Targeted Carbon Nanostructures for Chemical and Gene Delivery to Plant Chloroplasts

Nanotechnology approaches for improving the delivery efficiency of chemicals and molecular cargoes in plants through plant biorecognition mechanisms remain relatively unexplored. We developed targeted carbon-based nanomaterials as tools for precise chemical delivery (carbon dots, CDs) and gene deliv...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 16; no. 8; pp. 12156 - 12173
Main Authors Santana, Israel, Jeon, Su-Ji, Kim, Hye-In, Islam, Md Reyazul, Castillo, Christopher, Garcia, Gail F. H., Newkirk, Gregory M., Giraldo, Juan Pablo
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 23.08.2022
Subjects
Online AccessGet full text
ISSN1936-0851
1936-086X
1936-086X
DOI10.1021/acsnano.2c02714

Cover

Loading…
Abstract Nanotechnology approaches for improving the delivery efficiency of chemicals and molecular cargoes in plants through plant biorecognition mechanisms remain relatively unexplored. We developed targeted carbon-based nanomaterials as tools for precise chemical delivery (carbon dots, CDs) and gene delivery platforms (single-walled carbon nanotubes, SWCNTs) to chloroplasts, key organelles involved in efforts to improve plant photosynthesis, assimilation of nutrients, and delivery of agrochemicals. A biorecognition approach of coating the nanomaterials with a rationally designed chloroplast targeting peptide improved the delivery of CDs with molecular baskets (TP-β-CD) for delivery of agrochemicals and of plasmid DNA coated SWCNT (TP-pATV1-SWCNT) from 47% to 70% and from 39% to 57% of chloroplasts in leaves, respectively. Plants treated with TP-β-CD (20 mg/L) and TP-pATV1-SWCNT (2 mg/L) had a low percentage of dead cells, 6% and 8%, respectively, similar to controls without nanoparticles, and no permanent cell and chloroplast membrane damage after 5 days of exposure. However, targeted nanomaterials transiently increased leaf H2O2 (0.3225 μmol gFW–1) above control plant levels (0.03441 μmol gFW–1) but within the normal range reported in land plants. The increase in leaf H2O2 levels was associated with oxidative damage in whole plant cell DNA, a transient effect on chloroplast DNA, and a decrease in leaf chlorophyll content (−17%) and carbon assimilation rates at saturation light levels (−32%) with no impact on photosystem II quantum yield. This work provides targeted delivery approaches for carbon-based nanomaterials mediated by biorecognition and a comprehensive understanding of their impact on plant cell and molecular biology for engineering safer and efficient agrochemical and biomolecule delivery tools.
AbstractList Nanotechnology approaches for improving the delivery efficiency of chemicals and molecular cargoes in plants through plant biorecognition mechanisms remain relatively unexplored. We developed targeted carbon-based nanomaterials as tools for precise chemical delivery (carbon dots, CDs) and gene delivery platforms (single-walled carbon nanotubes, SWCNTs) to chloroplasts, key organelles involved in efforts to improve plant photosynthesis, assimilation of nutrients, and delivery of agrochemicals. A biorecognition approach of coating the nanomaterials with a rationally designed chloroplast targeting peptide improved the delivery of CDs with molecular baskets (TP-β-CD) for delivery of agrochemicals and of plasmid DNA coated SWCNT (TP-pATV1-SWCNT) from 47% to 70% and from 39% to 57% of chloroplasts in leaves, respectively. Plants treated with TP-β-CD (20 mg/L) and TP-pATV1-SWCNT (2 mg/L) had a low percentage of dead cells, 6% and 8%, respectively, similar to controls without nanoparticles, and no permanent cell and chloroplast membrane damage after 5 days of exposure. However, targeted nanomaterials transiently increased leaf H2O2 (0.3225 μmol gFW–1) above control plant levels (0.03441 μmol gFW–1) but within the normal range reported in land plants. The increase in leaf H2O2 levels was associated with oxidative damage in whole plant cell DNA, a transient effect on chloroplast DNA, and a decrease in leaf chlorophyll content (−17%) and carbon assimilation rates at saturation light levels (−32%) with no impact on photosystem II quantum yield. This work provides targeted delivery approaches for carbon-based nanomaterials mediated by biorecognition and a comprehensive understanding of their impact on plant cell and molecular biology for engineering safer and efficient agrochemical and biomolecule delivery tools.
Nanotechnology approaches for improving the delivery efficiency of chemicals and molecular cargoes in plants through plant biorecognition mechanisms remain relatively unexplored. We developed targeted carbon-based nanomaterials as tools for precise chemical delivery (carbon dots, CDs) and gene delivery platforms (single-walled carbon nanotubes, SWCNTs) to chloroplasts, key organelles involved in efforts to improve plant photosynthesis, assimilation of nutrients, and delivery of agrochemicals. A biorecognition approach of coating the nanomaterials with a rationally designed chloroplast targeting peptide improved the delivery of CDs with molecular baskets (TP-β-CD) for delivery of agrochemicals and of plasmid DNA coated SWCNT (TP-pATV1-SWCNT) from 47% to 70% and from 39% to 57% of chloroplasts in leaves, respectively. Plants treated with TP-β-CD (20 mg/L) and TP-pATV1-SWCNT (2 mg/L) had a low percentage of dead cells, 6% and 8%, respectively, similar to controls without nanoparticles, and no permanent cell and chloroplast membrane damage after 5 days of exposure. However, targeted nanomaterials transiently increased leaf H2O2 (0.3225 μmol gFW-1) above control plant levels (0.03441 μmol gFW-1) but within the normal range reported in land plants. The increase in leaf H2O2 levels was associated with oxidative damage in whole plant cell DNA, a transient effect on chloroplast DNA, and a decrease in leaf chlorophyll content (-17%) and carbon assimilation rates at saturation light levels (-32%) with no impact on photosystem II quantum yield. This work provides targeted delivery approaches for carbon-based nanomaterials mediated by biorecognition and a comprehensive understanding of their impact on plant cell and molecular biology for engineering safer and efficient agrochemical and biomolecule delivery tools.Nanotechnology approaches for improving the delivery efficiency of chemicals and molecular cargoes in plants through plant biorecognition mechanisms remain relatively unexplored. We developed targeted carbon-based nanomaterials as tools for precise chemical delivery (carbon dots, CDs) and gene delivery platforms (single-walled carbon nanotubes, SWCNTs) to chloroplasts, key organelles involved in efforts to improve plant photosynthesis, assimilation of nutrients, and delivery of agrochemicals. A biorecognition approach of coating the nanomaterials with a rationally designed chloroplast targeting peptide improved the delivery of CDs with molecular baskets (TP-β-CD) for delivery of agrochemicals and of plasmid DNA coated SWCNT (TP-pATV1-SWCNT) from 47% to 70% and from 39% to 57% of chloroplasts in leaves, respectively. Plants treated with TP-β-CD (20 mg/L) and TP-pATV1-SWCNT (2 mg/L) had a low percentage of dead cells, 6% and 8%, respectively, similar to controls without nanoparticles, and no permanent cell and chloroplast membrane damage after 5 days of exposure. However, targeted nanomaterials transiently increased leaf H2O2 (0.3225 μmol gFW-1) above control plant levels (0.03441 μmol gFW-1) but within the normal range reported in land plants. The increase in leaf H2O2 levels was associated with oxidative damage in whole plant cell DNA, a transient effect on chloroplast DNA, and a decrease in leaf chlorophyll content (-17%) and carbon assimilation rates at saturation light levels (-32%) with no impact on photosystem II quantum yield. This work provides targeted delivery approaches for carbon-based nanomaterials mediated by biorecognition and a comprehensive understanding of their impact on plant cell and molecular biology for engineering safer and efficient agrochemical and biomolecule delivery tools.
Nanotechnology approaches for improving the delivery efficiency of chemicals and molecular cargoes in plants through plant biorecognition mechanisms remain relatively unexplored. We developed targeted carbon-based nanomaterials as tools for precise chemical delivery (carbon dots, CDs) and gene delivery platforms (single-walled carbon nanotubes, SWCNTs) to chloroplasts, key organelles involved in efforts to improve plant photosynthesis, assimilation of nutrients, and delivery of agrochemicals. A biorecognition approach of coating the nanomaterials with a rationally designed chloroplast targeting peptide improved the delivery of CDs with molecular baskets (TP-β-CD) for delivery of agrochemicals and of plasmid DNA coated SWCNT (TP-pATV1-SWCNT) from 47% to 70% and from 39% to 57% of chloroplasts in leaves, respectively. Plants treated with TP-β-CD (20 mg/L) and TP-pATV1-SWCNT (2 mg/L) had a low percentage of dead cells, 6% and 8%, respectively, similar to controls without nanoparticles, and no permanent cell and chloroplast membrane damage after 5 days of exposure. However, targeted nanomaterials transiently increased leaf H O (0.3225 μmol gFW ) above control plant levels (0.03441 μmol gFW ) but within the normal range reported in land plants. The increase in leaf H O levels was associated with oxidative damage in whole plant cell DNA, a transient effect on chloroplast DNA, and a decrease in leaf chlorophyll content (-17%) and carbon assimilation rates at saturation light levels (-32%) with no impact on photosystem II quantum yield. This work provides targeted delivery approaches for carbon-based nanomaterials mediated by biorecognition and a comprehensive understanding of their impact on plant cell and molecular biology for engineering safer and efficient agrochemical and biomolecule delivery tools.
Author Castillo, Christopher
Newkirk, Gregory M.
Kim, Hye-In
Garcia, Gail F. H.
Giraldo, Juan Pablo
Santana, Israel
Jeon, Su-Ji
Islam, Md Reyazul
AuthorAffiliation Department of Botany and Plant Sciences
University of California-Riverside
Department of Microbiology and Plant Pathology
AuthorAffiliation_xml – name: Department of Botany and Plant Sciences
– name: University of California-Riverside
– name: Department of Microbiology and Plant Pathology
Author_xml – sequence: 1
  givenname: Israel
  surname: Santana
  fullname: Santana, Israel
  organization: Department of Botany and Plant Sciences
– sequence: 2
  givenname: Su-Ji
  orcidid: 0000-0002-5917-8837
  surname: Jeon
  fullname: Jeon, Su-Ji
  organization: Department of Botany and Plant Sciences
– sequence: 3
  givenname: Hye-In
  surname: Kim
  fullname: Kim, Hye-In
  organization: Department of Botany and Plant Sciences
– sequence: 4
  givenname: Md Reyazul
  surname: Islam
  fullname: Islam, Md Reyazul
  organization: Department of Botany and Plant Sciences
– sequence: 5
  givenname: Christopher
  surname: Castillo
  fullname: Castillo, Christopher
  organization: Department of Botany and Plant Sciences
– sequence: 6
  givenname: Gail F. H.
  surname: Garcia
  fullname: Garcia, Gail F. H.
  organization: Department of Botany and Plant Sciences
– sequence: 7
  givenname: Gregory M.
  surname: Newkirk
  fullname: Newkirk, Gregory M.
  organization: University of California-Riverside
– sequence: 8
  givenname: Juan Pablo
  orcidid: 0000-0002-8400-8944
  surname: Giraldo
  fullname: Giraldo, Juan Pablo
  email: juanpablo.giraldo@ucr.edu
  organization: Department of Botany and Plant Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35943045$$D View this record in MEDLINE/PubMed
BookMark eNp1kEFLAzEQRoNUtK2evUmOgtRmN9ls9ihVqyAqqOAtTLMTXdkmNckK_feutHoQPM3AvO9jeCMycN4hIUcZO8tYnk3BRAfOn-WG5WUmdsgwq7icMCVfBr97ke2TUYzvjBWlKuUe2edFJTgTxZA8PkF4xYQ1nUFYeEfv-rqYQmdSFzBS6wOdveGyMdBScDWdo0N6gW3ziWFNk6cPLbjUM60PftVCTPGA7FpoIx5u55g8X10-za4nt_fzm9n57QR4VaVJqayyUhmu0OQVgrJGiAXnkjGlCimklaJa1FCrWliTq7LKmTISqtIWUEjJx-Rk07sK_qPDmPSyiQbb_iH0XdR5yRjPSsFUjx5v0W6xxFqvQrOEsNY_Inqg2AAm-BgDWm2aBKnxLgVoWp0x_S1cb4XrrfA-N_2T-6n-P3G6SfQH_e674HpH_9JfjpaTEA
CitedBy_id crossref_primary_10_1021_acsanm_2c04213
crossref_primary_10_1039_D3EN00353A
crossref_primary_10_1021_jacsau_4c00478
crossref_primary_10_1039_D3EN00268C
crossref_primary_10_1007_s13659_024_00487_3
crossref_primary_10_1021_acssuschemeng_2c07371
crossref_primary_10_1021_acs_nanolett_2c04506
crossref_primary_10_1021_acs_est_3c01154
crossref_primary_10_1111_pbi_70050
crossref_primary_10_1002_smll_202304588
crossref_primary_10_1039_D4NR03268C
crossref_primary_10_1007_s12274_023_6284_8
crossref_primary_10_1021_acs_chemrev_3c00831
crossref_primary_10_3390_plants14050716
crossref_primary_10_1007_s11356_024_35806_1
crossref_primary_10_1021_acsnano_4c16362
crossref_primary_10_1021_acs_nanolett_4c04704
crossref_primary_10_1039_D4NR03760J
crossref_primary_10_1016_j_tplants_2024_09_014
crossref_primary_10_1016_j_jes_2023_05_033
crossref_primary_10_1016_j_mser_2024_100821
crossref_primary_10_1038_s44222_023_00037_5
crossref_primary_10_1021_acs_est_3c05686
crossref_primary_10_1038_s41565_024_01667_5
crossref_primary_10_1007_s42823_023_00655_4
crossref_primary_10_1038_s41467_024_54013_7
crossref_primary_10_1111_pbi_14573
crossref_primary_10_1094_PDIS_05_23_0970_FE
crossref_primary_10_1039_D3CC00962A
crossref_primary_10_1021_acsabm_4c01785
crossref_primary_10_1016_j_ccr_2024_216299
crossref_primary_10_1016_j_ijbiomac_2024_131176
crossref_primary_10_1021_acs_nanolett_3c04735
crossref_primary_10_1021_acsami_3c09074
crossref_primary_10_1016_j_tplants_2023_11_024
crossref_primary_10_1002_ps_7952
crossref_primary_10_1246_bcsj_20230147
crossref_primary_10_1038_s41428_024_00927_4
crossref_primary_10_1021_acsaenm_4c00303
crossref_primary_10_3390_ijms242115700
crossref_primary_10_1002_smll_202300906
crossref_primary_10_1039_D3CC01600E
crossref_primary_10_1016_j_plana_2023_100053
crossref_primary_10_3390_plants14060978
crossref_primary_10_3389_fchem_2025_1542504
crossref_primary_10_1016_j_seh_2025_100145
crossref_primary_10_3390_molecules30030446
crossref_primary_10_1016_j_tplants_2024_06_010
crossref_primary_10_1021_acs_chemrev_3c00581
crossref_primary_10_1038_s44287_024_00131_9
crossref_primary_10_1016_j_plaphy_2024_108704
crossref_primary_10_1016_j_trechm_2023_07_004
Cites_doi 10.1039/C9EN00599D
10.1016/j.bbamcr.2012.03.006
10.1104/pp.17.00857
10.1111/nph.15488
10.1016/j.chemphyslip.2017.09.004
10.1007/978-3-030-06118-0_11
10.1111/j.1469-8137.1975.tb01365.x
10.1021/acssuschemeng.8b03457
10.1104/pp.106.082040
10.1002/EXP.20210002
10.3389/fpls.2013.00277
10.1007/978-1-62703-462-3_20
10.1016/S0304-4165(89)80016-9
10.1007/s12274-019-2397-5
10.1371/journal.pone.0154081
10.1038/nmat3890
10.1007/978-1-60327-210-0_16
10.21769/BioProtoc.4060
10.3390/nano10020325
10.1038/s41565-019-0382-5
10.1088/1748-9326/5/1/014010
10.1038/s41477-019-0413-0
10.1016/j.plaphy.2016.07.030
10.1111/j.1744-7909.2012.01147.x
10.1038/s41565-019-0375-4
10.1093/jexbot/51.345.659
10.1016/j.impact.2015.12.002
10.1039/C5RA12258A
10.1007/s10661-019-7540-y
10.1016/j.jhazmat.2012.10.025
10.1039/C9EN00461K
10.3389/fbioe.2019.00120
10.3389/fpls.2020.00596
10.3390/ijms19092812
10.1093/bioinformatics/btm091
10.1038/s41598-019-47168-7
10.1093/jxb/erl004
10.1006/meth.2001.1262
10.3389/fpls.2021.691295
10.1021/acsnano.1c06343
10.1093/nar/29.9.e45
10.1007/s10265-006-0266-2
10.1038/s41598-017-15054-9
10.1021/acs.nanolett.5b04467
10.1007/s10853-020-05054-y
10.1186/s11671-015-0922-3
10.1016/j.addr.2012.09.039
10.1080/10590500902885684
10.1111/j.1399-3054.2006.00720.x
10.1021/acsami.6b07268
10.1021/acs.biomac.8b00323
10.1038/srep35764
10.1016/j.bios.2016.04.047
10.1016/j.molp.2019.06.010
10.1093/jxb/eru359
10.1016/S0167-4889(02)00176-3
10.1039/D1EN00140J
10.1002/anie.201300519
10.1021/acsnano.9b09178
10.1016/j.pbi.2018.07.012
10.1002/smll.200801556
10.1111/j.1365-313X.2007.03191.x
10.1038/s41565-022-01082-8
10.1016/S0981-9428(02)01417-1
10.1021/acsnano.7b06399
10.1021/ar200113c
10.1104/pp.113.234641
10.1016/j.chemosphere.2019.124856
10.1104/pp.109.140673
10.1038/s41596-020-0370-0
10.3389/fpls.2015.00883
10.1186/2048-7010-1-7
10.1039/C9NR08100C
10.1038/s41596-019-0208-9
10.1016/S0169-409X(98)00058-1
10.1039/c2nr33611a
10.1038/sj.gt.3301294
10.1016/S0140-6736(18)31788-4
10.1007/BF01044998
10.1016/j.talanta.2006.10.016
10.1021/acsnano.8b09781
10.1111/nph.16886
10.1021/jp911539r
10.1039/C1CS15233E
10.1016/j.tplants.2016.04.005
10.1038/s41565-019-0439-5
10.1002/smll.201802086
10.1016/0009-2614(81)80311-9
10.1021/bm301275g
10.1038/s41565-019-0470-6
10.1371/journal.pone.0066428
10.1016/S0009-8981(03)00191-8
10.1039/C7EN00887B
10.1007/s11738-016-2113-y
10.1039/C9QM00614A
10.1021/acs.jpcc.6b03145
10.1002/smll.201201003
10.1016/j.jddst.2019.101408
10.1016/j.arabjc.2013.06.013
10.3389/fenvs.2014.0005
10.1038/s41467-020-15731-w
10.1038/s43016-020-0110-1
10.1016/j.jhazmat.2020.124534
10.1021/j100140a006
10.1039/C8EN00645H
10.1016/0921-8777(94)00054-A
10.1016/j.jplph.2004.05.011
10.1038/s41565-019-0461-7
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acsnano.2c02714
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 12173
ExternalDocumentID 35943045
10_1021_acsnano_2c02714
b768321394
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID -
23M
4.4
55A
5GY
5VS
6J9
7~N
AABXI
ABFRP
ABMVS
ABUCX
ACGFO
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
F5P
GGK
GNL
IH9
IHE
JG
K2
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHGD
BAANH
CITATION
CUPRZ
ED~
JG~
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a399t-78f8f68c38ec29ea8fc44b33600885646f649bdad8d4fc2879208c6a97f5a5663
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 09:27:43 EDT 2025
Thu Apr 03 07:08:50 EDT 2025
Tue Jul 01 03:37:28 EDT 2025
Thu Apr 24 22:59:43 EDT 2025
Thu Aug 25 03:11:02 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords gene delivery
peptides
chloroplast biotechnology
agrochemical delivery
smart agriculture
nanomaterial−plant interactions
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a399t-78f8f68c38ec29ea8fc44b33600885646f649bdad8d4fc2879208c6a97f5a5663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8400-8944
0000-0002-5917-8837
PMID 35943045
PQID 2700317408
PQPubID 23479
PageCount 18
ParticipantIDs proquest_miscellaneous_2700317408
pubmed_primary_35943045
crossref_citationtrail_10_1021_acsnano_2c02714
crossref_primary_10_1021_acsnano_2c02714
acs_journals_10_1021_acsnano_2c02714
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-23
PublicationDateYYYYMMDD 2022-08-23
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-23
  day: 23
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
ref52/cit52
ref23/cit23
ref110/cit110
ref111/cit111
ref2/cit2
ref112/cit112
ref77/cit77
ref71/cit71
ref20/cit20
ref48/cit48
ref10/cit10
ref35/cit35
ref89/cit89
ref19/cit19
ref93/cit93
ref42/cit42
ref107/cit107
ref109/cit109
ref13/cit13
ref105/cit105
ref61/cit61
ref67/cit67
ref38/cit38
ref90/cit90
ref64/cit64
ref54/cit54
ref6/cit6
ref18/cit18
ref65/cit65
ref97/cit97
ref101/cit101
ref11/cit11
ref102/cit102
ref29/cit29
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref5/cit5
ref43/cit43
ref80/cit80
ref28/cit28
ref91/cit91
ref55/cit55
ref12/cit12
ref66/cit66
ref22/cit22
ref33/cit33
Cheeseman J. M. (ref74/cit74) 2007; 1
ref87/cit87
ref106/cit106
ref44/cit44
ref70/cit70
ref98/cit98
ref9/cit9
ref27/cit27
ref63/cit63
ref56/cit56
ref92/cit92
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref60/cit60
ref88/cit88
ref17/cit17
ref82/cit82
ref53/cit53
ref21/cit21
ref46/cit46
ref49/cit49
ref75/cit75
ref24/cit24
ref50/cit50
ref78/cit78
ref36/cit36
ref83/cit83
ref79/cit79
ref100/cit100
ref25/cit25
ref103/cit103
ref72/cit72
ref14/cit14
ref57/cit57
ref51/cit51
ref40/cit40
ref68/cit68
ref94/cit94
ref26/cit26
ref73/cit73
ref69/cit69
ref15/cit15
ref62/cit62
Nafees M. (ref96/cit96) 2019
ref41/cit41
ref58/cit58
ref95/cit95
ref108/cit108
ref104/cit104
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref1/cit1
ref7/cit7
References_xml – ident: ref28/cit28
  doi: 10.1039/C9EN00599D
– ident: ref95/cit95
  doi: 10.1016/j.bbamcr.2012.03.006
– ident: ref43/cit43
  doi: 10.1104/pp.17.00857
– ident: ref99/cit99
  doi: 10.1111/nph.15488
– ident: ref107/cit107
  doi: 10.1016/j.chemphyslip.2017.09.004
– start-page: 259
  volume-title: Plant Abiotic Stress Tolerance: Agronomic, Molecular and Biotechnological Approaches
  year: 2019
  ident: ref96/cit96
  doi: 10.1007/978-3-030-06118-0_11
– ident: ref67/cit67
  doi: 10.1111/j.1469-8137.1975.tb01365.x
– ident: ref59/cit59
  doi: 10.1021/acssuschemeng.8b03457
– ident: ref69/cit69
  doi: 10.1104/pp.106.082040
– ident: ref53/cit53
  doi: 10.1002/EXP.20210002
– ident: ref78/cit78
  doi: 10.3389/fpls.2013.00277
– ident: ref100/cit100
  doi: 10.1007/978-1-62703-462-3_20
– ident: ref92/cit92
  doi: 10.1016/S0304-4165(89)80016-9
– ident: ref32/cit32
  doi: 10.1007/s12274-019-2397-5
– ident: ref60/cit60
  doi: 10.1371/journal.pone.0154081
– ident: ref87/cit87
  doi: 10.1038/nmat3890
– ident: ref68/cit68
  doi: 10.1007/978-1-60327-210-0_16
– ident: ref26/cit26
  doi: 10.21769/BioProtoc.4060
– ident: ref48/cit48
  doi: 10.3390/nano10020325
– ident: ref24/cit24
  doi: 10.1038/s41565-019-0382-5
– ident: ref5/cit5
  doi: 10.1088/1748-9326/5/1/014010
– ident: ref104/cit104
  doi: 10.1038/s41477-019-0413-0
– ident: ref42/cit42
  doi: 10.1016/j.plaphy.2016.07.030
– ident: ref76/cit76
  doi: 10.1111/j.1744-7909.2012.01147.x
– ident: ref19/cit19
  doi: 10.1038/s41565-019-0375-4
– ident: ref93/cit93
  doi: 10.1093/jexbot/51.345.659
– ident: ref14/cit14
  doi: 10.1016/j.impact.2015.12.002
– ident: ref110/cit110
  doi: 10.1039/C5RA12258A
– ident: ref85/cit85
  doi: 10.1007/s10661-019-7540-y
– ident: ref40/cit40
  doi: 10.1016/j.jhazmat.2012.10.025
– ident: ref21/cit21
  doi: 10.1039/C9EN00461K
– ident: ref39/cit39
  doi: 10.3389/fbioe.2019.00120
– ident: ref73/cit73
  doi: 10.3389/fpls.2020.00596
– ident: ref72/cit72
  doi: 10.3390/ijms19092812
– ident: ref112/cit112
  doi: 10.1093/bioinformatics/btm091
– ident: ref46/cit46
  doi: 10.1038/s41598-019-47168-7
– ident: ref71/cit71
  doi: 10.1093/jxb/erl004
– ident: ref64/cit64
  doi: 10.1006/meth.2001.1262
– ident: ref1/cit1
– ident: ref9/cit9
  doi: 10.3389/fpls.2021.691295
– ident: ref38/cit38
  doi: 10.1021/acsnano.1c06343
– ident: ref63/cit63
  doi: 10.1093/nar/29.9.e45
– ident: ref97/cit97
  doi: 10.1007/s10265-006-0266-2
– ident: ref33/cit33
  doi: 10.1038/s41598-017-15054-9
– ident: ref23/cit23
  doi: 10.1021/acs.nanolett.5b04467
– ident: ref58/cit58
  doi: 10.1007/s10853-020-05054-y
– ident: ref89/cit89
  doi: 10.1186/s11671-015-0922-3
– ident: ref103/cit103
  doi: 10.1016/j.addr.2012.09.039
– ident: ref79/cit79
  doi: 10.1080/10590500902885684
– volume: 1
  start-page: 4
  issue: 1
  year: 2007
  ident: ref74/cit74
  publication-title: Plant stress
– ident: ref84/cit84
  doi: 10.1111/j.1399-3054.2006.00720.x
– ident: ref30/cit30
  doi: 10.1021/acsami.6b07268
– ident: ref61/cit61
  doi: 10.1021/acs.biomac.8b00323
– ident: ref35/cit35
  doi: 10.1038/srep35764
– ident: ref49/cit49
  doi: 10.1016/j.bios.2016.04.047
– ident: ref11/cit11
  doi: 10.1016/j.molp.2019.06.010
– ident: ref82/cit82
  doi: 10.1093/jxb/eru359
– ident: ref94/cit94
  doi: 10.1016/S0167-4889(02)00176-3
– ident: ref4/cit4
– ident: ref91/cit91
  doi: 10.1039/D1EN00140J
– ident: ref44/cit44
  doi: 10.1002/anie.201300519
– ident: ref18/cit18
  doi: 10.1021/acsnano.9b09178
– ident: ref66/cit66
  doi: 10.1016/j.pbi.2018.07.012
– ident: ref41/cit41
  doi: 10.1002/smll.200801556
– ident: ref65/cit65
  doi: 10.1111/j.1365-313X.2007.03191.x
– ident: ref13/cit13
  doi: 10.1038/s41565-022-01082-8
– ident: ref70/cit70
  doi: 10.1016/S0981-9428(02)01417-1
– ident: ref45/cit45
  doi: 10.1021/acsnano.7b06399
– ident: ref111/cit111
  doi: 10.1021/ar200113c
– ident: ref98/cit98
  doi: 10.1104/pp.113.234641
– ident: ref27/cit27
  doi: 10.1016/j.chemosphere.2019.124856
– ident: ref101/cit101
  doi: 10.1104/pp.109.140673
– ident: ref36/cit36
  doi: 10.1038/s41596-020-0370-0
– ident: ref83/cit83
  doi: 10.3389/fpls.2015.00883
– ident: ref7/cit7
  doi: 10.1186/2048-7010-1-7
– ident: ref25/cit25
  doi: 10.1039/C9NR08100C
– ident: ref37/cit37
  doi: 10.1038/s41596-019-0208-9
– ident: ref55/cit55
  doi: 10.1016/S0169-409X(98)00058-1
– ident: ref90/cit90
  doi: 10.1039/c2nr33611a
– ident: ref62/cit62
  doi: 10.1038/sj.gt.3301294
– ident: ref6/cit6
  doi: 10.1016/S0140-6736(18)31788-4
– ident: ref109/cit109
  doi: 10.1007/BF01044998
– ident: ref54/cit54
  doi: 10.1038/s41565-019-0382-5
– ident: ref34/cit34
  doi: 10.1016/j.talanta.2006.10.016
– ident: ref20/cit20
  doi: 10.1021/acsnano.8b09781
– ident: ref31/cit31
  doi: 10.1111/nph.16886
– ident: ref56/cit56
  doi: 10.1021/jp911539r
– ident: ref88/cit88
  doi: 10.1039/C1CS15233E
– ident: ref17/cit17
  doi: 10.1016/j.tplants.2016.04.005
– ident: ref3/cit3
  doi: 10.1038/s41565-019-0439-5
– ident: ref22/cit22
  doi: 10.1002/smll.201802086
– ident: ref108/cit108
  doi: 10.1016/0009-2614(81)80311-9
– ident: ref102/cit102
  doi: 10.1021/bm301275g
– ident: ref12/cit12
  doi: 10.1038/s41565-019-0470-6
– ident: ref2/cit2
  doi: 10.1371/journal.pone.0066428
– ident: ref80/cit80
  doi: 10.1016/S0009-8981(03)00191-8
– ident: ref52/cit52
  doi: 10.1039/C7EN00887B
– ident: ref86/cit86
  doi: 10.1007/s11738-016-2113-y
– ident: ref29/cit29
  doi: 10.1039/C9QM00614A
– ident: ref51/cit51
  doi: 10.1021/acs.jpcc.6b03145
– ident: ref106/cit106
  doi: 10.1002/smll.201201003
– ident: ref57/cit57
  doi: 10.1016/j.jddst.2019.101408
– ident: ref47/cit47
  doi: 10.1016/j.arabjc.2013.06.013
– ident: ref77/cit77
  doi: 10.3389/fenvs.2014.0005
– ident: ref16/cit16
  doi: 10.1038/s41467-020-15731-w
– ident: ref10/cit10
  doi: 10.1038/s43016-020-0110-1
– ident: ref50/cit50
  doi: 10.1016/j.jhazmat.2020.124534
– ident: ref105/cit105
  doi: 10.1021/j100140a006
– ident: ref15/cit15
  doi: 10.1039/C8EN00645H
– ident: ref81/cit81
  doi: 10.1016/0921-8777(94)00054-A
– ident: ref75/cit75
  doi: 10.1016/j.jplph.2004.05.011
– ident: ref8/cit8
  doi: 10.1038/s41565-019-0461-7
SSID ssj0057876
Score 2.5840304
Snippet Nanotechnology approaches for improving the delivery efficiency of chemicals and molecular cargoes in plants through plant biorecognition mechanisms remain...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12156
SubjectTerms Agrochemicals - analysis
Agrochemicals - metabolism
Agrochemicals - pharmacology
Chloroplasts - metabolism
Hydrogen Peroxide - metabolism
Nanostructures - chemistry
Nanotubes, Carbon - chemistry
Photosynthesis
Plant Leaves - chemistry
Plants
Title Targeted Carbon Nanostructures for Chemical and Gene Delivery to Plant Chloroplasts
URI http://dx.doi.org/10.1021/acsnano.2c02714
https://www.ncbi.nlm.nih.gov/pubmed/35943045
https://www.proquest.com/docview/2700317408
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELYQLDDwfpSXjNSBJSX1K_aIClWFBEtbqVvk2M5ClVQkHeDXc07S8qgq2G0ruTvb36c7f4dQ2zBHrKVhEFILBIUxHijlZCC087lXZrnzb4efX8RgzJ4mfPIlFv07g0-6d9oUmc7yDjHAoHzL6i0iAGR7FNQbLg5dH3eiTiADQQYUsVTxWVnAX0Om-HkNrcGW1R3T36urs4pKmtCXlrx25mXSMR-rwo1_f_4-2m2QJr6vQ-MAbbjsEO180x88QsNRVQfuLO7ptyTPMJy1ea0oOwcajgHQ4oWiANaZxV6kGj-4qS_meMdljn3PoxLGAOvPZwDEy-IYjfuPo94gaLosBBrASRlEMpWpkIZKZ4hyWqaGsYRSQEJScsFEKphKrLbSstQAwVIklEZoFaVcAxikJ2gzyzN3hjBPQtc1hDIgKUwJqyLDIwUQx0vUKCdaqA3miJtdUsRVApx048ZGcWOjFuosfBObRqncN8yYrp9wu5wwq0U61g-9WTg7ho3ksyM6c_m8iH0GHsAUC2ULndZRsFyMcq9Sz_j5_37gAm0T_0oihEOIXqJN8Ju7AuxSJtdV1H4ChObn6Q
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT-swEB4hOMA7sL9HWY3EgUv60nipfUQFVFYJUSRukWM7l1cliKQH-PWMs5RNlR5Xy7a8jMffaGa-ATgyzEXW0jAIqUUDhTEeKOVkILTzvldmufO5wze3YvjALh_54xyEbS4MLqLAmYrKif_OLtD7i22ZzvJuZNCQ8pWrFxCKRD6I72Rw3-peL36i9iOjnYxgYkrm820C_xuZ4vNvNANiVl_N-QrcTRdZRZj8607KpGtev_A3_mQXq7Dc4E5yUgvKGsy5bB1-fWAj3ID7URUV7iwZ6Ockzwhq3rzml52gUU4Q3pKWX4DozBJPWU1O3diHdryQMie-AlKJfcb5c_6EsLwsNuHh_Gw0GAZNzYVAI1Qpg75MZSqkodKZSDktU8NYQiniIim5YCIVTCVWW2lZatDcUlEojdCqn3KN0JD-hvksz9wWEJ6ErmciytBkYUpY1Te8rxDweMIa5UQHjvA44ubNFHHlDo96cXNGcXNGHei2VxSbhrfcl88Yzx5wPB3wVFN2zO562N55jM_K-0p05vJJEXt_PEIrFsoO_KmFYToZ5Z6znvHt_9vAASwORzfX8fXF7dUOLEU-fyJE9UR3YR7v0O0hqimT_UqQ3wDrZ_BK
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYQSBU9AKW0XaCtK3HgkiUbP2If0dIVlIcqsSvtLXJs58IqWZHsAX49M3mJUq3UXiPH8mNsf6Nv5htCTiz3kXMsDELmwEHhXARaexVI45F75U54zB2-vZOXM_5rLuZtUhjmwsAgSuiprEl8PNVLl7UKA6Mz-J6bvBhGFpwprF69haQdBvKdj--7-xdNUDZcMvjKACh6QZ-_OsAXyZZ_vkhrYGb93Ex2yawfaB1l8jBcVenQPr_RcPzfmeyRnRZ_0vPGYD6QDZ_vk_evVAk_kvtpHR3uHR2bx7TIKdzARaMzuwLnnALMpZ3OADW5oyhdTS_8AkM8nmhVUKyEVEGbRfFYLAGeV-UBmU1-TseXQVt7ITAAWaogVpnKpLJMeRtpb1RmOU8ZA3yklJBcZpLr1BmnHM8suF06CpWVRseZMAAR2SeymRe5_0KoSEM_shHj4LpwLZ2OrYg1AB8UrtFeDsgJLEfSnp0yqWnxaJS0a5S0azQgw26bEtvql2MZjcX6H077H5aNdMf6pj-6fU_geCFnYnJfrMoEeXmAWDxUA_K5MYi-MyZQu56Lw3-bwHfy7vfFJLm5urs-ItsRplGEcEuxY7IJW-i_Arip0m-1Lb8AzTLyzQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeted+Carbon+Nanostructures+for+Chemical+and+Gene+Delivery+to+Plant+Chloroplasts&rft.jtitle=ACS+nano&rft.au=Santana%2C+Israel&rft.au=Jeon%2C+Su-Ji&rft.au=Kim%2C+Hye-In&rft.au=Islam%2C+Md+Reyazul&rft.date=2022-08-23&rft.issn=1936-086X&rft.eissn=1936-086X&rft.volume=16&rft.issue=8&rft.spage=12156&rft_id=info:doi/10.1021%2Facsnano.2c02714&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon