Large-Scale Automated Production of Highly Ordered Ultralong Hydroxyapatite Nanowires and Construction of Various Fire-Resistant Flexible Ordered Architectures
Practical applications of nanostructured materials have been largely limited by the difficulties in controllable and scaled-up synthesis, large-sized highly ordered self-assembly, and macroscopic processing of nanostructures. Hydroxyapatite (HAP), the major inorganic component of human bone and toot...
Saved in:
Published in | ACS nano Vol. 10; no. 12; pp. 11483 - 11495 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
27.12.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Practical applications of nanostructured materials have been largely limited by the difficulties in controllable and scaled-up synthesis, large-sized highly ordered self-assembly, and macroscopic processing of nanostructures. Hydroxyapatite (HAP), the major inorganic component of human bone and tooth, is an important biomaterial with high biocompatibility, bioactivity, and high thermal stability. Large-sized highly ordered HAP nanostructures are of great significance for applications in various fields and for understanding the formation mechanisms of bone and tooth. However, the synthesis of large-sized highly ordered HAP nanostructures remains a great challenge, especially for the preparation of large-sized highly ordered ultralong HAP nanowires because ultralong HAP nanowires are easily tangled and aggregated. Herein, we report our three main research findings: (1) the large-scale synthesis of highly flexible ultralong HAP nanowires with lengths up to >100 μm and aspect ratios up to >10000; (2) the demonstration of a strategy for the rapid automated production of highly flexible, fire-resistant, large-sized, self-assembled highly ordered ultralong HAP nanowires (SHOUHNs) at room temperature; and (3) the successful construction of various flexible fire-resistant HAP ordered architectures using the SHOUHNs, such as high-strength highly flexible nanostructured ropes (nanoropes), highly flexible textiles, and 3-D printed well-defined highly ordered patterns. The SHOUHNs are successively formed from the nanoscale to the microscale then to the macroscale, and the ordering direction of the ordered HAP structure is controllable. These ordered HAP architectures made from the SHOUHNs, such as highly flexible textiles, may be engineered into advanced functional products for applications in various fields, for example, fireproof clothing. |
---|---|
AbstractList | Practical applications of nanostructured materials have been largely limited by the difficulties in controllable and scaled-up synthesis, large-sized highly ordered self-assembly, and macroscopic processing of nanostructures. Hydroxyapatite (HAP), the major inorganic component of human bone and tooth, is an important biomaterial with high biocompatibility, bioactivity, and high thermal stability. Large-sized highly ordered HAP nanostructures are of great significance for applications in various fields and for understanding the formation mechanisms of bone and tooth. However, the synthesis of large-sized highly ordered HAP nanostructures remains a great challenge, especially for the preparation of large-sized highly ordered ultralong HAP nanowires because ultralong HAP nanowires are easily tangled and aggregated. Herein, we report our three main research findings: (1) the large-scale synthesis of highly flexible ultralong HAP nanowires with lengths up to >100 μm and aspect ratios up to >10000; (2) the demonstration of a strategy for the rapid automated production of highly flexible, fire-resistant, large-sized, self-assembled highly ordered ultralong HAP nanowires (SHOUHNs) at room temperature; and (3) the successful construction of various flexible fire-resistant HAP ordered architectures using the SHOUHNs, such as high-strength highly flexible nanostructured ropes (nanoropes), highly flexible textiles, and 3-D printed well-defined highly ordered patterns. The SHOUHNs are successively formed from the nanoscale to the microscale then to the macroscale, and the ordering direction of the ordered HAP structure is controllable. These ordered HAP architectures made from the SHOUHNs, such as highly flexible textiles, may be engineered into advanced functional products for applications in various fields, for example, fireproof clothing.Practical applications of nanostructured materials have been largely limited by the difficulties in controllable and scaled-up synthesis, large-sized highly ordered self-assembly, and macroscopic processing of nanostructures. Hydroxyapatite (HAP), the major inorganic component of human bone and tooth, is an important biomaterial with high biocompatibility, bioactivity, and high thermal stability. Large-sized highly ordered HAP nanostructures are of great significance for applications in various fields and for understanding the formation mechanisms of bone and tooth. However, the synthesis of large-sized highly ordered HAP nanostructures remains a great challenge, especially for the preparation of large-sized highly ordered ultralong HAP nanowires because ultralong HAP nanowires are easily tangled and aggregated. Herein, we report our three main research findings: (1) the large-scale synthesis of highly flexible ultralong HAP nanowires with lengths up to >100 μm and aspect ratios up to >10000; (2) the demonstration of a strategy for the rapid automated production of highly flexible, fire-resistant, large-sized, self-assembled highly ordered ultralong HAP nanowires (SHOUHNs) at room temperature; and (3) the successful construction of various flexible fire-resistant HAP ordered architectures using the SHOUHNs, such as high-strength highly flexible nanostructured ropes (nanoropes), highly flexible textiles, and 3-D printed well-defined highly ordered patterns. The SHOUHNs are successively formed from the nanoscale to the microscale then to the macroscale, and the ordering direction of the ordered HAP structure is controllable. These ordered HAP architectures made from the SHOUHNs, such as highly flexible textiles, may be engineered into advanced functional products for applications in various fields, for example, fireproof clothing. Practical applications of nanostructured materials have been largely limited by the difficulties in controllable and scaled-up synthesis, large-sized highly ordered self-assembly, and macroscopic processing of nanostructures. Hydroxyapatite (HAP), the major inorganic component of human bone and tooth, is an important biomaterial with high biocompatibility, bioactivity, and high thermal stability. Large-sized highly ordered HAP nanostructures are of great significance for applications in various fields and for understanding the formation mechanisms of bone and tooth. However, the synthesis of large-sized highly ordered HAP nanostructures remains a great challenge, especially for the preparation of large-sized highly ordered ultralong HAP nanowires because ultralong HAP nanowires are easily tangled and aggregated. Herein, we report our three main research findings: (1) the large-scale synthesis of highly flexible ultralong HAP nanowires with lengths up to >100 μm and aspect ratios up to >10000; (2) the demonstration of a strategy for the rapid automated production of highly flexible, fire-resistant, large-sized, self-assembled highly ordered ultralong HAP nanowires (SHOUHNs) at room temperature; and (3) the successful construction of various flexible fire-resistant HAP ordered architectures using the SHOUHNs, such as high-strength highly flexible nanostructured ropes (nanoropes), highly flexible textiles, and 3-D printed well-defined highly ordered patterns. The SHOUHNs are successively formed from the nanoscale to the microscale then to the macroscale, and the ordering direction of the ordered HAP structure is controllable. These ordered HAP architectures made from the SHOUHNs, such as highly flexible textiles, may be engineered into advanced functional products for applications in various fields, for example, fireproof clothing. |
Author | Chen, Feng Zhu, Ying-Jie |
AuthorAffiliation | State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences |
AuthorAffiliation_xml | – name: Chinese Academy of Sciences – name: State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics |
Author_xml | – sequence: 1 givenname: Feng surname: Chen fullname: Chen, Feng – sequence: 2 givenname: Ying-Jie orcidid: 0000-0002-5044-5046 surname: Zhu fullname: Zhu, Ying-Jie email: y.j.zhu@mail.sic.ac.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28024360$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kV9rFDEUxYNU7B999k3yKMi0yWSSyTwuS9ctLFbUim_DncydbcpssiYZ7H4av2pTdltB0KeE3N85uZxzSo6cd0jIW87OOSv5BZjowPlz1bG6FM0LcsIboQqm1Y-j57vkx-Q0xjvGZK1r9Yocl5qVlVDshPxeQVhj8dXAiHQ2Jb-BhD39HHw_mWS9o36gS7u-HXf0OvQY8vBmTAFG79Z0ueuDv9_BFpJNSD_lVX7ZgJGC6-ncu5jCH5fvEKyfIl1koviC0cYELtHFiPe2y78_2c-Cuc1uJk3Z6TV5OcAY8c3hPCM3i8tv82Wxuv54NZ-tChBNk4oaoalMXXZaaq0HIxj0HIXuG8lKqCphOKulUkZ1vGwwP1SSc-wUGtUMhosz8n7vuw3-54QxtRsbDY4jOMxLt1xLIaSWTZnRdwd06jbYt9tgNxB27VOoGbjYAyb4GAMOzwhn7WNt7aG29lBbVsi_FMYmeAwuJ23H_-g-7HV50N75Kbic0T_pB5jBsAU |
CitedBy_id | crossref_primary_10_1039_D1CE00887K crossref_primary_10_1002_adfm_202100703 crossref_primary_10_1016_j_cej_2024_151421 crossref_primary_10_3390_molecules27185916 crossref_primary_10_1007_s42765_023_00265_9 crossref_primary_10_1016_j_ceramint_2017_08_137 crossref_primary_10_1002_jbm_b_34819 crossref_primary_10_1002_ange_202214571 crossref_primary_10_1039_C8CS00489G crossref_primary_10_1016_j_cej_2022_135347 crossref_primary_10_1016_j_mtcomm_2022_104773 crossref_primary_10_1021_acsmaterialslett_0c00149 crossref_primary_10_1016_j_cej_2021_132912 crossref_primary_10_1016_j_msec_2019_110408 crossref_primary_10_1002_chem_201605165 crossref_primary_10_1002_chem_201800425 crossref_primary_10_1039_D4TB00551A crossref_primary_10_1016_j_colsurfa_2021_127001 crossref_primary_10_1007_s11356_019_06160_4 crossref_primary_10_1007_s40242_023_2336_6 crossref_primary_10_3390_molecules27155020 crossref_primary_10_1039_D0TB02288H crossref_primary_10_1038_s41598_018_25566_7 crossref_primary_10_1016_j_ceramint_2025_01_285 crossref_primary_10_1039_D2CS00513A crossref_primary_10_1246_cl_190623 crossref_primary_10_1016_j_matdes_2023_111587 crossref_primary_10_1016_j_msec_2020_111367 crossref_primary_10_1002_jbm_a_36502 crossref_primary_10_1016_j_commatsci_2023_112153 crossref_primary_10_1039_D2SC04962G crossref_primary_10_1016_j_apmt_2024_102062 crossref_primary_10_1039_C7TA03870D crossref_primary_10_1039_D2CE00225F crossref_primary_10_1002_adem_202200943 crossref_primary_10_1002_adfm_202101372 crossref_primary_10_1016_j_ceramint_2024_01_423 crossref_primary_10_3390_molecules27206808 crossref_primary_10_1016_j_actbio_2018_02_033 crossref_primary_10_1021_acsnano_8b06096 crossref_primary_10_1016_j_ceramint_2018_04_022 crossref_primary_10_1021_acs_cgd_4c00530 crossref_primary_10_1002_advs_202407251 crossref_primary_10_1016_j_jcis_2018_06_059 crossref_primary_10_1002_adhm_202001851 crossref_primary_10_1002_adhm_202401095 crossref_primary_10_1002_cjoc_202100170 crossref_primary_10_1016_j_bioactmat_2025_02_017 crossref_primary_10_1002_pc_26862 crossref_primary_10_1038_s41598_018_25595_2 crossref_primary_10_1016_j_nanoen_2023_108851 crossref_primary_10_1007_s42247_024_00716_y crossref_primary_10_1016_j_matlet_2020_127857 crossref_primary_10_1002_smll_202206960 crossref_primary_10_1016_j_cej_2020_125666 crossref_primary_10_1016_j_cej_2024_151136 crossref_primary_10_4028_www_scientific_net_MSF_1002_468 crossref_primary_10_1177_00220345221098334 crossref_primary_10_1016_j_jmbbm_2021_104376 crossref_primary_10_1016_j_bioadv_2024_214001 crossref_primary_10_1016_j_nanoen_2020_104843 crossref_primary_10_1002_adhm_202304158 crossref_primary_10_1021_acsami_9b02485 crossref_primary_10_1039_C9TA12979K crossref_primary_10_1021_acsbiomaterials_3c01478 crossref_primary_10_1039_C9BM00953A crossref_primary_10_1002_anie_201902240 crossref_primary_10_1021_acsaem_2c04170 crossref_primary_10_1016_j_apmt_2023_102046 crossref_primary_10_1039_D1TB02021H crossref_primary_10_1049_mna2_12095 crossref_primary_10_1016_j_mtchem_2024_102381 crossref_primary_10_1016_j_cej_2022_136470 crossref_primary_10_1021_acsbiomaterials_9b01183 crossref_primary_10_1021_acsami_4c09157 crossref_primary_10_1021_acssuschemeng_8b04630 crossref_primary_10_1016_j_jmrt_2023_09_324 crossref_primary_10_1021_acsnano_8b00047 crossref_primary_10_1021_jacs_8b02706 crossref_primary_10_2139_ssrn_4135348 crossref_primary_10_1021_acsami_7b05208 crossref_primary_10_1021_acsami_7b06835 crossref_primary_10_1016_j_cej_2018_11_025 crossref_primary_10_1016_j_jmrt_2022_12_106 crossref_primary_10_1002_smll_202207951 crossref_primary_10_1039_C7TA11215G crossref_primary_10_3390_molecules26113190 crossref_primary_10_1016_j_micromeso_2019_109904 crossref_primary_10_1007_s12221_024_00549_w crossref_primary_10_1016_j_mtcomm_2022_104229 crossref_primary_10_1021_acsami_4c17864 crossref_primary_10_1007_s10853_018_2796_0 crossref_primary_10_1016_j_matdes_2018_07_009 crossref_primary_10_1007_s12598_023_02535_2 crossref_primary_10_1039_D0TA07518C crossref_primary_10_1002_adfm_201903477 crossref_primary_10_1016_j_matdes_2018_02_039 crossref_primary_10_1002_advs_202104001 crossref_primary_10_1002_anie_202214571 crossref_primary_10_1016_j_ceramint_2021_04_034 crossref_primary_10_1016_j_colsurfa_2023_132464 crossref_primary_10_1016_j_nano_2017_12_025 crossref_primary_10_1007_s12274_021_3714_3 crossref_primary_10_1080_02773813_2021_1998128 crossref_primary_10_1016_j_colsurfb_2023_113147 crossref_primary_10_1021_acsami_7b09484 crossref_primary_10_1021_acsbiomaterials_0c00364 crossref_primary_10_1002_eem2_12158 crossref_primary_10_1007_s00339_019_3087_6 crossref_primary_10_1039_C8RA03972K crossref_primary_10_1002_adma_202107523 crossref_primary_10_1002_chem_201604552 crossref_primary_10_2147_IJN_S238005 crossref_primary_10_1021_acs_nanolett_1c02708 crossref_primary_10_1039_D1CE00488C crossref_primary_10_1016_j_jmrt_2024_05_134 crossref_primary_10_1039_D0NJ04476H crossref_primary_10_1039_D3SC05344J crossref_primary_10_1002_ange_201902240 crossref_primary_10_1002_chem_201902093 crossref_primary_10_1021_acs_langmuir_4c00388 crossref_primary_10_2174_1872210516666220325153220 crossref_primary_10_1021_acsami_4c01383 crossref_primary_10_1016_j_matlet_2017_01_124 crossref_primary_10_1016_j_cej_2019_03_153 crossref_primary_10_1021_acsanm_0c02921 |
Cites_doi | 10.1021/nn403742f 10.1002/adma.201403354 10.1016/j.actbio.2010.07.012 10.1038/nmat2911 10.1002/chem.201304439 10.1016/j.matchemphys.2008.05.068 10.1002/adma.200802239 10.1002/adfm.201301121 10.1021/cm903594n 10.1021/cr800427g 10.1038/nmat3787 10.1002/adma.200600033 10.1002/chem.201100680 10.1002/chem.201200301 10.1016/j.actbio.2010.02.015 10.1002/chem.201400252 10.1002/adma.201504313 10.1073/pnas.0604237103 10.1016/0142-9612(96)85762-0 10.1021/jp9091078 10.1038/ncomms2720 10.1016/j.actbio.2012.12.027 10.1038/nprot.2010.138 10.1007/s10853-005-6927-z 10.1038/nmat2240 10.1039/C0CE00574F 10.1002/smll.201301633 10.1088/0957-4484/24/17/175601 10.1039/c3tb20164c 10.1038/nature03968 10.1039/c3ce41255e 10.1039/c3tb21073a 10.1039/C1CS15223H 10.1126/science.1120937 10.1038/nmat2875 10.1002/jbm.b.31924 10.1016/j.actbio.2009.02.018 10.1126/science.929194 10.1016/j.matlet.2012.06.106 10.1021/am201735k 10.1021/la0498197 10.1126/science.1063187 10.2174/187221009787003302 10.1039/c2ra21745g |
ContentType | Journal Article |
Copyright | Copyright © 2016 American Chemical Society |
Copyright_xml | – notice: Copyright © 2016 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acsnano.6b07239 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 11495 |
ExternalDocumentID | 28024360 10_1021_acsnano_6b07239 i03548078 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 4.4 5VS 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 |
ID | FETCH-LOGICAL-a399t-7ea94c72b85888fc30ad1e38d9502a443c107566c6b129e4434511eb6ec69fc13 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Fri Jul 11 05:52:39 EDT 2025 Mon Jul 21 05:41:52 EDT 2025 Tue Jul 01 01:34:04 EDT 2025 Thu Apr 24 23:11:45 EDT 2025 Thu Aug 27 13:42:49 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | hydroxyapatite self-assembly fire-resistant ordered structure biomineralization nanowires |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a399t-7ea94c72b85888fc30ad1e38d9502a443c107566c6b129e4434511eb6ec69fc13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5044-5046 |
PMID | 28024360 |
PQID | 1853358592 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1853358592 pubmed_primary_28024360 crossref_primary_10_1021_acsnano_6b07239 crossref_citationtrail_10_1021_acsnano_6b07239 acs_journals_10_1021_acsnano_6b07239 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-12-27 |
PublicationDateYYYYMMDD | 2016-12-27 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-27 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2016 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref29/cit29 doi: 10.1021/nn403742f – ident: ref2/cit2 doi: 10.1002/adma.201403354 – ident: ref43/cit43 doi: 10.1016/j.actbio.2010.07.012 – ident: ref13/cit13 doi: 10.1038/nmat2911 – ident: ref3/cit3 doi: 10.1002/chem.201304439 – ident: ref20/cit20 doi: 10.1016/j.matchemphys.2008.05.068 – ident: ref26/cit26 doi: 10.1002/adma.200802239 – ident: ref44/cit44 doi: 10.1002/adfm.201301121 – ident: ref24/cit24 doi: 10.1021/cm903594n – ident: ref1/cit1 doi: 10.1021/cr800427g – ident: ref15/cit15 doi: 10.1038/nmat3787 – ident: ref37/cit37 doi: 10.1002/adma.200600033 – ident: ref6/cit6 doi: 10.1002/chem.201100680 – ident: ref19/cit19 doi: 10.1002/chem.201200301 – ident: ref40/cit40 doi: 10.1016/j.actbio.2010.02.015 – ident: ref18/cit18 doi: 10.1002/chem.201400252 – ident: ref31/cit31 doi: 10.1002/adma.201504313 – ident: ref12/cit12 doi: 10.1073/pnas.0604237103 – ident: ref42/cit42 doi: 10.1016/0142-9612(96)85762-0 – ident: ref22/cit22 doi: 10.1021/jp9091078 – ident: ref17/cit17 doi: 10.1038/ncomms2720 – ident: ref28/cit28 doi: 10.1016/j.actbio.2012.12.027 – ident: ref34/cit34 doi: 10.1038/nprot.2010.138 – ident: ref9/cit9 doi: 10.1007/s10853-005-6927-z – ident: ref16/cit16 doi: 10.1038/nmat2240 – ident: ref5/cit5 doi: 10.1039/C0CE00574F – ident: ref32/cit32 doi: 10.1002/smll.201301633 – ident: ref41/cit41 doi: 10.1088/0957-4484/24/17/175601 – ident: ref33/cit33 doi: 10.1039/c3tb20164c – ident: ref38/cit38 doi: 10.1038/nature03968 – ident: ref4/cit4 doi: 10.1039/c3ce41255e – ident: ref8/cit8 doi: 10.1039/c3tb21073a – ident: ref35/cit35 doi: 10.1039/C1CS15223H – ident: ref30/cit30 doi: 10.1126/science.1120937 – ident: ref14/cit14 doi: 10.1038/nmat2875 – ident: ref21/cit21 doi: 10.1002/jbm.b.31924 – ident: ref23/cit23 doi: 10.1016/j.actbio.2009.02.018 – ident: ref25/cit25 doi: 10.1126/science.929194 – ident: ref7/cit7 doi: 10.1016/j.matlet.2012.06.106 – ident: ref10/cit10 doi: 10.1021/am201735k – ident: ref11/cit11 doi: 10.1021/la0498197 – ident: ref27/cit27 doi: 10.1126/science.1063187 – ident: ref36/cit36 doi: 10.2174/187221009787003302 – ident: ref39/cit39 doi: 10.1039/c2ra21745g |
SSID | ssj0057876 |
Score | 2.5510614 |
Snippet | Practical applications of nanostructured materials have been largely limited by the difficulties in controllable and scaled-up synthesis, large-sized highly... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 11483 |
Title | Large-Scale Automated Production of Highly Ordered Ultralong Hydroxyapatite Nanowires and Construction of Various Fire-Resistant Flexible Ordered Architectures |
URI | http://dx.doi.org/10.1021/acsnano.6b07239 https://www.ncbi.nlm.nih.gov/pubmed/28024360 https://www.proquest.com/docview/1853358592 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELbK9gIH-gDK9iVX4sAlS-IkdnKMVo1WVdUiYBG3yK9wYOVUJHtY_kz_amfy2C5Fq3KNnLEzM7a_yYy-IeREmRJCYwuRqpDCi4KEeyrS3Aswy8ml8ZVs2T5_8Nk8-nYT3_wli_43g8-CM6lrJ1014coXLEx3yEvGE4FxVja9HA5d9DveJZBhWkARaxafJwLwGtL142toC7Zs75j8VVedVbfUhFhacjdZNmqiH54SN_5_-a_Jfo80ada5xhvywrq3ZG-Df_CA_P6OdeDeJdjJ0mzZVABfraHnHQssWIxWJcVKkMWK_rxv23rS-QL_jVTuls5WBhcqsSa7sRTO6QqJj2sqnaHYCHSgpkUp1xCTV8ua5jDCu7A1wlbX0Bz5OBXMPojPNhIb9SGZ51-vpjOv79jgSQA6jSesTCMtmEpiiKxLHfrSBDZMTBr7TEZRqCHaBACpuQKcYeEB0qNZxa3maamD8IiMXOXsMaE6LFMkqxcWEJvxjSyjWLBSJqFv4EgWY3ICqi36HVcXbTKdBUWv76LX95hMBjsXumc9x-Ybi-0vnK5f-NURfmwf-mVwnAI2JWZapLOgywJBUAiBWMrG5F3nUWthLEESSO6_f94HfCC7gNHaXklMfCQjMJ39BDioUZ_bHfAH8awGUQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB6VcoAeeD_Cc5GKxMXBXju79oFDVIhSGgqiDerN7Ms9EK1R7QqFPwN_hX_GjB-hgCJxqcR1ZY_tmfHON57xNwDb2haYGjvMVKWSQRKlItCJEUFEVU6hbKhVw_a5L6bz5PXR6GgDvvf_wuBNVCipaor4v9gFoue45pUvh0KHksdZ10a555ZfMEmrXuy-RIs-5Xzy6nBnGnRzBAKF4bcOpFNZYiTX6QjzvcLEobKRi1ObjUKukiQ2mAMhrDFCY_RzuECkXU4LZ0RWmChGuRfgIkIfTundeOeg3-vJ3UVbt8anRfCyIg_664Yp-pnq9-i3BtI2oW1yFX6slNJ0tHwantZ6aL7-wRf5P2vtGlzpcDUbty_Cddhw_gZsnWFbvAnfZtT1HhygVzo2Pq1LBOvOsnct5y36JysLRn0viyV7e9IMMWXzBX0JKv0xmy4t6UdRB3rtGEalkmieK6a8ZTT2tCfiJSkf1An1FrMJHhG8dxWBdF-zCbGParx6L358poxT3YL5uWjoNmz60ru7wExcZETNLx3iUxtaVSQjyQuVxqHFACQHsI2mzLv9pcqb1gEe5Z19886-Axj27pWbjuOdRo0s1p_wbHXC55beZP2hT3p_zXELorqS8g51mRPkizHtzPgA7rSOvBLGU6K8FOG9f3uAx3Bpevhmls929_fuw2VEp82UKC4fwCaa0T1EBFjrR81LyODjefvvT8oWZwo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9RADLZKkRAceD-W5yAViUuWZJKdSQ4cVi3RllaloizqLcwrHFhNqiYVWv4MF_4K_ws7j1UBrcSlEtcocRLbM_4cO58BtrQtMTV2mKlKJYMkSkWgEyOCiKqcQtlQq5bt80DM5snb48nxBvwY_oXBh6hRUt0W8WlVn9iyZxiIXuFxr3w1FjqUPM76Vso9t_yKiVr9encHrfqC8_zNh-1Z0M8SCBSG4CaQTmWJkVynE8z5ShOHykYuTm02CblKkthgHoTQxgiNEdDhASLuclo4I7LSRDHKvQSXqUhIKd50-2jY78nlRVe7xjdGALMiEPrrgSkCmvr3CLgG1rbhLb8BP1eKabtavozPGj023_7gjPzfNXcTrvf4mk27BXELNpy_DdfOsS7ege_71P0eHKF3OjY9ayoE7c6yw477Fv2UVSWj_pfFkr07bYeZsvmCvghV_jObLS3pSFEneuMYRqeK6J5rprxlNP50IOQlKR_VKfUYsxzPCN67msC6b1hOLKQa7z6In54r59R3YX4hGroHm77y7gEwE5cZUfRLhzjVhlaVyUTyUqVxaDEQyRFsoSmLfp-pi7aFgEdFb9-it-8IxoOLFabneqeRI4v1F7xcXXDS0ZysP_X54LMFbkVUX1LeoS4Lgn4xpp8ZH8H9zplXwnhK1JcifPhvL_AMrhzu5MX-7sHeI7iKILUdFsXlY9hEK7onCAQb_bRdhww-XbT7_gKE12mN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-Scale+Automated+Production+of+Highly+Ordered+Ultralong+Hydroxyapatite+Nanowires+and+Construction+of+Various+Fire-Resistant+Flexible+Ordered+Architectures&rft.jtitle=ACS+nano&rft.au=Chen%2C+Feng&rft.au=Zhu%2C+Ying-Jie&rft.date=2016-12-27&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=10&rft.issue=12&rft.spage=11483&rft.epage=11495&rft_id=info:doi/10.1021%2Facsnano.6b07239&rft.externalDocID=i03548078 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |