Multilayer CuO@NiO Hollow Spheres: Microwave-Assisted Metal–Organic-Framework Derivation and Highly Reversible Structure-Matched Stepwise Lithium Storage
A unique CuO@NiO microsphere with three-layer ball-in-ball hollow morphology is successfully synthesized by Cu–Ni bimetallic organic frameworks. The beforehand facile microwave-assisted production of the Ni organic framework sphere is used as the template to induce the morphology control of bimetall...
Saved in:
Published in | ACS nano Vol. 9; no. 11; pp. 11462 - 11471 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
24.11.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A unique CuO@NiO microsphere with three-layer ball-in-ball hollow morphology is successfully synthesized by Cu–Ni bimetallic organic frameworks. The beforehand facile microwave-assisted production of the Ni organic framework sphere is used as the template to induce the morphology control of bimetallic oxides. Designed by the controlled surface cationic exchange reactions between Cu and Ni ions, there is an elemental gradient (decreased amount of CuO but increased amount of NiO) from the shell to the core of the microsphere product. This ternary metal oxide hollow structure is found to be very suitable for solving the critical volume expansion problem, which is critical for all high-capacity metal oxide electrodes for lithium ion batteries. A reversible larger-than-theoretical capacity of 1061 mAh·g–1 can be retained after a repetitive 200 cycles without capacity fading compared to the initial cycle. These excellent electrochemical properties are ascribed to the step-by-step lithium insertion reactions induced by the matched CuO@NiO composition from the shell to the core and facilitated lithium/electron diffusion and accommodated volume change in the porous bimetallic oxides microsphere with a multiple-layer yolk–shell nanostructure. |
---|---|
AbstractList | A unique CuO@NiO microsphere with three-layer ball-in-ball hollow morphology is successfully synthesized by Cu-Ni bimetallic organic frameworks. The beforehand facile microwave-assisted production of the Ni organic framework sphere is used as the template to induce the morphology control of bimetallic oxides. Designed by the controlled surface cationic exchange reactions between Cu and Ni ions, there is an elemental gradient (decreased amount of CuO but increased amount of NiO) from the shell to the core of the microsphere product. This ternary metal oxide hollow structure is found to be very suitable for solving the critical volume expansion problem, which is critical for all high-capacity metal oxide electrodes for lithium ion batteries. A reversible larger-than-theoretical capacity of 1061 mAh·g(-1) can be retained after a repetitive 200 cycles without capacity fading compared to the initial cycle. These excellent electrochemical properties are ascribed to the step-by-step lithium insertion reactions induced by the matched CuO@NiO composition from the shell to the core and facilitated lithium/electron diffusion and accommodated volume change in the porous bimetallic oxides microsphere with a multiple-layer yolk-shell nanostructure. A unique CuO@NiO microsphere with three-layer ball-in-ball hollow morphology is successfully synthesized by Cu-Ni bimetallic organic frameworks. The beforehand facile microwave-assisted production of the Ni organic framework sphere is used as the template to induce the morphology control of bimetallic oxides. Designed by the controlled surface cationic exchange reactions between Cu and Ni ions, there is an elemental gradient (decreased amount of CuO but increased amount of NiO) from the shell to the core of the microsphere product. This ternary metal oxide hollow structure is found to be very suitable for solving the critical volume expansion problem, which is critical for all high-capacity metal oxide electrodes for lithium ion batteries. A reversible larger-than-theoretical capacity of 1061 mAh·g(-1) can be retained after a repetitive 200 cycles without capacity fading compared to the initial cycle. These excellent electrochemical properties are ascribed to the step-by-step lithium insertion reactions induced by the matched CuO@NiO composition from the shell to the core and facilitated lithium/electron diffusion and accommodated volume change in the porous bimetallic oxides microsphere with a multiple-layer yolk-shell nanostructure.A unique CuO@NiO microsphere with three-layer ball-in-ball hollow morphology is successfully synthesized by Cu-Ni bimetallic organic frameworks. The beforehand facile microwave-assisted production of the Ni organic framework sphere is used as the template to induce the morphology control of bimetallic oxides. Designed by the controlled surface cationic exchange reactions between Cu and Ni ions, there is an elemental gradient (decreased amount of CuO but increased amount of NiO) from the shell to the core of the microsphere product. This ternary metal oxide hollow structure is found to be very suitable for solving the critical volume expansion problem, which is critical for all high-capacity metal oxide electrodes for lithium ion batteries. A reversible larger-than-theoretical capacity of 1061 mAh·g(-1) can be retained after a repetitive 200 cycles without capacity fading compared to the initial cycle. These excellent electrochemical properties are ascribed to the step-by-step lithium insertion reactions induced by the matched CuO@NiO composition from the shell to the core and facilitated lithium/electron diffusion and accommodated volume change in the porous bimetallic oxides microsphere with a multiple-layer yolk-shell nanostructure. |
Author | Guo, Wenxiang Wang, Yong Sun, Weiwei |
AuthorAffiliation | Department of Chemical Engineering, School of Environmental and Chemical Engineering Shanghai University |
AuthorAffiliation_xml | – name: Department of Chemical Engineering, School of Environmental and Chemical Engineering – name: Shanghai University |
Author_xml | – sequence: 1 givenname: Wenxiang surname: Guo fullname: Guo, Wenxiang – sequence: 2 givenname: Weiwei surname: Sun fullname: Sun, Weiwei – sequence: 3 givenname: Yong surname: Wang fullname: Wang, Yong email: yongwang@shu.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26442790$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc2O0zAURi00iPmBNTvkJRLKTJzEjs2KUWEoUkslChK76Ma5aT04ccd2WnXHO7Dk7XgSAi2zQILVta7PdxfnOycnveuRkKcsvWRpxq5Ahx56d8nrlAuWPiBnTOUiSaX4fHL_5uyUnIdwm6a8lKV4RE4zURRZqdIz8n0-2Ggs7NHTybB49d4s6NRZ63Z0uVmjx_CSzo32bgdbTK5DMCFiQ-cYwf74-m3hV9Abndx46HDn_Bf6Gr3ZQjSup9A3dGpWa7unH3CLPpjaIl1GP-g4eEzmEPV6PLaMuNmZgHRm4toM3bhwHlb4mDxswQZ8cpwX5NPNm4-TaTJbvH03uZ4lkCsVE8gKVkqlmrIFWeYoZV62si2VyvToBJpcAZMCheY1b7gudCNz1YIWoqh5W-cX5Pnh7sa7uwFDrDoTNFoLPbohVKzMRcF4nskRfXZEh7rDptp404HfV3-EjsDVARiVheCxvUdYWv2qrDpWVh0rGxP8r4Q28bfA6MHY_-ReHHLjR3XrBt-Pjv5J_wTKQa-J |
CitedBy_id | crossref_primary_10_1016_j_electacta_2017_11_073 crossref_primary_10_1016_j_ensm_2019_09_005 crossref_primary_10_1016_j_heliyon_2023_e21765 crossref_primary_10_1016_j_jhazmat_2021_125662 crossref_primary_10_1002_adma_201604898 crossref_primary_10_1002_adma_201800743 crossref_primary_10_1016_j_apsusc_2017_06_285 crossref_primary_10_1016_j_jpowsour_2016_11_114 crossref_primary_10_1039_D0SC01432J crossref_primary_10_1016_j_est_2024_114858 crossref_primary_10_1016_j_jallcom_2020_153945 crossref_primary_10_1016_j_electacta_2016_08_051 crossref_primary_10_1039_C9NR00159J crossref_primary_10_1016_j_jallcom_2022_165250 crossref_primary_10_1002_advs_202104183 crossref_primary_10_1016_j_gee_2020_06_010 crossref_primary_10_1002_adma_201703614 crossref_primary_10_1016_j_jallcom_2020_156669 crossref_primary_10_1021_acssuschemeng_8b01166 crossref_primary_10_1016_j_apsusc_2022_152903 crossref_primary_10_1016_j_cej_2021_134255 crossref_primary_10_1021_acsaelm_5c00069 crossref_primary_10_1039_C8TA02919A crossref_primary_10_1021_acsanm_1c02228 crossref_primary_10_1016_j_colsurfa_2017_02_017 crossref_primary_10_1007_s11051_017_4078_1 crossref_primary_10_1002_ppsc_201700336 crossref_primary_10_1016_j_jelechem_2023_117714 crossref_primary_10_1002_adma_201602914 crossref_primary_10_1039_C6RA28296B crossref_primary_10_1039_C8TA11007G crossref_primary_10_1021_acsomega_0c03929 crossref_primary_10_1021_acsami_9b22169 crossref_primary_10_1021_acsami_3c19174 crossref_primary_10_1016_j_ccr_2024_215813 crossref_primary_10_1016_j_apsusc_2016_12_024 crossref_primary_10_1002_zaac_201700156 crossref_primary_10_1016_j_jcis_2019_08_107 crossref_primary_10_1016_j_jmst_2023_10_017 crossref_primary_10_1007_s10854_021_06069_0 crossref_primary_10_1016_j_mcat_2021_111614 crossref_primary_10_1016_j_jallcom_2022_166231 crossref_primary_10_1021_acscatal_0c03756 crossref_primary_10_1021_acsaem_2c01405 crossref_primary_10_1039_C8RA09841G crossref_primary_10_1039_C8QI00608C crossref_primary_10_1016_j_ceramint_2018_09_044 crossref_primary_10_1098_rsos_190634 crossref_primary_10_1039_C7TA02726E crossref_primary_10_1016_j_scriptamat_2017_06_011 crossref_primary_10_1039_C7CS00614D crossref_primary_10_1021_acs_jpcc_9b04695 crossref_primary_10_1039_C6DT01791F crossref_primary_10_1007_s11581_020_03877_y crossref_primary_10_1016_j_cej_2021_130469 crossref_primary_10_1007_s11595_018_1969_7 crossref_primary_10_1007_s40831_022_00638_1 crossref_primary_10_1002_adfm_201706056 crossref_primary_10_1002_celc_201900848 crossref_primary_10_1093_nsr_nwy065 crossref_primary_10_1039_C6TA06413B crossref_primary_10_1002_batt_202000094 crossref_primary_10_1016_j_xinn_2022_100281 crossref_primary_10_1002_batt_202400402 crossref_primary_10_1021_acsami_7b16530 crossref_primary_10_1002_adfm_201701833 crossref_primary_10_1007_s41918_019_00056_0 crossref_primary_10_1016_j_cej_2018_03_062 crossref_primary_10_1016_j_cej_2018_03_182 crossref_primary_10_1016_j_ceramint_2021_05_151 crossref_primary_10_1016_j_apsusc_2017_11_045 crossref_primary_10_1016_j_electacta_2017_06_039 crossref_primary_10_1016_j_apsusc_2018_08_081 crossref_primary_10_1016_j_est_2021_103530 crossref_primary_10_1002_adfm_201704440 crossref_primary_10_1016_j_materresbull_2019_04_025 crossref_primary_10_1016_j_jallcom_2017_07_208 crossref_primary_10_1016_j_apsusc_2020_146117 crossref_primary_10_1016_j_elecom_2017_09_019 crossref_primary_10_1039_C8TA04077J crossref_primary_10_1002_adma_201705146 crossref_primary_10_1021_acs_langmuir_4c00347 crossref_primary_10_1016_j_jpcs_2022_110602 crossref_primary_10_1039_D0RA08503K crossref_primary_10_1039_D2AY01058E crossref_primary_10_1016_j_ceramint_2019_08_093 crossref_primary_10_1016_j_electacta_2019_06_083 crossref_primary_10_1016_j_mtnano_2024_100498 crossref_primary_10_1039_C6RA14156K crossref_primary_10_1016_j_jallcom_2019_01_157 crossref_primary_10_1016_j_jssc_2021_122091 crossref_primary_10_1016_j_apcatb_2025_125204 crossref_primary_10_1038_s41598_018_36378_0 crossref_primary_10_1016_j_ensm_2022_06_022 crossref_primary_10_1016_j_jmst_2017_11_006 crossref_primary_10_1039_C6TA02875F crossref_primary_10_1039_C6QM00273K crossref_primary_10_1039_C7TA00855D crossref_primary_10_1021_acssuschemeng_1c05773 crossref_primary_10_1039_C7TA08264A crossref_primary_10_1002_smll_201604270 crossref_primary_10_1039_C8CC00789F crossref_primary_10_1002_smll_202310348 crossref_primary_10_1002_smll_201603500 crossref_primary_10_1002_celc_202000747 crossref_primary_10_1016_j_jallcom_2023_170137 crossref_primary_10_1039_C7RA07663K crossref_primary_10_1016_j_jallcom_2021_162857 crossref_primary_10_1002_cctc_202001111 crossref_primary_10_1038_natrevmats_2017_75 crossref_primary_10_1039_C6QI00502K crossref_primary_10_1039_C9TA03833G crossref_primary_10_1039_C9RA03780B crossref_primary_10_1016_j_jpcs_2019_109155 crossref_primary_10_1039_C6CS00426A crossref_primary_10_1016_j_ccr_2020_213434 crossref_primary_10_1002_smtd_201800154 crossref_primary_10_1016_j_electacta_2017_12_181 crossref_primary_10_1186_s11671_019_3194_5 crossref_primary_10_3390_nano10020191 crossref_primary_10_1016_j_est_2024_113171 crossref_primary_10_1039_C7TA10154F crossref_primary_10_1039_D4YA00332B crossref_primary_10_1016_j_jphotochem_2019_111853 crossref_primary_10_1016_j_xinn_2024_100778 crossref_primary_10_1007_s41918_022_00135_9 crossref_primary_10_1021_acsnano_6b05150 crossref_primary_10_1016_j_compositesb_2021_108883 crossref_primary_10_1016_j_snb_2023_134010 crossref_primary_10_1016_j_cej_2020_126724 crossref_primary_10_1002_aenm_201602733 crossref_primary_10_3390_gels4020040 crossref_primary_10_1016_j_jhazmat_2020_122017 crossref_primary_10_1016_j_jcis_2018_06_010 crossref_primary_10_1002_smll_201902841 crossref_primary_10_1002_celc_202000963 crossref_primary_10_1016_j_ensm_2019_05_043 crossref_primary_10_3389_fchem_2019_00539 crossref_primary_10_1016_j_ensm_2018_07_011 crossref_primary_10_3390_s17040913 crossref_primary_10_1016_j_mtener_2019_01_012 crossref_primary_10_1016_j_bios_2019_111483 crossref_primary_10_1039_C6QI00083E crossref_primary_10_1002_smll_201702648 crossref_primary_10_2139_ssrn_4143190 crossref_primary_10_1016_j_apcatb_2019_118570 crossref_primary_10_1002_adma_201604563 crossref_primary_10_1016_j_snb_2019_127551 crossref_primary_10_1016_j_mseb_2017_12_018 crossref_primary_10_1039_C8DT02294A crossref_primary_10_1016_j_electacta_2021_139502 crossref_primary_10_1039_C7TA10277A crossref_primary_10_1007_s13369_017_2611_2 crossref_primary_10_1002_aenm_201801010 crossref_primary_10_1002_ange_202319177 crossref_primary_10_1016_j_jelechem_2019_03_078 crossref_primary_10_1016_j_memsci_2021_120183 crossref_primary_10_1007_s10008_020_04643_w crossref_primary_10_1021_acsami_5b12562 crossref_primary_10_1002_celc_201700041 crossref_primary_10_1016_j_nanoen_2016_08_050 crossref_primary_10_1039_C6TA09060E crossref_primary_10_1039_C7TA05219G crossref_primary_10_1039_C8TA03644F crossref_primary_10_1039_C9RA08252B crossref_primary_10_1016_j_jallcom_2021_163193 crossref_primary_10_1021_acsami_1c15356 crossref_primary_10_1039_C7TA07097G crossref_primary_10_1088_1361_6528_aadd38 crossref_primary_10_1021_acsami_9b18197 crossref_primary_10_1016_j_apsusc_2020_145778 crossref_primary_10_1016_j_mtphys_2020_100289 crossref_primary_10_1016_j_ijhydene_2021_09_045 crossref_primary_10_1039_C9NR03088C crossref_primary_10_1007_s11581_021_03968_4 crossref_primary_10_1016_j_coelec_2020_02_004 crossref_primary_10_1039_C6NR06697F crossref_primary_10_1002_anie_202319177 crossref_primary_10_1016_j_jpowsour_2019_03_006 crossref_primary_10_1021_acsami_7b07443 crossref_primary_10_1021_acssensors_1c01374 crossref_primary_10_1016_j_partic_2023_03_007 crossref_primary_10_1002_adma_201605902 crossref_primary_10_1016_j_cej_2020_127267 crossref_primary_10_1002_slct_202300363 crossref_primary_10_1039_C9TA00557A crossref_primary_10_1039_C8NR09893J crossref_primary_10_1016_j_jallcom_2022_168259 crossref_primary_10_1002_smll_202201815 crossref_primary_10_1016_j_jhazmat_2017_02_049 crossref_primary_10_1039_C6TA02005D crossref_primary_10_1016_j_electacta_2016_06_163 crossref_primary_10_1002_adma_201802874 crossref_primary_10_1016_j_materresbull_2016_12_005 crossref_primary_10_1016_j_electacta_2020_136714 crossref_primary_10_1039_C8TA00612A crossref_primary_10_1016_j_inoche_2024_112867 crossref_primary_10_1016_j_ensm_2018_06_027 crossref_primary_10_1016_j_jhazmat_2023_132936 crossref_primary_10_1016_j_jallcom_2022_166847 crossref_primary_10_2139_ssrn_4173994 crossref_primary_10_1088_1361_6528_ab37ba crossref_primary_10_1016_j_jallcom_2019_04_325 crossref_primary_10_1002_adfm_201601631 crossref_primary_10_1016_j_snb_2019_127347 crossref_primary_10_1016_j_jallcom_2016_07_011 crossref_primary_10_1021_acsnano_7b02796 crossref_primary_10_1002_adma_202206842 crossref_primary_10_1002_celc_201901504 crossref_primary_10_1007_s41918_018_0024_x crossref_primary_10_1021_acs_jpcc_9b09716 crossref_primary_10_1002_smll_201800589 crossref_primary_10_1016_j_cej_2025_160364 crossref_primary_10_1021_acs_chemrev_5b00731 crossref_primary_10_1002_aenm_201802438 crossref_primary_10_1039_C8TA08508K crossref_primary_10_1016_j_apsusc_2022_155792 crossref_primary_10_1016_j_jallcom_2016_09_096 crossref_primary_10_1002_aenm_201902485 crossref_primary_10_1007_s10971_016_4274_y crossref_primary_10_1016_j_ceramint_2019_02_161 crossref_primary_10_1021_acsaem_9b01725 crossref_primary_10_1557_s43578_021_00313_3 crossref_primary_10_1016_j_jallcom_2016_12_230 crossref_primary_10_1016_j_electacta_2017_12_047 crossref_primary_10_1039_C8TA11982A crossref_primary_10_1039_C7TA09166D crossref_primary_10_1021_acs_jafc_2c08818 crossref_primary_10_1007_s10934_022_01220_6 crossref_primary_10_1007_s11356_020_11040_3 crossref_primary_10_1016_j_cej_2019_122590 crossref_primary_10_1039_C9RA02682G crossref_primary_10_1016_j_molliq_2021_118428 crossref_primary_10_1016_j_solidstatesciences_2022_106967 crossref_primary_10_3389_fchem_2019_00869 crossref_primary_10_1016_j_jelechem_2019_113445 crossref_primary_10_1021_acs_jpclett_1c02843 crossref_primary_10_1002_smll_202006813 crossref_primary_10_1016_j_ccr_2019_02_021 crossref_primary_10_1039_C7TA10330A crossref_primary_10_1016_j_cej_2017_10_183 crossref_primary_10_1016_j_ensm_2019_12_019 crossref_primary_10_1021_acsami_6b03648 crossref_primary_10_1016_j_apsusc_2018_03_191 crossref_primary_10_1016_j_ccr_2019_02_029 crossref_primary_10_1016_j_cej_2018_08_018 crossref_primary_10_1016_j_jallcom_2017_10_171 crossref_primary_10_1016_j_jelechem_2020_114356 crossref_primary_10_1002_adma_201804903 crossref_primary_10_1038_s41598_022_08584_4 crossref_primary_10_1007_s12598_017_0901_1 crossref_primary_10_1039_D3TA06995H crossref_primary_10_1007_s12274_017_1653_9 crossref_primary_10_1039_C6CS00060F crossref_primary_10_1002_ente_201700096 crossref_primary_10_3390_catal10090969 crossref_primary_10_1016_j_snb_2017_05_024 crossref_primary_10_1039_C7TA03565A crossref_primary_10_1016_j_electacta_2018_09_189 crossref_primary_10_1016_j_ensm_2018_05_024 crossref_primary_10_1002_adfm_202107260 crossref_primary_10_1016_j_ensm_2019_07_034 crossref_primary_10_1016_j_cej_2018_06_093 crossref_primary_10_1021_acsami_7b07000 crossref_primary_10_1039_C9CY02612F crossref_primary_10_1016_j_snb_2022_132418 crossref_primary_10_1016_j_jcis_2023_03_193 crossref_primary_10_1002_adma_201801993 crossref_primary_10_1002_adma_202008784 crossref_primary_10_1039_C7TA02953E crossref_primary_10_1002_chem_201600456 crossref_primary_10_1039_C8DT05055D crossref_primary_10_1039_D4NJ03648D crossref_primary_10_1016_j_jcrysgro_2022_126685 crossref_primary_10_1039_C7TA01961K crossref_primary_10_1002_adma_201705441 crossref_primary_10_1007_s00339_023_06660_8 crossref_primary_10_1016_j_apsusc_2018_09_223 crossref_primary_10_1016_j_jallcom_2021_160830 crossref_primary_10_1016_j_tsf_2019_137522 crossref_primary_10_1002_smll_201700521 crossref_primary_10_1039_D4NJ00712C crossref_primary_10_1002_ente_202000008 crossref_primary_10_1021_acssuschemeng_0c03898 crossref_primary_10_1039_D1QM00274K crossref_primary_10_3390_nano11082001 crossref_primary_10_1007_s10854_024_12631_3 crossref_primary_10_1016_j_compositesa_2021_106451 crossref_primary_10_1016_j_jpowsour_2019_05_054 crossref_primary_10_1021_acsnano_7b02275 crossref_primary_10_1016_j_bioadv_2024_213898 crossref_primary_10_1039_C9QI00091G crossref_primary_10_1002_adfm_201605332 crossref_primary_10_1016_j_jelechem_2019_113785 crossref_primary_10_2174_0113852728277924231124094902 crossref_primary_10_1016_j_solener_2018_09_018 crossref_primary_10_1021_acsami_6b14233 crossref_primary_10_1186_s11671_024_04053_1 crossref_primary_10_1007_s10854_021_06346_y crossref_primary_10_1007_s12274_016_1074_1 crossref_primary_10_3390_pr12071422 crossref_primary_10_1016_j_foodchem_2024_141935 crossref_primary_10_1021_acsami_8b00953 crossref_primary_10_1016_j_nanoen_2017_02_009 crossref_primary_10_1002_adfm_201803471 crossref_primary_10_1016_j_cej_2018_08_037 crossref_primary_10_1021_acsnano_6b00888 crossref_primary_10_1016_j_mcat_2023_113804 crossref_primary_10_1016_j_jallcom_2023_172376 crossref_primary_10_1016_j_electacta_2020_137410 crossref_primary_10_1021_acsnano_7b01152 crossref_primary_10_1039_C6NR01139J crossref_primary_10_1016_j_cej_2021_133029 crossref_primary_10_1016_j_jtice_2021_04_037 crossref_primary_10_1016_j_apsusc_2016_11_205 crossref_primary_10_1039_C9NJ01015G crossref_primary_10_1088_1361_6528_aa9a23 crossref_primary_10_1002_aenm_202304554 crossref_primary_10_1016_j_nanoen_2019_01_036 crossref_primary_10_1088_2053_1591_aaa8c3 crossref_primary_10_1016_j_jallcom_2019_152014 crossref_primary_10_1021_acsomega_2c04382 crossref_primary_10_1021_acsomega_8b01299 crossref_primary_10_1016_j_jallcom_2022_163703 crossref_primary_10_1002_eom2_12283 crossref_primary_10_1016_j_cej_2018_05_091 crossref_primary_10_1039_D2TA04581H crossref_primary_10_1016_j_electacta_2021_139471 crossref_primary_10_1039_C6CC09702B crossref_primary_10_1039_C6DT01025C crossref_primary_10_1039_C9NA00773C crossref_primary_10_1016_j_jechem_2020_08_056 crossref_primary_10_1002_chem_201604703 crossref_primary_10_1016_j_surfin_2021_101232 crossref_primary_10_1080_02726351_2021_1947424 crossref_primary_10_1007_s12678_024_00876_9 crossref_primary_10_1016_j_cej_2017_03_076 crossref_primary_10_1007_s00604_018_3183_x crossref_primary_10_1016_j_electacta_2019_02_069 crossref_primary_10_1039_C9TC04231H |
Cites_doi | 10.1016/j.electacta.2013.01.008 10.1039/c0cc01044h 10.1016/j.elecom.2010.05.039 10.1002/adma.201004493 10.1002/adma.200702242 10.1039/c3ta14937d 10.1039/b925201k 10.1039/c2nr30525a 10.1021/cm020027c 10.1016/j.nanoen.2013.04.008 10.1039/c2nr31898a 10.1039/b811802g 10.1039/c3ta12621h 10.1039/c3nr06041a 10.1021/acssuschemeng.5b00556 10.1039/C3NR05192G 10.1016/j.jpowsour.2014.06.048 10.1016/S1452-3981(23)10960-6 10.1016/j.matlet.2015.01.159 10.1016/j.nanoen.2014.08.009 10.1039/c3ta01640d 10.1002/adma.201202146 10.1021/jacs.5b02465 10.1039/c2nr11966h 10.1021/cr200101d 10.1002/anie.201303971 10.1016/j.jpowsour.2009.07.022 10.1021/ja307475c 10.1039/c1nr10070j 10.1002/adma.201200469 10.1002/adfm.200500561 10.1016/j.elecom.2011.08.011 10.1007/s12274-010-0024-6 10.1021/ja401727n 10.1038/nmat2418 10.1016/j.matlet.2014.06.114 10.1038/35035045 10.1039/c0cc00706d 10.1002/anie.201404604 10.1002/anie.201004900 10.1021/nl202927a 10.1016/j.electacta.2012.11.103 10.1002/adfm.200601146 10.1021/cm400858d 10.1021/cr200324t 10.1002/adma.200501883 10.1021/jp074159a 10.1049/mnl.2013.0330 10.1002/adma.201104407 10.1038/nnano.2011.13 10.1021/cr2003272 10.1126/science.1096566 10.1021/jp804921g 10.1021/cm7033855 10.1039/c3nr00623a 10.1016/j.elecom.2011.11.010 10.1039/c2jm32014b 10.1039/c1jm12589c 10.1016/j.electacta.2013.09.152 10.1039/c1jm11490e 10.1021/ja204233q 10.1126/science.1234751 10.1016/j.jssc.2013.03.036 10.1039/C4CC03807J |
ContentType | Journal Article |
Copyright | Copyright © American Chemical Society |
Copyright_xml | – notice: Copyright © American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acsnano.5b05610 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 11471 |
ExternalDocumentID | 26442790 10_1021_acsnano_5b05610 c241348765 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 23M 4.4 53G 55A 5GY 5VS 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ LG6 P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ CITATION CUPRZ GGK NPM 7X8 |
ID | FETCH-LOGICAL-a399t-a2417899d7fa873e8837f8f7992c610ad39a186e6c5b5d5c4cd839fac664b5fb3 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Fri Jul 11 11:20:20 EDT 2025 Mon Jul 21 05:51:31 EDT 2025 Tue Jul 01 01:33:55 EDT 2025 Thu Apr 24 23:02:15 EDT 2025 Thu Aug 27 13:42:41 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | metal organic framework CuO NiO ball-in-ball lithium-ion battery hollow sphere |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a399t-a2417899d7fa873e8837f8f7992c610ad39a186e6c5b5d5c4cd839fac664b5fb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26442790 |
PQID | 1736415328 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1736415328 pubmed_primary_26442790 crossref_primary_10_1021_acsnano_5b05610 crossref_citationtrail_10_1021_acsnano_5b05610 acs_journals_10_1021_acsnano_5b05610 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-11-24 |
PublicationDateYYYYMMDD | 2015-11-24 |
PublicationDate_xml | – month: 11 year: 2015 text: 2015-11-24 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2015 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 Ren Y. R. (ref53/cit53) 2014; 9 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref29/cit29 doi: 10.1016/j.electacta.2013.01.008 – ident: ref59/cit59 doi: 10.1039/c0cc01044h – ident: ref26/cit26 doi: 10.1016/j.elecom.2010.05.039 – ident: ref40/cit40 doi: 10.1002/adma.201004493 – ident: ref15/cit15 doi: 10.1002/adma.200702242 – ident: ref18/cit18 doi: 10.1039/c3ta14937d – ident: ref38/cit38 doi: 10.1039/b925201k – ident: ref60/cit60 doi: 10.1039/c2nr30525a – ident: ref55/cit55 doi: 10.1021/cm020027c – ident: ref56/cit56 doi: 10.1016/j.nanoen.2013.04.008 – ident: ref62/cit62 doi: 10.1039/c2nr31898a – ident: ref13/cit13 doi: 10.1039/b811802g – ident: ref33/cit33 doi: 10.1039/c3ta12621h – ident: ref45/cit45 doi: 10.1039/c3nr06041a – ident: ref42/cit42 doi: 10.1021/acssuschemeng.5b00556 – ident: ref28/cit28 doi: 10.1039/C3NR05192G – ident: ref44/cit44 doi: 10.1016/j.jpowsour.2014.06.048 – volume: 9 start-page: 7206 year: 2014 ident: ref53/cit53 publication-title: Int. J. Electrochem. Sci. doi: 10.1016/S1452-3981(23)10960-6 – ident: ref51/cit51 doi: 10.1016/j.matlet.2015.01.159 – ident: ref49/cit49 doi: 10.1016/j.nanoen.2014.08.009 – ident: ref61/cit61 doi: 10.1039/c3ta01640d – ident: ref10/cit10 doi: 10.1002/adma.201202146 – ident: ref41/cit41 doi: 10.1021/jacs.5b02465 – ident: ref2/cit2 doi: 10.1039/c2nr11966h – ident: ref6/cit6 doi: 10.1021/cr200101d – ident: ref11/cit11 doi: 10.1002/anie.201303971 – ident: ref25/cit25 doi: 10.1016/j.jpowsour.2009.07.022 – ident: ref58/cit58 doi: 10.1021/ja307475c – ident: ref21/cit21 doi: 10.1039/c1nr10070j – ident: ref1/cit1 doi: 10.1002/adma.201200469 – ident: ref57/cit57 doi: 10.1002/adfm.200500561 – ident: ref24/cit24 doi: 10.1016/j.elecom.2011.08.011 – ident: ref31/cit31 doi: 10.1007/s12274-010-0024-6 – ident: ref7/cit7 doi: 10.1021/ja401727n – ident: ref16/cit16 doi: 10.1038/nmat2418 – ident: ref54/cit54 doi: 10.1016/j.matlet.2014.06.114 – ident: ref14/cit14 doi: 10.1038/35035045 – ident: ref36/cit36 doi: 10.1039/c0cc00706d – ident: ref5/cit5 doi: 10.1002/anie.201404604 – ident: ref35/cit35 doi: 10.1002/anie.201004900 – ident: ref46/cit46 doi: 10.1021/nl202927a – ident: ref20/cit20 doi: 10.1016/j.electacta.2012.11.103 – ident: ref30/cit30 doi: 10.1002/adfm.200601146 – ident: ref47/cit47 doi: 10.1021/cm400858d – ident: ref9/cit9 doi: 10.1021/cr200324t – ident: ref34/cit34 doi: 10.1002/adma.200501883 – ident: ref37/cit37 doi: 10.1021/jp074159a – ident: ref64/cit64 doi: 10.1049/mnl.2013.0330 – ident: ref39/cit39 doi: 10.1002/adma.201104407 – ident: ref12/cit12 doi: 10.1038/nnano.2011.13 – ident: ref8/cit8 doi: 10.1021/cr2003272 – ident: ref3/cit3 doi: 10.1126/science.1096566 – ident: ref50/cit50 doi: 10.1016/j.jpowsour.2009.07.022 – ident: ref17/cit17 doi: 10.1021/jp804921g – ident: ref27/cit27 doi: 10.1021/cm7033855 – ident: ref32/cit32 doi: 10.1039/c3nr00623a – ident: ref22/cit22 doi: 10.1016/j.elecom.2011.11.010 – ident: ref63/cit63 doi: 10.1039/c2jm32014b – ident: ref23/cit23 doi: 10.1039/c1jm12589c – ident: ref19/cit19 doi: 10.1016/j.electacta.2013.09.152 – ident: ref48/cit48 doi: 10.1039/c1jm11490e – ident: ref52/cit52 doi: 10.1021/ja204233q – ident: ref4/cit4 doi: 10.1126/science.1234751 – ident: ref65/cit65 doi: 10.1016/j.jssc.2013.03.036 – ident: ref43/cit43 doi: 10.1039/C4CC03807J |
SSID | ssj0057876 |
Score | 2.6187341 |
Snippet | A unique CuO@NiO microsphere with three-layer ball-in-ball hollow morphology is successfully synthesized by Cu–Ni bimetallic organic frameworks. The beforehand... A unique CuO@NiO microsphere with three-layer ball-in-ball hollow morphology is successfully synthesized by Cu-Ni bimetallic organic frameworks. The beforehand... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 11462 |
Title | Multilayer CuO@NiO Hollow Spheres: Microwave-Assisted Metal–Organic-Framework Derivation and Highly Reversible Structure-Matched Stepwise Lithium Storage |
URI | http://dx.doi.org/10.1021/acsnano.5b05610 https://www.ncbi.nlm.nih.gov/pubmed/26442790 https://www.proquest.com/docview/1736415328 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3LjtMwFIYtNGxgwf1SbjISCzYuEzu2E1agQlUhOiNRRppd5MsJVJR0NGmoYMU7sOTteBLOSdJyGVWwjRLLjn_Hn3OOfzP2yIXSWqVTYWT0IlWpFh5cIkqQypSoKmh_5kwPzOQofXWsj3-ZRf8dwZfJExfqylXLofYEu7g6Py8NDmGioNFs89El3ZkugIwLZKSIrYvPmQJoGgr1n9PQDrZs55jx5S47q26tCSm15MOwWflh-HLWuPHf1b_CLvWkyZ930rjKzkF1jV38zX_wOvvebr9dOMRuPmoOnx3MD_kEhbFc8xnZDUD9lE8pY2_tPoHAniRNRD4FJPYfX791-ziDGG8SvPgLLLj7x8tdFTklkSw-8zfQ5n74BfBZa1fbnIKYOtJL5JRmtp7XwF_PV-_nzUe8gKp8BzfY0fjl29FE9Kc1CIeQsxIOWcDi6i3a0mVWQYZL3zIrbZ7LgA13UeUuyQyYoL2OOqQhIpyVLhiTel16dZPtVcsKbjOee5VK7xGWKFDpEx91zBLYj6kl5HED0lhd9KOtLtpAukyK_l0X_bsesOGmj4vQO57TwRuL3Q883j5w0pl97L714UY0BQ5IirK4CpYNVsYqg1SkZDZgtzo1bQsj-pQ237_zfw24yy4gn2na-ijTe2wPuwjuIwOt_INW_T8Bm-cFLw |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LjtMwFLVGwwJY8Ibp8DISCzYujR3bCStGhapA0xF0Rppd5FeYipKiSUMFK_6BJX_Hl3DtJOWlSrC14is_juNj33uPEXqoTCEl4zER1GoSs5gT7VRECkeZKABVLlzmZFMxPo5fnvCTHTTocmGgERVYqoIT_6e6QPQYykpVLvtce84Lh_RzQEWox_TBcNb9ez38RONHhnMykImNmM9fBvxuZKrfd6MtFDNsNaPL6PWmkSHC5F2_Xum--fyHfuP_9OIKutTyTnzQAOUq2nHlNXTxFzXC6-hbSMZdKCDheFgfPp3OD_EYYLJc45kXH3DVE5z5-L21-ugIzKtHiMWZA_7-_cvXJqvTkFEX7oWfgeHmxher0mIfUrL4hN-4EAmiFw7PgnhtfeZIpjx6LPZBZ-t55fBkvjqd1--hADD61t1Ax6PnR8Mxad9uIAooz4ooYAYSznJWFiqRzCVwEC6SQqYpNdBxZVmqokQ4YbjmlpvYWKBqhTJCxJoXmt1Eu-WydHsIp5rFVGugTt5tqSNtuU0iN7Cx9ARI9Tziqrxde1Ue3Oo0ytuxztux7qF-N9W5afXP_TMci-0VHm0qfGikP7Z_-qDDTg7L0_tcVOmWNTRGMgEcidGkh241oNoY81yUynSw_28duI_Oj4-yST55MX11G10A5sZ9UiSN76BdmC53F9jRSt8LC-IH7dwNkA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JbxMxFLZQkRAcStnasBqJAxeHztiehRNVShSgSREhUm8jrxARJhWTIaKn_oce-Xf8Et7zTCIWRYKrNX7y8r3x9_wWE_JEGZ-mXAqWxFYzwYVk2qmIeRfzxAOqXLjMGY6SwUS8PpEnbVIY5sLAICqQVAUnPmr1qfVthYHoGbSXqpx3pUbeC4b6ZXTaIa4PeuPV_xchmDS-ZLCVgVCsC_r8JQBPJFP9fiJtoJnhuOlfJ5P1QEOUyaduvdBdc_ZHDcf_nckO2W75Jz1oAHODXHLlTXLtl6qEt8j3kJQ7U0DGaa8-fjGaHtMBwGW-pGMsQuCq53SIcXxL9dUx2F9EiqVDBzz-x_lFk91pWH8V9kUPQXBz80tVaSmGlsy-0XcuRITomaPjUMS2_uLYUCGKLMXgs-W0cvRouvg4rT9DA2D1g7tNJv2X73sD1r7hwBRQnwVTwBBSsOls6lWWcpeBQewzn-Z5bGDiyvJcRVniEiO1tNIIY4GyeWWSRGjpNb9Dtsp56fYIzTUXsdZAodB9qSNtpc0it29FikRIdRB5VdHqYFUE93ocFe1aF-1ad0h3td2Faeug43Mcs80dnq47nDYlQDZ_-niFnwLUFH0vqnTzGgaT8gS4Eo-zDtltgLUWhpw0TvP9u_82gUfkytvDfnH0avTmHrkKBE5ibmQs7pMt2C33AEjSQj8MOvETgvgQEw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multilayer+CuO%40NiO+Hollow+Spheres%3A+Microwave-Assisted+Metal%E2%80%93Organic-Framework+Derivation+and+Highly+Reversible+Structure-Matched+Stepwise+Lithium+Storage&rft.jtitle=ACS+nano&rft.au=Guo%2C+Wenxiang&rft.au=Sun%2C+Weiwei&rft.au=Wang%2C+Yong&rft.date=2015-11-24&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021%2Facsnano.5b05610&rft.externalDocID=c241348765 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |