Multilayer CuO@NiO Hollow Spheres: Microwave-Assisted Metal–Organic-Framework Derivation and Highly Reversible Structure-Matched Stepwise Lithium Storage

A unique CuO@NiO microsphere with three-layer ball-in-ball hollow morphology is successfully synthesized by Cu–Ni bimetallic organic frameworks. The beforehand facile microwave-assisted production of the Ni organic framework sphere is used as the template to induce the morphology control of bimetall...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 9; no. 11; pp. 11462 - 11471
Main Authors Guo, Wenxiang, Sun, Weiwei, Wang, Yong
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 24.11.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A unique CuO@NiO microsphere with three-layer ball-in-ball hollow morphology is successfully synthesized by Cu–Ni bimetallic organic frameworks. The beforehand facile microwave-assisted production of the Ni organic framework sphere is used as the template to induce the morphology control of bimetallic oxides. Designed by the controlled surface cationic exchange reactions between Cu and Ni ions, there is an elemental gradient (decreased amount of CuO but increased amount of NiO) from the shell to the core of the microsphere product. This ternary metal oxide hollow structure is found to be very suitable for solving the critical volume expansion problem, which is critical for all high-capacity metal oxide electrodes for lithium ion batteries. A reversible larger-than-theoretical capacity of 1061 mAh·g–1 can be retained after a repetitive 200 cycles without capacity fading compared to the initial cycle. These excellent electrochemical properties are ascribed to the step-by-step lithium insertion reactions induced by the matched CuO@NiO composition from the shell to the core and facilitated lithium/electron diffusion and accommodated volume change in the porous bimetallic oxides microsphere with a multiple-layer yolk–shell nanostructure.
AbstractList A unique CuO@NiO microsphere with three-layer ball-in-ball hollow morphology is successfully synthesized by Cu-Ni bimetallic organic frameworks. The beforehand facile microwave-assisted production of the Ni organic framework sphere is used as the template to induce the morphology control of bimetallic oxides. Designed by the controlled surface cationic exchange reactions between Cu and Ni ions, there is an elemental gradient (decreased amount of CuO but increased amount of NiO) from the shell to the core of the microsphere product. This ternary metal oxide hollow structure is found to be very suitable for solving the critical volume expansion problem, which is critical for all high-capacity metal oxide electrodes for lithium ion batteries. A reversible larger-than-theoretical capacity of 1061 mAh·g(-1) can be retained after a repetitive 200 cycles without capacity fading compared to the initial cycle. These excellent electrochemical properties are ascribed to the step-by-step lithium insertion reactions induced by the matched CuO@NiO composition from the shell to the core and facilitated lithium/electron diffusion and accommodated volume change in the porous bimetallic oxides microsphere with a multiple-layer yolk-shell nanostructure.
A unique CuO@NiO microsphere with three-layer ball-in-ball hollow morphology is successfully synthesized by Cu-Ni bimetallic organic frameworks. The beforehand facile microwave-assisted production of the Ni organic framework sphere is used as the template to induce the morphology control of bimetallic oxides. Designed by the controlled surface cationic exchange reactions between Cu and Ni ions, there is an elemental gradient (decreased amount of CuO but increased amount of NiO) from the shell to the core of the microsphere product. This ternary metal oxide hollow structure is found to be very suitable for solving the critical volume expansion problem, which is critical for all high-capacity metal oxide electrodes for lithium ion batteries. A reversible larger-than-theoretical capacity of 1061 mAh·g(-1) can be retained after a repetitive 200 cycles without capacity fading compared to the initial cycle. These excellent electrochemical properties are ascribed to the step-by-step lithium insertion reactions induced by the matched CuO@NiO composition from the shell to the core and facilitated lithium/electron diffusion and accommodated volume change in the porous bimetallic oxides microsphere with a multiple-layer yolk-shell nanostructure.A unique CuO@NiO microsphere with three-layer ball-in-ball hollow morphology is successfully synthesized by Cu-Ni bimetallic organic frameworks. The beforehand facile microwave-assisted production of the Ni organic framework sphere is used as the template to induce the morphology control of bimetallic oxides. Designed by the controlled surface cationic exchange reactions between Cu and Ni ions, there is an elemental gradient (decreased amount of CuO but increased amount of NiO) from the shell to the core of the microsphere product. This ternary metal oxide hollow structure is found to be very suitable for solving the critical volume expansion problem, which is critical for all high-capacity metal oxide electrodes for lithium ion batteries. A reversible larger-than-theoretical capacity of 1061 mAh·g(-1) can be retained after a repetitive 200 cycles without capacity fading compared to the initial cycle. These excellent electrochemical properties are ascribed to the step-by-step lithium insertion reactions induced by the matched CuO@NiO composition from the shell to the core and facilitated lithium/electron diffusion and accommodated volume change in the porous bimetallic oxides microsphere with a multiple-layer yolk-shell nanostructure.
Author Guo, Wenxiang
Wang, Yong
Sun, Weiwei
AuthorAffiliation Department of Chemical Engineering, School of Environmental and Chemical Engineering
Shanghai University
AuthorAffiliation_xml – name: Department of Chemical Engineering, School of Environmental and Chemical Engineering
– name: Shanghai University
Author_xml – sequence: 1
  givenname: Wenxiang
  surname: Guo
  fullname: Guo, Wenxiang
– sequence: 2
  givenname: Weiwei
  surname: Sun
  fullname: Sun, Weiwei
– sequence: 3
  givenname: Yong
  surname: Wang
  fullname: Wang, Yong
  email: yongwang@shu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26442790$$D View this record in MEDLINE/PubMed
BookMark eNp9kc2O0zAURi00iPmBNTvkJRLKTJzEjs2KUWEoUkslChK76Ma5aT04ccd2WnXHO7Dk7XgSAi2zQILVta7PdxfnOycnveuRkKcsvWRpxq5Ahx56d8nrlAuWPiBnTOUiSaX4fHL_5uyUnIdwm6a8lKV4RE4zURRZqdIz8n0-2Ggs7NHTybB49d4s6NRZ63Z0uVmjx_CSzo32bgdbTK5DMCFiQ-cYwf74-m3hV9Abndx46HDn_Bf6Gr3ZQjSup9A3dGpWa7unH3CLPpjaIl1GP-g4eEzmEPV6PLaMuNmZgHRm4toM3bhwHlb4mDxswQZ8cpwX5NPNm4-TaTJbvH03uZ4lkCsVE8gKVkqlmrIFWeYoZV62si2VyvToBJpcAZMCheY1b7gudCNz1YIWoqh5W-cX5Pnh7sa7uwFDrDoTNFoLPbohVKzMRcF4nskRfXZEh7rDptp404HfV3-EjsDVARiVheCxvUdYWv2qrDpWVh0rGxP8r4Q28bfA6MHY_-ReHHLjR3XrBt-Pjv5J_wTKQa-J
CitedBy_id crossref_primary_10_1016_j_electacta_2017_11_073
crossref_primary_10_1016_j_ensm_2019_09_005
crossref_primary_10_1016_j_heliyon_2023_e21765
crossref_primary_10_1016_j_jhazmat_2021_125662
crossref_primary_10_1002_adma_201604898
crossref_primary_10_1002_adma_201800743
crossref_primary_10_1016_j_apsusc_2017_06_285
crossref_primary_10_1016_j_jpowsour_2016_11_114
crossref_primary_10_1039_D0SC01432J
crossref_primary_10_1016_j_est_2024_114858
crossref_primary_10_1016_j_jallcom_2020_153945
crossref_primary_10_1016_j_electacta_2016_08_051
crossref_primary_10_1039_C9NR00159J
crossref_primary_10_1016_j_jallcom_2022_165250
crossref_primary_10_1002_advs_202104183
crossref_primary_10_1016_j_gee_2020_06_010
crossref_primary_10_1002_adma_201703614
crossref_primary_10_1016_j_jallcom_2020_156669
crossref_primary_10_1021_acssuschemeng_8b01166
crossref_primary_10_1016_j_apsusc_2022_152903
crossref_primary_10_1016_j_cej_2021_134255
crossref_primary_10_1021_acsaelm_5c00069
crossref_primary_10_1039_C8TA02919A
crossref_primary_10_1021_acsanm_1c02228
crossref_primary_10_1016_j_colsurfa_2017_02_017
crossref_primary_10_1007_s11051_017_4078_1
crossref_primary_10_1002_ppsc_201700336
crossref_primary_10_1016_j_jelechem_2023_117714
crossref_primary_10_1002_adma_201602914
crossref_primary_10_1039_C6RA28296B
crossref_primary_10_1039_C8TA11007G
crossref_primary_10_1021_acsomega_0c03929
crossref_primary_10_1021_acsami_9b22169
crossref_primary_10_1021_acsami_3c19174
crossref_primary_10_1016_j_ccr_2024_215813
crossref_primary_10_1016_j_apsusc_2016_12_024
crossref_primary_10_1002_zaac_201700156
crossref_primary_10_1016_j_jcis_2019_08_107
crossref_primary_10_1016_j_jmst_2023_10_017
crossref_primary_10_1007_s10854_021_06069_0
crossref_primary_10_1016_j_mcat_2021_111614
crossref_primary_10_1016_j_jallcom_2022_166231
crossref_primary_10_1021_acscatal_0c03756
crossref_primary_10_1021_acsaem_2c01405
crossref_primary_10_1039_C8RA09841G
crossref_primary_10_1039_C8QI00608C
crossref_primary_10_1016_j_ceramint_2018_09_044
crossref_primary_10_1098_rsos_190634
crossref_primary_10_1039_C7TA02726E
crossref_primary_10_1016_j_scriptamat_2017_06_011
crossref_primary_10_1039_C7CS00614D
crossref_primary_10_1021_acs_jpcc_9b04695
crossref_primary_10_1039_C6DT01791F
crossref_primary_10_1007_s11581_020_03877_y
crossref_primary_10_1016_j_cej_2021_130469
crossref_primary_10_1007_s11595_018_1969_7
crossref_primary_10_1007_s40831_022_00638_1
crossref_primary_10_1002_adfm_201706056
crossref_primary_10_1002_celc_201900848
crossref_primary_10_1093_nsr_nwy065
crossref_primary_10_1039_C6TA06413B
crossref_primary_10_1002_batt_202000094
crossref_primary_10_1016_j_xinn_2022_100281
crossref_primary_10_1002_batt_202400402
crossref_primary_10_1021_acsami_7b16530
crossref_primary_10_1002_adfm_201701833
crossref_primary_10_1007_s41918_019_00056_0
crossref_primary_10_1016_j_cej_2018_03_062
crossref_primary_10_1016_j_cej_2018_03_182
crossref_primary_10_1016_j_ceramint_2021_05_151
crossref_primary_10_1016_j_apsusc_2017_11_045
crossref_primary_10_1016_j_electacta_2017_06_039
crossref_primary_10_1016_j_apsusc_2018_08_081
crossref_primary_10_1016_j_est_2021_103530
crossref_primary_10_1002_adfm_201704440
crossref_primary_10_1016_j_materresbull_2019_04_025
crossref_primary_10_1016_j_jallcom_2017_07_208
crossref_primary_10_1016_j_apsusc_2020_146117
crossref_primary_10_1016_j_elecom_2017_09_019
crossref_primary_10_1039_C8TA04077J
crossref_primary_10_1002_adma_201705146
crossref_primary_10_1021_acs_langmuir_4c00347
crossref_primary_10_1016_j_jpcs_2022_110602
crossref_primary_10_1039_D0RA08503K
crossref_primary_10_1039_D2AY01058E
crossref_primary_10_1016_j_ceramint_2019_08_093
crossref_primary_10_1016_j_electacta_2019_06_083
crossref_primary_10_1016_j_mtnano_2024_100498
crossref_primary_10_1039_C6RA14156K
crossref_primary_10_1016_j_jallcom_2019_01_157
crossref_primary_10_1016_j_jssc_2021_122091
crossref_primary_10_1016_j_apcatb_2025_125204
crossref_primary_10_1038_s41598_018_36378_0
crossref_primary_10_1016_j_ensm_2022_06_022
crossref_primary_10_1016_j_jmst_2017_11_006
crossref_primary_10_1039_C6TA02875F
crossref_primary_10_1039_C6QM00273K
crossref_primary_10_1039_C7TA00855D
crossref_primary_10_1021_acssuschemeng_1c05773
crossref_primary_10_1039_C7TA08264A
crossref_primary_10_1002_smll_201604270
crossref_primary_10_1039_C8CC00789F
crossref_primary_10_1002_smll_202310348
crossref_primary_10_1002_smll_201603500
crossref_primary_10_1002_celc_202000747
crossref_primary_10_1016_j_jallcom_2023_170137
crossref_primary_10_1039_C7RA07663K
crossref_primary_10_1016_j_jallcom_2021_162857
crossref_primary_10_1002_cctc_202001111
crossref_primary_10_1038_natrevmats_2017_75
crossref_primary_10_1039_C6QI00502K
crossref_primary_10_1039_C9TA03833G
crossref_primary_10_1039_C9RA03780B
crossref_primary_10_1016_j_jpcs_2019_109155
crossref_primary_10_1039_C6CS00426A
crossref_primary_10_1016_j_ccr_2020_213434
crossref_primary_10_1002_smtd_201800154
crossref_primary_10_1016_j_electacta_2017_12_181
crossref_primary_10_1186_s11671_019_3194_5
crossref_primary_10_3390_nano10020191
crossref_primary_10_1016_j_est_2024_113171
crossref_primary_10_1039_C7TA10154F
crossref_primary_10_1039_D4YA00332B
crossref_primary_10_1016_j_jphotochem_2019_111853
crossref_primary_10_1016_j_xinn_2024_100778
crossref_primary_10_1007_s41918_022_00135_9
crossref_primary_10_1021_acsnano_6b05150
crossref_primary_10_1016_j_compositesb_2021_108883
crossref_primary_10_1016_j_snb_2023_134010
crossref_primary_10_1016_j_cej_2020_126724
crossref_primary_10_1002_aenm_201602733
crossref_primary_10_3390_gels4020040
crossref_primary_10_1016_j_jhazmat_2020_122017
crossref_primary_10_1016_j_jcis_2018_06_010
crossref_primary_10_1002_smll_201902841
crossref_primary_10_1002_celc_202000963
crossref_primary_10_1016_j_ensm_2019_05_043
crossref_primary_10_3389_fchem_2019_00539
crossref_primary_10_1016_j_ensm_2018_07_011
crossref_primary_10_3390_s17040913
crossref_primary_10_1016_j_mtener_2019_01_012
crossref_primary_10_1016_j_bios_2019_111483
crossref_primary_10_1039_C6QI00083E
crossref_primary_10_1002_smll_201702648
crossref_primary_10_2139_ssrn_4143190
crossref_primary_10_1016_j_apcatb_2019_118570
crossref_primary_10_1002_adma_201604563
crossref_primary_10_1016_j_snb_2019_127551
crossref_primary_10_1016_j_mseb_2017_12_018
crossref_primary_10_1039_C8DT02294A
crossref_primary_10_1016_j_electacta_2021_139502
crossref_primary_10_1039_C7TA10277A
crossref_primary_10_1007_s13369_017_2611_2
crossref_primary_10_1002_aenm_201801010
crossref_primary_10_1002_ange_202319177
crossref_primary_10_1016_j_jelechem_2019_03_078
crossref_primary_10_1016_j_memsci_2021_120183
crossref_primary_10_1007_s10008_020_04643_w
crossref_primary_10_1021_acsami_5b12562
crossref_primary_10_1002_celc_201700041
crossref_primary_10_1016_j_nanoen_2016_08_050
crossref_primary_10_1039_C6TA09060E
crossref_primary_10_1039_C7TA05219G
crossref_primary_10_1039_C8TA03644F
crossref_primary_10_1039_C9RA08252B
crossref_primary_10_1016_j_jallcom_2021_163193
crossref_primary_10_1021_acsami_1c15356
crossref_primary_10_1039_C7TA07097G
crossref_primary_10_1088_1361_6528_aadd38
crossref_primary_10_1021_acsami_9b18197
crossref_primary_10_1016_j_apsusc_2020_145778
crossref_primary_10_1016_j_mtphys_2020_100289
crossref_primary_10_1016_j_ijhydene_2021_09_045
crossref_primary_10_1039_C9NR03088C
crossref_primary_10_1007_s11581_021_03968_4
crossref_primary_10_1016_j_coelec_2020_02_004
crossref_primary_10_1039_C6NR06697F
crossref_primary_10_1002_anie_202319177
crossref_primary_10_1016_j_jpowsour_2019_03_006
crossref_primary_10_1021_acsami_7b07443
crossref_primary_10_1021_acssensors_1c01374
crossref_primary_10_1016_j_partic_2023_03_007
crossref_primary_10_1002_adma_201605902
crossref_primary_10_1016_j_cej_2020_127267
crossref_primary_10_1002_slct_202300363
crossref_primary_10_1039_C9TA00557A
crossref_primary_10_1039_C8NR09893J
crossref_primary_10_1016_j_jallcom_2022_168259
crossref_primary_10_1002_smll_202201815
crossref_primary_10_1016_j_jhazmat_2017_02_049
crossref_primary_10_1039_C6TA02005D
crossref_primary_10_1016_j_electacta_2016_06_163
crossref_primary_10_1002_adma_201802874
crossref_primary_10_1016_j_materresbull_2016_12_005
crossref_primary_10_1016_j_electacta_2020_136714
crossref_primary_10_1039_C8TA00612A
crossref_primary_10_1016_j_inoche_2024_112867
crossref_primary_10_1016_j_ensm_2018_06_027
crossref_primary_10_1016_j_jhazmat_2023_132936
crossref_primary_10_1016_j_jallcom_2022_166847
crossref_primary_10_2139_ssrn_4173994
crossref_primary_10_1088_1361_6528_ab37ba
crossref_primary_10_1016_j_jallcom_2019_04_325
crossref_primary_10_1002_adfm_201601631
crossref_primary_10_1016_j_snb_2019_127347
crossref_primary_10_1016_j_jallcom_2016_07_011
crossref_primary_10_1021_acsnano_7b02796
crossref_primary_10_1002_adma_202206842
crossref_primary_10_1002_celc_201901504
crossref_primary_10_1007_s41918_018_0024_x
crossref_primary_10_1021_acs_jpcc_9b09716
crossref_primary_10_1002_smll_201800589
crossref_primary_10_1016_j_cej_2025_160364
crossref_primary_10_1021_acs_chemrev_5b00731
crossref_primary_10_1002_aenm_201802438
crossref_primary_10_1039_C8TA08508K
crossref_primary_10_1016_j_apsusc_2022_155792
crossref_primary_10_1016_j_jallcom_2016_09_096
crossref_primary_10_1002_aenm_201902485
crossref_primary_10_1007_s10971_016_4274_y
crossref_primary_10_1016_j_ceramint_2019_02_161
crossref_primary_10_1021_acsaem_9b01725
crossref_primary_10_1557_s43578_021_00313_3
crossref_primary_10_1016_j_jallcom_2016_12_230
crossref_primary_10_1016_j_electacta_2017_12_047
crossref_primary_10_1039_C8TA11982A
crossref_primary_10_1039_C7TA09166D
crossref_primary_10_1021_acs_jafc_2c08818
crossref_primary_10_1007_s10934_022_01220_6
crossref_primary_10_1007_s11356_020_11040_3
crossref_primary_10_1016_j_cej_2019_122590
crossref_primary_10_1039_C9RA02682G
crossref_primary_10_1016_j_molliq_2021_118428
crossref_primary_10_1016_j_solidstatesciences_2022_106967
crossref_primary_10_3389_fchem_2019_00869
crossref_primary_10_1016_j_jelechem_2019_113445
crossref_primary_10_1021_acs_jpclett_1c02843
crossref_primary_10_1002_smll_202006813
crossref_primary_10_1016_j_ccr_2019_02_021
crossref_primary_10_1039_C7TA10330A
crossref_primary_10_1016_j_cej_2017_10_183
crossref_primary_10_1016_j_ensm_2019_12_019
crossref_primary_10_1021_acsami_6b03648
crossref_primary_10_1016_j_apsusc_2018_03_191
crossref_primary_10_1016_j_ccr_2019_02_029
crossref_primary_10_1016_j_cej_2018_08_018
crossref_primary_10_1016_j_jallcom_2017_10_171
crossref_primary_10_1016_j_jelechem_2020_114356
crossref_primary_10_1002_adma_201804903
crossref_primary_10_1038_s41598_022_08584_4
crossref_primary_10_1007_s12598_017_0901_1
crossref_primary_10_1039_D3TA06995H
crossref_primary_10_1007_s12274_017_1653_9
crossref_primary_10_1039_C6CS00060F
crossref_primary_10_1002_ente_201700096
crossref_primary_10_3390_catal10090969
crossref_primary_10_1016_j_snb_2017_05_024
crossref_primary_10_1039_C7TA03565A
crossref_primary_10_1016_j_electacta_2018_09_189
crossref_primary_10_1016_j_ensm_2018_05_024
crossref_primary_10_1002_adfm_202107260
crossref_primary_10_1016_j_ensm_2019_07_034
crossref_primary_10_1016_j_cej_2018_06_093
crossref_primary_10_1021_acsami_7b07000
crossref_primary_10_1039_C9CY02612F
crossref_primary_10_1016_j_snb_2022_132418
crossref_primary_10_1016_j_jcis_2023_03_193
crossref_primary_10_1002_adma_201801993
crossref_primary_10_1002_adma_202008784
crossref_primary_10_1039_C7TA02953E
crossref_primary_10_1002_chem_201600456
crossref_primary_10_1039_C8DT05055D
crossref_primary_10_1039_D4NJ03648D
crossref_primary_10_1016_j_jcrysgro_2022_126685
crossref_primary_10_1039_C7TA01961K
crossref_primary_10_1002_adma_201705441
crossref_primary_10_1007_s00339_023_06660_8
crossref_primary_10_1016_j_apsusc_2018_09_223
crossref_primary_10_1016_j_jallcom_2021_160830
crossref_primary_10_1016_j_tsf_2019_137522
crossref_primary_10_1002_smll_201700521
crossref_primary_10_1039_D4NJ00712C
crossref_primary_10_1002_ente_202000008
crossref_primary_10_1021_acssuschemeng_0c03898
crossref_primary_10_1039_D1QM00274K
crossref_primary_10_3390_nano11082001
crossref_primary_10_1007_s10854_024_12631_3
crossref_primary_10_1016_j_compositesa_2021_106451
crossref_primary_10_1016_j_jpowsour_2019_05_054
crossref_primary_10_1021_acsnano_7b02275
crossref_primary_10_1016_j_bioadv_2024_213898
crossref_primary_10_1039_C9QI00091G
crossref_primary_10_1002_adfm_201605332
crossref_primary_10_1016_j_jelechem_2019_113785
crossref_primary_10_2174_0113852728277924231124094902
crossref_primary_10_1016_j_solener_2018_09_018
crossref_primary_10_1021_acsami_6b14233
crossref_primary_10_1186_s11671_024_04053_1
crossref_primary_10_1007_s10854_021_06346_y
crossref_primary_10_1007_s12274_016_1074_1
crossref_primary_10_3390_pr12071422
crossref_primary_10_1016_j_foodchem_2024_141935
crossref_primary_10_1021_acsami_8b00953
crossref_primary_10_1016_j_nanoen_2017_02_009
crossref_primary_10_1002_adfm_201803471
crossref_primary_10_1016_j_cej_2018_08_037
crossref_primary_10_1021_acsnano_6b00888
crossref_primary_10_1016_j_mcat_2023_113804
crossref_primary_10_1016_j_jallcom_2023_172376
crossref_primary_10_1016_j_electacta_2020_137410
crossref_primary_10_1021_acsnano_7b01152
crossref_primary_10_1039_C6NR01139J
crossref_primary_10_1016_j_cej_2021_133029
crossref_primary_10_1016_j_jtice_2021_04_037
crossref_primary_10_1016_j_apsusc_2016_11_205
crossref_primary_10_1039_C9NJ01015G
crossref_primary_10_1088_1361_6528_aa9a23
crossref_primary_10_1002_aenm_202304554
crossref_primary_10_1016_j_nanoen_2019_01_036
crossref_primary_10_1088_2053_1591_aaa8c3
crossref_primary_10_1016_j_jallcom_2019_152014
crossref_primary_10_1021_acsomega_2c04382
crossref_primary_10_1021_acsomega_8b01299
crossref_primary_10_1016_j_jallcom_2022_163703
crossref_primary_10_1002_eom2_12283
crossref_primary_10_1016_j_cej_2018_05_091
crossref_primary_10_1039_D2TA04581H
crossref_primary_10_1016_j_electacta_2021_139471
crossref_primary_10_1039_C6CC09702B
crossref_primary_10_1039_C6DT01025C
crossref_primary_10_1039_C9NA00773C
crossref_primary_10_1016_j_jechem_2020_08_056
crossref_primary_10_1002_chem_201604703
crossref_primary_10_1016_j_surfin_2021_101232
crossref_primary_10_1080_02726351_2021_1947424
crossref_primary_10_1007_s12678_024_00876_9
crossref_primary_10_1016_j_cej_2017_03_076
crossref_primary_10_1007_s00604_018_3183_x
crossref_primary_10_1016_j_electacta_2019_02_069
crossref_primary_10_1039_C9TC04231H
Cites_doi 10.1016/j.electacta.2013.01.008
10.1039/c0cc01044h
10.1016/j.elecom.2010.05.039
10.1002/adma.201004493
10.1002/adma.200702242
10.1039/c3ta14937d
10.1039/b925201k
10.1039/c2nr30525a
10.1021/cm020027c
10.1016/j.nanoen.2013.04.008
10.1039/c2nr31898a
10.1039/b811802g
10.1039/c3ta12621h
10.1039/c3nr06041a
10.1021/acssuschemeng.5b00556
10.1039/C3NR05192G
10.1016/j.jpowsour.2014.06.048
10.1016/S1452-3981(23)10960-6
10.1016/j.matlet.2015.01.159
10.1016/j.nanoen.2014.08.009
10.1039/c3ta01640d
10.1002/adma.201202146
10.1021/jacs.5b02465
10.1039/c2nr11966h
10.1021/cr200101d
10.1002/anie.201303971
10.1016/j.jpowsour.2009.07.022
10.1021/ja307475c
10.1039/c1nr10070j
10.1002/adma.201200469
10.1002/adfm.200500561
10.1016/j.elecom.2011.08.011
10.1007/s12274-010-0024-6
10.1021/ja401727n
10.1038/nmat2418
10.1016/j.matlet.2014.06.114
10.1038/35035045
10.1039/c0cc00706d
10.1002/anie.201404604
10.1002/anie.201004900
10.1021/nl202927a
10.1016/j.electacta.2012.11.103
10.1002/adfm.200601146
10.1021/cm400858d
10.1021/cr200324t
10.1002/adma.200501883
10.1021/jp074159a
10.1049/mnl.2013.0330
10.1002/adma.201104407
10.1038/nnano.2011.13
10.1021/cr2003272
10.1126/science.1096566
10.1021/jp804921g
10.1021/cm7033855
10.1039/c3nr00623a
10.1016/j.elecom.2011.11.010
10.1039/c2jm32014b
10.1039/c1jm12589c
10.1016/j.electacta.2013.09.152
10.1039/c1jm11490e
10.1021/ja204233q
10.1126/science.1234751
10.1016/j.jssc.2013.03.036
10.1039/C4CC03807J
ContentType Journal Article
Copyright Copyright © American Chemical Society
Copyright_xml – notice: Copyright © American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acsnano.5b05610
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 11471
ExternalDocumentID 26442790
10_1021_acsnano_5b05610
c241348765
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
23M
4.4
53G
55A
5GY
5VS
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
LG6
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
NPM
7X8
ID FETCH-LOGICAL-a399t-a2417899d7fa873e8837f8f7992c610ad39a186e6c5b5d5c4cd839fac664b5fb3
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 11:20:20 EDT 2025
Mon Jul 21 05:51:31 EDT 2025
Tue Jul 01 01:33:55 EDT 2025
Thu Apr 24 23:02:15 EDT 2025
Thu Aug 27 13:42:41 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords metal organic framework
CuO
NiO
ball-in-ball
lithium-ion battery
hollow sphere
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a399t-a2417899d7fa873e8837f8f7992c610ad39a186e6c5b5d5c4cd839fac664b5fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26442790
PQID 1736415328
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1736415328
pubmed_primary_26442790
crossref_primary_10_1021_acsnano_5b05610
crossref_citationtrail_10_1021_acsnano_5b05610
acs_journals_10_1021_acsnano_5b05610
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-11-24
PublicationDateYYYYMMDD 2015-11-24
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-11-24
  day: 24
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2015
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
Ren Y. R. (ref53/cit53) 2014; 9
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref29/cit29
  doi: 10.1016/j.electacta.2013.01.008
– ident: ref59/cit59
  doi: 10.1039/c0cc01044h
– ident: ref26/cit26
  doi: 10.1016/j.elecom.2010.05.039
– ident: ref40/cit40
  doi: 10.1002/adma.201004493
– ident: ref15/cit15
  doi: 10.1002/adma.200702242
– ident: ref18/cit18
  doi: 10.1039/c3ta14937d
– ident: ref38/cit38
  doi: 10.1039/b925201k
– ident: ref60/cit60
  doi: 10.1039/c2nr30525a
– ident: ref55/cit55
  doi: 10.1021/cm020027c
– ident: ref56/cit56
  doi: 10.1016/j.nanoen.2013.04.008
– ident: ref62/cit62
  doi: 10.1039/c2nr31898a
– ident: ref13/cit13
  doi: 10.1039/b811802g
– ident: ref33/cit33
  doi: 10.1039/c3ta12621h
– ident: ref45/cit45
  doi: 10.1039/c3nr06041a
– ident: ref42/cit42
  doi: 10.1021/acssuschemeng.5b00556
– ident: ref28/cit28
  doi: 10.1039/C3NR05192G
– ident: ref44/cit44
  doi: 10.1016/j.jpowsour.2014.06.048
– volume: 9
  start-page: 7206
  year: 2014
  ident: ref53/cit53
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.1016/S1452-3981(23)10960-6
– ident: ref51/cit51
  doi: 10.1016/j.matlet.2015.01.159
– ident: ref49/cit49
  doi: 10.1016/j.nanoen.2014.08.009
– ident: ref61/cit61
  doi: 10.1039/c3ta01640d
– ident: ref10/cit10
  doi: 10.1002/adma.201202146
– ident: ref41/cit41
  doi: 10.1021/jacs.5b02465
– ident: ref2/cit2
  doi: 10.1039/c2nr11966h
– ident: ref6/cit6
  doi: 10.1021/cr200101d
– ident: ref11/cit11
  doi: 10.1002/anie.201303971
– ident: ref25/cit25
  doi: 10.1016/j.jpowsour.2009.07.022
– ident: ref58/cit58
  doi: 10.1021/ja307475c
– ident: ref21/cit21
  doi: 10.1039/c1nr10070j
– ident: ref1/cit1
  doi: 10.1002/adma.201200469
– ident: ref57/cit57
  doi: 10.1002/adfm.200500561
– ident: ref24/cit24
  doi: 10.1016/j.elecom.2011.08.011
– ident: ref31/cit31
  doi: 10.1007/s12274-010-0024-6
– ident: ref7/cit7
  doi: 10.1021/ja401727n
– ident: ref16/cit16
  doi: 10.1038/nmat2418
– ident: ref54/cit54
  doi: 10.1016/j.matlet.2014.06.114
– ident: ref14/cit14
  doi: 10.1038/35035045
– ident: ref36/cit36
  doi: 10.1039/c0cc00706d
– ident: ref5/cit5
  doi: 10.1002/anie.201404604
– ident: ref35/cit35
  doi: 10.1002/anie.201004900
– ident: ref46/cit46
  doi: 10.1021/nl202927a
– ident: ref20/cit20
  doi: 10.1016/j.electacta.2012.11.103
– ident: ref30/cit30
  doi: 10.1002/adfm.200601146
– ident: ref47/cit47
  doi: 10.1021/cm400858d
– ident: ref9/cit9
  doi: 10.1021/cr200324t
– ident: ref34/cit34
  doi: 10.1002/adma.200501883
– ident: ref37/cit37
  doi: 10.1021/jp074159a
– ident: ref64/cit64
  doi: 10.1049/mnl.2013.0330
– ident: ref39/cit39
  doi: 10.1002/adma.201104407
– ident: ref12/cit12
  doi: 10.1038/nnano.2011.13
– ident: ref8/cit8
  doi: 10.1021/cr2003272
– ident: ref3/cit3
  doi: 10.1126/science.1096566
– ident: ref50/cit50
  doi: 10.1016/j.jpowsour.2009.07.022
– ident: ref17/cit17
  doi: 10.1021/jp804921g
– ident: ref27/cit27
  doi: 10.1021/cm7033855
– ident: ref32/cit32
  doi: 10.1039/c3nr00623a
– ident: ref22/cit22
  doi: 10.1016/j.elecom.2011.11.010
– ident: ref63/cit63
  doi: 10.1039/c2jm32014b
– ident: ref23/cit23
  doi: 10.1039/c1jm12589c
– ident: ref19/cit19
  doi: 10.1016/j.electacta.2013.09.152
– ident: ref48/cit48
  doi: 10.1039/c1jm11490e
– ident: ref52/cit52
  doi: 10.1021/ja204233q
– ident: ref4/cit4
  doi: 10.1126/science.1234751
– ident: ref65/cit65
  doi: 10.1016/j.jssc.2013.03.036
– ident: ref43/cit43
  doi: 10.1039/C4CC03807J
SSID ssj0057876
Score 2.6187341
Snippet A unique CuO@NiO microsphere with three-layer ball-in-ball hollow morphology is successfully synthesized by Cu–Ni bimetallic organic frameworks. The beforehand...
A unique CuO@NiO microsphere with three-layer ball-in-ball hollow morphology is successfully synthesized by Cu-Ni bimetallic organic frameworks. The beforehand...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11462
Title Multilayer CuO@NiO Hollow Spheres: Microwave-Assisted Metal–Organic-Framework Derivation and Highly Reversible Structure-Matched Stepwise Lithium Storage
URI http://dx.doi.org/10.1021/acsnano.5b05610
https://www.ncbi.nlm.nih.gov/pubmed/26442790
https://www.proquest.com/docview/1736415328
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3LjtMwFIYtNGxgwf1SbjISCzYuEzu2E1agQlUhOiNRRppd5MsJVJR0NGmoYMU7sOTteBLOSdJyGVWwjRLLjn_Hn3OOfzP2yIXSWqVTYWT0IlWpFh5cIkqQypSoKmh_5kwPzOQofXWsj3-ZRf8dwZfJExfqylXLofYEu7g6Py8NDmGioNFs89El3ZkugIwLZKSIrYvPmQJoGgr1n9PQDrZs55jx5S47q26tCSm15MOwWflh-HLWuPHf1b_CLvWkyZ930rjKzkF1jV38zX_wOvvebr9dOMRuPmoOnx3MD_kEhbFc8xnZDUD9lE8pY2_tPoHAniRNRD4FJPYfX791-ziDGG8SvPgLLLj7x8tdFTklkSw-8zfQ5n74BfBZa1fbnIKYOtJL5JRmtp7XwF_PV-_nzUe8gKp8BzfY0fjl29FE9Kc1CIeQsxIOWcDi6i3a0mVWQYZL3zIrbZ7LgA13UeUuyQyYoL2OOqQhIpyVLhiTel16dZPtVcsKbjOee5VK7xGWKFDpEx91zBLYj6kl5HED0lhd9KOtLtpAukyK_l0X_bsesOGmj4vQO57TwRuL3Q883j5w0pl97L714UY0BQ5IirK4CpYNVsYqg1SkZDZgtzo1bQsj-pQ237_zfw24yy4gn2na-ijTe2wPuwjuIwOt_INW_T8Bm-cFLw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LjtMwFLVGwwJY8Ibp8DISCzYujR3bCStGhapA0xF0Rppd5FeYipKiSUMFK_6BJX_Hl3DtJOWlSrC14is_juNj33uPEXqoTCEl4zER1GoSs5gT7VRECkeZKABVLlzmZFMxPo5fnvCTHTTocmGgERVYqoIT_6e6QPQYykpVLvtce84Lh_RzQEWox_TBcNb9ez38RONHhnMykImNmM9fBvxuZKrfd6MtFDNsNaPL6PWmkSHC5F2_Xum--fyHfuP_9OIKutTyTnzQAOUq2nHlNXTxFzXC6-hbSMZdKCDheFgfPp3OD_EYYLJc45kXH3DVE5z5-L21-ugIzKtHiMWZA_7-_cvXJqvTkFEX7oWfgeHmxher0mIfUrL4hN-4EAmiFw7PgnhtfeZIpjx6LPZBZ-t55fBkvjqd1--hADD61t1Ax6PnR8Mxad9uIAooz4ooYAYSznJWFiqRzCVwEC6SQqYpNdBxZVmqokQ4YbjmlpvYWKBqhTJCxJoXmt1Eu-WydHsIp5rFVGugTt5tqSNtuU0iN7Cx9ARI9Tziqrxde1Ue3Oo0ytuxztux7qF-N9W5afXP_TMci-0VHm0qfGikP7Z_-qDDTg7L0_tcVOmWNTRGMgEcidGkh241oNoY81yUynSw_28duI_Oj4-yST55MX11G10A5sZ9UiSN76BdmC53F9jRSt8LC-IH7dwNkA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JbxMxFLZQkRAcStnasBqJAxeHztiehRNVShSgSREhUm8jrxARJhWTIaKn_oce-Xf8Et7zTCIWRYKrNX7y8r3x9_wWE_JEGZ-mXAqWxFYzwYVk2qmIeRfzxAOqXLjMGY6SwUS8PpEnbVIY5sLAICqQVAUnPmr1qfVthYHoGbSXqpx3pUbeC4b6ZXTaIa4PeuPV_xchmDS-ZLCVgVCsC_r8JQBPJFP9fiJtoJnhuOlfJ5P1QEOUyaduvdBdc_ZHDcf_nckO2W75Jz1oAHODXHLlTXLtl6qEt8j3kJQ7U0DGaa8-fjGaHtMBwGW-pGMsQuCq53SIcXxL9dUx2F9EiqVDBzz-x_lFk91pWH8V9kUPQXBz80tVaSmGlsy-0XcuRITomaPjUMS2_uLYUCGKLMXgs-W0cvRouvg4rT9DA2D1g7tNJv2X73sD1r7hwBRQnwVTwBBSsOls6lWWcpeBQewzn-Z5bGDiyvJcRVniEiO1tNIIY4GyeWWSRGjpNb9Dtsp56fYIzTUXsdZAodB9qSNtpc0it29FikRIdRB5VdHqYFUE93ocFe1aF-1ad0h3td2Faeug43Mcs80dnq47nDYlQDZ_-niFnwLUFH0vqnTzGgaT8gS4Eo-zDtltgLUWhpw0TvP9u_82gUfkytvDfnH0avTmHrkKBE5ibmQs7pMt2C33AEjSQj8MOvETgvgQEw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multilayer+CuO%40NiO+Hollow+Spheres%3A+Microwave-Assisted+Metal%E2%80%93Organic-Framework+Derivation+and+Highly+Reversible+Structure-Matched+Stepwise+Lithium+Storage&rft.jtitle=ACS+nano&rft.au=Guo%2C+Wenxiang&rft.au=Sun%2C+Weiwei&rft.au=Wang%2C+Yong&rft.date=2015-11-24&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021%2Facsnano.5b05610&rft.externalDocID=c241348765
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon