Defect Engineering of Two-Dimensional Transition-Metal Dichalcogenides: Applications, Challenges, and Opportunities

Atomic defects, being the most prevalent zero-dimensional topological defects, are ubiquitous in a wide range of 2D transition-metal dichalcogenides (TMDs). They could be intrinsic, formed during the initial sample growth, or created by postprocessing. Despite the majority of TMDs being largely unaf...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 15; no. 2; pp. 2165 - 2181
Main Authors Liang, Qijie, Zhang, Qian, Zhao, Xiaoxu, Liu, Meizhuang, Wee, Andrew T. S
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 23.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Atomic defects, being the most prevalent zero-dimensional topological defects, are ubiquitous in a wide range of 2D transition-metal dichalcogenides (TMDs). They could be intrinsic, formed during the initial sample growth, or created by postprocessing. Despite the majority of TMDs being largely unaffected after losing chalcogen atoms in the outermost layer, a spectrum of properties, including optical, electrical, and chemical properties, can be significantly modulated, and potentially invoke applicable functionalities utilized in many applications. Hence, controlling chalcogen atomic defects provides an alternative avenue for engineering a wide range of physical and chemical properties of 2D TMDs. In this article, we review recent progress on the role of chalcogen atomic defects in engineering 2D TMDs, with a particular focus on device performance improvements. Various approaches for creating chalcogen atomic defects including nonstoichiometric synthesis and postgrowth treatment, together with their characterization and interpretation are systematically overviewed. The tailoring of optical, electrical, and magnetic properties, along with the device performance enhancement in electronic, optoelectronic, chemical sensing, biomedical, and catalytic activity are discussed in detail. Postformation dynamic evolution and repair of chalcogen atomic defects are also introduced. Finally, we offer our perspective on the challenges and opportunities in this field.
AbstractList Atomic defects, being the most prevalent zero-dimensional topological defects, are ubiquitous in a wide range of 2D transition-metal dichalcogenides (TMDs). They could be intrinsic, formed during the initial sample growth, or created by postprocessing. Despite the majority of TMDs being largely unaffected after losing chalcogen atoms in the outermost layer, a spectrum of properties, including optical, electrical, and chemical properties, can be significantly modulated, and potentially invoke applicable functionalities utilized in many applications. Hence, controlling chalcogen atomic defects provides an alternative avenue for engineering a wide range of physical and chemical properties of 2D TMDs. In this article, we review recent progress on the role of chalcogen atomic defects in engineering 2D TMDs, with a particular focus on device performance improvements. Various approaches for creating chalcogen atomic defects including nonstoichiometric synthesis and postgrowth treatment, together with their characterization and interpretation are systematically overviewed. The tailoring of optical, electrical, and magnetic properties, along with the device performance enhancement in electronic, optoelectronic, chemical sensing, biomedical, and catalytic activity are discussed in detail. Postformation dynamic evolution and repair of chalcogen atomic defects are also introduced. Finally, we offer our perspective on the challenges and opportunities in this field.
Atomic defects, being the most prevalent zero-dimensional topological defects, are ubiquitous in a wide range of 2D transition-metal dichalcogenides (TMDs). They could be intrinsic, formed during the initial sample growth, or created by postprocessing. Despite the majority of TMDs being largely unaffected after losing chalcogen atoms in the outermost layer, a spectrum of properties, including optical, electrical, and chemical properties, can be significantly modulated, and potentially invoke applicable functionalities utilized in many applications. Hence, controlling chalcogen atomic defects provides an alternative avenue for engineering a wide range of physical and chemical properties of 2D TMDs. In this article, we review recent progress on the role of chalcogen atomic defects in engineering 2D TMDs, with a particular focus on device performance improvements. Various approaches for creating chalcogen atomic defects including nonstoichiometric synthesis and postgrowth treatment, together with their characterization and interpretation are systematically overviewed. The tailoring of optical, electrical, and magnetic properties, along with the device performance enhancement in electronic, optoelectronic, chemical sensing, biomedical, and catalytic activity are discussed in detail. Postformation dynamic evolution and repair of chalcogen atomic defects are also introduced. Finally, we offer our perspective on the challenges and opportunities in this field.Atomic defects, being the most prevalent zero-dimensional topological defects, are ubiquitous in a wide range of 2D transition-metal dichalcogenides (TMDs). They could be intrinsic, formed during the initial sample growth, or created by postprocessing. Despite the majority of TMDs being largely unaffected after losing chalcogen atoms in the outermost layer, a spectrum of properties, including optical, electrical, and chemical properties, can be significantly modulated, and potentially invoke applicable functionalities utilized in many applications. Hence, controlling chalcogen atomic defects provides an alternative avenue for engineering a wide range of physical and chemical properties of 2D TMDs. In this article, we review recent progress on the role of chalcogen atomic defects in engineering 2D TMDs, with a particular focus on device performance improvements. Various approaches for creating chalcogen atomic defects including nonstoichiometric synthesis and postgrowth treatment, together with their characterization and interpretation are systematically overviewed. The tailoring of optical, electrical, and magnetic properties, along with the device performance enhancement in electronic, optoelectronic, chemical sensing, biomedical, and catalytic activity are discussed in detail. Postformation dynamic evolution and repair of chalcogen atomic defects are also introduced. Finally, we offer our perspective on the challenges and opportunities in this field.
Author Zhang, Qian
Zhao, Xiaoxu
Wee, Andrew T. S
Liu, Meizhuang
Liang, Qijie
AuthorAffiliation Department of Materials Science and Engineering
Centre for Advanced 2D Materials
Department of Physics
AuthorAffiliation_xml – name: Department of Physics
– name: Centre for Advanced 2D Materials
– name: Department of Materials Science and Engineering
Author_xml – sequence: 1
  givenname: Qijie
  orcidid: 0000-0003-4252-7997
  surname: Liang
  fullname: Liang, Qijie
  organization: Department of Physics
– sequence: 2
  givenname: Qian
  surname: Zhang
  fullname: Zhang, Qian
  email: elezhqi@nus.edu.sg
  organization: Department of Materials Science and Engineering
– sequence: 3
  givenname: Xiaoxu
  orcidid: 0000-0001-9746-3770
  surname: Zhao
  fullname: Zhao, Xiaoxu
  organization: Department of Materials Science and Engineering
– sequence: 4
  givenname: Meizhuang
  orcidid: 0000-0002-0324-0478
  surname: Liu
  fullname: Liu, Meizhuang
  organization: Department of Physics
– sequence: 5
  givenname: Andrew T. S
  orcidid: 0000-0002-5828-4312
  surname: Wee
  fullname: Wee, Andrew T. S
  email: phyweets@nus.edu.sg
  organization: Centre for Advanced 2D Materials
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33449623$$D View this record in MEDLINE/PubMed
BookMark eNp1kc9LwzAcxYMozk3P3qRHQTuTpk0ab2ObP0DxMsFbyNJvZ6RLatIi_vdGt3kQPOUl3_d5kO8bon3rLCB0SvCY4IxcKR2ssm6MNRaMsT10RARlKS7Zy_6vLsgADUN4w7jgJWeHaEBpnguW0SMUZlCD7pK5XRkL4I1dJa5OFh8unZk12GCcVU2y8CrKLl7SR-jiw8zoV9VotwJrKgjXyaRtG6PVtyVcJtM4bMCuIGplq-SpbZ3vehsjIByjg1o1AU625wg938wX07v04en2fjp5SBUVoksV57zEqiiFoHxJlwXhVQYVMFpTqDPgTKm6JGUFnENGc15mUGOei4hVnFV0hM43ua137z2ETq5N0NA0yoLrg8wiUghGeB6tZ1trv1xDJVtv1sp_yt2ioqHYGLR3IXiopTbdz287r0wjCZbfhchtIXJbSOSu_nC76P-Jiw0RB_LN9T7uP_zr_gIybJ92
CitedBy_id crossref_primary_10_1002_adma_202406353
crossref_primary_10_1002_adfm_202210236
crossref_primary_10_1007_s12274_022_5016_9
crossref_primary_10_1016_j_jece_2024_113784
crossref_primary_10_1016_j_surfrep_2021_100542
crossref_primary_10_1002_adom_202102711
crossref_primary_10_1002_smll_202207641
crossref_primary_10_1002_slct_202300878
crossref_primary_10_1021_acs_nanolett_4c04374
crossref_primary_10_1016_j_matchemphys_2023_127836
crossref_primary_10_1016_j_ccr_2022_214854
crossref_primary_10_1002_pssa_202300180
crossref_primary_10_1002_smll_202404821
crossref_primary_10_1021_acs_nanolett_4c00579
crossref_primary_10_1002_smll_202311635
crossref_primary_10_1039_D3CP04915A
crossref_primary_10_1080_21663831_2022_2145921
crossref_primary_10_1021_acs_chemrev_4c00631
crossref_primary_10_1021_acs_nanolett_2c04987
crossref_primary_10_1002_adom_202302852
crossref_primary_10_1016_j_cej_2025_160549
crossref_primary_10_1021_acsnano_3c06102
crossref_primary_10_1103_PhysRevB_108_165414
crossref_primary_10_1016_j_heliyon_2023_e23384
crossref_primary_10_1038_s41598_024_65213_y
crossref_primary_10_1016_j_carbon_2025_120234
crossref_primary_10_1088_1361_6528_acddea
crossref_primary_10_1088_1361_648X_ad7568
crossref_primary_10_1002_adma_202305770
crossref_primary_10_1088_2053_1591_ad4baa
crossref_primary_10_3390_catal14090627
crossref_primary_10_3390_nano12193451
crossref_primary_10_1002_adom_202201583
crossref_primary_10_1002_smll_202207511
crossref_primary_10_1016_j_est_2024_112209
crossref_primary_10_1021_acsomega_3c06331
crossref_primary_10_1103_PhysRevMaterials_8_034002
crossref_primary_10_1039_D2MA00288D
crossref_primary_10_1021_acs_jpclett_5c00032
crossref_primary_10_1038_s44160_024_00501_z
crossref_primary_10_1002_adfm_202412771
crossref_primary_10_1039_D3NR06296A
crossref_primary_10_1039_D3MA01152F
crossref_primary_10_1016_j_cap_2024_08_010
crossref_primary_10_1063_5_0065185
crossref_primary_10_1088_1361_648X_ad2e26
crossref_primary_10_1016_j_pmatsci_2022_100962
crossref_primary_10_1021_acs_jpclett_4c03000
crossref_primary_10_1016_j_apmate_2024_100246
crossref_primary_10_1002_advs_202305162
crossref_primary_10_1002_aelm_202300711
crossref_primary_10_1016_j_esci_2023_100178
crossref_primary_10_1039_D3TA03020B
crossref_primary_10_1039_D2TA00075J
crossref_primary_10_1088_1361_6463_adbcba
crossref_primary_10_1021_acs_inorgchem_4c04505
crossref_primary_10_1016_j_cis_2023_103004
crossref_primary_10_1007_s10338_024_00564_7
crossref_primary_10_1016_j_micrna_2022_207241
crossref_primary_10_1039_D4TA07238C
crossref_primary_10_1002_aelm_202300177
crossref_primary_10_1016_j_isci_2023_107982
crossref_primary_10_1038_s41597_023_02103_4
crossref_primary_10_1039_D1NJ03861C
crossref_primary_10_1021_acsaom_3c00296
crossref_primary_10_1039_D4NR05364H
crossref_primary_10_1016_j_apsusc_2025_162339
crossref_primary_10_1093_mam_ozae044_575
crossref_primary_10_1016_j_nxmate_2023_100018
crossref_primary_10_3390_polym14071464
crossref_primary_10_1016_j_mtnano_2024_100486
crossref_primary_10_1007_s40843_023_2616_x
crossref_primary_10_3390_molecules30030697
crossref_primary_10_1039_D2QI01911F
crossref_primary_10_1016_j_mtchem_2022_101235
crossref_primary_10_1007_s10854_023_10547_y
crossref_primary_10_1515_nanoph_2023_0560
crossref_primary_10_1002_adfm_202311141
crossref_primary_10_1088_1361_6528_acf29c
crossref_primary_10_1021_acs_jpca_4c00228
crossref_primary_10_1016_j_jallcom_2022_164833
crossref_primary_10_1021_acsami_1c14332
crossref_primary_10_1021_jacs_5c00033
crossref_primary_10_3390_nano12111936
crossref_primary_10_1016_j_ijhydene_2023_06_107
crossref_primary_10_1002_smll_202403089
crossref_primary_10_1016_j_engfracmech_2023_109282
crossref_primary_10_1039_D2NA00636G
crossref_primary_10_1002_slct_202304421
crossref_primary_10_1002_smll_202305607
crossref_primary_10_1021_acsanm_2c01458
crossref_primary_10_1039_D3NR01321A
crossref_primary_10_1021_acsami_4c23080
crossref_primary_10_1021_acsami_4c08011
crossref_primary_10_1039_D4NH00005F
crossref_primary_10_1002_smtd_202201529
crossref_primary_10_1021_acs_jpcc_3c06820
crossref_primary_10_1021_acsnano_4c02066
crossref_primary_10_1039_D3NR00082F
crossref_primary_10_1021_acs_jpcc_2c00051
crossref_primary_10_1039_D1MA00757B
crossref_primary_10_1002_adfm_202311134
crossref_primary_10_1038_s41467_024_46729_3
crossref_primary_10_1063_5_0185604
crossref_primary_10_1016_j_pmatsci_2022_100946
crossref_primary_10_1088_1674_1056_ad641f
crossref_primary_10_1002_lpor_202200486
crossref_primary_10_1021_acsami_2c05169
crossref_primary_10_1002_bkcs_12816
crossref_primary_10_1021_acsnano_1c06238
crossref_primary_10_1063_5_0221583
crossref_primary_10_1063_5_0244224
crossref_primary_10_1002_smll_202309595
crossref_primary_10_1021_acsnano_1c05268
crossref_primary_10_1021_acs_jpcc_3c01950
crossref_primary_10_1016_j_elecom_2024_107678
crossref_primary_10_1021_acsaelm_3c01163
crossref_primary_10_1002_smm2_1031
crossref_primary_10_1088_2053_1583_ad2108
crossref_primary_10_1039_D4CP00959B
crossref_primary_10_1016_j_microc_2023_109513
crossref_primary_10_1021_acs_jpcc_3c01044
crossref_primary_10_1021_acsnano_3c02103
crossref_primary_10_1016_j_microc_2023_109878
crossref_primary_10_1002_eem2_12259
crossref_primary_10_1021_acsami_4c01311
crossref_primary_10_1016_j_mtcomm_2025_111717
crossref_primary_10_3389_fbioe_2022_941135
crossref_primary_10_1063_5_0248810
crossref_primary_10_1016_j_surfin_2024_105515
crossref_primary_10_1021_acsami_3c08659
crossref_primary_10_1039_D2SC01398C
crossref_primary_10_1002_advs_202103042
crossref_primary_10_1002_adfm_202309046
crossref_primary_10_1016_j_ccr_2024_215695
crossref_primary_10_1002_adma_202416483
crossref_primary_10_1007_s12274_023_6196_7
crossref_primary_10_1039_D1TC02054D
crossref_primary_10_1039_D2CP00374K
crossref_primary_10_1063_5_0059381
crossref_primary_10_1002_adma_202312425
crossref_primary_10_1007_s40820_021_00784_3
crossref_primary_10_1002_adma_202309940
crossref_primary_10_1002_adma_202305580
crossref_primary_10_1002_adom_202400235
crossref_primary_10_1007_s10800_022_01739_1
crossref_primary_10_1088_2053_1583_ad341c
crossref_primary_10_1021_acs_energyfuels_2c03833
crossref_primary_10_1364_OL_459747
crossref_primary_10_1002_admi_202200505
crossref_primary_10_1093_bulcsj_uoaf010
crossref_primary_10_1016_j_apmt_2025_102582
crossref_primary_10_1016_j_bios_2024_116502
crossref_primary_10_1016_j_mssp_2024_108699
crossref_primary_10_3390_ma17174200
crossref_primary_10_1038_s41467_024_53481_1
crossref_primary_10_7498_aps_72_20221815
crossref_primary_10_1007_s42250_022_00577_0
crossref_primary_10_1007_s11467_023_1290_6
crossref_primary_10_1021_acsnanoscienceau_4c00010
crossref_primary_10_3389_fphy_2023_1124924
crossref_primary_10_1016_j_jallcom_2024_176898
crossref_primary_10_1038_s41467_024_49005_6
crossref_primary_10_1021_acsami_1c20536
crossref_primary_10_1002_adfm_202311223
crossref_primary_10_1021_acsami_3c12571
crossref_primary_10_1016_j_scitotenv_2021_151647
crossref_primary_10_1021_acs_jpclett_3c00675
crossref_primary_10_34133_research_0195
crossref_primary_10_1021_acs_jpcc_4c00507
crossref_primary_10_1021_acsnano_4c09173
crossref_primary_10_1021_acs_cgd_3c00733
crossref_primary_10_1021_acs_jpcc_1c06530
crossref_primary_10_1002_cplu_202100562
crossref_primary_10_1021_acs_chemrev_3c00937
crossref_primary_10_1021_acs_nanolett_4c02586
crossref_primary_10_1039_D4CP01533A
crossref_primary_10_1021_acsami_4c15937
crossref_primary_10_1021_acs_jpcc_4c00192
crossref_primary_10_1021_acs_nanolett_2c01282
crossref_primary_10_1021_acs_analchem_4c00515
crossref_primary_10_1002_adfm_202208994
crossref_primary_10_1016_j_jmst_2024_09_032
crossref_primary_10_1002_apxr_202300009
crossref_primary_10_1002_sstr_202400027
crossref_primary_10_1002_adfm_202406942
crossref_primary_10_1088_2516_1075_acc55d
crossref_primary_10_1177_15330338221142996
crossref_primary_10_1021_acs_chemrev_3c00389
crossref_primary_10_1103_PhysRevLett_134_096202
crossref_primary_10_1021_acs_jpcc_4c00511
crossref_primary_10_1103_PhysRevMaterials_8_054006
crossref_primary_10_1103_PhysRevB_110_045407
crossref_primary_10_1007_s12274_023_6374_7
crossref_primary_10_1021_acs_jpcc_3c03812
crossref_primary_10_1016_j_mser_2024_100872
crossref_primary_10_1039_D2CP00393G
crossref_primary_10_3390_nano12162773
crossref_primary_10_1002_aelm_202001219
crossref_primary_10_1002_cjoc_202100791
crossref_primary_10_1088_1674_1056_acef04
crossref_primary_10_1002_adfm_202307625
crossref_primary_10_1002_smll_202305234
crossref_primary_10_1007_s40430_025_05397_0
crossref_primary_10_1038_s41699_023_00367_3
crossref_primary_10_1134_S2075113324700126
crossref_primary_10_1016_j_physe_2024_116030
crossref_primary_10_1016_j_compositesb_2022_110479
crossref_primary_10_1002_smtd_202401486
crossref_primary_10_1016_j_sna_2022_113780
crossref_primary_10_1063_5_0196701
crossref_primary_10_1007_s10008_022_05186_y
crossref_primary_10_1063_5_0200151
crossref_primary_10_1149_1945_7111_ac4f25
crossref_primary_10_1016_j_jallcom_2022_168375
crossref_primary_10_1021_acs_jpclett_4c01578
crossref_primary_10_1021_acsami_3c15655
crossref_primary_10_1002_andp_202200378
crossref_primary_10_1016_j_mne_2022_100126
crossref_primary_10_1002_admi_202201473
crossref_primary_10_1038_s41535_021_00382_x
crossref_primary_10_1016_j_jpcs_2024_111878
crossref_primary_10_1016_j_physb_2024_415826
crossref_primary_10_1021_acsphotonics_4c01545
crossref_primary_10_1016_j_inoche_2025_114296
crossref_primary_10_1364_PRJ_547551
crossref_primary_10_1002_adma_202416897
crossref_primary_10_1021_acssuschemeng_2c02133
crossref_primary_10_1039_D3NR02147E
crossref_primary_10_7498_aps_73_20240475
crossref_primary_10_1007_s12274_022_5203_8
crossref_primary_10_1016_j_checat_2023_100621
crossref_primary_10_1021_jacs_4c11052
crossref_primary_10_1016_j_cej_2022_138514
crossref_primary_10_1021_acsnano_4c12927
crossref_primary_10_1063_5_0147072
crossref_primary_10_1016_j_apcatb_2023_123174
crossref_primary_10_1002_adfm_202203555
crossref_primary_10_1021_acsnano_2c06317
crossref_primary_10_1021_acs_jpcc_2c05698
crossref_primary_10_1002_adma_202303098
crossref_primary_10_1021_acsanm_4c04529
crossref_primary_10_1103_PhysRevMaterials_6_084002
crossref_primary_10_1039_D4TA02739F
crossref_primary_10_1002_smll_202100655
crossref_primary_10_1134_S1062873824707633
crossref_primary_10_1016_j_micrna_2023_207568
crossref_primary_10_1021_acsnano_4c10085
crossref_primary_10_1016_j_apsusc_2024_161335
crossref_primary_10_1016_j_mser_2025_100946
crossref_primary_10_1021_acsaelm_4c01330
crossref_primary_10_1126_sciadv_adr0492
crossref_primary_10_1021_acs_jpcc_3c02855
crossref_primary_10_1002_smll_202406630
crossref_primary_10_1016_j_jcis_2022_12_082
crossref_primary_10_1116_6_0003894
crossref_primary_10_1039_D3NH00201B
crossref_primary_10_1016_j_apsusc_2025_163020
crossref_primary_10_1021_acs_nanolett_2c00550
crossref_primary_10_1007_s12274_023_5876_7
crossref_primary_10_1021_acsami_1c10805
crossref_primary_10_1016_j_cej_2024_155967
crossref_primary_10_1021_acsanm_4c00855
crossref_primary_10_1103_PhysRevB_108_144101
crossref_primary_10_1007_s42247_024_00966_w
crossref_primary_10_1039_D3RA07812D
crossref_primary_10_1021_acsami_4c03767
crossref_primary_10_1039_D1NJ04427C
crossref_primary_10_1063_5_0092955
crossref_primary_10_1021_acs_nanolett_4c02391
crossref_primary_10_1103_PhysRevB_108_075404
crossref_primary_10_1016_j_physe_2024_116124
crossref_primary_10_1002_smsc_202100122
crossref_primary_10_1021_acsami_1c16884
crossref_primary_10_1088_1361_6528_ad8bca
crossref_primary_10_1088_2752_5724_ad7c6c
crossref_primary_10_1016_j_carbon_2023_02_005
crossref_primary_10_1016_j_jcis_2024_01_060
crossref_primary_10_1021_acsnano_3c07752
crossref_primary_10_1021_jacs_4c11075
crossref_primary_10_1515_nanoph_2022_0050
crossref_primary_10_1021_acs_nanolett_1c02799
crossref_primary_10_1021_acsnano_2c09209
crossref_primary_10_1103_PhysRevB_110_104113
crossref_primary_10_1126_sciadv_adn5899
crossref_primary_10_1063_5_0169249
crossref_primary_10_1016_j_jechem_2022_07_022
crossref_primary_10_1021_acs_jpcc_2c07695
crossref_primary_10_1021_acsaelm_2c00379
crossref_primary_10_1002_pssr_202300066
crossref_primary_10_1002_smll_202102496
crossref_primary_10_1021_acs_jpcc_4c06306
crossref_primary_10_1063_5_0152247
crossref_primary_10_1021_acs_analchem_3c00272
crossref_primary_10_1016_j_desal_2023_117278
crossref_primary_10_1016_j_mtchem_2024_102044
crossref_primary_10_1016_j_smmf_2024_100052
crossref_primary_10_1016_j_tsf_2024_140409
crossref_primary_10_1021_acsaelm_1c00472
crossref_primary_10_1021_acsnano_4c08473
crossref_primary_10_1039_D3CP05032G
crossref_primary_10_1016_j_snb_2021_129942
crossref_primary_10_1088_2053_1591_ac5ef3
crossref_primary_10_1021_acs_jpcc_4c03966
crossref_primary_10_1016_j_snb_2023_133325
crossref_primary_10_1088_1361_6528_ad6875
crossref_primary_10_1038_s41699_022_00329_1
crossref_primary_10_1039_D4NR05510A
crossref_primary_10_1016_j_apsusc_2022_155999
crossref_primary_10_1016_j_aca_2024_342952
crossref_primary_10_1039_D4CP00974F
crossref_primary_10_1016_j_cej_2023_146800
crossref_primary_10_1016_j_enmm_2022_100772
crossref_primary_10_1016_j_est_2024_111614
crossref_primary_10_1016_j_mtphys_2025_101689
crossref_primary_10_1002_adfm_202404615
crossref_primary_10_1038_s41545_023_00293_3
crossref_primary_10_1002_aenm_202401704
crossref_primary_10_1039_D2CP04613J
crossref_primary_10_1002_celc_202300614
crossref_primary_10_1063_5_0214524
crossref_primary_10_3389_fnano_2023_1291338
crossref_primary_10_1038_s41467_022_30414_4
crossref_primary_10_1038_s41699_024_00504_6
crossref_primary_10_1088_1402_4896_acf352
crossref_primary_10_1088_1361_6641_ad255b
crossref_primary_10_1103_PhysRevB_105_035404
crossref_primary_10_1021_acsnano_3c09580
crossref_primary_10_1103_PhysRevB_109_125306
crossref_primary_10_1021_acsami_1c07286
crossref_primary_10_1016_j_ces_2023_118747
crossref_primary_10_1016_j_est_2023_107614
Cites_doi 10.1103/RevModPhys.81.109
10.1038/s41586-018-0631-z
10.1103/PhysRevLett.113.166801
10.1039/C7CS00705A
10.1038/ncomms1589
10.1021/acsnano.7b03186
10.1021/acs.nanolett.8b02804
10.1002/adma.201807609
10.1088/0022-3719/5/7/007
10.1021/acs.nanolett.7b04342
10.1021/acsami.8b12545
10.1126/science.1235126
10.1021/acsnano.9b02996
10.1038/s41565-019-0467-1
10.1126/sciadv.abb5988
10.1021/acs.nanolett.0c01222
10.1038/nnano.2012.193
10.1103/PhysRevLett.119.206601
10.1021/nl502603d
10.1038/s41467-020-14383-0
10.1038/s41467-018-04635-5
10.1002/adma.201903915
10.1038/nchem.1589
10.1021/acsnano.7b04984
10.1002/adma.201505597
10.1002/adfm.200901007
10.1038/ncomms15881
10.1021/acs.chemmater.7b01353
10.1103/PhysRevLett.119.077402
10.1021/acsami.9b05507
10.1039/C7NR07024A
10.1038/nnano.2014.215
10.1021/acs.nanolett.0c01149
10.1038/nature24043
10.1088/1361-6528/abb335
10.1021/jacs.7b05765
10.1038/nature26160
10.1002/adma.202000693
10.1038/nature09405
10.1038/nmat1849
10.1038/s41557-018-0136-2
10.1021/acsnano.8b02844
10.1103/PhysRevLett.105.097401
10.1021/nn901703e
10.1016/j.nanoen.2016.09.010
10.1007/s12274-018-1999-7
10.1103/PhysRevLett.109.035503
10.1016/j.mattod.2019.02.014
10.1016/j.bios.2016.06.045
10.1038/s41586-019-1573-9
10.1021/acs.nanolett.7b00904
10.1038/s41565-020-0724-3
10.1021/nn2001849
10.1002/adma.201707281
10.1021/acsami.6b13777
10.1021/acssensors.9b01044
10.1038/s41467-019-10632-z
10.1021/ja805090z
10.1038/s41467-020-18521-6
10.1038/nmat4465
10.1002/adma.201605043
10.1021/acsami.7b02529
10.1002/adma.201601002
10.1103/PhysRevLett.121.057403
10.1021/acsami.0c00116
10.1007/s12274-020-2796-7
10.1021/acs.nanolett.6b02263
10.1002/adma.201502422
10.1038/nphoton.2010.40
10.1039/C4CS00256C
10.1002/adma.201902333
10.1103/PhysRevLett.95.226801
10.1038/ncomms4093
10.1038/srep07352
10.1021/nl4007479
10.1039/C6EE00144K
10.1016/j.bios.2011.05.039
10.1021/acs.nanolett.0c00138
10.1021/acsnano.9b03632
10.1126/science.aah4698
10.1126/sciadv.abb8431
10.1103/PhysRevLett.123.076801
10.1021/acs.jpcc.7b03585
10.1038/ncomms3642
10.1038/s41467-019-11342-2
10.1126/science.1102896
10.1002/adma.201802397
10.1109/TDMR.2004.824359
10.1038/nnano.2014.81
10.1109/IEDM.2016.7838355
10.1021/acsnano.9b04250
10.1016/j.msec.2019.110511
10.1021/acs.nanolett.0c00269
10.1021/acsbiomaterials.5b00467
10.1038/nature04574
10.1126/science.aab3175
10.1038/s41565-019-0438-6
10.1002/adma.201907818
10.1038/natrevmats.2017.33
10.1038/s41565-020-00789-w
10.1021/jp506964m
10.1038/nphys3604
10.1038/s41467-019-13631-2
10.1038/s41699-019-0132-4
10.1038/s41586-020-2241-9
10.1021/jp990957s
10.1039/C7TC05303G
10.1021/acsnano.7b03313
10.1021/acsnano.9b03645
10.1038/s41928-019-0273-7
10.1021/acs.nanolett.9b02136
10.1002/adfm.201602136
10.1038/s41563-019-0366-8
10.1038/s41467-018-07835-1
10.1103/PhysRevB.88.035301
10.1021/jacs.9b02593
10.1038/s41467-020-16111-0
10.1021/acsnano.6b02879
10.1039/C4RA17320A
10.1038/s41928-020-00466-9
10.1021/acsnano.6b01673
10.1021/ja805545x
10.1002/adfm.202000250
10.1088/0022-3719/5/24/015
10.1002/adfm.201702829
10.1038/nphoton.2010.186
10.1021/acsnano.9b02316
10.1002/adma.201803665
10.1021/acsnano.8b08926
10.1007/s12274-020-3038-8
10.1021/nn400280c
10.1021/acsnano.0c00180
10.1063/1.112337
10.1021/acsnano.0c02124
10.1038/ncomms7298
10.1021/acs.nanolett.8b05140
10.1039/C8CS00417J
10.1038/nnano.2014.64
10.1002/adma.201901185
10.1021/acs.nanolett.5b00952
10.1021/acs.chemmater.7b05371
10.1021/acs.nanolett.9b02137
10.1016/j.micron.2004.02.003
10.1038/nphys4188
10.1021/nn500064s
10.1002/adma.201601833
10.1021/acsami.0c14398
10.1038/s41563-019-0463-8
10.1103/PhysRevB.89.155433
10.1021/acsnano.5b05556
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acsnano.0c09666
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 2181
ExternalDocumentID 33449623
10_1021_acsnano_0c09666
a163769525
Genre Journal Article
GroupedDBID -
23M
53G
55A
5GY
5VS
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
F5P
GNL
IH9
IHE
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
4.4
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
ID FETCH-LOGICAL-a399t-a77780a589937b3b517d2ede63f3ef2e76aaf818de77e234782ef0749778d76d3
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 09:03:17 EDT 2025
Thu Jan 02 22:58:02 EST 2025
Thu Apr 24 22:54:50 EDT 2025
Tue Jul 01 03:37:06 EDT 2025
Thu Feb 25 04:42:15 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords catalytic performance
defect formation and evolution
defect characterization
optoelectronic property
two-dimensional materials
defect repair
electronic property
magnetic property
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a399t-a77780a589937b3b517d2ede63f3ef2e76aaf818de77e234782ef0749778d76d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4252-7997
0000-0002-5828-4312
0000-0001-9746-3770
0000-0002-0324-0478
PMID 33449623
PQID 2478596174
PQPubID 23479
PageCount 17
ParticipantIDs proquest_miscellaneous_2478596174
pubmed_primary_33449623
crossref_citationtrail_10_1021_acsnano_0c09666
crossref_primary_10_1021_acsnano_0c09666
acs_journals_10_1021_acsnano_0c09666
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-23
PublicationDateYYYYMMDD 2021-02-23
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-23
  day: 23
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
ref52/cit52
ref114/cit114
ref23/cit23
ref115/cit115
ref116/cit116
ref110/cit110
ref111/cit111
ref2/cit2
ref112/cit112
ref77/cit77
ref113/cit113
ref71/cit71
ref117/cit117
ref20/cit20
ref48/cit48
ref118/cit118
ref74/cit74
ref119/cit119
ref10/cit10
ref35/cit35
ref89/cit89
ref19/cit19
ref93/cit93
ref42/cit42
ref96/cit96
ref107/cit107
ref120/cit120
ref109/cit109
ref13/cit13
ref122/cit122
ref105/cit105
ref61/cit61
ref67/cit67
Gelczuk Ł. (ref148/cit148) 2005; 23
ref38/cit38
ref128/cit128
ref90/cit90
ref124/cit124
ref64/cit64
ref126/cit126
ref54/cit54
ref6/cit6
ref18/cit18
ref136/cit136
ref137/cit137
ref65/cit65
ref97/cit97
ref101/cit101
ref11/cit11
ref102/cit102
ref29/cit29
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref5/cit5
ref43/cit43
ref80/cit80
ref133/cit133
ref28/cit28
ref132/cit132
ref91/cit91
ref55/cit55
ref144/cit144
ref12/cit12
ref66/cit66
ref22/cit22
ref121/cit121
ref33/cit33
ref87/cit87
ref106/cit106
ref140/cit140
ref129/cit129
ref44/cit44
ref70/cit70
ref98/cit98
ref125/cit125
ref9/cit9
ref27/cit27
ref150/cit150
ref63/cit63
ref151/cit151
ref56/cit56
ref92/cit92
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref60/cit60
ref88/cit88
ref17/cit17
ref82/cit82
ref147/cit147
ref143/cit143
ref53/cit53
ref145/cit145
ref21/cit21
ref149/cit149
ref46/cit46
ref49/cit49
ref75/cit75
ref24/cit24
ref141/cit141
ref50/cit50
ref78/cit78
ref36/cit36
ref83/cit83
ref138/cit138
ref79/cit79
ref139/cit139
ref100/cit100
ref25/cit25
ref103/cit103
ref72/cit72
ref14/cit14
ref57/cit57
ref51/cit51
ref134/cit134
ref135/cit135
ref40/cit40
ref68/cit68
ref94/cit94
ref130/cit130
ref131/cit131
ref146/cit146
ref26/cit26
ref142/cit142
ref73/cit73
ref69/cit69
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref95/cit95
ref108/cit108
ref104/cit104
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref127/cit127
ref1/cit1
ref123/cit123
ref7/cit7
References_xml – ident: ref2/cit2
  doi: 10.1103/RevModPhys.81.109
– ident: ref91/cit91
  doi: 10.1038/s41586-018-0631-z
– ident: ref119/cit119
  doi: 10.1103/PhysRevLett.113.166801
– ident: ref135/cit135
  doi: 10.1039/C7CS00705A
– volume: 23
  start-page: 625
  year: 2005
  ident: ref148/cit148
  publication-title: Mater. Sci.
– ident: ref79/cit79
  doi: 10.1038/ncomms1589
– ident: ref38/cit38
  doi: 10.1021/acsnano.7b03186
– ident: ref113/cit113
  doi: 10.1021/acs.nanolett.8b02804
– ident: ref114/cit114
  doi: 10.1002/adma.201807609
– ident: ref85/cit85
  doi: 10.1088/0022-3719/5/7/007
– ident: ref110/cit110
  doi: 10.1021/acs.nanolett.7b04342
– ident: ref109/cit109
  doi: 10.1021/acsami.8b12545
– ident: ref44/cit44
  doi: 10.1126/science.1235126
– ident: ref97/cit97
  doi: 10.1021/acsnano.9b02996
– ident: ref27/cit27
  doi: 10.1038/s41565-019-0467-1
– ident: ref70/cit70
  doi: 10.1126/sciadv.abb5988
– ident: ref69/cit69
  doi: 10.1021/acs.nanolett.0c01222
– ident: ref14/cit14
  doi: 10.1038/nnano.2012.193
– ident: ref98/cit98
  doi: 10.1103/PhysRevLett.119.206601
– ident: ref102/cit102
  doi: 10.1021/nl502603d
– ident: ref104/cit104
  doi: 10.1038/s41467-020-14383-0
– ident: ref19/cit19
  doi: 10.1038/s41467-018-04635-5
– ident: ref21/cit21
  doi: 10.1002/adma.201903915
– ident: ref13/cit13
  doi: 10.1038/nchem.1589
– ident: ref51/cit51
  doi: 10.1021/acsnano.7b04984
– ident: ref138/cit138
  doi: 10.1002/adma.201505597
– ident: ref80/cit80
  doi: 10.1002/adfm.200901007
– ident: ref144/cit144
  doi: 10.1038/ncomms15881
– ident: ref123/cit123
  doi: 10.1021/acs.chemmater.7b01353
– ident: ref23/cit23
  doi: 10.1103/PhysRevLett.119.077402
– ident: ref72/cit72
  doi: 10.1021/acsami.9b05507
– ident: ref62/cit62
  doi: 10.1039/C7NR07024A
– ident: ref81/cit81
  doi: 10.1038/nnano.2014.215
– ident: ref90/cit90
  doi: 10.1021/acs.nanolett.0c01149
– ident: ref106/cit106
  doi: 10.1038/nature24043
– ident: ref76/cit76
  doi: 10.1088/1361-6528/abb335
– ident: ref57/cit57
  doi: 10.1021/jacs.7b05765
– ident: ref5/cit5
  doi: 10.1038/nature26160
– ident: ref26/cit26
  doi: 10.1002/adma.202000693
– ident: ref8/cit8
  doi: 10.1038/nature09405
– ident: ref3/cit3
  doi: 10.1038/nmat1849
– ident: ref35/cit35
  doi: 10.1038/s41557-018-0136-2
– ident: ref75/cit75
  doi: 10.1021/acsnano.8b02844
– ident: ref78/cit78
  doi: 10.1103/PhysRevLett.105.097401
– ident: ref6/cit6
  doi: 10.1021/nn901703e
– ident: ref141/cit141
  doi: 10.1016/j.nanoen.2016.09.010
– ident: ref47/cit47
  doi: 10.1007/s12274-018-1999-7
– ident: ref64/cit64
  doi: 10.1103/PhysRevLett.109.035503
– ident: ref140/cit140
  doi: 10.1016/j.mattod.2019.02.014
– ident: ref129/cit129
  doi: 10.1016/j.bios.2016.06.045
– ident: ref99/cit99
  doi: 10.1038/s41586-019-1573-9
– ident: ref146/cit146
  doi: 10.1021/acs.nanolett.7b00904
– ident: ref84/cit84
  doi: 10.1038/s41565-020-0724-3
– ident: ref73/cit73
  doi: 10.1021/nn2001849
– ident: ref67/cit67
  doi: 10.1002/adma.201707281
– ident: ref49/cit49
  doi: 10.1021/acsami.6b13777
– ident: ref122/cit122
  doi: 10.1021/acssensors.9b01044
– ident: ref71/cit71
  doi: 10.1038/s41467-019-10632-z
– ident: ref10/cit10
  doi: 10.1021/ja805090z
– ident: ref28/cit28
  doi: 10.1038/s41467-020-18521-6
– ident: ref142/cit142
  doi: 10.1038/nmat4465
– ident: ref48/cit48
  doi: 10.1002/adma.201605043
– ident: ref125/cit125
  doi: 10.1021/acsami.7b02529
– ident: ref58/cit58
  doi: 10.1002/adma.201601002
– ident: ref68/cit68
  doi: 10.1103/PhysRevLett.121.057403
– ident: ref61/cit61
  doi: 10.1021/acsami.0c00116
– ident: ref124/cit124
  doi: 10.1007/s12274-020-2796-7
– ident: ref145/cit145
  doi: 10.1021/acs.nanolett.6b02263
– ident: ref130/cit130
  doi: 10.1002/adma.201502422
– ident: ref9/cit9
  doi: 10.1038/nphoton.2010.40
– ident: ref45/cit45
  doi: 10.1039/C4CS00256C
– ident: ref126/cit126
  doi: 10.1002/adma.201902333
– ident: ref4/cit4
  doi: 10.1103/PhysRevLett.95.226801
– ident: ref87/cit87
  doi: 10.1038/ncomms4093
– ident: ref128/cit128
  doi: 10.1038/srep07352
– ident: ref33/cit33
  doi: 10.1021/nl4007479
– ident: ref136/cit136
  doi: 10.1039/C6EE00144K
– ident: ref11/cit11
  doi: 10.1016/j.bios.2011.05.039
– ident: ref83/cit83
  doi: 10.1021/acs.nanolett.0c00138
– ident: ref131/cit131
  doi: 10.1021/acsnano.9b03632
– ident: ref18/cit18
  doi: 10.1126/science.aah4698
– ident: ref30/cit30
  doi: 10.1126/sciadv.abb8431
– ident: ref50/cit50
  doi: 10.1103/PhysRevLett.123.076801
– ident: ref59/cit59
  doi: 10.1021/acs.jpcc.7b03585
– ident: ref25/cit25
  doi: 10.1038/ncomms3642
– ident: ref37/cit37
  doi: 10.1038/s41467-019-11342-2
– ident: ref1/cit1
  doi: 10.1126/science.1102896
– ident: ref31/cit31
  doi: 10.1002/adma.201802397
– ident: ref16/cit16
  doi: 10.1109/TDMR.2004.824359
– ident: ref65/cit65
  doi: 10.1038/nnano.2014.81
– ident: ref17/cit17
  doi: 10.1109/IEDM.2016.7838355
– ident: ref139/cit139
  doi: 10.1021/acsnano.9b04250
– ident: ref133/cit133
  doi: 10.1016/j.msec.2019.110511
– ident: ref151/cit151
  doi: 10.1021/acs.nanolett.0c00269
– ident: ref127/cit127
  doi: 10.1021/acsbiomaterials.5b00467
– ident: ref43/cit43
  doi: 10.1038/nature04574
– ident: ref55/cit55
  doi: 10.1126/science.aab3175
– ident: ref94/cit94
  doi: 10.1038/s41565-019-0438-6
– ident: ref134/cit134
  doi: 10.1002/adma.201907818
– ident: ref12/cit12
  doi: 10.1038/natrevmats.2017.33
– ident: ref112/cit112
  doi: 10.1038/s41565-020-00789-w
– ident: ref74/cit74
  doi: 10.1021/jp506964m
– ident: ref118/cit118
  doi: 10.1038/nphys3604
– ident: ref34/cit34
  doi: 10.1038/s41467-019-13631-2
– ident: ref107/cit107
  doi: 10.1038/s41699-019-0132-4
– ident: ref32/cit32
  doi: 10.1038/s41586-020-2241-9
– ident: ref42/cit42
  doi: 10.1021/jp990957s
– ident: ref92/cit92
  doi: 10.1039/C7TC05303G
– ident: ref39/cit39
  doi: 10.1021/acsnano.7b03313
– ident: ref54/cit54
  doi: 10.1021/acsnano.9b03645
– ident: ref93/cit93
  doi: 10.1038/s41928-019-0273-7
– ident: ref116/cit116
  doi: 10.1021/acs.nanolett.9b02136
– ident: ref121/cit121
  doi: 10.1002/adfm.201602136
– ident: ref22/cit22
  doi: 10.1038/s41563-019-0366-8
– ident: ref132/cit132
  doi: 10.1038/s41467-018-07835-1
– ident: ref63/cit63
  doi: 10.1103/PhysRevB.88.035301
– ident: ref60/cit60
  doi: 10.1021/jacs.9b02593
– ident: ref143/cit143
  doi: 10.1038/s41467-020-16111-0
– ident: ref103/cit103
  doi: 10.1021/acsnano.6b02879
– ident: ref108/cit108
  doi: 10.1039/C4RA17320A
– ident: ref46/cit46
  doi: 10.1038/s41928-020-00466-9
– ident: ref77/cit77
  doi: 10.1021/acsnano.6b01673
– ident: ref40/cit40
  doi: 10.1021/ja805545x
– ident: ref101/cit101
  doi: 10.1002/adfm.202000250
– ident: ref86/cit86
  doi: 10.1088/0022-3719/5/24/015
– ident: ref89/cit89
  doi: 10.1002/adfm.201702829
– ident: ref7/cit7
  doi: 10.1038/nphoton.2010.186
– ident: ref24/cit24
  doi: 10.1021/acsnano.9b02316
– ident: ref100/cit100
  doi: 10.1002/adma.201803665
– ident: ref95/cit95
  doi: 10.1021/acsnano.8b08926
– ident: ref36/cit36
  doi: 10.1007/s12274-020-3038-8
– ident: ref82/cit82
  doi: 10.1021/nn400280c
– ident: ref53/cit53
  doi: 10.1021/acsnano.0c00180
– ident: ref149/cit149
  doi: 10.1063/1.112337
– ident: ref52/cit52
  doi: 10.1021/acsnano.0c02124
– ident: ref41/cit41
  doi: 10.1038/ncomms7298
– ident: ref111/cit111
  doi: 10.1021/acs.nanolett.8b05140
– ident: ref120/cit120
  doi: 10.1039/C8CS00417J
– ident: ref88/cit88
  doi: 10.1038/nnano.2014.64
– ident: ref96/cit96
  doi: 10.1002/adma.201901185
– ident: ref147/cit147
  doi: 10.1021/acs.nanolett.5b00952
– ident: ref150/cit150
  doi: 10.1021/acs.chemmater.7b05371
– ident: ref20/cit20
  doi: 10.1021/acs.nanolett.9b02137
– ident: ref66/cit66
  doi: 10.1016/j.micron.2004.02.003
– ident: ref105/cit105
  doi: 10.1038/nphys4188
– ident: ref15/cit15
  doi: 10.1021/nn500064s
– ident: ref117/cit117
  doi: 10.1002/adma.201601833
– ident: ref115/cit115
  doi: 10.1021/acsami.0c14398
– ident: ref137/cit137
  doi: 10.1038/s41563-019-0463-8
– ident: ref29/cit29
  doi: 10.1103/PhysRevB.89.155433
– ident: ref56/cit56
  doi: 10.1021/acsnano.5b05556
SSID ssj0057876
Score 2.703898
SecondaryResourceType review_article
Snippet Atomic defects, being the most prevalent zero-dimensional topological defects, are ubiquitous in a wide range of 2D transition-metal dichalcogenides (TMDs)....
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2165
Title Defect Engineering of Two-Dimensional Transition-Metal Dichalcogenides: Applications, Challenges, and Opportunities
URI http://dx.doi.org/10.1021/acsnano.0c09666
https://www.ncbi.nlm.nih.gov/pubmed/33449623
https://www.proquest.com/docview/2478596174
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3bS8MwFMaDzhd98H6ZNyL44IOdXZImrW-yOYYwfdDB3kqaC4ijHXZD8K_3pO3mdAx9K6UJTful5xfO6ReELqWWwMmUeUJGkceI4J4kVoGWbZQoHvo2cT8K9x55t88eBsHg2yz6dwafNG-kylOZZg1fAW1zvorWCIcp7Cio9Tz96Drd8TKBDAtkoIiZi89CBy4MqfxnGFrClkWM6WyV1Vl5YU3oSkveGpNx0lCfi8aNf9_-NtqsSBPfldLYQSsm3UUbc_6DeyhvG1fNgedO4szil4_MazvX_9KxAxfxrCjt8noGYB23Xa39UGUgvldt8lt8N5cGv8at6QYtcCxTjZ9GDvInaWHeuo_6nfuXVterdmHwJMDL2JNCiNCXQehIJqFJ0BSaGG04tdRYYgSX0kLY10YIA28dkMNYABMAy1ALrukBqqVZao4Q5lonjFPJ_MQw62x1eGi00lb5HNZdQR20o_K4mkV5XCTISTOunmFcPcM6akzfXawqJ3O3ocZweYOrWYNRaeKx_NKLqRhimGgueyJTk03ymMDIggiAj9XRYamSWWeUMhaB5I__N4ATtE5caYz7M56eotr4fWLOgG3GyXmh6i_00_Yl
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3bb9MwFMaPSvcAPMC4rruAkXjggZQ0duyEt6pdVba2CNFKfYscX6RpU1ItrZD46znOpSubKsFbFCWW7XyOf9Y5_gzwUWqJnEyZJ2QceywQ3JOBVahlG6eKR75N3Ubh6YyPF-xiGS5b4Dd7YbASBZZUlEH8O3eB3he8l8ks7_oKoZvzR3CAKBI4TfcHP5t_r5Mfr-LIuE5GmNia-TwowM1Gqvh7NtqDmOVUM3oOP7aVLDNMrrubddpVv-_5N_5PKw7hWc2dpF8J5QW0TPYSnu64Eb6CYmhcbgfZuUlyS-a_cm_ozgCo_DtIObuViV7e1CC6k6HLvL9ROUrxSpviK-nvBMU_k0FzXAtey0yT7yuH_JustHJ9DYvR-Xww9uozGTyJKLP2pBAi8mUYOa5JaRr2hA6MNpxaamxgBJfSIgRoI4RBDSCAGIuYgpgZacE1fQPtLM_MERCudco4lcxPDbPOZIdHRittlc9xFRZ2UEmqSOoxVSRluDzoJXUfJnUfdqDbfMJE1b7m7niNm_0vfNq-sKosPfY_-qHRRILDzsVSZGbyTZEE2LIwRvxjHXhbiWVbGKWMxTgAjv-tAe_h8Xg-nSSTb7PLE3gSuKQZt2eenkJ7fbsxZ0g96_RdKfQ_vN_-hg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-QwFA5eQNYHdXXV8bZZ8MEHO3aaNGl9G2YcvKy6oAO-lTQXEKUd7AyCv95z2s4wrgzoWwlNSNLvNF8453yHkENlFPBkxj2p4tjjgRSeCpwGLLs41SLyXYqJwtc34rzPLx_ChzopDHNhYBIFjFSUTny06oFxtcJA6wTaM5XlTV8D8RZiniyi0w5x3e7cjf-_CEFR-ZLhrgyEYiLo82kAPJF08fFEmkEzy-Omt0r6k4mWUSZPzdEwbeq3_zQcv7uSNbJS80_argDzk8zZbJ0sT6kSbpCiazHGg0410tzR-9fc62ItgErHg5anXBnw5V1boPC0ixH4zzoHSD4aW5zS9pRz_Jh2xmVb4Fllht4OkPqPslLS9Rfp987uO-deXZvBU0Bphp6SUka-CiPkNylLw5Y0gTVWMMesC6wUSjkgA8ZKaQELQESsA7oCdDMyUhi2SRayPLPbhApjUi6Y4n5quUOxHRFZo43TvoDbWNgAROkiqW2rSEq3edBK6j1M6j1skOb4Mya61jfHMhvPszscTToMKmmP2a_-GeMiAfNDn4rKbD4qkgBWFsZAA3mDbFWAmQzGGOcxGMLO1xbwmyz96_aSvxc3V7vkR4CxM5g6z_bIwvBlZPeB_AzTgxLr7_CDARg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defect+Engineering+of+Two-Dimensional+Transition-Metal+Dichalcogenides%3A+Applications%2C+Challenges%2C+and+Opportunities&rft.jtitle=ACS+nano&rft.au=Liang%2C+Qijie&rft.au=Zhang%2C+Qian&rft.au=Zhao%2C+Xiaoxu&rft.au=Liu%2C+Meizhuang&rft.date=2021-02-23&rft.issn=1936-086X&rft.eissn=1936-086X&rft.volume=15&rft.issue=2&rft.spage=2165&rft_id=info:doi/10.1021%2Facsnano.0c09666&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon