Force-Induced Rupture of a DNA Duplex: From Fundamentals to Force Sensors
The rupture of double-stranded DNA under stress is a key process in biophysics and nanotechnology. In this article, we consider the shear-induced rupture of short DNA duplexes, a system that has been given new importance by recently designed force sensors and nanotechnological devices. We argue that...
Saved in:
Published in | ACS nano Vol. 9; no. 12; pp. 11993 - 12003 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
22.12.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1936-0851 1936-086X 1936-086X |
DOI | 10.1021/acsnano.5b04726 |
Cover
Abstract | The rupture of double-stranded DNA under stress is a key process in biophysics and nanotechnology. In this article, we consider the shear-induced rupture of short DNA duplexes, a system that has been given new importance by recently designed force sensors and nanotechnological devices. We argue that rupture must be understood as an activated process, where the duplex state is metastable and the strands will separate in a finite time that depends on the duplex length and the force applied. Thus, the critical shearing force required to rupture a duplex depends strongly on the time scale of observation. We use simple models of DNA to show that this approach naturally captures the observed dependence of the force required to rupture a duplex within a given time on duplex length. In particular, this critical force is zero for the shortest duplexes, before rising sharply and then plateauing in the long length limit. The prevailing approach, based on identifying when the presence of each additional base pair within the duplex is thermodynamically unfavorable rather than allowing for metastability, does not predict a time-scale-dependent critical force and does not naturally incorporate a critical force of zero for the shortest duplexes. We demonstrate that our findings have important consequences for the behavior of a new force-sensing nanodevice, which operates in a mixed mode that interpolates between shearing and unzipping. At a fixed time scale and duplex length, the critical force exhibits a sigmoidal dependence on the fraction of the duplex that is subject to shearing. |
---|---|
AbstractList | The rupture of double-stranded DNA under stress is a key process in biophysics and nanotechnology. In this article, we consider the shear-induced rupture of short DNA duplexes, a system that has been given new importance by recently designed force sensors and nanotechnological devices. We argue that rupture must be understood as an activated process, where the duplex state is metastable and the strands will separate in a finite time that depends on the duplex length and the force applied. Thus, the critical shearing force required to rupture a duplex depends strongly on the time scale of observation. We use simple models of DNA to show that this approach naturally captures the observed dependence of the force required to rupture a duplex within a given time on duplex length. In particular, this critical force is zero for the shortest duplexes, before rising sharply and then plateauing in the long length limit. The prevailing approach, based on identifying when the presence of each additional base pair within the duplex is thermodynamically unfavorable rather than allowing for metastability, does not predict a time-scale-dependent critical force and does not naturally incorporate a critical force of zero for the shortest duplexes. We demonstrate that our findings have important consequences for the behavior of a new force-sensing nanodevice, which operates in a mixed mode that interpolates between shearing and unzipping. At a fixed time scale and duplex length, the critical force exhibits a sigmoidal dependence on the fraction of the duplex that is subject to shearing. The rupture of double-stranded DNA under stress is a key process in biophysics and nanotechnology. In this article, we consider the shear-induced rupture of short DNA duplexes, a system that has been given new importance by recently designed force sensors and nanotechnological devices. We argue that rupture must be understood as an activated process, where the duplex state is metastable and the strands will separate in a finite time that depends on the duplex length and the force applied. Thus, the critical shearing force required to rupture a duplex depends strongly on the time scale of observation. We use simple models of DNA to show that this approach naturally captures the observed dependence of the force required to rupture a duplex within a given time on duplex length. In particular, this critical force is zero for the shortest duplexes, before rising sharply and then plateauing in the long length limit. The prevailing approach, based on identifying when the presence of each additional base pair within the duplex is thermodynamically unfavorable rather than allowing for metastability, does not predict a time-scale-dependent critical force and does not naturally incorporate a critical force of zero for the shortest duplexes. We demonstrate that our findings have important consequences for the behavior of a new force-sensing nanodevice, which operates in a mixed mode that interpolates between shearing and unzipping. At a fixed time scale and duplex length, the critical force exhibits a sigmoidal dependence on the fraction of the duplex that is subject to shearing.The rupture of double-stranded DNA under stress is a key process in biophysics and nanotechnology. In this article, we consider the shear-induced rupture of short DNA duplexes, a system that has been given new importance by recently designed force sensors and nanotechnological devices. We argue that rupture must be understood as an activated process, where the duplex state is metastable and the strands will separate in a finite time that depends on the duplex length and the force applied. Thus, the critical shearing force required to rupture a duplex depends strongly on the time scale of observation. We use simple models of DNA to show that this approach naturally captures the observed dependence of the force required to rupture a duplex within a given time on duplex length. In particular, this critical force is zero for the shortest duplexes, before rising sharply and then plateauing in the long length limit. The prevailing approach, based on identifying when the presence of each additional base pair within the duplex is thermodynamically unfavorable rather than allowing for metastability, does not predict a time-scale-dependent critical force and does not naturally incorporate a critical force of zero for the shortest duplexes. We demonstrate that our findings have important consequences for the behavior of a new force-sensing nanodevice, which operates in a mixed mode that interpolates between shearing and unzipping. At a fixed time scale and duplex length, the critical force exhibits a sigmoidal dependence on the fraction of the duplex that is subject to shearing. |
Author | Louis, Ard A Doye, Jonathan P. K Ouldridge, Thomas E Mosayebi, Majid |
AuthorAffiliation | Institute for Research in Fundamental Sciences (IPM) Rudolf Peierls Centre for Theoretical Physics School of Physics Physical and Theoretical Chemistry Laboratory, Department of Chemistry University of Oxford Department of Mathematics Imperial College |
AuthorAffiliation_xml | – name: Imperial College – name: University of Oxford – name: Institute for Research in Fundamental Sciences (IPM) – name: Physical and Theoretical Chemistry Laboratory, Department of Chemistry – name: Rudolf Peierls Centre for Theoretical Physics – name: Department of Mathematics – name: School of Physics |
Author_xml | – sequence: 1 givenname: Majid surname: Mosayebi fullname: Mosayebi, Majid email: majid.mosayebi@chem.ox.ac.uk, t.ouldridge@imperial.ac.uk – sequence: 2 givenname: Ard A surname: Louis fullname: Louis, Ard A – sequence: 3 givenname: Jonathan P. K surname: Doye fullname: Doye, Jonathan P. K – sequence: 4 givenname: Thomas E surname: Ouldridge fullname: Ouldridge, Thomas E email: majid.mosayebi@chem.ox.ac.uk, t.ouldridge@imperial.ac.uk |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26575598$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kE1LJDEQhoO4-DHr2ZvkKCyt-egkHW-iOzowKOgu7C2keyrQ0p2MSQf03xud0cOCpwqp56mk3kO064MHhI4pOaOE0XPbJW99OBMtqRWTO-iAai4r0sh_u19nQffRYUpPhAjVKLmH9pkUSgjdHKDFPMQOqoVf5Q5W-CGvpxwBB4ctvr67xNd5PcDLBZ7HMOJ59is7gp_skPAU8IeLH8GnENNP9MOVezja1hn6O__95-q2Wt7fLK4ul5XlWk9V65jkQupOu5orTV0NDERLlVYgS-EaaqYbRh2V3AkoHxbMdVwRLVtGOJ-h083cdQzPGdJkxj51MAzWQ8jJUCVo3ZQ3moKebNHcjrAy69iPNr6az_ULIDZAF0NKEZzp-slOffBTtP1gKDHvMZttzGYbc_HO__M-R39v_NoYpWGeQo6-ZPQt_QZQwo1e |
CitedBy_id | crossref_primary_10_1063_1_5024975 crossref_primary_10_1021_acsomega_7b01692 crossref_primary_10_1016_j_ijengsci_2024_104194 crossref_primary_10_1021_jacs_3c10923 crossref_primary_10_1039_C7CP02214J crossref_primary_10_1021_acsnano_1c10698 crossref_primary_10_1088_1478_3975_abd333 crossref_primary_10_1016_j_cobme_2019_10_003 crossref_primary_10_1002_cbic_201900276 crossref_primary_10_1002_smll_201900961 crossref_primary_10_1042_BST20210479 crossref_primary_10_1134_S0020441219010044 crossref_primary_10_1002_anie_202302967 crossref_primary_10_1016_j_jbc_2022_101726 crossref_primary_10_1016_j_cub_2020_08_020 crossref_primary_10_1038_s41557_024_01571_4 crossref_primary_10_1103_PhysRevLett_120_068102 crossref_primary_10_1039_D1SM00676B crossref_primary_10_1038_s41467_021_22775_z crossref_primary_10_1088_1361_648X_abee38 crossref_primary_10_1126_science_aao4284 crossref_primary_10_1002_smll_202310330 crossref_primary_10_1098_rsif_2023_0130 crossref_primary_10_1016_j_bpj_2025_01_025 crossref_primary_10_1002_anie_202107660 crossref_primary_10_1021_acs_nanolett_8b01374 crossref_primary_10_1039_C8CP04896G crossref_primary_10_1088_1572_9494_acc64c crossref_primary_10_1038_s41565_023_01333_2 crossref_primary_10_1038_s41467_024_47126_6 crossref_primary_10_1242_jcs_238840 crossref_primary_10_3389_fmolb_2021_693710 crossref_primary_10_1103_PhysRevE_108_L042501 crossref_primary_10_1002_ange_202302967 crossref_primary_10_1021_acs_jpcb_8b05417 crossref_primary_10_1038_s41556_021_00691_0 crossref_primary_10_1021_acsnano_8b01844 crossref_primary_10_1038_srep21584 crossref_primary_10_1109_OJNANO_2021_3119913 crossref_primary_10_1016_j_bpj_2024_05_020 crossref_primary_10_1002_anie_202102206 crossref_primary_10_1021_acsnano_5b07664 crossref_primary_10_1038_srep36959 crossref_primary_10_1002_admi_201600441 crossref_primary_10_1093_nar_gkw1173 crossref_primary_10_1103_PhysRevE_94_032410 crossref_primary_10_1073_pnas_2102873118 crossref_primary_10_1021_acssensors_3c00606 crossref_primary_10_1002_ange_202107660 crossref_primary_10_1016_j_bpj_2019_02_027 crossref_primary_10_1021_acssensors_2c02218 crossref_primary_10_1021_acssensors_9b00553 crossref_primary_10_1021_acs_jpcb_2c01897 crossref_primary_10_1002_ange_202102206 crossref_primary_10_1021_acs_jpcb_6b08780 crossref_primary_10_1021_acs_nanolett_9b02311 crossref_primary_10_1088_1361_648X_acc7eb crossref_primary_10_1146_annurev_biophys_101920_064756 crossref_primary_10_1134_S0022476617020135 crossref_primary_10_1021_acs_jctc_0c00286 crossref_primary_10_1063_5_0121820 crossref_primary_10_1063_5_0199558 crossref_primary_10_1002_anbr_202100056 crossref_primary_10_1016_j_cell_2016_04_045 crossref_primary_10_1038_s41467_022_34212_w crossref_primary_10_1093_nar_gkx1282 crossref_primary_10_1088_2053_1591_3_8_085022 crossref_primary_10_1007_s00216_016_0035_6 crossref_primary_10_1021_acs_jctc_9b00112 crossref_primary_10_1039_D1NR05716B crossref_primary_10_1093_nar_gkac300 crossref_primary_10_1103_PhysRevLett_122_218101 crossref_primary_10_1021_acs_jpcb_6b08297 crossref_primary_10_18699_VJGB_23_93 |
Cites_doi | 10.1103/PhysRevLett.110.258102 10.1126/science.1231041 10.1103/PhysRevLett.109.118303 10.1093/nar/gkq1278 10.1103/PhysRevLett.88.028102 10.1073/pnas.262789199 10.1016/S1296-2147(01)01287-2 10.1063/1.3552946 10.1021/ja906987s 10.1007/s002490000107 10.1016/S0006-3495(02)75416-7 10.1016/j.physrep.2009.11.001 10.1063/1.4754132 10.1073/pnas.0904322106 10.1007/978-3-642-30517-7 10.1093/nar/gkt801 10.1126/science.1151424 10.1021/jp510061f 10.1016/S0031-8914(40)90098-2 10.1073/pnas.1109824109 10.1039/B810031D 10.1021/bi00063a022 10.1103/PhysRevE.70.011910 10.1021/ac802766j 10.1038/nmeth.3145 10.1063/1.3427587 10.1002/1438-5171(200107)2:2<75::AID-SIMO75>3.0.CO;2-8 10.1038/srep07655 10.1073/pnas.1001454107 10.1146/annurev.biophys.32.110601.141800 10.1103/PhysRevE.84.032903 10.1103/PhysRevLett.85.1572 10.1515/zpch-1889-0416 10.1093/nar/gkl508 10.1103/PhysRevE.84.031905 10.1093/nar/gks1206 10.1093/nar/gkh826 10.1103/PhysRevE.78.011920 10.1093/nar/gkl422 10.1126/science.1174251 10.1103/PhysRevLett.61.2635 10.1021/nn5034983 10.1126/science.7973628 10.1038/ncomms6167 10.1073/pnas.151257598 10.1529/biophysj.106.100511 10.1063/1.4792252 10.1021/la402971a 10.1063/1.4919646 10.1038/nature01405 10.1038/nnano.2010.107 10.1016/0021-9991(77)90121-8 10.1021/jp808232p 10.1093/nar/gkt687 10.1103/PhysRevLett.93.078101 10.1126/science.1202998 10.1007/978-1-4612-5190-3 10.1021/nn3058483 10.1073/pnas.96.20.11277 10.1021/jp411280n 10.1021/jp3080755 |
ContentType | Journal Article |
Copyright | Copyright © American Chemical Society |
Copyright_xml | – notice: Copyright © American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/acsnano.5b04726 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 12003 |
ExternalDocumentID | 26575598 10_1021_acsnano_5b04726 g05930152 |
Genre | Journal Article |
GroupedDBID | - 23M 4.4 53G 55A 5GY 5VS 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ LG6 P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-a399t-bf263569c9f43791f4e2e5b1797e6b1739e429821f163f5e87652fc37096b2033 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Thu Jul 10 18:58:30 EDT 2025 Mon Jul 21 05:13:29 EDT 2025 Tue Jul 01 01:33:56 EDT 2025 Thu Apr 24 23:05:40 EDT 2025 Thu Aug 27 13:42:07 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | force spectroscopy DNA nanotechnology coarse-grained modeling non-equilibrium chemistry molecular simulation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a399t-bf263569c9f43791f4e2e5b1797e6b1739e429821f163f5e87652fc37096b2033 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26575598 |
PQID | 1751486358 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1751486358 pubmed_primary_26575598 crossref_citationtrail_10_1021_acsnano_5b04726 crossref_primary_10_1021_acsnano_5b04726 acs_journals_10_1021_acsnano_5b04726 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-Dec-22 |
PublicationDateYYYYMMDD | 2015-12-22 |
PublicationDate_xml | – month: 12 year: 2015 text: 2015-Dec-22 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2015 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 Arrhenius S. (ref44/cit44) 1889; 4 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 Saenger W. (ref39/cit39) 1984 ref55/cit55 ref12/cit12 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref7/cit7 |
References_xml | – ident: ref35/cit35 doi: 10.1103/PhysRevLett.110.258102 – ident: ref9/cit9 doi: 10.1126/science.1231041 – ident: ref20/cit20 doi: 10.1103/PhysRevLett.109.118303 – ident: ref54/cit54 doi: 10.1093/nar/gkq1278 – ident: ref28/cit28 doi: 10.1103/PhysRevLett.88.028102 – ident: ref26/cit26 doi: 10.1073/pnas.262789199 – ident: ref29/cit29 doi: 10.1016/S1296-2147(01)01287-2 – ident: ref49/cit49 doi: 10.1063/1.3552946 – ident: ref46/cit46 doi: 10.1021/ja906987s – ident: ref15/cit15 doi: 10.1007/s002490000107 – ident: ref22/cit22 doi: 10.1016/S0006-3495(02)75416-7 – ident: ref36/cit36 doi: 10.1016/j.physrep.2009.11.001 – ident: ref51/cit51 doi: 10.1063/1.4754132 – ident: ref18/cit18 doi: 10.1073/pnas.0904322106 – ident: ref50/cit50 doi: 10.1007/978-3-642-30517-7 – ident: ref52/cit52 doi: 10.1093/nar/gkt801 – ident: ref7/cit7 doi: 10.1126/science.1151424 – ident: ref56/cit56 doi: 10.1021/jp510061f – ident: ref45/cit45 doi: 10.1016/S0031-8914(40)90098-2 – ident: ref55/cit55 doi: 10.1073/pnas.1109824109 – ident: ref60/cit60 doi: 10.1039/B810031D – ident: ref40/cit40 doi: 10.1021/bi00063a022 – ident: ref33/cit33 doi: 10.1103/PhysRevE.70.011910 – ident: ref8/cit8 doi: 10.1021/ac802766j – ident: ref10/cit10 doi: 10.1038/nmeth.3145 – ident: ref34/cit34 doi: 10.1063/1.3427587 – ident: ref23/cit23 doi: 10.1002/1438-5171(200107)2:2<75::AID-SIMO75>3.0.CO;2-8 – ident: ref59/cit59 doi: 10.1038/srep07655 – ident: ref19/cit19 doi: 10.1073/pnas.1001454107 – ident: ref53/cit53 – ident: ref43/cit43 doi: 10.1146/annurev.biophys.32.110601.141800 – ident: ref38/cit38 doi: 10.1103/PhysRevE.84.032903 – ident: ref31/cit31 doi: 10.1103/PhysRevLett.85.1572 – volume: 4 start-page: 226 year: 1889 ident: ref44/cit44 publication-title: Z. Phys. Chem. doi: 10.1515/zpch-1889-0416 – ident: ref1/cit1 doi: 10.1093/nar/gkl508 – ident: ref37/cit37 doi: 10.1103/PhysRevE.84.031905 – ident: ref21/cit21 doi: 10.1093/nar/gks1206 – ident: ref17/cit17 doi: 10.1093/nar/gkh826 – ident: ref25/cit25 doi: 10.1103/PhysRevE.78.011920 – ident: ref48/cit48 doi: 10.1093/nar/gkl422 – ident: ref2/cit2 doi: 10.1126/science.1174251 – ident: ref62/cit62 doi: 10.1103/PhysRevLett.61.2635 – ident: ref6/cit6 doi: 10.1021/nn5034983 – ident: ref13/cit13 doi: 10.1126/science.7973628 – ident: ref11/cit11 doi: 10.1038/ncomms6167 – ident: ref32/cit32 doi: 10.1073/pnas.151257598 – ident: ref24/cit24 doi: 10.1529/biophysj.106.100511 – ident: ref58/cit58 doi: 10.1063/1.4792252 – ident: ref12/cit12 doi: 10.1021/la402971a – ident: ref47/cit47 doi: 10.1063/1.4919646 – ident: ref14/cit14 doi: 10.1038/nature01405 – ident: ref3/cit3 doi: 10.1038/nnano.2010.107 – ident: ref61/cit61 doi: 10.1016/0021-9991(77)90121-8 – ident: ref30/cit30 doi: 10.1021/jp808232p – ident: ref42/cit42 doi: 10.1093/nar/gkt687 – ident: ref27/cit27 doi: 10.1103/PhysRevLett.93.078101 – ident: ref4/cit4 doi: 10.1126/science.1202998 – volume-title: Principles of Nucleic Acid Structure year: 1984 ident: ref39/cit39 doi: 10.1007/978-1-4612-5190-3 – ident: ref5/cit5 doi: 10.1021/nn3058483 – ident: ref16/cit16 doi: 10.1073/pnas.96.20.11277 – ident: ref41/cit41 doi: 10.1021/jp411280n – ident: ref57/cit57 doi: 10.1021/jp3080755 |
SSID | ssj0057876 |
Score | 2.472233 |
Snippet | The rupture of double-stranded DNA under stress is a key process in biophysics and nanotechnology. In this article, we consider the shear-induced rupture of... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 11993 |
SubjectTerms | DNA - chemistry DNA - metabolism Molecular Dynamics Simulation Nanotechnology - methods Spectrum Analysis |
Title | Force-Induced Rupture of a DNA Duplex: From Fundamentals to Force Sensors |
URI | http://dx.doi.org/10.1021/acsnano.5b04726 https://www.ncbi.nlm.nih.gov/pubmed/26575598 https://www.proquest.com/docview/1751486358 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4NAEN5ovejB96O-siY9eAFhYYH11rSSamIP1ibeCGyXixUaHonx1zsDtD6aRk9c2A3Mg_mGmf2GkI7HI_Aay9AmBlea7UhXC_FHPhiTO8GmdynwcPLj0BmM7YcX_vJFFv27gs_Mm1DmSZikOo-Q2NBZJxvMASNDFNQbzT-6aHdOXUCGBBlQxILFZ2kDDEMy_xmGVmDLKsb4O3V3Vl5RE2JryateFpEuP5aJG_9-_F2y3SBN2q1NY4-sqWSfbH3jHzwg936aSaXh-A6pJvSpnGE9gaYxDWl_2KX9cjZV77fUz9I36uOZkXoUQE6LlFZr6QjS4DTLD8nYv3vuDbRmtgKoQohCi2JkoXGEFDEyEpqxrZjiEbinqxy4WEJBpPKYGQNgi7kC8XIWS8uFlCdihmUdkVaSJuqEUFcJYwJZhwFKtkOPhUxCDgR7MCOShlBt0gEhBI1v5EFV9mZm0EgmaCTTJvpcI4Fs-MlxTMZ09YLrxYJZTc2x-taruYoDcB-siYSJSkt4GBcQowei8NrkuNb9YjOGRSkuvNP_vcAZ2QQ0xbHXhbFz0iqyUl0AYimiy8pWPwHgpuLY |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4NAEJ5oPagH34_6XBMPXqh06QLrrWklrbZNfDTpjcCyXKzQFEiMv95ZoPWVJnoiIexkmZ1hvmF2vwG4tJmPXmPoWqAzqTVMYWme-pGPxmQFatO74Opwcn9gdoaNuxEbLYE-OwuDk0hQUpIX8T_ZBerXeC_yorjGfMVvaC7DCkIRqpo1NFtPs2-vMj-zqCNjnoxgYk7m80uAikYi-R6NFkDMPNQ4m_Awn2S-w-SllqV-Tbz_4G_8z1tswUaJO0mzMJRtWJLRDqx_YSPcha4TT4XUVDMPIQPymE1UdYHEIfFIe9Ak7Wwylm83xJnGr8RRJ0iKxgAJSWOSjyVPmBTH02QPhs7tc6ujlZ0WcGE4TzU_VJw0Jhc8VPyE9bAhqWQ-OqslTbwYXGLcsmk9RPgWMolaZjQUhoUJkE91w9iHShRH8hCIJbkeYA6i45I3PJt6VGBGhDKo7gudyypcohLc0lMSNy-C07pbasYtNVOF2mxhXFGylaumGePFA67mAyYFUcfiRy9mK-2iM6kKiRfJOMPJWIgfbVSFXYWDwgTmwqgqUTFuH_3tBc5htfPc77m97uD-GNYQZzG1C4bSE6ik00yeIpZJ_bPcfD8A1PbrOQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZT4NAEJ54JEYfvI96rokPvlDp0gXWt8ZKPBujNvGNwLK8WKEpkBh_vTNAG4800ScSwk6WOZgZZucbgBNXhGg1lmlEptBG21aOEdCPfFQmJ6JD70pSc_J9z77qt29exEvdFEa9MLiJDCllZRGfrHoYxTXCQOsM7ydBkjZFSBiH9izMU9GOBjZ0Lp7G319SQbuqJWOujAHFBNDnFwHySCr77pGmhJmlu_FWoD_ZaHnK5LVZ5GFTffzAcPzvm6zCch1_sk6lMGswo5N1WPqCSrgB1146UtqgoR5KR-yxGFKVgaUxC1i312HdYjjQ7-fMG6VvzKNOkmpAQMbylJVr2RMmx-ko24S-d_l8cWXUExdQQFLmRhgTNo0tlYwJp7AVtzXXIkSjdbSNF0tq9F8ub8UYxsVCI6cFj5XlYCIUctOytmAuSRO9A8zR0owwFzFR9O3A5QFXmBkhDW6GypS6ASfIBL-2mMwvi-G85dec8WvONKA5Fo6vatRyGp4xmL7gdLJgWAF2TH_0eCxtH42KKiVBotMCN-NgHOkiK9wGbFdqMCHGqVQlpLv7txc4goWHruffXfdu92ARwy1Bh2E434e5fFToAwxp8vCw1OBPn7TtvA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Force-Induced+Rupture+of+a+DNA+Duplex%3A+From+Fundamentals+to+Force+Sensors&rft.jtitle=ACS+nano&rft.au=Mosayebi%2C+Majid&rft.au=Louis%2C+Ard+A&rft.au=Doye%2C+Jonathan+P+K&rft.au=Ouldridge%2C+Thomas+E&rft.date=2015-12-22&rft.eissn=1936-086X&rft.volume=9&rft.issue=12&rft.spage=11993&rft_id=info:doi/10.1021%2Facsnano.5b04726&rft_id=info%3Apmid%2F26575598&rft.externalDocID=26575598 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |