Defect Engineering of Two-Dimensional Transition-Metal Dichalcogenides: Applications, Challenges, and Opportunities
Atomic defects, being the most prevalent zero-dimensional topological defects, are ubiquitous in a wide range of 2D transition-metal dichalcogenides (TMDs). They could be intrinsic, formed during the initial sample growth, or created by postprocessing. Despite the majority of TMDs being largely unaf...
Saved in:
Published in | ACS nano Vol. 15; no. 2; pp. 2165 - 2181 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
23.02.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Atomic defects, being the most prevalent zero-dimensional topological defects, are ubiquitous in a wide range of 2D transition-metal dichalcogenides (TMDs). They could be intrinsic, formed during the initial sample growth, or created by postprocessing. Despite the majority of TMDs being largely unaffected after losing chalcogen atoms in the outermost layer, a spectrum of properties, including optical, electrical, and chemical properties, can be significantly modulated, and potentially invoke applicable functionalities utilized in many applications. Hence, controlling chalcogen atomic defects provides an alternative avenue for engineering a wide range of physical and chemical properties of 2D TMDs. In this article, we review recent progress on the role of chalcogen atomic defects in engineering 2D TMDs, with a particular focus on device performance improvements. Various approaches for creating chalcogen atomic defects including nonstoichiometric synthesis and postgrowth treatment, together with their characterization and interpretation are systematically overviewed. The tailoring of optical, electrical, and magnetic properties, along with the device performance enhancement in electronic, optoelectronic, chemical sensing, biomedical, and catalytic activity are discussed in detail. Postformation dynamic evolution and repair of chalcogen atomic defects are also introduced. Finally, we offer our perspective on the challenges and opportunities in this field. |
---|---|
AbstractList | Atomic defects, being the most prevalent zero-dimensional topological defects, are ubiquitous in a wide range of 2D transition-metal dichalcogenides (TMDs). They could be intrinsic, formed during the initial sample growth, or created by postprocessing. Despite the majority of TMDs being largely unaffected after losing chalcogen atoms in the outermost layer, a spectrum of properties, including optical, electrical, and chemical properties, can be significantly modulated, and potentially invoke applicable functionalities utilized in many applications. Hence, controlling chalcogen atomic defects provides an alternative avenue for engineering a wide range of physical and chemical properties of 2D TMDs. In this article, we review recent progress on the role of chalcogen atomic defects in engineering 2D TMDs, with a particular focus on device performance improvements. Various approaches for creating chalcogen atomic defects including nonstoichiometric synthesis and postgrowth treatment, together with their characterization and interpretation are systematically overviewed. The tailoring of optical, electrical, and magnetic properties, along with the device performance enhancement in electronic, optoelectronic, chemical sensing, biomedical, and catalytic activity are discussed in detail. Postformation dynamic evolution and repair of chalcogen atomic defects are also introduced. Finally, we offer our perspective on the challenges and opportunities in this field. Atomic defects, being the most prevalent zero-dimensional topological defects, are ubiquitous in a wide range of 2D transition-metal dichalcogenides (TMDs). They could be intrinsic, formed during the initial sample growth, or created by postprocessing. Despite the majority of TMDs being largely unaffected after losing chalcogen atoms in the outermost layer, a spectrum of properties, including optical, electrical, and chemical properties, can be significantly modulated, and potentially invoke applicable functionalities utilized in many applications. Hence, controlling chalcogen atomic defects provides an alternative avenue for engineering a wide range of physical and chemical properties of 2D TMDs. In this article, we review recent progress on the role of chalcogen atomic defects in engineering 2D TMDs, with a particular focus on device performance improvements. Various approaches for creating chalcogen atomic defects including nonstoichiometric synthesis and postgrowth treatment, together with their characterization and interpretation are systematically overviewed. The tailoring of optical, electrical, and magnetic properties, along with the device performance enhancement in electronic, optoelectronic, chemical sensing, biomedical, and catalytic activity are discussed in detail. Postformation dynamic evolution and repair of chalcogen atomic defects are also introduced. Finally, we offer our perspective on the challenges and opportunities in this field.Atomic defects, being the most prevalent zero-dimensional topological defects, are ubiquitous in a wide range of 2D transition-metal dichalcogenides (TMDs). They could be intrinsic, formed during the initial sample growth, or created by postprocessing. Despite the majority of TMDs being largely unaffected after losing chalcogen atoms in the outermost layer, a spectrum of properties, including optical, electrical, and chemical properties, can be significantly modulated, and potentially invoke applicable functionalities utilized in many applications. Hence, controlling chalcogen atomic defects provides an alternative avenue for engineering a wide range of physical and chemical properties of 2D TMDs. In this article, we review recent progress on the role of chalcogen atomic defects in engineering 2D TMDs, with a particular focus on device performance improvements. Various approaches for creating chalcogen atomic defects including nonstoichiometric synthesis and postgrowth treatment, together with their characterization and interpretation are systematically overviewed. The tailoring of optical, electrical, and magnetic properties, along with the device performance enhancement in electronic, optoelectronic, chemical sensing, biomedical, and catalytic activity are discussed in detail. Postformation dynamic evolution and repair of chalcogen atomic defects are also introduced. Finally, we offer our perspective on the challenges and opportunities in this field. |
Author | Zhang, Qian Zhao, Xiaoxu Wee, Andrew T. S Liu, Meizhuang Liang, Qijie |
AuthorAffiliation | Department of Materials Science and Engineering Centre for Advanced 2D Materials Department of Physics |
AuthorAffiliation_xml | – name: Department of Physics – name: Centre for Advanced 2D Materials – name: Department of Materials Science and Engineering |
Author_xml | – sequence: 1 givenname: Qijie orcidid: 0000-0003-4252-7997 surname: Liang fullname: Liang, Qijie organization: Department of Physics – sequence: 2 givenname: Qian surname: Zhang fullname: Zhang, Qian email: elezhqi@nus.edu.sg organization: Department of Materials Science and Engineering – sequence: 3 givenname: Xiaoxu orcidid: 0000-0001-9746-3770 surname: Zhao fullname: Zhao, Xiaoxu organization: Department of Materials Science and Engineering – sequence: 4 givenname: Meizhuang orcidid: 0000-0002-0324-0478 surname: Liu fullname: Liu, Meizhuang organization: Department of Physics – sequence: 5 givenname: Andrew T. S orcidid: 0000-0002-5828-4312 surname: Wee fullname: Wee, Andrew T. S email: phyweets@nus.edu.sg organization: Centre for Advanced 2D Materials |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33449623$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc9LwzAcxYMozk3P3qRHQTuTpk0ab2ObP0DxMsFbyNJvZ6RLatIi_vdGt3kQPOUl3_d5kO8bon3rLCB0SvCY4IxcKR2ssm6MNRaMsT10RARlKS7Zy_6vLsgADUN4w7jgJWeHaEBpnguW0SMUZlCD7pK5XRkL4I1dJa5OFh8unZk12GCcVU2y8CrKLl7SR-jiw8zoV9VotwJrKgjXyaRtG6PVtyVcJtM4bMCuIGplq-SpbZ3vehsjIByjg1o1AU625wg938wX07v04en2fjp5SBUVoksV57zEqiiFoHxJlwXhVQYVMFpTqDPgTKm6JGUFnENGc15mUGOei4hVnFV0hM43ua137z2ETq5N0NA0yoLrg8wiUghGeB6tZ1trv1xDJVtv1sp_yt2ioqHYGLR3IXiopTbdz287r0wjCZbfhchtIXJbSOSu_nC76P-Jiw0RB_LN9T7uP_zr_gIybJ92 |
CitedBy_id | crossref_primary_10_1002_adma_202406353 crossref_primary_10_1002_adfm_202210236 crossref_primary_10_1007_s12274_022_5016_9 crossref_primary_10_1016_j_jece_2024_113784 crossref_primary_10_1016_j_surfrep_2021_100542 crossref_primary_10_1002_adom_202102711 crossref_primary_10_1002_smll_202207641 crossref_primary_10_1002_slct_202300878 crossref_primary_10_1021_acs_nanolett_4c04374 crossref_primary_10_1016_j_matchemphys_2023_127836 crossref_primary_10_1016_j_ccr_2022_214854 crossref_primary_10_1002_pssa_202300180 crossref_primary_10_1002_smll_202404821 crossref_primary_10_1021_acs_nanolett_4c00579 crossref_primary_10_1002_smll_202311635 crossref_primary_10_1039_D3CP04915A crossref_primary_10_1080_21663831_2022_2145921 crossref_primary_10_1021_acs_chemrev_4c00631 crossref_primary_10_1021_acs_nanolett_2c04987 crossref_primary_10_1002_adom_202302852 crossref_primary_10_1016_j_cej_2025_160549 crossref_primary_10_1021_acsnano_3c06102 crossref_primary_10_1103_PhysRevB_108_165414 crossref_primary_10_1016_j_heliyon_2023_e23384 crossref_primary_10_1038_s41598_024_65213_y crossref_primary_10_1016_j_carbon_2025_120234 crossref_primary_10_1088_1361_6528_acddea crossref_primary_10_1088_1361_648X_ad7568 crossref_primary_10_1002_adma_202305770 crossref_primary_10_1088_2053_1591_ad4baa crossref_primary_10_3390_catal14090627 crossref_primary_10_3390_nano12193451 crossref_primary_10_1002_adom_202201583 crossref_primary_10_1002_smll_202207511 crossref_primary_10_1016_j_est_2024_112209 crossref_primary_10_1021_acsomega_3c06331 crossref_primary_10_1103_PhysRevMaterials_8_034002 crossref_primary_10_1039_D2MA00288D crossref_primary_10_1021_acs_jpclett_5c00032 crossref_primary_10_1038_s44160_024_00501_z crossref_primary_10_1002_adfm_202412771 crossref_primary_10_1039_D3NR06296A crossref_primary_10_1039_D3MA01152F crossref_primary_10_1016_j_cap_2024_08_010 crossref_primary_10_1063_5_0065185 crossref_primary_10_1088_1361_648X_ad2e26 crossref_primary_10_1016_j_pmatsci_2022_100962 crossref_primary_10_1021_acs_jpclett_4c03000 crossref_primary_10_1016_j_apmate_2024_100246 crossref_primary_10_1002_advs_202305162 crossref_primary_10_1002_aelm_202300711 crossref_primary_10_1016_j_esci_2023_100178 crossref_primary_10_1039_D3TA03020B crossref_primary_10_1039_D2TA00075J crossref_primary_10_1088_1361_6463_adbcba crossref_primary_10_1021_acs_inorgchem_4c04505 crossref_primary_10_1016_j_cis_2023_103004 crossref_primary_10_1007_s10338_024_00564_7 crossref_primary_10_1016_j_micrna_2022_207241 crossref_primary_10_1039_D4TA07238C crossref_primary_10_1002_aelm_202300177 crossref_primary_10_1016_j_isci_2023_107982 crossref_primary_10_1038_s41597_023_02103_4 crossref_primary_10_1039_D1NJ03861C crossref_primary_10_1021_acsaom_3c00296 crossref_primary_10_1039_D4NR05364H crossref_primary_10_1016_j_apsusc_2025_162339 crossref_primary_10_1093_mam_ozae044_575 crossref_primary_10_1016_j_nxmate_2023_100018 crossref_primary_10_3390_polym14071464 crossref_primary_10_1016_j_mtnano_2024_100486 crossref_primary_10_1007_s40843_023_2616_x crossref_primary_10_3390_molecules30030697 crossref_primary_10_1039_D2QI01911F crossref_primary_10_1016_j_mtchem_2022_101235 crossref_primary_10_1007_s10854_023_10547_y crossref_primary_10_1515_nanoph_2023_0560 crossref_primary_10_1002_adfm_202311141 crossref_primary_10_1088_1361_6528_acf29c crossref_primary_10_1021_acs_jpca_4c00228 crossref_primary_10_1016_j_jallcom_2022_164833 crossref_primary_10_1021_acsami_1c14332 crossref_primary_10_1021_jacs_5c00033 crossref_primary_10_3390_nano12111936 crossref_primary_10_1016_j_ijhydene_2023_06_107 crossref_primary_10_1002_smll_202403089 crossref_primary_10_1016_j_engfracmech_2023_109282 crossref_primary_10_1039_D2NA00636G crossref_primary_10_1002_slct_202304421 crossref_primary_10_1002_smll_202305607 crossref_primary_10_1021_acsanm_2c01458 crossref_primary_10_1039_D3NR01321A crossref_primary_10_1021_acsami_4c23080 crossref_primary_10_1021_acsami_4c08011 crossref_primary_10_1039_D4NH00005F crossref_primary_10_1002_smtd_202201529 crossref_primary_10_1021_acs_jpcc_3c06820 crossref_primary_10_1021_acsnano_4c02066 crossref_primary_10_1039_D3NR00082F crossref_primary_10_1021_acs_jpcc_2c00051 crossref_primary_10_1039_D1MA00757B crossref_primary_10_1002_adfm_202311134 crossref_primary_10_1038_s41467_024_46729_3 crossref_primary_10_1063_5_0185604 crossref_primary_10_1016_j_pmatsci_2022_100946 crossref_primary_10_1088_1674_1056_ad641f crossref_primary_10_1002_lpor_202200486 crossref_primary_10_1021_acsami_2c05169 crossref_primary_10_1002_bkcs_12816 crossref_primary_10_1021_acsnano_1c06238 crossref_primary_10_1063_5_0221583 crossref_primary_10_1063_5_0244224 crossref_primary_10_1002_smll_202309595 crossref_primary_10_1021_acsnano_1c05268 crossref_primary_10_1021_acs_jpcc_3c01950 crossref_primary_10_1016_j_elecom_2024_107678 crossref_primary_10_1021_acsaelm_3c01163 crossref_primary_10_1002_smm2_1031 crossref_primary_10_1088_2053_1583_ad2108 crossref_primary_10_1039_D4CP00959B crossref_primary_10_1016_j_microc_2023_109513 crossref_primary_10_1021_acs_jpcc_3c01044 crossref_primary_10_1021_acsnano_3c02103 crossref_primary_10_1016_j_microc_2023_109878 crossref_primary_10_1002_eem2_12259 crossref_primary_10_1021_acsami_4c01311 crossref_primary_10_1016_j_mtcomm_2025_111717 crossref_primary_10_3389_fbioe_2022_941135 crossref_primary_10_1063_5_0248810 crossref_primary_10_1016_j_surfin_2024_105515 crossref_primary_10_1021_acsami_3c08659 crossref_primary_10_1039_D2SC01398C crossref_primary_10_1002_advs_202103042 crossref_primary_10_1002_adfm_202309046 crossref_primary_10_1016_j_ccr_2024_215695 crossref_primary_10_1002_adma_202416483 crossref_primary_10_1007_s12274_023_6196_7 crossref_primary_10_1039_D1TC02054D crossref_primary_10_1039_D2CP00374K crossref_primary_10_1063_5_0059381 crossref_primary_10_1002_adma_202312425 crossref_primary_10_1007_s40820_021_00784_3 crossref_primary_10_1002_adma_202309940 crossref_primary_10_1002_adma_202305580 crossref_primary_10_1002_adom_202400235 crossref_primary_10_1007_s10800_022_01739_1 crossref_primary_10_1088_2053_1583_ad341c crossref_primary_10_1021_acs_energyfuels_2c03833 crossref_primary_10_1364_OL_459747 crossref_primary_10_1002_admi_202200505 crossref_primary_10_1093_bulcsj_uoaf010 crossref_primary_10_1016_j_apmt_2025_102582 crossref_primary_10_1016_j_bios_2024_116502 crossref_primary_10_1016_j_mssp_2024_108699 crossref_primary_10_3390_ma17174200 crossref_primary_10_1038_s41467_024_53481_1 crossref_primary_10_7498_aps_72_20221815 crossref_primary_10_1007_s42250_022_00577_0 crossref_primary_10_1007_s11467_023_1290_6 crossref_primary_10_1021_acsnanoscienceau_4c00010 crossref_primary_10_3389_fphy_2023_1124924 crossref_primary_10_1016_j_jallcom_2024_176898 crossref_primary_10_1038_s41467_024_49005_6 crossref_primary_10_1021_acsami_1c20536 crossref_primary_10_1002_adfm_202311223 crossref_primary_10_1021_acsami_3c12571 crossref_primary_10_1016_j_scitotenv_2021_151647 crossref_primary_10_1021_acs_jpclett_3c00675 crossref_primary_10_34133_research_0195 crossref_primary_10_1021_acs_jpcc_4c00507 crossref_primary_10_1021_acsnano_4c09173 crossref_primary_10_1021_acs_cgd_3c00733 crossref_primary_10_1021_acs_jpcc_1c06530 crossref_primary_10_1002_cplu_202100562 crossref_primary_10_1021_acs_chemrev_3c00937 crossref_primary_10_1021_acs_nanolett_4c02586 crossref_primary_10_1039_D4CP01533A crossref_primary_10_1021_acsami_4c15937 crossref_primary_10_1021_acs_jpcc_4c00192 crossref_primary_10_1021_acs_nanolett_2c01282 crossref_primary_10_1021_acs_analchem_4c00515 crossref_primary_10_1002_adfm_202208994 crossref_primary_10_1016_j_jmst_2024_09_032 crossref_primary_10_1002_apxr_202300009 crossref_primary_10_1002_sstr_202400027 crossref_primary_10_1002_adfm_202406942 crossref_primary_10_1088_2516_1075_acc55d crossref_primary_10_1177_15330338221142996 crossref_primary_10_1021_acs_chemrev_3c00389 crossref_primary_10_1103_PhysRevLett_134_096202 crossref_primary_10_1021_acs_jpcc_4c00511 crossref_primary_10_1103_PhysRevMaterials_8_054006 crossref_primary_10_1103_PhysRevB_110_045407 crossref_primary_10_1007_s12274_023_6374_7 crossref_primary_10_1021_acs_jpcc_3c03812 crossref_primary_10_1016_j_mser_2024_100872 crossref_primary_10_1039_D2CP00393G crossref_primary_10_3390_nano12162773 crossref_primary_10_1002_aelm_202001219 crossref_primary_10_1002_cjoc_202100791 crossref_primary_10_1088_1674_1056_acef04 crossref_primary_10_1002_adfm_202307625 crossref_primary_10_1002_smll_202305234 crossref_primary_10_1007_s40430_025_05397_0 crossref_primary_10_1038_s41699_023_00367_3 crossref_primary_10_1134_S2075113324700126 crossref_primary_10_1016_j_physe_2024_116030 crossref_primary_10_1016_j_compositesb_2022_110479 crossref_primary_10_1002_smtd_202401486 crossref_primary_10_1016_j_sna_2022_113780 crossref_primary_10_1063_5_0196701 crossref_primary_10_1007_s10008_022_05186_y crossref_primary_10_1063_5_0200151 crossref_primary_10_1149_1945_7111_ac4f25 crossref_primary_10_1016_j_jallcom_2022_168375 crossref_primary_10_1021_acs_jpclett_4c01578 crossref_primary_10_1021_acsami_3c15655 crossref_primary_10_1002_andp_202200378 crossref_primary_10_1016_j_mne_2022_100126 crossref_primary_10_1002_admi_202201473 crossref_primary_10_1038_s41535_021_00382_x crossref_primary_10_1016_j_jpcs_2024_111878 crossref_primary_10_1016_j_physb_2024_415826 crossref_primary_10_1021_acsphotonics_4c01545 crossref_primary_10_1016_j_inoche_2025_114296 crossref_primary_10_1364_PRJ_547551 crossref_primary_10_1002_adma_202416897 crossref_primary_10_1021_acssuschemeng_2c02133 crossref_primary_10_1039_D3NR02147E crossref_primary_10_7498_aps_73_20240475 crossref_primary_10_1007_s12274_022_5203_8 crossref_primary_10_1016_j_checat_2023_100621 crossref_primary_10_1021_jacs_4c11052 crossref_primary_10_1016_j_cej_2022_138514 crossref_primary_10_1021_acsnano_4c12927 crossref_primary_10_1063_5_0147072 crossref_primary_10_1016_j_apcatb_2023_123174 crossref_primary_10_1002_adfm_202203555 crossref_primary_10_1021_acsnano_2c06317 crossref_primary_10_1021_acs_jpcc_2c05698 crossref_primary_10_1002_adma_202303098 crossref_primary_10_1021_acsanm_4c04529 crossref_primary_10_1103_PhysRevMaterials_6_084002 crossref_primary_10_1039_D4TA02739F crossref_primary_10_1002_smll_202100655 crossref_primary_10_1134_S1062873824707633 crossref_primary_10_1016_j_micrna_2023_207568 crossref_primary_10_1021_acsnano_4c10085 crossref_primary_10_1016_j_apsusc_2024_161335 crossref_primary_10_1016_j_mser_2025_100946 crossref_primary_10_1021_acsaelm_4c01330 crossref_primary_10_1126_sciadv_adr0492 crossref_primary_10_1021_acs_jpcc_3c02855 crossref_primary_10_1002_smll_202406630 crossref_primary_10_1016_j_jcis_2022_12_082 crossref_primary_10_1116_6_0003894 crossref_primary_10_1039_D3NH00201B crossref_primary_10_1016_j_apsusc_2025_163020 crossref_primary_10_1021_acs_nanolett_2c00550 crossref_primary_10_1007_s12274_023_5876_7 crossref_primary_10_1021_acsami_1c10805 crossref_primary_10_1016_j_cej_2024_155967 crossref_primary_10_1021_acsanm_4c00855 crossref_primary_10_1103_PhysRevB_108_144101 crossref_primary_10_1007_s42247_024_00966_w crossref_primary_10_1039_D3RA07812D crossref_primary_10_1021_acsami_4c03767 crossref_primary_10_1039_D1NJ04427C crossref_primary_10_1063_5_0092955 crossref_primary_10_1021_acs_nanolett_4c02391 crossref_primary_10_1103_PhysRevB_108_075404 crossref_primary_10_1016_j_physe_2024_116124 crossref_primary_10_1002_smsc_202100122 crossref_primary_10_1021_acsami_1c16884 crossref_primary_10_1088_1361_6528_ad8bca crossref_primary_10_1088_2752_5724_ad7c6c crossref_primary_10_1016_j_carbon_2023_02_005 crossref_primary_10_1016_j_jcis_2024_01_060 crossref_primary_10_1021_acsnano_3c07752 crossref_primary_10_1021_jacs_4c11075 crossref_primary_10_1515_nanoph_2022_0050 crossref_primary_10_1021_acs_nanolett_1c02799 crossref_primary_10_1021_acsnano_2c09209 crossref_primary_10_1103_PhysRevB_110_104113 crossref_primary_10_1126_sciadv_adn5899 crossref_primary_10_1063_5_0169249 crossref_primary_10_1016_j_jechem_2022_07_022 crossref_primary_10_1021_acs_jpcc_2c07695 crossref_primary_10_1021_acsaelm_2c00379 crossref_primary_10_1002_pssr_202300066 crossref_primary_10_1002_smll_202102496 crossref_primary_10_1021_acs_jpcc_4c06306 crossref_primary_10_1063_5_0152247 crossref_primary_10_1021_acs_analchem_3c00272 crossref_primary_10_1016_j_desal_2023_117278 crossref_primary_10_1016_j_mtchem_2024_102044 crossref_primary_10_1016_j_smmf_2024_100052 crossref_primary_10_1016_j_tsf_2024_140409 crossref_primary_10_1021_acsaelm_1c00472 crossref_primary_10_1021_acsnano_4c08473 crossref_primary_10_1039_D3CP05032G crossref_primary_10_1016_j_snb_2021_129942 crossref_primary_10_1088_2053_1591_ac5ef3 crossref_primary_10_1021_acs_jpcc_4c03966 crossref_primary_10_1016_j_snb_2023_133325 crossref_primary_10_1088_1361_6528_ad6875 crossref_primary_10_1038_s41699_022_00329_1 crossref_primary_10_1039_D4NR05510A crossref_primary_10_1016_j_apsusc_2022_155999 crossref_primary_10_1016_j_aca_2024_342952 crossref_primary_10_1039_D4CP00974F crossref_primary_10_1016_j_cej_2023_146800 crossref_primary_10_1016_j_enmm_2022_100772 crossref_primary_10_1016_j_est_2024_111614 crossref_primary_10_1016_j_mtphys_2025_101689 crossref_primary_10_1002_adfm_202404615 crossref_primary_10_1038_s41545_023_00293_3 crossref_primary_10_1002_aenm_202401704 crossref_primary_10_1039_D2CP04613J crossref_primary_10_1002_celc_202300614 crossref_primary_10_1063_5_0214524 crossref_primary_10_3389_fnano_2023_1291338 crossref_primary_10_1038_s41467_022_30414_4 crossref_primary_10_1038_s41699_024_00504_6 crossref_primary_10_1088_1402_4896_acf352 crossref_primary_10_1088_1361_6641_ad255b crossref_primary_10_1103_PhysRevB_105_035404 crossref_primary_10_1021_acsnano_3c09580 crossref_primary_10_1103_PhysRevB_109_125306 crossref_primary_10_1021_acsami_1c07286 crossref_primary_10_1016_j_ces_2023_118747 crossref_primary_10_1016_j_est_2023_107614 |
Cites_doi | 10.1103/RevModPhys.81.109 10.1038/s41586-018-0631-z 10.1103/PhysRevLett.113.166801 10.1039/C7CS00705A 10.1038/ncomms1589 10.1021/acsnano.7b03186 10.1021/acs.nanolett.8b02804 10.1002/adma.201807609 10.1088/0022-3719/5/7/007 10.1021/acs.nanolett.7b04342 10.1021/acsami.8b12545 10.1126/science.1235126 10.1021/acsnano.9b02996 10.1038/s41565-019-0467-1 10.1126/sciadv.abb5988 10.1021/acs.nanolett.0c01222 10.1038/nnano.2012.193 10.1103/PhysRevLett.119.206601 10.1021/nl502603d 10.1038/s41467-020-14383-0 10.1038/s41467-018-04635-5 10.1002/adma.201903915 10.1038/nchem.1589 10.1021/acsnano.7b04984 10.1002/adma.201505597 10.1002/adfm.200901007 10.1038/ncomms15881 10.1021/acs.chemmater.7b01353 10.1103/PhysRevLett.119.077402 10.1021/acsami.9b05507 10.1039/C7NR07024A 10.1038/nnano.2014.215 10.1021/acs.nanolett.0c01149 10.1038/nature24043 10.1088/1361-6528/abb335 10.1021/jacs.7b05765 10.1038/nature26160 10.1002/adma.202000693 10.1038/nature09405 10.1038/nmat1849 10.1038/s41557-018-0136-2 10.1021/acsnano.8b02844 10.1103/PhysRevLett.105.097401 10.1021/nn901703e 10.1016/j.nanoen.2016.09.010 10.1007/s12274-018-1999-7 10.1103/PhysRevLett.109.035503 10.1016/j.mattod.2019.02.014 10.1016/j.bios.2016.06.045 10.1038/s41586-019-1573-9 10.1021/acs.nanolett.7b00904 10.1038/s41565-020-0724-3 10.1021/nn2001849 10.1002/adma.201707281 10.1021/acsami.6b13777 10.1021/acssensors.9b01044 10.1038/s41467-019-10632-z 10.1021/ja805090z 10.1038/s41467-020-18521-6 10.1038/nmat4465 10.1002/adma.201605043 10.1021/acsami.7b02529 10.1002/adma.201601002 10.1103/PhysRevLett.121.057403 10.1021/acsami.0c00116 10.1007/s12274-020-2796-7 10.1021/acs.nanolett.6b02263 10.1002/adma.201502422 10.1038/nphoton.2010.40 10.1039/C4CS00256C 10.1002/adma.201902333 10.1103/PhysRevLett.95.226801 10.1038/ncomms4093 10.1038/srep07352 10.1021/nl4007479 10.1039/C6EE00144K 10.1016/j.bios.2011.05.039 10.1021/acs.nanolett.0c00138 10.1021/acsnano.9b03632 10.1126/science.aah4698 10.1126/sciadv.abb8431 10.1103/PhysRevLett.123.076801 10.1021/acs.jpcc.7b03585 10.1038/ncomms3642 10.1038/s41467-019-11342-2 10.1126/science.1102896 10.1002/adma.201802397 10.1109/TDMR.2004.824359 10.1038/nnano.2014.81 10.1109/IEDM.2016.7838355 10.1021/acsnano.9b04250 10.1016/j.msec.2019.110511 10.1021/acs.nanolett.0c00269 10.1021/acsbiomaterials.5b00467 10.1038/nature04574 10.1126/science.aab3175 10.1038/s41565-019-0438-6 10.1002/adma.201907818 10.1038/natrevmats.2017.33 10.1038/s41565-020-00789-w 10.1021/jp506964m 10.1038/nphys3604 10.1038/s41467-019-13631-2 10.1038/s41699-019-0132-4 10.1038/s41586-020-2241-9 10.1021/jp990957s 10.1039/C7TC05303G 10.1021/acsnano.7b03313 10.1021/acsnano.9b03645 10.1038/s41928-019-0273-7 10.1021/acs.nanolett.9b02136 10.1002/adfm.201602136 10.1038/s41563-019-0366-8 10.1038/s41467-018-07835-1 10.1103/PhysRevB.88.035301 10.1021/jacs.9b02593 10.1038/s41467-020-16111-0 10.1021/acsnano.6b02879 10.1039/C4RA17320A 10.1038/s41928-020-00466-9 10.1021/acsnano.6b01673 10.1021/ja805545x 10.1002/adfm.202000250 10.1088/0022-3719/5/24/015 10.1002/adfm.201702829 10.1038/nphoton.2010.186 10.1021/acsnano.9b02316 10.1002/adma.201803665 10.1021/acsnano.8b08926 10.1007/s12274-020-3038-8 10.1021/nn400280c 10.1021/acsnano.0c00180 10.1063/1.112337 10.1021/acsnano.0c02124 10.1038/ncomms7298 10.1021/acs.nanolett.8b05140 10.1039/C8CS00417J 10.1038/nnano.2014.64 10.1002/adma.201901185 10.1021/acs.nanolett.5b00952 10.1021/acs.chemmater.7b05371 10.1021/acs.nanolett.9b02137 10.1016/j.micron.2004.02.003 10.1038/nphys4188 10.1021/nn500064s 10.1002/adma.201601833 10.1021/acsami.0c14398 10.1038/s41563-019-0463-8 10.1103/PhysRevB.89.155433 10.1021/acsnano.5b05556 |
ContentType | Journal Article |
Copyright | 2021 American Chemical Society |
Copyright_xml | – notice: 2021 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acsnano.0c09666 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 2181 |
ExternalDocumentID | 33449623 10_1021_acsnano_0c09666 a163769525 |
Genre | Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 5VS 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ F5P GNL IH9 IHE JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 4.4 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 |
ID | FETCH-LOGICAL-a399t-a77780a589937b3b517d2ede63f3ef2e76aaf818de77e234782ef0749778d76d3 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Fri Jul 11 09:03:17 EDT 2025 Thu Jan 02 22:58:02 EST 2025 Thu Apr 24 22:54:50 EDT 2025 Tue Jul 01 03:37:06 EDT 2025 Thu Feb 25 04:42:15 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | catalytic performance defect formation and evolution defect characterization optoelectronic property two-dimensional materials defect repair electronic property magnetic property |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a399t-a77780a589937b3b517d2ede63f3ef2e76aaf818de77e234782ef0749778d76d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4252-7997 0000-0002-5828-4312 0000-0001-9746-3770 0000-0002-0324-0478 |
PMID | 33449623 |
PQID | 2478596174 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_2478596174 pubmed_primary_33449623 crossref_citationtrail_10_1021_acsnano_0c09666 crossref_primary_10_1021_acsnano_0c09666 acs_journals_10_1021_acsnano_0c09666 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-23 |
PublicationDateYYYYMMDD | 2021-02-23 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref45/cit45 ref99/cit99 ref3/cit3 ref81/cit81 ref16/cit16 ref52/cit52 ref114/cit114 ref23/cit23 ref115/cit115 ref116/cit116 ref110/cit110 ref111/cit111 ref2/cit2 ref112/cit112 ref77/cit77 ref113/cit113 ref71/cit71 ref117/cit117 ref20/cit20 ref48/cit48 ref118/cit118 ref74/cit74 ref119/cit119 ref10/cit10 ref35/cit35 ref89/cit89 ref19/cit19 ref93/cit93 ref42/cit42 ref96/cit96 ref107/cit107 ref120/cit120 ref109/cit109 ref13/cit13 ref122/cit122 ref105/cit105 ref61/cit61 ref67/cit67 Gelczuk Ł. (ref148/cit148) 2005; 23 ref38/cit38 ref128/cit128 ref90/cit90 ref124/cit124 ref64/cit64 ref126/cit126 ref54/cit54 ref6/cit6 ref18/cit18 ref136/cit136 ref137/cit137 ref65/cit65 ref97/cit97 ref101/cit101 ref11/cit11 ref102/cit102 ref29/cit29 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref5/cit5 ref43/cit43 ref80/cit80 ref133/cit133 ref28/cit28 ref132/cit132 ref91/cit91 ref55/cit55 ref144/cit144 ref12/cit12 ref66/cit66 ref22/cit22 ref121/cit121 ref33/cit33 ref87/cit87 ref106/cit106 ref140/cit140 ref129/cit129 ref44/cit44 ref70/cit70 ref98/cit98 ref125/cit125 ref9/cit9 ref27/cit27 ref150/cit150 ref63/cit63 ref151/cit151 ref56/cit56 ref92/cit92 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref60/cit60 ref88/cit88 ref17/cit17 ref82/cit82 ref147/cit147 ref143/cit143 ref53/cit53 ref145/cit145 ref21/cit21 ref149/cit149 ref46/cit46 ref49/cit49 ref75/cit75 ref24/cit24 ref141/cit141 ref50/cit50 ref78/cit78 ref36/cit36 ref83/cit83 ref138/cit138 ref79/cit79 ref139/cit139 ref100/cit100 ref25/cit25 ref103/cit103 ref72/cit72 ref14/cit14 ref57/cit57 ref51/cit51 ref134/cit134 ref135/cit135 ref40/cit40 ref68/cit68 ref94/cit94 ref130/cit130 ref131/cit131 ref146/cit146 ref26/cit26 ref142/cit142 ref73/cit73 ref69/cit69 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref95/cit95 ref108/cit108 ref104/cit104 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref127/cit127 ref1/cit1 ref123/cit123 ref7/cit7 |
References_xml | – ident: ref2/cit2 doi: 10.1103/RevModPhys.81.109 – ident: ref91/cit91 doi: 10.1038/s41586-018-0631-z – ident: ref119/cit119 doi: 10.1103/PhysRevLett.113.166801 – ident: ref135/cit135 doi: 10.1039/C7CS00705A – volume: 23 start-page: 625 year: 2005 ident: ref148/cit148 publication-title: Mater. Sci. – ident: ref79/cit79 doi: 10.1038/ncomms1589 – ident: ref38/cit38 doi: 10.1021/acsnano.7b03186 – ident: ref113/cit113 doi: 10.1021/acs.nanolett.8b02804 – ident: ref114/cit114 doi: 10.1002/adma.201807609 – ident: ref85/cit85 doi: 10.1088/0022-3719/5/7/007 – ident: ref110/cit110 doi: 10.1021/acs.nanolett.7b04342 – ident: ref109/cit109 doi: 10.1021/acsami.8b12545 – ident: ref44/cit44 doi: 10.1126/science.1235126 – ident: ref97/cit97 doi: 10.1021/acsnano.9b02996 – ident: ref27/cit27 doi: 10.1038/s41565-019-0467-1 – ident: ref70/cit70 doi: 10.1126/sciadv.abb5988 – ident: ref69/cit69 doi: 10.1021/acs.nanolett.0c01222 – ident: ref14/cit14 doi: 10.1038/nnano.2012.193 – ident: ref98/cit98 doi: 10.1103/PhysRevLett.119.206601 – ident: ref102/cit102 doi: 10.1021/nl502603d – ident: ref104/cit104 doi: 10.1038/s41467-020-14383-0 – ident: ref19/cit19 doi: 10.1038/s41467-018-04635-5 – ident: ref21/cit21 doi: 10.1002/adma.201903915 – ident: ref13/cit13 doi: 10.1038/nchem.1589 – ident: ref51/cit51 doi: 10.1021/acsnano.7b04984 – ident: ref138/cit138 doi: 10.1002/adma.201505597 – ident: ref80/cit80 doi: 10.1002/adfm.200901007 – ident: ref144/cit144 doi: 10.1038/ncomms15881 – ident: ref123/cit123 doi: 10.1021/acs.chemmater.7b01353 – ident: ref23/cit23 doi: 10.1103/PhysRevLett.119.077402 – ident: ref72/cit72 doi: 10.1021/acsami.9b05507 – ident: ref62/cit62 doi: 10.1039/C7NR07024A – ident: ref81/cit81 doi: 10.1038/nnano.2014.215 – ident: ref90/cit90 doi: 10.1021/acs.nanolett.0c01149 – ident: ref106/cit106 doi: 10.1038/nature24043 – ident: ref76/cit76 doi: 10.1088/1361-6528/abb335 – ident: ref57/cit57 doi: 10.1021/jacs.7b05765 – ident: ref5/cit5 doi: 10.1038/nature26160 – ident: ref26/cit26 doi: 10.1002/adma.202000693 – ident: ref8/cit8 doi: 10.1038/nature09405 – ident: ref3/cit3 doi: 10.1038/nmat1849 – ident: ref35/cit35 doi: 10.1038/s41557-018-0136-2 – ident: ref75/cit75 doi: 10.1021/acsnano.8b02844 – ident: ref78/cit78 doi: 10.1103/PhysRevLett.105.097401 – ident: ref6/cit6 doi: 10.1021/nn901703e – ident: ref141/cit141 doi: 10.1016/j.nanoen.2016.09.010 – ident: ref47/cit47 doi: 10.1007/s12274-018-1999-7 – ident: ref64/cit64 doi: 10.1103/PhysRevLett.109.035503 – ident: ref140/cit140 doi: 10.1016/j.mattod.2019.02.014 – ident: ref129/cit129 doi: 10.1016/j.bios.2016.06.045 – ident: ref99/cit99 doi: 10.1038/s41586-019-1573-9 – ident: ref146/cit146 doi: 10.1021/acs.nanolett.7b00904 – ident: ref84/cit84 doi: 10.1038/s41565-020-0724-3 – ident: ref73/cit73 doi: 10.1021/nn2001849 – ident: ref67/cit67 doi: 10.1002/adma.201707281 – ident: ref49/cit49 doi: 10.1021/acsami.6b13777 – ident: ref122/cit122 doi: 10.1021/acssensors.9b01044 – ident: ref71/cit71 doi: 10.1038/s41467-019-10632-z – ident: ref10/cit10 doi: 10.1021/ja805090z – ident: ref28/cit28 doi: 10.1038/s41467-020-18521-6 – ident: ref142/cit142 doi: 10.1038/nmat4465 – ident: ref48/cit48 doi: 10.1002/adma.201605043 – ident: ref125/cit125 doi: 10.1021/acsami.7b02529 – ident: ref58/cit58 doi: 10.1002/adma.201601002 – ident: ref68/cit68 doi: 10.1103/PhysRevLett.121.057403 – ident: ref61/cit61 doi: 10.1021/acsami.0c00116 – ident: ref124/cit124 doi: 10.1007/s12274-020-2796-7 – ident: ref145/cit145 doi: 10.1021/acs.nanolett.6b02263 – ident: ref130/cit130 doi: 10.1002/adma.201502422 – ident: ref9/cit9 doi: 10.1038/nphoton.2010.40 – ident: ref45/cit45 doi: 10.1039/C4CS00256C – ident: ref126/cit126 doi: 10.1002/adma.201902333 – ident: ref4/cit4 doi: 10.1103/PhysRevLett.95.226801 – ident: ref87/cit87 doi: 10.1038/ncomms4093 – ident: ref128/cit128 doi: 10.1038/srep07352 – ident: ref33/cit33 doi: 10.1021/nl4007479 – ident: ref136/cit136 doi: 10.1039/C6EE00144K – ident: ref11/cit11 doi: 10.1016/j.bios.2011.05.039 – ident: ref83/cit83 doi: 10.1021/acs.nanolett.0c00138 – ident: ref131/cit131 doi: 10.1021/acsnano.9b03632 – ident: ref18/cit18 doi: 10.1126/science.aah4698 – ident: ref30/cit30 doi: 10.1126/sciadv.abb8431 – ident: ref50/cit50 doi: 10.1103/PhysRevLett.123.076801 – ident: ref59/cit59 doi: 10.1021/acs.jpcc.7b03585 – ident: ref25/cit25 doi: 10.1038/ncomms3642 – ident: ref37/cit37 doi: 10.1038/s41467-019-11342-2 – ident: ref1/cit1 doi: 10.1126/science.1102896 – ident: ref31/cit31 doi: 10.1002/adma.201802397 – ident: ref16/cit16 doi: 10.1109/TDMR.2004.824359 – ident: ref65/cit65 doi: 10.1038/nnano.2014.81 – ident: ref17/cit17 doi: 10.1109/IEDM.2016.7838355 – ident: ref139/cit139 doi: 10.1021/acsnano.9b04250 – ident: ref133/cit133 doi: 10.1016/j.msec.2019.110511 – ident: ref151/cit151 doi: 10.1021/acs.nanolett.0c00269 – ident: ref127/cit127 doi: 10.1021/acsbiomaterials.5b00467 – ident: ref43/cit43 doi: 10.1038/nature04574 – ident: ref55/cit55 doi: 10.1126/science.aab3175 – ident: ref94/cit94 doi: 10.1038/s41565-019-0438-6 – ident: ref134/cit134 doi: 10.1002/adma.201907818 – ident: ref12/cit12 doi: 10.1038/natrevmats.2017.33 – ident: ref112/cit112 doi: 10.1038/s41565-020-00789-w – ident: ref74/cit74 doi: 10.1021/jp506964m – ident: ref118/cit118 doi: 10.1038/nphys3604 – ident: ref34/cit34 doi: 10.1038/s41467-019-13631-2 – ident: ref107/cit107 doi: 10.1038/s41699-019-0132-4 – ident: ref32/cit32 doi: 10.1038/s41586-020-2241-9 – ident: ref42/cit42 doi: 10.1021/jp990957s – ident: ref92/cit92 doi: 10.1039/C7TC05303G – ident: ref39/cit39 doi: 10.1021/acsnano.7b03313 – ident: ref54/cit54 doi: 10.1021/acsnano.9b03645 – ident: ref93/cit93 doi: 10.1038/s41928-019-0273-7 – ident: ref116/cit116 doi: 10.1021/acs.nanolett.9b02136 – ident: ref121/cit121 doi: 10.1002/adfm.201602136 – ident: ref22/cit22 doi: 10.1038/s41563-019-0366-8 – ident: ref132/cit132 doi: 10.1038/s41467-018-07835-1 – ident: ref63/cit63 doi: 10.1103/PhysRevB.88.035301 – ident: ref60/cit60 doi: 10.1021/jacs.9b02593 – ident: ref143/cit143 doi: 10.1038/s41467-020-16111-0 – ident: ref103/cit103 doi: 10.1021/acsnano.6b02879 – ident: ref108/cit108 doi: 10.1039/C4RA17320A – ident: ref46/cit46 doi: 10.1038/s41928-020-00466-9 – ident: ref77/cit77 doi: 10.1021/acsnano.6b01673 – ident: ref40/cit40 doi: 10.1021/ja805545x – ident: ref101/cit101 doi: 10.1002/adfm.202000250 – ident: ref86/cit86 doi: 10.1088/0022-3719/5/24/015 – ident: ref89/cit89 doi: 10.1002/adfm.201702829 – ident: ref7/cit7 doi: 10.1038/nphoton.2010.186 – ident: ref24/cit24 doi: 10.1021/acsnano.9b02316 – ident: ref100/cit100 doi: 10.1002/adma.201803665 – ident: ref95/cit95 doi: 10.1021/acsnano.8b08926 – ident: ref36/cit36 doi: 10.1007/s12274-020-3038-8 – ident: ref82/cit82 doi: 10.1021/nn400280c – ident: ref53/cit53 doi: 10.1021/acsnano.0c00180 – ident: ref149/cit149 doi: 10.1063/1.112337 – ident: ref52/cit52 doi: 10.1021/acsnano.0c02124 – ident: ref41/cit41 doi: 10.1038/ncomms7298 – ident: ref111/cit111 doi: 10.1021/acs.nanolett.8b05140 – ident: ref120/cit120 doi: 10.1039/C8CS00417J – ident: ref88/cit88 doi: 10.1038/nnano.2014.64 – ident: ref96/cit96 doi: 10.1002/adma.201901185 – ident: ref147/cit147 doi: 10.1021/acs.nanolett.5b00952 – ident: ref150/cit150 doi: 10.1021/acs.chemmater.7b05371 – ident: ref20/cit20 doi: 10.1021/acs.nanolett.9b02137 – ident: ref66/cit66 doi: 10.1016/j.micron.2004.02.003 – ident: ref105/cit105 doi: 10.1038/nphys4188 – ident: ref15/cit15 doi: 10.1021/nn500064s – ident: ref117/cit117 doi: 10.1002/adma.201601833 – ident: ref115/cit115 doi: 10.1021/acsami.0c14398 – ident: ref137/cit137 doi: 10.1038/s41563-019-0463-8 – ident: ref29/cit29 doi: 10.1103/PhysRevB.89.155433 – ident: ref56/cit56 doi: 10.1021/acsnano.5b05556 |
SSID | ssj0057876 |
Score | 2.703898 |
SecondaryResourceType | review_article |
Snippet | Atomic defects, being the most prevalent zero-dimensional topological defects, are ubiquitous in a wide range of 2D transition-metal dichalcogenides (TMDs).... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2165 |
Title | Defect Engineering of Two-Dimensional Transition-Metal Dichalcogenides: Applications, Challenges, and Opportunities |
URI | http://dx.doi.org/10.1021/acsnano.0c09666 https://www.ncbi.nlm.nih.gov/pubmed/33449623 https://www.proquest.com/docview/2478596174 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3bS8MwFMaDzhd98H6ZNyL44IOdXZImrW-yOYYwfdDB3kqaC4ijHXZD8K_3pO3mdAx9K6UJTful5xfO6ReELqWWwMmUeUJGkceI4J4kVoGWbZQoHvo2cT8K9x55t88eBsHg2yz6dwafNG-kylOZZg1fAW1zvorWCIcp7Cio9Tz96Drd8TKBDAtkoIiZi89CBy4MqfxnGFrClkWM6WyV1Vl5YU3oSkveGpNx0lCfi8aNf9_-NtqsSBPfldLYQSsm3UUbc_6DeyhvG1fNgedO4szil4_MazvX_9KxAxfxrCjt8noGYB23Xa39UGUgvldt8lt8N5cGv8at6QYtcCxTjZ9GDvInaWHeuo_6nfuXVterdmHwJMDL2JNCiNCXQehIJqFJ0BSaGG04tdRYYgSX0kLY10YIA28dkMNYABMAy1ALrukBqqVZao4Q5lonjFPJ_MQw62x1eGi00lb5HNZdQR20o_K4mkV5XCTISTOunmFcPcM6akzfXawqJ3O3ocZweYOrWYNRaeKx_NKLqRhimGgueyJTk03ymMDIggiAj9XRYamSWWeUMhaB5I__N4ATtE5caYz7M56eotr4fWLOgG3GyXmh6i_00_Yl |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3bb9MwFMaPSvcAPMC4rruAkXjggZQ0duyEt6pdVba2CNFKfYscX6RpU1ItrZD46znOpSubKsFbFCWW7XyOf9Y5_gzwUWqJnEyZJ2QceywQ3JOBVahlG6eKR75N3Ubh6YyPF-xiGS5b4Dd7YbASBZZUlEH8O3eB3he8l8ks7_oKoZvzR3CAKBI4TfcHP5t_r5Mfr-LIuE5GmNia-TwowM1Gqvh7NtqDmOVUM3oOP7aVLDNMrrubddpVv-_5N_5PKw7hWc2dpF8J5QW0TPYSnu64Eb6CYmhcbgfZuUlyS-a_cm_ozgCo_DtIObuViV7e1CC6k6HLvL9ROUrxSpviK-nvBMU_k0FzXAtey0yT7yuH_JustHJ9DYvR-Xww9uozGTyJKLP2pBAi8mUYOa5JaRr2hA6MNpxaamxgBJfSIgRoI4RBDSCAGIuYgpgZacE1fQPtLM_MERCudco4lcxPDbPOZIdHRittlc9xFRZ2UEmqSOoxVSRluDzoJXUfJnUfdqDbfMJE1b7m7niNm_0vfNq-sKosPfY_-qHRRILDzsVSZGbyTZEE2LIwRvxjHXhbiWVbGKWMxTgAjv-tAe_h8Xg-nSSTb7PLE3gSuKQZt2eenkJ7fbsxZ0g96_RdKfQ_vN_-hg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-QwFA5eQNYHdXXV8bZZ8MEHO3aaNGl9G2YcvKy6oAO-lTQXEKUd7AyCv95z2s4wrgzoWwlNSNLvNF8453yHkENlFPBkxj2p4tjjgRSeCpwGLLs41SLyXYqJwtc34rzPLx_ChzopDHNhYBIFjFSUTny06oFxtcJA6wTaM5XlTV8D8RZiniyi0w5x3e7cjf-_CEFR-ZLhrgyEYiLo82kAPJF08fFEmkEzy-Omt0r6k4mWUSZPzdEwbeq3_zQcv7uSNbJS80_argDzk8zZbJ0sT6kSbpCiazHGg0410tzR-9fc62ItgErHg5anXBnw5V1boPC0ixH4zzoHSD4aW5zS9pRz_Jh2xmVb4Fllht4OkPqPslLS9Rfp987uO-deXZvBU0Bphp6SUka-CiPkNylLw5Y0gTVWMMesC6wUSjkgA8ZKaQELQESsA7oCdDMyUhi2SRayPLPbhApjUi6Y4n5quUOxHRFZo43TvoDbWNgAROkiqW2rSEq3edBK6j1M6j1skOb4Mya61jfHMhvPszscTToMKmmP2a_-GeMiAfNDn4rKbD4qkgBWFsZAA3mDbFWAmQzGGOcxGMLO1xbwmyz96_aSvxc3V7vkR4CxM5g6z_bIwvBlZPeB_AzTgxLr7_CDARg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defect+Engineering+of+Two-Dimensional+Transition-Metal+Dichalcogenides%3A+Applications%2C+Challenges%2C+and+Opportunities&rft.jtitle=ACS+nano&rft.au=Liang%2C+Qijie&rft.au=Zhang%2C+Qian&rft.au=Zhao%2C+Xiaoxu&rft.au=Liu%2C+Meizhuang&rft.date=2021-02-23&rft.issn=1936-086X&rft.eissn=1936-086X&rft.volume=15&rft.issue=2&rft.spage=2165&rft_id=info:doi/10.1021%2Facsnano.0c09666&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |