Spontaneous Crack Healing in Nanostructured Silica-Based Thin Films

Self-healing materials that can spontaneously repair damage under mild conditions are desirable in many applications. Significant progress has recently been made in the design of polymer materials capable of healing cracks at the molecular scale using reversible bonds; however, such a self-healing m...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 11; no. 10; pp. 10289 - 10294
Main Authors Itoh, Shun, Kodama, Satoshi, Kobayashi, Maho, Hara, Shintaro, Wada, Hiroaki, Kuroda, Kazuyuki, Shimojima, Atsushi
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 24.10.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Self-healing materials that can spontaneously repair damage under mild conditions are desirable in many applications. Significant progress has recently been made in the design of polymer materials capable of healing cracks at the molecular scale using reversible bonds; however, such a self-healing mechanism has rarely been applied to rigid inorganic materials. Here, we demonstrate the self-healing ability of lamellar silica-based thin films formed by self-assembly of silica precursors and quaternary ammonium-type surfactants. Specifically, spontaneous healing of cracks (typically less than 1.5 μm in width) was achieved under humid conditions even at room temperature. The randomly oriented lamellar structure with thin silica layers is suggested to play an essential role in crack closure and the reformation of siloxane networks on the fracture surface. These findings will lead to the creation of smart self-healing silica-based materials based on reversible siloxane bonds.
AbstractList Self-healing materials that can spontaneously repair damage under mild conditions are desirable in many applications. Significant progress has recently been made in the design of polymer materials capable of healing cracks at the molecular scale using reversible bonds; however, such a self-healing mechanism has rarely been applied to rigid inorganic materials. Here, we demonstrate the self-healing ability of lamellar silica-based thin films formed by self-assembly of silica precursors and quaternary ammonium-type surfactants. Specifically, spontaneous healing of cracks (typically less than 1.5 μm in width) was achieved under humid conditions even at room temperature. The randomly oriented lamellar structure with thin silica layers is suggested to play an essential role in crack closure and the reformation of siloxane networks on the fracture surface. These findings will lead to the creation of smart self-healing silica-based materials based on reversible siloxane bonds.
Self-healing materials that can spontaneously repair damage under mild conditions are desirable in many applications. Significant progress has recently been made in the design of polymer materials capable of healing cracks at the molecular scale using reversible bonds; however, such a self-healing mechanism has rarely been applied to rigid inorganic materials. Here, we demonstrate the self-healing ability of lamellar silica-based thin films formed by self-assembly of silica precursors and quaternary ammonium-type surfactants. Specifically, spontaneous healing of cracks (typically less than 1.5 μm in width) was achieved under humid conditions even at room temperature. The randomly oriented lamellar structure with thin silica layers is suggested to play an essential role in crack closure and the reformation of siloxane networks on the fracture surface. These findings will lead to the creation of smart self-healing silica-based materials based on reversible siloxane bonds.Self-healing materials that can spontaneously repair damage under mild conditions are desirable in many applications. Significant progress has recently been made in the design of polymer materials capable of healing cracks at the molecular scale using reversible bonds; however, such a self-healing mechanism has rarely been applied to rigid inorganic materials. Here, we demonstrate the self-healing ability of lamellar silica-based thin films formed by self-assembly of silica precursors and quaternary ammonium-type surfactants. Specifically, spontaneous healing of cracks (typically less than 1.5 μm in width) was achieved under humid conditions even at room temperature. The randomly oriented lamellar structure with thin silica layers is suggested to play an essential role in crack closure and the reformation of siloxane networks on the fracture surface. These findings will lead to the creation of smart self-healing silica-based materials based on reversible siloxane bonds.
Author Hara, Shintaro
Kobayashi, Maho
Shimojima, Atsushi
Wada, Hiroaki
Itoh, Shun
Kodama, Satoshi
Kuroda, Kazuyuki
AuthorAffiliation Department of Advanced Science and Engineering, Faculty of Science and Engineering
Waseda University
Kagami Memorial Research Institute for Materials Science and Technology
Department of Applied Chemistry, Faculty of Science and Engineering
AuthorAffiliation_xml – name: Waseda University
– name: Department of Advanced Science and Engineering, Faculty of Science and Engineering
– name: Kagami Memorial Research Institute for Materials Science and Technology
– name: Department of Applied Chemistry, Faculty of Science and Engineering
Author_xml – sequence: 1
  givenname: Shun
  surname: Itoh
  fullname: Itoh, Shun
– sequence: 2
  givenname: Satoshi
  surname: Kodama
  fullname: Kodama, Satoshi
– sequence: 3
  givenname: Maho
  surname: Kobayashi
  fullname: Kobayashi, Maho
– sequence: 4
  givenname: Shintaro
  surname: Hara
  fullname: Hara, Shintaro
– sequence: 5
  givenname: Hiroaki
  surname: Wada
  fullname: Wada, Hiroaki
– sequence: 6
  givenname: Kazuyuki
  orcidid: 0000-0002-1602-0335
  surname: Kuroda
  fullname: Kuroda, Kazuyuki
  organization: Waseda University
– sequence: 7
  givenname: Atsushi
  orcidid: 0000-0003-2863-1587
  surname: Shimojima
  fullname: Shimojima, Atsushi
  email: shimojima@waseda.jp
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28957633$$D View this record in MEDLINE/PubMed
BookMark eNp1kEtLAzEURoNU7EPX7mSWgozNo0kmSy3WCkUXreAu3KYZTZ1majKz8N8baetC6Co33PN9JKePOr72FqFLgm8JpmQIJnrw9a1c4pEqyAnqEcVEjgvx1vmbOemifoxrjLkspDhDXVooLgVjPTSeb2vfgLd1G7NxAPOZTS1Uzr9nzmfPqTs2oTVNG-wqm7vKGcjvIabL4iMBE1dt4jk6LaGK9mJ_DtDr5GExnuazl8en8d0sB6ZUk6ultbYU3EiBKWNEcFgVWJhiRKkUtMSMWytlaQFbzlRZSKDAiFSKF4yAZAN0vevdhvqrtbHRGxeNrard8zVRI06JpJIm9GqPtsuNXeltcBsI3_rw8QTwHWBCHWOwpTaugcYlGQFcpQnWv4L1XrDeC0654b_cofp44maXSAu9rtvgk6Oj9A90Foyl
CitedBy_id crossref_primary_10_1002_adma_202007559
crossref_primary_10_1039_D4CC05804F
crossref_primary_10_1295_kobunshi_73_9_465
crossref_primary_10_1021_acs_chemmater_9b01102
crossref_primary_10_1039_D4NR04435E
crossref_primary_10_1021_acsapm_1c00592
crossref_primary_10_3390_ma14102680
crossref_primary_10_1116_6_0003422
crossref_primary_10_1016_j_apsusc_2018_01_307
crossref_primary_10_1016_j_clema_2022_100071
crossref_primary_10_1016_j_molliq_2022_119827
crossref_primary_10_1039_C8TA01885E
crossref_primary_10_1016_j_cej_2018_12_001
crossref_primary_10_1021_acsami_0c06530
crossref_primary_10_1016_j_ensm_2022_06_052
crossref_primary_10_1016_j_eurpolymj_2023_112471
crossref_primary_10_1016_j_nanoso_2020_100500
crossref_primary_10_1016_j_ceramint_2020_03_173
Cites_doi 10.1016/j.jnoncrysol.2007.06.090
10.1039/C5SC02223A
10.1111/j.1551-2916.2011.04517.x
10.1021/cm960137h
10.1246/bcsj.70.2593
10.1002/adfm.200305036
10.1002/marc.201100248
10.1021/cr068020s
10.1002/anie.201500484
10.1111/j.1151-2916.1989.tb06057.x
10.1111/j.1151-2916.1970.tb15996.x
10.1021/acs.jchemed.6b00161
10.1021/acs.macromol.5b01666
10.1039/c3cc43432j
10.1039/C4PY00172A
10.1016/j.jeurceramsoc.2004.09.021
10.1021/la9608775
10.1002/adma.201003036
10.1021/ja2113257
10.1039/c3py00005b
10.1016/j.polymer.2015.03.017
10.1038/28354
10.1002/adfm.200800647
10.1016/j.progpolymsci.2008.02.001
10.1038/nature09963
10.1039/B615027F
10.1039/c3cs60109a
10.1038/nature06669
10.1073/pnas.1015862108
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acsnano.7b04981
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 10294
ExternalDocumentID 28957633
10_1021_acsnano_7b04981
c734293710
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
4.4
5VS
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
ID FETCH-LOGICAL-a399t-9beeef65c760233165ad806c8422762f035ee77fea0e539f87a2a317995831a73
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 09:51:40 EDT 2025
Mon Jul 21 05:42:20 EDT 2025
Thu Apr 24 23:01:46 EDT 2025
Tue Jul 01 01:34:12 EDT 2025
Thu Aug 27 13:42:25 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords self-assembly
mesostructures
siloxane
self-healing
thin films
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a399t-9beeef65c760233165ad806c8422762f035ee77fea0e539f87a2a317995831a73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1602-0335
0000-0003-2863-1587
PMID 28957633
PQID 1945217272
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_1945217272
pubmed_primary_28957633
crossref_citationtrail_10_1021_acsnano_7b04981
crossref_primary_10_1021_acsnano_7b04981
acs_journals_10_1021_acsnano_7b04981
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-24
PublicationDateYYYYMMDD 2017-10-24
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-24
  day: 24
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref3/cit3
ref18/cit18
Sakka S. (ref27/cit27) 2005; 1
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
Ghosh S. K. (ref1/cit1) 2009
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref4/cit4
ref30/cit30
ref24/cit24
ref7/cit7
References_xml – ident: ref29/cit29
  doi: 10.1016/j.jnoncrysol.2007.06.090
– ident: ref8/cit8
  doi: 10.1039/C5SC02223A
– ident: ref14/cit14
  doi: 10.1111/j.1551-2916.2011.04517.x
– ident: ref24/cit24
  doi: 10.1021/cm960137h
– ident: ref18/cit18
  doi: 10.1246/bcsj.70.2593
– ident: ref26/cit26
  doi: 10.1002/adfm.200305036
– ident: ref20/cit20
  doi: 10.1002/marc.201100248
– ident: ref30/cit30
  doi: 10.1021/cr068020s
– ident: ref4/cit4
  doi: 10.1002/anie.201500484
– ident: ref13/cit13
  doi: 10.1111/j.1151-2916.1989.tb06057.x
– ident: ref12/cit12
  doi: 10.1111/j.1151-2916.1970.tb15996.x
– ident: ref31/cit31
  doi: 10.1021/acs.jchemed.6b00161
– ident: ref16/cit16
  doi: 10.1021/acs.macromol.5b01666
– ident: ref21/cit21
  doi: 10.1039/c3cc43432j
– ident: ref23/cit23
  doi: 10.1039/C4PY00172A
– ident: ref11/cit11
  doi: 10.1016/j.jeurceramsoc.2004.09.021
– ident: ref25/cit25
  doi: 10.1021/la9608775
– ident: ref10/cit10
  doi: 10.1002/adma.201003036
– volume: 1
  volume-title: Handbook of Sol–Gel Science and Technology: Processing, Characterization and Applications
  year: 2005
  ident: ref27/cit27
– ident: ref15/cit15
  doi: 10.1021/ja2113257
– ident: ref9/cit9
  doi: 10.1039/c3py00005b
– ident: ref22/cit22
  doi: 10.1016/j.polymer.2015.03.017
– ident: ref17/cit17
  doi: 10.1038/28354
– ident: ref19/cit19
  doi: 10.1002/adfm.200800647
– ident: ref2/cit2
  doi: 10.1016/j.progpolymsci.2008.02.001
– ident: ref7/cit7
  doi: 10.1038/nature09963
– ident: ref28/cit28
  doi: 10.1039/B615027F
– volume-title: Self-Healing Materials: Fundamentals, Design Strategies, and Applications
  year: 2009
  ident: ref1/cit1
– ident: ref3/cit3
  doi: 10.1039/c3cs60109a
– ident: ref5/cit5
  doi: 10.1038/nature06669
– ident: ref6/cit6
  doi: 10.1073/pnas.1015862108
SSID ssj0057876
Score 2.3361044
Snippet Self-healing materials that can spontaneously repair damage under mild conditions are desirable in many applications. Significant progress has recently been...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10289
Title Spontaneous Crack Healing in Nanostructured Silica-Based Thin Films
URI http://dx.doi.org/10.1021/acsnano.7b04981
https://www.ncbi.nlm.nih.gov/pubmed/28957633
https://www.proquest.com/docview/1945217272
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLZQWWDgPsolI3VgSUh8JiNEVBUSLKVSt8hxHKlqSaqmXfj1PCdpOaoKpgyJrdjP9vc9P_t7CHUYzwRTRDq-8kPHRpqcJPQSR3iapCazsGHvDr-8it6APQ_58Ess-ncEn_j3Spe5ygtXJkBm7SXrbSJgClsWFPWXi64dd6IOIIODDCxipeKzVoGFIV3-hKEN3LLCmO5-fTqrrKQJ7dGSsbuYJ67-WBdu_Pv3D9BewzTxQz00DtGWyY_Q7jf9wWMU9adFDuzQgPuPo5nSY2yvJcE7PMoxLLxFLS-7mJkU90d2f895BNhLsU33ibujyXt5ggbdp7eo5zRZFRwFZGTuhIkxJhNcSwF4TX3BVRp4QgeMEFgZM49yY6TMjPIMp2EWSEUUrYTjAuorSU9RKy9yc44wSYOEMaalDw9Bdah5EJog5TZxTKBoG3Wg-XEzK8q4CngTP276JG76pI3cpS1i3SiT2wQZk80F7lYFprUox-ZPb5fGjWHi2GhI3auxHzJus3NJ0kZntdVXlYEXCn4YpRf_a8Al2iEW7QHSCLtCLTCNuQauMk9uqlH6CYxd4d4
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB6h9EB7oNAHhAJdJA69OLX3aR9pRBRogoQCUm7Wer2WIoId4eTCr2fWj7SligQnS7Z3tbszu_ONx_MNwBkXmeSaKi_QQeS5SJOXRH7iSd_Q1GbObLjc4fG1HN7xq6mYboHf5sLgIErsqayC-H_YBYKfeC_XedFTCWJal2v9DqEIdTp93p-0Z69TP1nHkdFPRjCxJvP5rwNnjUz5rzXaADErUzP4CDfrQVZ_mNz3VsukZ55e8De-ZRa7sNPgTnJeK8oebNn8E3z4i43wM_QniyJHrGiLVUn6j9rcE5ekhM_ILCd4DBc12ezq0aZkMnNf-7xfaART4op_ksFs_lB-gbvBxW1_6DU1FjyN0GTpRYm1NpPCKInWmwVS6DT0pQk5pXhOZj4T1iqVWe1bwaIsVJpqVtHIhSzQin2FTl7k9gAITcOEc25UgBfJTGREGNkwFa6MTKhZF85w-nGzR8q4Cn_TIG7WJG7WpAu9ViSxaXjKXbmM-eYGP9YNFjVFx-ZXT1sZx7iNXGykXtU4iLhwtboU7cJ-Lfx1Z-iTolfG2OHrJvAdtoe341E8urz-_Q3eU4cD0NhRfgQdFJM9RhSzTE4qxX0GUK_qPw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwELYQSGj3wGt5lKeROHBJSfxMjlCoyi5USN1K3CLHcaQKSCrSXvj1zCRpxYIqsadISWz5Mfb3OZP5hpAzITMlDNNeYILIQ0-Tl0R-4infstRlCBsYO3zfV72h-P0oH5ugMIyFgUaUUFNZOfFxVY_TrFEYCC7gfm7yoq0T4LUYb72CTju068vOYLb_ogmq2pcMZ2UgFHNBny8VICLZ8l9EWkAzK7jprpPhvKHVXyZP7ekkadu3TxqO_9uTDbLW8E96WRvMJlly-Rb5-UGV8BfpDMZFDpzRFdOSdl6NfaIYrATP6CinsB0Xtejs9NWldDDCr37eFYBhSjEJKO2Onl_KbTLs3vzt9Lwm14JngKJMvChxzmVKWq0AxXmgpElDX9lQMAb7ZeZz6ZzWmTO-kzzKQm2Y4ZWcXMgDo_kOWc6L3O0RytIwEUJYHcBFcRtZGUYuTCWmkwkNb5Ez6H7crJUyrtzgLIibMYmbMWmR9mxaYtvolWPajOfFBc7nBca1VMfiV09n8xzDckIfST2qcRAJiTm7NGuR3doA5pXB2RSsjfP973XghKw-XHfju9v-nwPygyEdAMxj4pAswyy5IyAzk-S4st13CT_swg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spontaneous+Crack+Healing+in+Nanostructured+Silica-Based+Thin+Films&rft.jtitle=ACS+nano&rft.au=Itoh%2C+Shun&rft.au=Kodama%2C+Satoshi&rft.au=Kobayashi%2C+Maho&rft.au=Hara%2C+Shintaro&rft.date=2017-10-24&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=11&rft.issue=10&rft.spage=10289&rft.epage=10294&rft_id=info:doi/10.1021%2Facsnano.7b04981&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsnano_7b04981
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon