Large-Scale Automated Production of Highly Ordered Ultralong Hydroxyapatite Nanowires and Construction of Various Fire-Resistant Flexible Ordered Architectures

Practical applications of nanostructured materials have been largely limited by the difficulties in controllable and scaled-up synthesis, large-sized highly ordered self-assembly, and macroscopic processing of nanostructures. Hydroxyapatite (HAP), the major inorganic component of human bone and toot...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 10; no. 12; pp. 11483 - 11495
Main Authors Chen, Feng, Zhu, Ying-Jie
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 27.12.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Practical applications of nanostructured materials have been largely limited by the difficulties in controllable and scaled-up synthesis, large-sized highly ordered self-assembly, and macroscopic processing of nanostructures. Hydroxyapatite (HAP), the major inorganic component of human bone and tooth, is an important biomaterial with high biocompatibility, bioactivity, and high thermal stability. Large-sized highly ordered HAP nanostructures are of great significance for applications in various fields and for understanding the formation mechanisms of bone and tooth. However, the synthesis of large-sized highly ordered HAP nanostructures remains a great challenge, especially for the preparation of large-sized highly ordered ultralong HAP nanowires because ultralong HAP nanowires are easily tangled and aggregated. Herein, we report our three main research findings: (1) the large-scale synthesis of highly flexible ultralong HAP nanowires with lengths up to >100 μm and aspect ratios up to >10000; (2) the demonstration of a strategy for the rapid automated production of highly flexible, fire-resistant, large-sized, self-assembled highly ordered ultralong HAP nanowires (SHOUHNs) at room temperature; and (3) the successful construction of various flexible fire-resistant HAP ordered architectures using the SHOUHNs, such as high-strength highly flexible nanostructured ropes (nanoropes), highly flexible textiles, and 3-D printed well-defined highly ordered patterns. The SHOUHNs are successively formed from the nanoscale to the microscale then to the macroscale, and the ordering direction of the ordered HAP structure is controllable. These ordered HAP architectures made from the SHOUHNs, such as highly flexible textiles, may be engineered into advanced functional products for applications in various fields, for example, fireproof clothing.
AbstractList Practical applications of nanostructured materials have been largely limited by the difficulties in controllable and scaled-up synthesis, large-sized highly ordered self-assembly, and macroscopic processing of nanostructures. Hydroxyapatite (HAP), the major inorganic component of human bone and tooth, is an important biomaterial with high biocompatibility, bioactivity, and high thermal stability. Large-sized highly ordered HAP nanostructures are of great significance for applications in various fields and for understanding the formation mechanisms of bone and tooth. However, the synthesis of large-sized highly ordered HAP nanostructures remains a great challenge, especially for the preparation of large-sized highly ordered ultralong HAP nanowires because ultralong HAP nanowires are easily tangled and aggregated. Herein, we report our three main research findings: (1) the large-scale synthesis of highly flexible ultralong HAP nanowires with lengths up to >100 μm and aspect ratios up to >10000; (2) the demonstration of a strategy for the rapid automated production of highly flexible, fire-resistant, large-sized, self-assembled highly ordered ultralong HAP nanowires (SHOUHNs) at room temperature; and (3) the successful construction of various flexible fire-resistant HAP ordered architectures using the SHOUHNs, such as high-strength highly flexible nanostructured ropes (nanoropes), highly flexible textiles, and 3-D printed well-defined highly ordered patterns. The SHOUHNs are successively formed from the nanoscale to the microscale then to the macroscale, and the ordering direction of the ordered HAP structure is controllable. These ordered HAP architectures made from the SHOUHNs, such as highly flexible textiles, may be engineered into advanced functional products for applications in various fields, for example, fireproof clothing.Practical applications of nanostructured materials have been largely limited by the difficulties in controllable and scaled-up synthesis, large-sized highly ordered self-assembly, and macroscopic processing of nanostructures. Hydroxyapatite (HAP), the major inorganic component of human bone and tooth, is an important biomaterial with high biocompatibility, bioactivity, and high thermal stability. Large-sized highly ordered HAP nanostructures are of great significance for applications in various fields and for understanding the formation mechanisms of bone and tooth. However, the synthesis of large-sized highly ordered HAP nanostructures remains a great challenge, especially for the preparation of large-sized highly ordered ultralong HAP nanowires because ultralong HAP nanowires are easily tangled and aggregated. Herein, we report our three main research findings: (1) the large-scale synthesis of highly flexible ultralong HAP nanowires with lengths up to >100 μm and aspect ratios up to >10000; (2) the demonstration of a strategy for the rapid automated production of highly flexible, fire-resistant, large-sized, self-assembled highly ordered ultralong HAP nanowires (SHOUHNs) at room temperature; and (3) the successful construction of various flexible fire-resistant HAP ordered architectures using the SHOUHNs, such as high-strength highly flexible nanostructured ropes (nanoropes), highly flexible textiles, and 3-D printed well-defined highly ordered patterns. The SHOUHNs are successively formed from the nanoscale to the microscale then to the macroscale, and the ordering direction of the ordered HAP structure is controllable. These ordered HAP architectures made from the SHOUHNs, such as highly flexible textiles, may be engineered into advanced functional products for applications in various fields, for example, fireproof clothing.
Practical applications of nanostructured materials have been largely limited by the difficulties in controllable and scaled-up synthesis, large-sized highly ordered self-assembly, and macroscopic processing of nanostructures. Hydroxyapatite (HAP), the major inorganic component of human bone and tooth, is an important biomaterial with high biocompatibility, bioactivity, and high thermal stability. Large-sized highly ordered HAP nanostructures are of great significance for applications in various fields and for understanding the formation mechanisms of bone and tooth. However, the synthesis of large-sized highly ordered HAP nanostructures remains a great challenge, especially for the preparation of large-sized highly ordered ultralong HAP nanowires because ultralong HAP nanowires are easily tangled and aggregated. Herein, we report our three main research findings: (1) the large-scale synthesis of highly flexible ultralong HAP nanowires with lengths up to >100 μm and aspect ratios up to >10000; (2) the demonstration of a strategy for the rapid automated production of highly flexible, fire-resistant, large-sized, self-assembled highly ordered ultralong HAP nanowires (SHOUHNs) at room temperature; and (3) the successful construction of various flexible fire-resistant HAP ordered architectures using the SHOUHNs, such as high-strength highly flexible nanostructured ropes (nanoropes), highly flexible textiles, and 3-D printed well-defined highly ordered patterns. The SHOUHNs are successively formed from the nanoscale to the microscale then to the macroscale, and the ordering direction of the ordered HAP structure is controllable. These ordered HAP architectures made from the SHOUHNs, such as highly flexible textiles, may be engineered into advanced functional products for applications in various fields, for example, fireproof clothing.
Author Chen, Feng
Zhu, Ying-Jie
AuthorAffiliation State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics
Chinese Academy of Sciences
AuthorAffiliation_xml – name: Chinese Academy of Sciences
– name: State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics
Author_xml – sequence: 1
  givenname: Feng
  surname: Chen
  fullname: Chen, Feng
– sequence: 2
  givenname: Ying-Jie
  orcidid: 0000-0002-5044-5046
  surname: Zhu
  fullname: Zhu, Ying-Jie
  email: y.j.zhu@mail.sic.ac.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28024360$$D View this record in MEDLINE/PubMed
BookMark eNp9kV9rFDEUxYNU7B999k3yKMi0yWSSyTwuS9ctLFbUim_DncydbcpssiYZ7H4av2pTdltB0KeE3N85uZxzSo6cd0jIW87OOSv5BZjowPlz1bG6FM0LcsIboQqm1Y-j57vkx-Q0xjvGZK1r9Yocl5qVlVDshPxeQVhj8dXAiHQ2Jb-BhD39HHw_mWS9o36gS7u-HXf0OvQY8vBmTAFG79Z0ueuDv9_BFpJNSD_lVX7ZgJGC6-ncu5jCH5fvEKyfIl1koviC0cYELtHFiPe2y78_2c-Cuc1uJk3Z6TV5OcAY8c3hPCM3i8tv82Wxuv54NZ-tChBNk4oaoalMXXZaaq0HIxj0HIXuG8lKqCphOKulUkZ1vGwwP1SSc-wUGtUMhosz8n7vuw3-54QxtRsbDY4jOMxLt1xLIaSWTZnRdwd06jbYt9tgNxB27VOoGbjYAyb4GAMOzwhn7WNt7aG29lBbVsi_FMYmeAwuJ23H_-g-7HV50N75Kbic0T_pB5jBsAU
CitedBy_id crossref_primary_10_1039_D1CE00887K
crossref_primary_10_1002_adfm_202100703
crossref_primary_10_1016_j_cej_2024_151421
crossref_primary_10_3390_molecules27185916
crossref_primary_10_1007_s42765_023_00265_9
crossref_primary_10_1016_j_ceramint_2017_08_137
crossref_primary_10_1002_jbm_b_34819
crossref_primary_10_1002_ange_202214571
crossref_primary_10_1039_C8CS00489G
crossref_primary_10_1016_j_cej_2022_135347
crossref_primary_10_1016_j_mtcomm_2022_104773
crossref_primary_10_1021_acsmaterialslett_0c00149
crossref_primary_10_1016_j_cej_2021_132912
crossref_primary_10_1016_j_msec_2019_110408
crossref_primary_10_1002_chem_201605165
crossref_primary_10_1002_chem_201800425
crossref_primary_10_1039_D4TB00551A
crossref_primary_10_1016_j_colsurfa_2021_127001
crossref_primary_10_1007_s11356_019_06160_4
crossref_primary_10_1007_s40242_023_2336_6
crossref_primary_10_3390_molecules27155020
crossref_primary_10_1039_D0TB02288H
crossref_primary_10_1038_s41598_018_25566_7
crossref_primary_10_1016_j_ceramint_2025_01_285
crossref_primary_10_1039_D2CS00513A
crossref_primary_10_1246_cl_190623
crossref_primary_10_1016_j_matdes_2023_111587
crossref_primary_10_1016_j_msec_2020_111367
crossref_primary_10_1002_jbm_a_36502
crossref_primary_10_1016_j_commatsci_2023_112153
crossref_primary_10_1039_D2SC04962G
crossref_primary_10_1016_j_apmt_2024_102062
crossref_primary_10_1039_C7TA03870D
crossref_primary_10_1039_D2CE00225F
crossref_primary_10_1002_adem_202200943
crossref_primary_10_1002_adfm_202101372
crossref_primary_10_1016_j_ceramint_2024_01_423
crossref_primary_10_3390_molecules27206808
crossref_primary_10_1016_j_actbio_2018_02_033
crossref_primary_10_1021_acsnano_8b06096
crossref_primary_10_1016_j_ceramint_2018_04_022
crossref_primary_10_1021_acs_cgd_4c00530
crossref_primary_10_1002_advs_202407251
crossref_primary_10_1016_j_jcis_2018_06_059
crossref_primary_10_1002_adhm_202001851
crossref_primary_10_1002_adhm_202401095
crossref_primary_10_1002_cjoc_202100170
crossref_primary_10_1016_j_bioactmat_2025_02_017
crossref_primary_10_1002_pc_26862
crossref_primary_10_1038_s41598_018_25595_2
crossref_primary_10_1016_j_nanoen_2023_108851
crossref_primary_10_1007_s42247_024_00716_y
crossref_primary_10_1016_j_matlet_2020_127857
crossref_primary_10_1002_smll_202206960
crossref_primary_10_1016_j_cej_2020_125666
crossref_primary_10_1016_j_cej_2024_151136
crossref_primary_10_4028_www_scientific_net_MSF_1002_468
crossref_primary_10_1177_00220345221098334
crossref_primary_10_1016_j_jmbbm_2021_104376
crossref_primary_10_1016_j_bioadv_2024_214001
crossref_primary_10_1016_j_nanoen_2020_104843
crossref_primary_10_1002_adhm_202304158
crossref_primary_10_1021_acsami_9b02485
crossref_primary_10_1039_C9TA12979K
crossref_primary_10_1021_acsbiomaterials_3c01478
crossref_primary_10_1039_C9BM00953A
crossref_primary_10_1002_anie_201902240
crossref_primary_10_1021_acsaem_2c04170
crossref_primary_10_1016_j_apmt_2023_102046
crossref_primary_10_1039_D1TB02021H
crossref_primary_10_1049_mna2_12095
crossref_primary_10_1016_j_mtchem_2024_102381
crossref_primary_10_1016_j_cej_2022_136470
crossref_primary_10_1021_acsbiomaterials_9b01183
crossref_primary_10_1021_acsami_4c09157
crossref_primary_10_1021_acssuschemeng_8b04630
crossref_primary_10_1016_j_jmrt_2023_09_324
crossref_primary_10_1021_acsnano_8b00047
crossref_primary_10_1021_jacs_8b02706
crossref_primary_10_2139_ssrn_4135348
crossref_primary_10_1021_acsami_7b05208
crossref_primary_10_1021_acsami_7b06835
crossref_primary_10_1016_j_cej_2018_11_025
crossref_primary_10_1016_j_jmrt_2022_12_106
crossref_primary_10_1002_smll_202207951
crossref_primary_10_1039_C7TA11215G
crossref_primary_10_3390_molecules26113190
crossref_primary_10_1016_j_micromeso_2019_109904
crossref_primary_10_1007_s12221_024_00549_w
crossref_primary_10_1016_j_mtcomm_2022_104229
crossref_primary_10_1021_acsami_4c17864
crossref_primary_10_1007_s10853_018_2796_0
crossref_primary_10_1016_j_matdes_2018_07_009
crossref_primary_10_1007_s12598_023_02535_2
crossref_primary_10_1039_D0TA07518C
crossref_primary_10_1002_adfm_201903477
crossref_primary_10_1016_j_matdes_2018_02_039
crossref_primary_10_1002_advs_202104001
crossref_primary_10_1002_anie_202214571
crossref_primary_10_1016_j_ceramint_2021_04_034
crossref_primary_10_1016_j_colsurfa_2023_132464
crossref_primary_10_1016_j_nano_2017_12_025
crossref_primary_10_1007_s12274_021_3714_3
crossref_primary_10_1080_02773813_2021_1998128
crossref_primary_10_1016_j_colsurfb_2023_113147
crossref_primary_10_1021_acsami_7b09484
crossref_primary_10_1021_acsbiomaterials_0c00364
crossref_primary_10_1002_eem2_12158
crossref_primary_10_1007_s00339_019_3087_6
crossref_primary_10_1039_C8RA03972K
crossref_primary_10_1002_adma_202107523
crossref_primary_10_1002_chem_201604552
crossref_primary_10_2147_IJN_S238005
crossref_primary_10_1021_acs_nanolett_1c02708
crossref_primary_10_1039_D1CE00488C
crossref_primary_10_1016_j_jmrt_2024_05_134
crossref_primary_10_1039_D0NJ04476H
crossref_primary_10_1039_D3SC05344J
crossref_primary_10_1002_ange_201902240
crossref_primary_10_1002_chem_201902093
crossref_primary_10_1021_acs_langmuir_4c00388
crossref_primary_10_2174_1872210516666220325153220
crossref_primary_10_1021_acsami_4c01383
crossref_primary_10_1016_j_matlet_2017_01_124
crossref_primary_10_1016_j_cej_2019_03_153
crossref_primary_10_1021_acsanm_0c02921
Cites_doi 10.1021/nn403742f
10.1002/adma.201403354
10.1016/j.actbio.2010.07.012
10.1038/nmat2911
10.1002/chem.201304439
10.1016/j.matchemphys.2008.05.068
10.1002/adma.200802239
10.1002/adfm.201301121
10.1021/cm903594n
10.1021/cr800427g
10.1038/nmat3787
10.1002/adma.200600033
10.1002/chem.201100680
10.1002/chem.201200301
10.1016/j.actbio.2010.02.015
10.1002/chem.201400252
10.1002/adma.201504313
10.1073/pnas.0604237103
10.1016/0142-9612(96)85762-0
10.1021/jp9091078
10.1038/ncomms2720
10.1016/j.actbio.2012.12.027
10.1038/nprot.2010.138
10.1007/s10853-005-6927-z
10.1038/nmat2240
10.1039/C0CE00574F
10.1002/smll.201301633
10.1088/0957-4484/24/17/175601
10.1039/c3tb20164c
10.1038/nature03968
10.1039/c3ce41255e
10.1039/c3tb21073a
10.1039/C1CS15223H
10.1126/science.1120937
10.1038/nmat2875
10.1002/jbm.b.31924
10.1016/j.actbio.2009.02.018
10.1126/science.929194
10.1016/j.matlet.2012.06.106
10.1021/am201735k
10.1021/la0498197
10.1126/science.1063187
10.2174/187221009787003302
10.1039/c2ra21745g
ContentType Journal Article
Copyright Copyright © 2016 American Chemical Society
Copyright_xml – notice: Copyright © 2016 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acsnano.6b07239
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 11495
ExternalDocumentID 28024360
10_1021_acsnano_6b07239
i03548078
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
4.4
5VS
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
ID FETCH-LOGICAL-a399t-7ea94c72b85888fc30ad1e38d9502a443c107566c6b129e4434511eb6ec69fc13
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 05:52:39 EDT 2025
Mon Jul 21 05:41:52 EDT 2025
Tue Jul 01 01:34:04 EDT 2025
Thu Apr 24 23:11:45 EDT 2025
Thu Aug 27 13:42:49 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords hydroxyapatite
self-assembly
fire-resistant
ordered structure
biomineralization
nanowires
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a399t-7ea94c72b85888fc30ad1e38d9502a443c107566c6b129e4434511eb6ec69fc13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5044-5046
PMID 28024360
PQID 1853358592
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_1853358592
pubmed_primary_28024360
crossref_primary_10_1021_acsnano_6b07239
crossref_citationtrail_10_1021_acsnano_6b07239
acs_journals_10_1021_acsnano_6b07239
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-12-27
PublicationDateYYYYMMDD 2016-12-27
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-27
  day: 27
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2016
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref29/cit29
  doi: 10.1021/nn403742f
– ident: ref2/cit2
  doi: 10.1002/adma.201403354
– ident: ref43/cit43
  doi: 10.1016/j.actbio.2010.07.012
– ident: ref13/cit13
  doi: 10.1038/nmat2911
– ident: ref3/cit3
  doi: 10.1002/chem.201304439
– ident: ref20/cit20
  doi: 10.1016/j.matchemphys.2008.05.068
– ident: ref26/cit26
  doi: 10.1002/adma.200802239
– ident: ref44/cit44
  doi: 10.1002/adfm.201301121
– ident: ref24/cit24
  doi: 10.1021/cm903594n
– ident: ref1/cit1
  doi: 10.1021/cr800427g
– ident: ref15/cit15
  doi: 10.1038/nmat3787
– ident: ref37/cit37
  doi: 10.1002/adma.200600033
– ident: ref6/cit6
  doi: 10.1002/chem.201100680
– ident: ref19/cit19
  doi: 10.1002/chem.201200301
– ident: ref40/cit40
  doi: 10.1016/j.actbio.2010.02.015
– ident: ref18/cit18
  doi: 10.1002/chem.201400252
– ident: ref31/cit31
  doi: 10.1002/adma.201504313
– ident: ref12/cit12
  doi: 10.1073/pnas.0604237103
– ident: ref42/cit42
  doi: 10.1016/0142-9612(96)85762-0
– ident: ref22/cit22
  doi: 10.1021/jp9091078
– ident: ref17/cit17
  doi: 10.1038/ncomms2720
– ident: ref28/cit28
  doi: 10.1016/j.actbio.2012.12.027
– ident: ref34/cit34
  doi: 10.1038/nprot.2010.138
– ident: ref9/cit9
  doi: 10.1007/s10853-005-6927-z
– ident: ref16/cit16
  doi: 10.1038/nmat2240
– ident: ref5/cit5
  doi: 10.1039/C0CE00574F
– ident: ref32/cit32
  doi: 10.1002/smll.201301633
– ident: ref41/cit41
  doi: 10.1088/0957-4484/24/17/175601
– ident: ref33/cit33
  doi: 10.1039/c3tb20164c
– ident: ref38/cit38
  doi: 10.1038/nature03968
– ident: ref4/cit4
  doi: 10.1039/c3ce41255e
– ident: ref8/cit8
  doi: 10.1039/c3tb21073a
– ident: ref35/cit35
  doi: 10.1039/C1CS15223H
– ident: ref30/cit30
  doi: 10.1126/science.1120937
– ident: ref14/cit14
  doi: 10.1038/nmat2875
– ident: ref21/cit21
  doi: 10.1002/jbm.b.31924
– ident: ref23/cit23
  doi: 10.1016/j.actbio.2009.02.018
– ident: ref25/cit25
  doi: 10.1126/science.929194
– ident: ref7/cit7
  doi: 10.1016/j.matlet.2012.06.106
– ident: ref10/cit10
  doi: 10.1021/am201735k
– ident: ref11/cit11
  doi: 10.1021/la0498197
– ident: ref27/cit27
  doi: 10.1126/science.1063187
– ident: ref36/cit36
  doi: 10.2174/187221009787003302
– ident: ref39/cit39
  doi: 10.1039/c2ra21745g
SSID ssj0057876
Score 2.5510614
Snippet Practical applications of nanostructured materials have been largely limited by the difficulties in controllable and scaled-up synthesis, large-sized highly...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11483
Title Large-Scale Automated Production of Highly Ordered Ultralong Hydroxyapatite Nanowires and Construction of Various Fire-Resistant Flexible Ordered Architectures
URI http://dx.doi.org/10.1021/acsnano.6b07239
https://www.ncbi.nlm.nih.gov/pubmed/28024360
https://www.proquest.com/docview/1853358592
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELbK9gIH-gDK9iVX4sAlS-IkdnKMVo1WVdUiYBG3yK9wYOVUJHtY_kz_amfy2C5Fq3KNnLEzM7a_yYy-IeREmRJCYwuRqpDCi4KEeyrS3Aswy8ml8ZVs2T5_8Nk8-nYT3_wli_43g8-CM6lrJ1014coXLEx3yEvGE4FxVja9HA5d9DveJZBhWkARaxafJwLwGtL142toC7Zs75j8VVedVbfUhFhacjdZNmqiH54SN_5_-a_Jfo80ada5xhvywrq3ZG-Df_CA_P6OdeDeJdjJ0mzZVABfraHnHQssWIxWJcVKkMWK_rxv23rS-QL_jVTuls5WBhcqsSa7sRTO6QqJj2sqnaHYCHSgpkUp1xCTV8ua5jDCu7A1wlbX0Bz5OBXMPojPNhIb9SGZ51-vpjOv79jgSQA6jSesTCMtmEpiiKxLHfrSBDZMTBr7TEZRqCHaBACpuQKcYeEB0qNZxa3maamD8IiMXOXsMaE6LFMkqxcWEJvxjSyjWLBSJqFv4EgWY3ICqi36HVcXbTKdBUWv76LX95hMBjsXumc9x-Ybi-0vnK5f-NURfmwf-mVwnAI2JWZapLOgywJBUAiBWMrG5F3nUWthLEESSO6_f94HfCC7gNHaXklMfCQjMJ39BDioUZ_bHfAH8awGUQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB6VcoAeeD_Cc5GKxMXBXju79oFDVIhSGgqiDerN7Ms9EK1R7QqFPwN_hX_GjB-hgCJxqcR1ZY_tmfHON57xNwDb2haYGjvMVKWSQRKlItCJEUFEVU6hbKhVw_a5L6bz5PXR6GgDvvf_wuBNVCipaor4v9gFoue45pUvh0KHksdZ10a555ZfMEmrXuy-RIs-5Xzy6nBnGnRzBAKF4bcOpFNZYiTX6QjzvcLEobKRi1ObjUKukiQ2mAMhrDFCY_RzuECkXU4LZ0RWmChGuRfgIkIfTundeOeg3-vJ3UVbt8anRfCyIg_664Yp-pnq9-i3BtI2oW1yFX6slNJ0tHwantZ6aL7-wRf5P2vtGlzpcDUbty_Cddhw_gZsnWFbvAnfZtT1HhygVzo2Pq1LBOvOsnct5y36JysLRn0viyV7e9IMMWXzBX0JKv0xmy4t6UdRB3rtGEalkmieK6a8ZTT2tCfiJSkf1An1FrMJHhG8dxWBdF-zCbGParx6L358poxT3YL5uWjoNmz60ru7wExcZETNLx3iUxtaVSQjyQuVxqHFACQHsI2mzLv9pcqb1gEe5Z19886-Axj27pWbjuOdRo0s1p_wbHXC55beZP2hT3p_zXELorqS8g51mRPkizHtzPgA7rSOvBLGU6K8FOG9f3uAx3Bpevhmls929_fuw2VEp82UKC4fwCaa0T1EBFjrR81LyODjefvvT8oWZwo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9RADLZKkRAceD-W5yAViUuWZJKdSQ4cVi3RllaloizqLcwrHFhNqiYVWv4MF_4K_ws7j1UBrcSlEtcocRLbM_4cO58BtrQtMTV2mKlKJYMkSkWgEyOCiKqcQtlQq5bt80DM5snb48nxBvwY_oXBh6hRUt0W8WlVn9iyZxiIXuFxr3w1FjqUPM76Vso9t_yKiVr9encHrfqC8_zNh-1Z0M8SCBSG4CaQTmWJkVynE8z5ShOHykYuTm02CblKkthgHoTQxgiNEdDhASLuclo4I7LSRDHKvQSXqUhIKd50-2jY78nlRVe7xjdGALMiEPrrgSkCmvr3CLgG1rbhLb8BP1eKabtavozPGj023_7gjPzfNXcTrvf4mk27BXELNpy_DdfOsS7ege_71P0eHKF3OjY9ayoE7c6yw477Fv2UVSWj_pfFkr07bYeZsvmCvghV_jObLS3pSFEneuMYRqeK6J5rprxlNP50IOQlKR_VKfUYsxzPCN67msC6b1hOLKQa7z6In54r59R3YX4hGroHm77y7gEwE5cZUfRLhzjVhlaVyUTyUqVxaDEQyRFsoSmLfp-pi7aFgEdFb9-it-8IxoOLFabneqeRI4v1F7xcXXDS0ZysP_X54LMFbkVUX1LeoS4Lgn4xpp8ZH8H9zplXwnhK1JcifPhvL_AMrhzu5MX-7sHeI7iKILUdFsXlY9hEK7onCAQb_bRdhww-XbT7_gKE12mN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-Scale+Automated+Production+of+Highly+Ordered+Ultralong+Hydroxyapatite+Nanowires+and+Construction+of+Various+Fire-Resistant+Flexible+Ordered+Architectures&rft.jtitle=ACS+nano&rft.au=Chen%2C+Feng&rft.au=Zhu%2C+Ying-Jie&rft.date=2016-12-27&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=10&rft.issue=12&rft.spage=11483&rft.epage=11495&rft_id=info:doi/10.1021%2Facsnano.6b07239&rft.externalDocID=i03548078
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon