgu7C2keyrQ0p2MSQf03xud0cOCpwqp56mk3kO064MHhI4pOaOE0XPbJW99OBMtqRWTO-iAai4r0sh_u19nQffRYUpPhAjVKLmH9pkUSgjdHKDFPMQOqoVf5Q5W-CGvpxwBB4ctvr67xNd5PcDLBZ7HMOJ59is7gp_skPAU8IeLH8GnENNP9MOVezja1hn6O__95-q2Wt7fLK4ul5XlWk9V65jkQupOu5orTV0NDERLlVYgS-EaaqYbRh2V3AkoHxbMdVwRLVtGOJ-h083cdQzPGdJkxj51MAzWQ8jJUCVo3ZQ3moKebNHcjrAy69iPNr6az_ULIDZAF0NKEZzp-slOffBTtP1gKDHvMZttzGYbc_HO__M-R39v_NoYpWGeQo6-ZPQt_QZQwo1e
CitedBy_id crossref_primary_10_1063_1_5024975
crossref_primary_10_1021_acsomega_7b01692
crossref_primary_10_1016_j_ijengsci_2024_104194
crossref_primary_10_1021_jacs_3c10923
crossref_primary_10_1039_C7CP02214J
crossref_primary_10_1021_acsnano_1c10698
crossref_primary_10_1088_1478_3975_abd333
crossref_primary_10_1016_j_cobme_2019_10_003
crossref_primary_10_1002_cbic_201900276
crossref_primary_10_1002_smll_201900961
crossref_primary_10_1042_BST20210479
crossref_primary_10_1134_S0020441219010044
crossref_primary_10_1002_anie_202302967
crossref_primary_10_1016_j_jbc_2022_101726
crossref_primary_10_1016_j_cub_2020_08_020
crossref_primary_10_1038_s41557_024_01571_4
crossref_primary_10_1103_PhysRevLett_120_068102
crossref_primary_10_1039_D1SM00676B
crossref_primary_10_1038_s41467_021_22775_z
crossref_primary_10_1088_1361_648X_abee38
crossref_primary_10_1126_science_aao4284
crossref_primary_10_1002_smll_202310330
crossref_primary_10_1098_rsif_2023_0130
crossref_primary_10_1016_j_bpj_2025_01_025
crossref_primary_10_1002_anie_202107660
crossref_primary_10_1021_acs_nanolett_8b01374
crossref_primary_10_1039_C8CP04896G
crossref_primary_10_1088_1572_9494_acc64c
crossref_primary_10_1038_s41565_023_01333_2
crossref_primary_10_1038_s41467_024_47126_6
crossref_primary_10_1242_jcs_238840
crossref_primary_10_3389_fmolb_2021_693710
crossref_primary_10_1103_PhysRevE_108_L042501
crossref_primary_10_1002_ange_202302967
crossref_primary_10_1021_acs_jpcb_8b05417
crossref_primary_10_1038_s41556_021_00691_0
crossref_primary_10_1021_acsnano_8b01844
crossref_primary_10_1038_srep21584
crossref_primary_10_1109_OJNANO_2021_3119913
crossref_primary_10_1016_j_bpj_2024_05_020
crossref_primary_10_1002_anie_202102206
crossref_primary_10_1021_acsnano_5b07664
crossref_primary_10_1038_srep36959
crossref_primary_10_1002_admi_201600441
crossref_primary_10_1093_nar_gkw1173
crossref_primary_10_1103_PhysRevE_94_032410
crossref_primary_10_1073_pnas_2102873118
crossref_primary_10_1021_acssensors_3c00606
crossref_primary_10_1002_ange_202107660
crossref_primary_10_1016_j_bpj_2019_02_027
crossref_primary_10_1021_acssensors_2c02218
crossref_primary_10_1021_acssensors_9b00553
crossref_primary_10_1021_acs_jpcb_2c01897
crossref_primary_10_1002_ange_202102206
crossref_primary_10_1021_acs_jpcb_6b08780
crossref_primary_10_1021_acs_nanolett_9b02311
crossref_primary_10_1088_1361_648X_acc7eb
crossref_primary_10_1146_annurev_biophys_101920_064756
crossref_primary_10_1134_S0022476617020135
crossref_primary_10_1021_acs_jctc_0c00286
crossref_primary_10_1063_5_0121820
crossref_primary_10_1063_5_0199558
crossref_primary_10_1002_anbr_202100056
crossref_primary_10_1016_j_cell_2016_04_045
crossref_primary_10_1038_s41467_022_34212_w
crossref_primary_10_1093_nar_gkx1282
crossref_primary_10_1088_2053_1591_3_8_085022
crossref_primary_10_1007_s00216_016_0035_6
crossref_primary_10_1021_acs_jctc_9b00112
crossref_primary_10_1039_D1NR05716B
crossref_primary_10_1093_nar_gkac300
crossref_primary_10_1103_PhysRevLett_122_218101
crossref_primary_10_1021_acs_jpcb_6b08297
crossref_primary_10_18699_VJGB_23_93
Cites_doi 10.1103/PhysRevLett.110.258102
10.1126/science.1231041
10.1103/PhysRevLett.109.118303
10.1093/nar/gkq1278
10.1103/PhysRevLett.88.028102
10.1073/pnas.262789199
10.1016/S1296-2147(01)01287-2
10.1063/1.3552946
10.1021/ja906987s
10.1007/s002490000107
10.1016/S0006-3495(02)75416-7
10.1016/j.physrep.2009.11.001
10.1063/1.4754132
10.1073/pnas.0904322106
10.1007/978-3-642-30517-7
10.1093/nar/gkt801
10.1126/science.1151424
10.1021/jp510061f
10.1016/S0031-8914(40)90098-2
10.1073/pnas.1109824109
10.1039/B810031D
10.1021/bi00063a022
10.1103/PhysRevE.70.011910
10.1021/ac802766j
10.1038/nmeth.3145
10.1063/1.3427587
10.1002/1438-5171(200107)2:2<75::AID-SIMO75>3.0.CO;2-8
10.1038/srep07655
10.1073/pnas.1001454107
10.1146/annurev.biophys.32.110601.141800
10.1103/PhysRevE.84.032903
10.1103/PhysRevLett.85.1572
10.1515/zpch-1889-0416
10.1093/nar/gkl508
10.1103/PhysRevE.84.031905
10.1093/nar/gks1206
10.1093/nar/gkh826
10.1103/PhysRevE.78.011920
10.1093/nar/gkl422
10.1126/science.1174251
10.1103/PhysRevLett.61.2635
10.1021/nn5034983
10.1126/science.7973628
10.1038/ncomms6167
10.1073/pnas.151257598
10.1529/biophysj.106.100511
10.1063/1.4792252
10.1021/la402971a
10.1063/1.4919646
10.1038/nature01405
10.1038/nnano.2010.107
10.1016/0021-9991(77)90121-8
10.1021/jp808232p
10.1093/nar/gkt687
10.1103/PhysRevLett.93.078101
10.1126/science.1202998
10.1007/978-1-4612-5190-3
10.1021/nn3058483
10.1073/pnas.96.20.11277
10.1021/jp411280n
10.1021/jp3080755
ContentType Journal Article
Copyright Copyright © American Chemical Society
Copyright_xml – notice: Copyright © American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acsnano.5b04726
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 12003
ExternalDocumentID 26575598
10_1021_acsnano_5b04726
g05930152
Genre Journal Article
GroupedDBID -
23M
4.4
53G
55A
5GY
5VS
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
LG6
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a399t-bf263569c9f43791f4e2e5b1797e6b1739e429821f163f5e87652fc37096b2033
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Thu Jul 10 18:58:30 EDT 2025
Mon Jul 21 05:13:29 EDT 2025
Tue Jul 01 01:33:56 EDT 2025
Thu Apr 24 23:05:40 EDT 2025
Thu Aug 27 13:42:07 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords force spectroscopy
DNA nanotechnology
coarse-grained modeling
non-equilibrium chemistry
molecular simulation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a399t-bf263569c9f43791f4e2e5b1797e6b1739e429821f163f5e87652fc37096b2033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26575598
PQID 1751486358
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_1751486358
pubmed_primary_26575598
crossref_citationtrail_10_1021_acsnano_5b04726
crossref_primary_10_1021_acsnano_5b04726
acs_journals_10_1021_acsnano_5b04726
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-Dec-22
PublicationDateYYYYMMDD 2015-12-22
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-Dec-22
  day: 22
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2015
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
Arrhenius S. (ref44/cit44) 1889; 4
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
Saenger W. (ref39/cit39) 1984
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref7/cit7
References_xml – ident: ref35/cit35
  doi: 10.1103/PhysRevLett.110.258102
– ident: ref9/cit9
  doi: 10.1126/science.1231041
– ident: ref20/cit20
  doi: 10.1103/PhysRevLett.109.118303
– ident: ref54/cit54
  doi: 10.1093/nar/gkq1278
– ident: ref28/cit28
  doi: 10.1103/PhysRevLett.88.028102
– ident: ref26/cit26
  doi: 10.1073/pnas.262789199
– ident: ref29/cit29
  doi: 10.1016/S1296-2147(01)01287-2
– ident: ref49/cit49
  doi: 10.1063/1.3552946
– ident: ref46/cit46
  doi: 10.1021/ja906987s
– ident: ref15/cit15
  doi: 10.1007/s002490000107
– ident: ref22/cit22
  doi: 10.1016/S0006-3495(02)75416-7
– ident: ref36/cit36
  doi: 10.1016/j.physrep.2009.11.001
– ident: ref51/cit51
  doi: 10.1063/1.4754132
– ident: ref18/cit18
  doi: 10.1073/pnas.0904322106
– ident: ref50/cit50
  doi: 10.1007/978-3-642-30517-7
– ident: ref52/cit52
  doi: 10.1093/nar/gkt801
– ident: ref7/cit7
  doi: 10.1126/science.1151424
– ident: ref56/cit56
  doi: 10.1021/jp510061f
– ident: ref45/cit45
  doi: 10.1016/S0031-8914(40)90098-2
– ident: ref55/cit55
  doi: 10.1073/pnas.1109824109
– ident: ref60/cit60
  doi: 10.1039/B810031D
– ident: ref40/cit40
  doi: 10.1021/bi00063a022
– ident: ref33/cit33
  doi: 10.1103/PhysRevE.70.011910
– ident: ref8/cit8
  doi: 10.1021/ac802766j
– ident: ref10/cit10
  doi: 10.1038/nmeth.3145
– ident: ref34/cit34
  doi: 10.1063/1.3427587
– ident: ref23/cit23
  doi: 10.1002/1438-5171(200107)2:2<75::AID-SIMO75>3.0.CO;2-8
– ident: ref59/cit59
  doi: 10.1038/srep07655
– ident: ref19/cit19
  doi: 10.1073/pnas.1001454107
– ident: ref53/cit53
– ident: ref43/cit43
  doi: 10.1146/annurev.biophys.32.110601.141800
– ident: ref38/cit38
  doi: 10.1103/PhysRevE.84.032903
– ident: ref31/cit31
  doi: 10.1103/PhysRevLett.85.1572
– volume: 4
  start-page: 226
  year: 1889
  ident: ref44/cit44
  publication-title: Z. Phys. Chem.
  doi: 10.1515/zpch-1889-0416
– ident: ref1/cit1
  doi: 10.1093/nar/gkl508
– ident: ref37/cit37
  doi: 10.1103/PhysRevE.84.031905
– ident: ref21/cit21
  doi: 10.1093/nar/gks1206
– ident: ref17/cit17
  doi: 10.1093/nar/gkh826
– ident: ref25/cit25
  doi: 10.1103/PhysRevE.78.011920
– ident: ref48/cit48
  doi: 10.1093/nar/gkl422
– ident: ref2/cit2
  doi: 10.1126/science.1174251
– ident: ref62/cit62
  doi: 10.1103/PhysRevLett.61.2635
– ident: ref6/cit6
  doi: 10.1021/nn5034983
– ident: ref13/cit13
  doi: 10.1126/science.7973628
– ident: ref11/cit11
  doi: 10.1038/ncomms6167
– ident: ref32/cit32
  doi: 10.1073/pnas.151257598
– ident: ref24/cit24
  doi: 10.1529/biophysj.106.100511
– ident: ref58/cit58
  doi: 10.1063/1.4792252
– ident: ref12/cit12
  doi: 10.1021/la402971a
– ident: ref47/cit47
  doi: 10.1063/1.4919646
– ident: ref14/cit14
  doi: 10.1038/nature01405
– ident: ref3/cit3
  doi: 10.1038/nnano.2010.107
– ident: ref61/cit61
  doi: 10.1016/0021-9991(77)90121-8
– ident: ref30/cit30
  doi: 10.1021/jp808232p
– ident: ref42/cit42
  doi: 10.1093/nar/gkt687
– ident: ref27/cit27
  doi: 10.1103/PhysRevLett.93.078101
– ident: ref4/cit4
  doi: 10.1126/science.1202998
– volume-title: Principles of Nucleic Acid Structure
  year: 1984
  ident: ref39/cit39
  doi: 10.1007/978-1-4612-5190-3
– ident: ref5/cit5
  doi: 10.1021/nn3058483
– ident: ref16/cit16
  doi: 10.1073/pnas.96.20.11277
– ident: ref41/cit41
  doi: 10.1021/jp411280n
– ident: ref57/cit57
  doi: 10.1021/jp3080755
SSID ssj0057876
Score 2.472233
Snippet The rupture of double-stranded DNA under stress is a key process in biophysics and nanotechnology. In this article, we consider the shear-induced rupture of...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11993
SubjectTerms DNA - chemistry
DNA - metabolism
Molecular Dynamics Simulation
Nanotechnology - methods
Spectrum Analysis
Title Force-Induced Rupture of a DNA Duplex: From Fundamentals to Force Sensors
URI http://dx.doi.org/10.1021/acsnano.5b04726
https://www.ncbi.nlm.nih.gov/pubmed/26575598
https://www.proquest.com/docview/1751486358
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4NAEN5ovejB96O-siY9eAFhYYH11rSSamIP1ibeCGyXixUaHonx1zsDtD6aRk9c2A3Mg_mGmf2GkI7HI_Aay9AmBlea7UhXC_FHPhiTO8GmdynwcPLj0BmM7YcX_vJFFv27gs_Mm1DmSZikOo-Q2NBZJxvMASNDFNQbzT-6aHdOXUCGBBlQxILFZ2kDDEMy_xmGVmDLKsb4O3V3Vl5RE2JryateFpEuP5aJG_9-_F2y3SBN2q1NY4-sqWSfbH3jHzwg936aSaXh-A6pJvSpnGE9gaYxDWl_2KX9cjZV77fUz9I36uOZkXoUQE6LlFZr6QjS4DTLD8nYv3vuDbRmtgKoQohCi2JkoXGEFDEyEpqxrZjiEbinqxy4WEJBpPKYGQNgi7kC8XIWS8uFlCdihmUdkVaSJuqEUFcJYwJZhwFKtkOPhUxCDgR7MCOShlBt0gEhBI1v5EFV9mZm0EgmaCTTJvpcI4Fs-MlxTMZ09YLrxYJZTc2x-taruYoDcB-siYSJSkt4GBcQowei8NrkuNb9YjOGRSkuvNP_vcAZ2QQ0xbHXhbFz0iqyUl0AYimiy8pWPwHgpuLY
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4NAEJ5oPagH34_6XBMPXqh06QLrrWklrbZNfDTpjcCyXKzQFEiMv95ZoPWVJnoiIexkmZ1hvmF2vwG4tJmPXmPoWqAzqTVMYWme-pGPxmQFatO74Opwcn9gdoaNuxEbLYE-OwuDk0hQUpIX8T_ZBerXeC_yorjGfMVvaC7DCkIRqpo1NFtPs2-vMj-zqCNjnoxgYk7m80uAikYi-R6NFkDMPNQ4m_Awn2S-w-SllqV-Tbz_4G_8z1tswUaJO0mzMJRtWJLRDqx_YSPcha4TT4XUVDMPIQPymE1UdYHEIfFIe9Ak7Wwylm83xJnGr8RRJ0iKxgAJSWOSjyVPmBTH02QPhs7tc6ujlZ0WcGE4TzU_VJw0Jhc8VPyE9bAhqWQ-OqslTbwYXGLcsmk9RPgWMolaZjQUhoUJkE91w9iHShRH8hCIJbkeYA6i45I3PJt6VGBGhDKo7gudyypcohLc0lMSNy-C07pbasYtNVOF2mxhXFGylaumGePFA67mAyYFUcfiRy9mK-2iM6kKiRfJOMPJWIgfbVSFXYWDwgTmwqgqUTFuH_3tBc5htfPc77m97uD-GNYQZzG1C4bSE6ik00yeIpZJ_bPcfD8A1PbrOQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZT4NAEJ54JEYfvI96rokPvlDp0gXWt8ZKPBujNvGNwLK8WKEpkBh_vTNAG4800ScSwk6WOZgZZucbgBNXhGg1lmlEptBG21aOEdCPfFQmJ6JD70pSc_J9z77qt29exEvdFEa9MLiJDCllZRGfrHoYxTXCQOsM7ydBkjZFSBiH9izMU9GOBjZ0Lp7G319SQbuqJWOujAHFBNDnFwHySCr77pGmhJmlu_FWoD_ZaHnK5LVZ5GFTffzAcPzvm6zCch1_sk6lMGswo5N1WPqCSrgB1146UtqgoR5KR-yxGFKVgaUxC1i312HdYjjQ7-fMG6VvzKNOkmpAQMbylJVr2RMmx-ko24S-d_l8cWXUExdQQFLmRhgTNo0tlYwJp7AVtzXXIkSjdbSNF0tq9F8ub8UYxsVCI6cFj5XlYCIUctOytmAuSRO9A8zR0owwFzFR9O3A5QFXmBkhDW6GypS6ASfIBL-2mMwvi-G85dec8WvONKA5Fo6vatRyGp4xmL7gdLJgWAF2TH_0eCxtH42KKiVBotMCN-NgHOkiK9wGbFdqMCHGqVQlpLv7txc4goWHruffXfdu92ARwy1Bh2E434e5fFToAwxp8vCw1OBPn7TtvA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Force-Induced+Rupture+of+a+DNA+Duplex%3A+From+Fundamentals+to+Force+Sensors&rft.jtitle=ACS+nano&rft.au=Mosayebi%2C+Majid&rft.au=Louis%2C+Ard+A&rft.au=Doye%2C+Jonathan+P+K&rft.au=Ouldridge%2C+Thomas+E&rft.date=2015-12-22&rft.eissn=1936-086X&rft.volume=9&rft.issue=12&rft.spage=11993&rft_id=info:doi/10.1021%2Facsnano.5b04726&rft_id=info%3Apmid%2F26575598&rft.externalDocID=26575598
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon