Targeted Carbon Nanostructures for Chemical and Gene Delivery to Plant Chloroplasts
Nanotechnology approaches for improving the delivery efficiency of chemicals and molecular cargoes in plants through plant biorecognition mechanisms remain relatively unexplored. We developed targeted carbon-based nanomaterials as tools for precise chemical delivery (carbon dots, CDs) and gene deliv...
Saved in:
Published in | ACS nano Vol. 16; no. 8; pp. 12156 - 12173 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
23.08.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1936-0851 1936-086X 1936-086X |
DOI | 10.1021/acsnano.2c02714 |
Cover
Loading…
Abstract | Nanotechnology approaches for improving the delivery efficiency of chemicals and molecular cargoes in plants through plant biorecognition mechanisms remain relatively unexplored. We developed targeted carbon-based nanomaterials as tools for precise chemical delivery (carbon dots, CDs) and gene delivery platforms (single-walled carbon nanotubes, SWCNTs) to chloroplasts, key organelles involved in efforts to improve plant photosynthesis, assimilation of nutrients, and delivery of agrochemicals. A biorecognition approach of coating the nanomaterials with a rationally designed chloroplast targeting peptide improved the delivery of CDs with molecular baskets (TP-β-CD) for delivery of agrochemicals and of plasmid DNA coated SWCNT (TP-pATV1-SWCNT) from 47% to 70% and from 39% to 57% of chloroplasts in leaves, respectively. Plants treated with TP-β-CD (20 mg/L) and TP-pATV1-SWCNT (2 mg/L) had a low percentage of dead cells, 6% and 8%, respectively, similar to controls without nanoparticles, and no permanent cell and chloroplast membrane damage after 5 days of exposure. However, targeted nanomaterials transiently increased leaf H2O2 (0.3225 μmol gFW–1) above control plant levels (0.03441 μmol gFW–1) but within the normal range reported in land plants. The increase in leaf H2O2 levels was associated with oxidative damage in whole plant cell DNA, a transient effect on chloroplast DNA, and a decrease in leaf chlorophyll content (−17%) and carbon assimilation rates at saturation light levels (−32%) with no impact on photosystem II quantum yield. This work provides targeted delivery approaches for carbon-based nanomaterials mediated by biorecognition and a comprehensive understanding of their impact on plant cell and molecular biology for engineering safer and efficient agrochemical and biomolecule delivery tools. |
---|---|
AbstractList | Nanotechnology approaches for improving the delivery efficiency of chemicals and molecular cargoes in plants through plant biorecognition mechanisms remain relatively unexplored. We developed targeted carbon-based nanomaterials as tools for precise chemical delivery (carbon dots, CDs) and gene delivery platforms (single-walled carbon nanotubes, SWCNTs) to chloroplasts, key organelles involved in efforts to improve plant photosynthesis, assimilation of nutrients, and delivery of agrochemicals. A biorecognition approach of coating the nanomaterials with a rationally designed chloroplast targeting peptide improved the delivery of CDs with molecular baskets (TP-β-CD) for delivery of agrochemicals and of plasmid DNA coated SWCNT (TP-pATV1-SWCNT) from 47% to 70% and from 39% to 57% of chloroplasts in leaves, respectively. Plants treated with TP-β-CD (20 mg/L) and TP-pATV1-SWCNT (2 mg/L) had a low percentage of dead cells, 6% and 8%, respectively, similar to controls without nanoparticles, and no permanent cell and chloroplast membrane damage after 5 days of exposure. However, targeted nanomaterials transiently increased leaf H2O2 (0.3225 μmol gFW–1) above control plant levels (0.03441 μmol gFW–1) but within the normal range reported in land plants. The increase in leaf H2O2 levels was associated with oxidative damage in whole plant cell DNA, a transient effect on chloroplast DNA, and a decrease in leaf chlorophyll content (−17%) and carbon assimilation rates at saturation light levels (−32%) with no impact on photosystem II quantum yield. This work provides targeted delivery approaches for carbon-based nanomaterials mediated by biorecognition and a comprehensive understanding of their impact on plant cell and molecular biology for engineering safer and efficient agrochemical and biomolecule delivery tools. Nanotechnology approaches for improving the delivery efficiency of chemicals and molecular cargoes in plants through plant biorecognition mechanisms remain relatively unexplored. We developed targeted carbon-based nanomaterials as tools for precise chemical delivery (carbon dots, CDs) and gene delivery platforms (single-walled carbon nanotubes, SWCNTs) to chloroplasts, key organelles involved in efforts to improve plant photosynthesis, assimilation of nutrients, and delivery of agrochemicals. A biorecognition approach of coating the nanomaterials with a rationally designed chloroplast targeting peptide improved the delivery of CDs with molecular baskets (TP-β-CD) for delivery of agrochemicals and of plasmid DNA coated SWCNT (TP-pATV1-SWCNT) from 47% to 70% and from 39% to 57% of chloroplasts in leaves, respectively. Plants treated with TP-β-CD (20 mg/L) and TP-pATV1-SWCNT (2 mg/L) had a low percentage of dead cells, 6% and 8%, respectively, similar to controls without nanoparticles, and no permanent cell and chloroplast membrane damage after 5 days of exposure. However, targeted nanomaterials transiently increased leaf H2O2 (0.3225 μmol gFW-1) above control plant levels (0.03441 μmol gFW-1) but within the normal range reported in land plants. The increase in leaf H2O2 levels was associated with oxidative damage in whole plant cell DNA, a transient effect on chloroplast DNA, and a decrease in leaf chlorophyll content (-17%) and carbon assimilation rates at saturation light levels (-32%) with no impact on photosystem II quantum yield. This work provides targeted delivery approaches for carbon-based nanomaterials mediated by biorecognition and a comprehensive understanding of their impact on plant cell and molecular biology for engineering safer and efficient agrochemical and biomolecule delivery tools.Nanotechnology approaches for improving the delivery efficiency of chemicals and molecular cargoes in plants through plant biorecognition mechanisms remain relatively unexplored. We developed targeted carbon-based nanomaterials as tools for precise chemical delivery (carbon dots, CDs) and gene delivery platforms (single-walled carbon nanotubes, SWCNTs) to chloroplasts, key organelles involved in efforts to improve plant photosynthesis, assimilation of nutrients, and delivery of agrochemicals. A biorecognition approach of coating the nanomaterials with a rationally designed chloroplast targeting peptide improved the delivery of CDs with molecular baskets (TP-β-CD) for delivery of agrochemicals and of plasmid DNA coated SWCNT (TP-pATV1-SWCNT) from 47% to 70% and from 39% to 57% of chloroplasts in leaves, respectively. Plants treated with TP-β-CD (20 mg/L) and TP-pATV1-SWCNT (2 mg/L) had a low percentage of dead cells, 6% and 8%, respectively, similar to controls without nanoparticles, and no permanent cell and chloroplast membrane damage after 5 days of exposure. However, targeted nanomaterials transiently increased leaf H2O2 (0.3225 μmol gFW-1) above control plant levels (0.03441 μmol gFW-1) but within the normal range reported in land plants. The increase in leaf H2O2 levels was associated with oxidative damage in whole plant cell DNA, a transient effect on chloroplast DNA, and a decrease in leaf chlorophyll content (-17%) and carbon assimilation rates at saturation light levels (-32%) with no impact on photosystem II quantum yield. This work provides targeted delivery approaches for carbon-based nanomaterials mediated by biorecognition and a comprehensive understanding of their impact on plant cell and molecular biology for engineering safer and efficient agrochemical and biomolecule delivery tools. Nanotechnology approaches for improving the delivery efficiency of chemicals and molecular cargoes in plants through plant biorecognition mechanisms remain relatively unexplored. We developed targeted carbon-based nanomaterials as tools for precise chemical delivery (carbon dots, CDs) and gene delivery platforms (single-walled carbon nanotubes, SWCNTs) to chloroplasts, key organelles involved in efforts to improve plant photosynthesis, assimilation of nutrients, and delivery of agrochemicals. A biorecognition approach of coating the nanomaterials with a rationally designed chloroplast targeting peptide improved the delivery of CDs with molecular baskets (TP-β-CD) for delivery of agrochemicals and of plasmid DNA coated SWCNT (TP-pATV1-SWCNT) from 47% to 70% and from 39% to 57% of chloroplasts in leaves, respectively. Plants treated with TP-β-CD (20 mg/L) and TP-pATV1-SWCNT (2 mg/L) had a low percentage of dead cells, 6% and 8%, respectively, similar to controls without nanoparticles, and no permanent cell and chloroplast membrane damage after 5 days of exposure. However, targeted nanomaterials transiently increased leaf H O (0.3225 μmol gFW ) above control plant levels (0.03441 μmol gFW ) but within the normal range reported in land plants. The increase in leaf H O levels was associated with oxidative damage in whole plant cell DNA, a transient effect on chloroplast DNA, and a decrease in leaf chlorophyll content (-17%) and carbon assimilation rates at saturation light levels (-32%) with no impact on photosystem II quantum yield. This work provides targeted delivery approaches for carbon-based nanomaterials mediated by biorecognition and a comprehensive understanding of their impact on plant cell and molecular biology for engineering safer and efficient agrochemical and biomolecule delivery tools. |
Author | Castillo, Christopher Newkirk, Gregory M. Kim, Hye-In Garcia, Gail F. H. Giraldo, Juan Pablo Santana, Israel Jeon, Su-Ji Islam, Md Reyazul |
AuthorAffiliation | Department of Botany and Plant Sciences University of California-Riverside Department of Microbiology and Plant Pathology |
AuthorAffiliation_xml | – name: Department of Botany and Plant Sciences – name: University of California-Riverside – name: Department of Microbiology and Plant Pathology |
Author_xml | – sequence: 1 givenname: Israel surname: Santana fullname: Santana, Israel organization: Department of Botany and Plant Sciences – sequence: 2 givenname: Su-Ji orcidid: 0000-0002-5917-8837 surname: Jeon fullname: Jeon, Su-Ji organization: Department of Botany and Plant Sciences – sequence: 3 givenname: Hye-In surname: Kim fullname: Kim, Hye-In organization: Department of Botany and Plant Sciences – sequence: 4 givenname: Md Reyazul surname: Islam fullname: Islam, Md Reyazul organization: Department of Botany and Plant Sciences – sequence: 5 givenname: Christopher surname: Castillo fullname: Castillo, Christopher organization: Department of Botany and Plant Sciences – sequence: 6 givenname: Gail F. H. surname: Garcia fullname: Garcia, Gail F. H. organization: Department of Botany and Plant Sciences – sequence: 7 givenname: Gregory M. surname: Newkirk fullname: Newkirk, Gregory M. organization: University of California-Riverside – sequence: 8 givenname: Juan Pablo orcidid: 0000-0002-8400-8944 surname: Giraldo fullname: Giraldo, Juan Pablo email: juanpablo.giraldo@ucr.edu organization: Department of Botany and Plant Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35943045$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kEFLAzEQRoNUtK2evUmOgtRmN9ls9ihVqyAqqOAtTLMTXdkmNckK_feutHoQPM3AvO9jeCMycN4hIUcZO8tYnk3BRAfOn-WG5WUmdsgwq7icMCVfBr97ke2TUYzvjBWlKuUe2edFJTgTxZA8PkF4xYQ1nUFYeEfv-rqYQmdSFzBS6wOdveGyMdBScDWdo0N6gW3ziWFNk6cPLbjUM60PftVCTPGA7FpoIx5u55g8X10-za4nt_fzm9n57QR4VaVJqayyUhmu0OQVgrJGiAXnkjGlCimklaJa1FCrWliTq7LKmTISqtIWUEjJx-Rk07sK_qPDmPSyiQbb_iH0XdR5yRjPSsFUjx5v0W6xxFqvQrOEsNY_Inqg2AAm-BgDWm2aBKnxLgVoWp0x_S1cb4XrrfA-N_2T-6n-P3G6SfQH_e674HpH_9JfjpaTEA |
CitedBy_id | crossref_primary_10_1021_acsanm_2c04213 crossref_primary_10_1039_D3EN00353A crossref_primary_10_1021_jacsau_4c00478 crossref_primary_10_1039_D3EN00268C crossref_primary_10_1007_s13659_024_00487_3 crossref_primary_10_1021_acssuschemeng_2c07371 crossref_primary_10_1021_acs_nanolett_2c04506 crossref_primary_10_1021_acs_est_3c01154 crossref_primary_10_1111_pbi_70050 crossref_primary_10_1002_smll_202304588 crossref_primary_10_1039_D4NR03268C crossref_primary_10_1007_s12274_023_6284_8 crossref_primary_10_1021_acs_chemrev_3c00831 crossref_primary_10_3390_plants14050716 crossref_primary_10_1007_s11356_024_35806_1 crossref_primary_10_1021_acsnano_4c16362 crossref_primary_10_1021_acs_nanolett_4c04704 crossref_primary_10_1039_D4NR03760J crossref_primary_10_1016_j_tplants_2024_09_014 crossref_primary_10_1016_j_jes_2023_05_033 crossref_primary_10_1016_j_mser_2024_100821 crossref_primary_10_1038_s44222_023_00037_5 crossref_primary_10_1021_acs_est_3c05686 crossref_primary_10_1038_s41565_024_01667_5 crossref_primary_10_1007_s42823_023_00655_4 crossref_primary_10_1038_s41467_024_54013_7 crossref_primary_10_1111_pbi_14573 crossref_primary_10_1094_PDIS_05_23_0970_FE crossref_primary_10_1039_D3CC00962A crossref_primary_10_1021_acsabm_4c01785 crossref_primary_10_1016_j_ccr_2024_216299 crossref_primary_10_1016_j_ijbiomac_2024_131176 crossref_primary_10_1021_acs_nanolett_3c04735 crossref_primary_10_1021_acsami_3c09074 crossref_primary_10_1016_j_tplants_2023_11_024 crossref_primary_10_1002_ps_7952 crossref_primary_10_1246_bcsj_20230147 crossref_primary_10_1038_s41428_024_00927_4 crossref_primary_10_1021_acsaenm_4c00303 crossref_primary_10_3390_ijms242115700 crossref_primary_10_1002_smll_202300906 crossref_primary_10_1039_D3CC01600E crossref_primary_10_1016_j_plana_2023_100053 crossref_primary_10_3390_plants14060978 crossref_primary_10_3389_fchem_2025_1542504 crossref_primary_10_1016_j_seh_2025_100145 crossref_primary_10_3390_molecules30030446 crossref_primary_10_1016_j_tplants_2024_06_010 crossref_primary_10_1021_acs_chemrev_3c00581 crossref_primary_10_1038_s44287_024_00131_9 crossref_primary_10_1016_j_plaphy_2024_108704 crossref_primary_10_1016_j_trechm_2023_07_004 |
Cites_doi | 10.1039/C9EN00599D 10.1016/j.bbamcr.2012.03.006 10.1104/pp.17.00857 10.1111/nph.15488 10.1016/j.chemphyslip.2017.09.004 10.1007/978-3-030-06118-0_11 10.1111/j.1469-8137.1975.tb01365.x 10.1021/acssuschemeng.8b03457 10.1104/pp.106.082040 10.1002/EXP.20210002 10.3389/fpls.2013.00277 10.1007/978-1-62703-462-3_20 10.1016/S0304-4165(89)80016-9 10.1007/s12274-019-2397-5 10.1371/journal.pone.0154081 10.1038/nmat3890 10.1007/978-1-60327-210-0_16 10.21769/BioProtoc.4060 10.3390/nano10020325 10.1038/s41565-019-0382-5 10.1088/1748-9326/5/1/014010 10.1038/s41477-019-0413-0 10.1016/j.plaphy.2016.07.030 10.1111/j.1744-7909.2012.01147.x 10.1038/s41565-019-0375-4 10.1093/jexbot/51.345.659 10.1016/j.impact.2015.12.002 10.1039/C5RA12258A 10.1007/s10661-019-7540-y 10.1016/j.jhazmat.2012.10.025 10.1039/C9EN00461K 10.3389/fbioe.2019.00120 10.3389/fpls.2020.00596 10.3390/ijms19092812 10.1093/bioinformatics/btm091 10.1038/s41598-019-47168-7 10.1093/jxb/erl004 10.1006/meth.2001.1262 10.3389/fpls.2021.691295 10.1021/acsnano.1c06343 10.1093/nar/29.9.e45 10.1007/s10265-006-0266-2 10.1038/s41598-017-15054-9 10.1021/acs.nanolett.5b04467 10.1007/s10853-020-05054-y 10.1186/s11671-015-0922-3 10.1016/j.addr.2012.09.039 10.1080/10590500902885684 10.1111/j.1399-3054.2006.00720.x 10.1021/acsami.6b07268 10.1021/acs.biomac.8b00323 10.1038/srep35764 10.1016/j.bios.2016.04.047 10.1016/j.molp.2019.06.010 10.1093/jxb/eru359 10.1016/S0167-4889(02)00176-3 10.1039/D1EN00140J 10.1002/anie.201300519 10.1021/acsnano.9b09178 10.1016/j.pbi.2018.07.012 10.1002/smll.200801556 10.1111/j.1365-313X.2007.03191.x 10.1038/s41565-022-01082-8 10.1016/S0981-9428(02)01417-1 10.1021/acsnano.7b06399 10.1021/ar200113c 10.1104/pp.113.234641 10.1016/j.chemosphere.2019.124856 10.1104/pp.109.140673 10.1038/s41596-020-0370-0 10.3389/fpls.2015.00883 10.1186/2048-7010-1-7 10.1039/C9NR08100C 10.1038/s41596-019-0208-9 10.1016/S0169-409X(98)00058-1 10.1039/c2nr33611a 10.1038/sj.gt.3301294 10.1016/S0140-6736(18)31788-4 10.1007/BF01044998 10.1016/j.talanta.2006.10.016 10.1021/acsnano.8b09781 10.1111/nph.16886 10.1021/jp911539r 10.1039/C1CS15233E 10.1016/j.tplants.2016.04.005 10.1038/s41565-019-0439-5 10.1002/smll.201802086 10.1016/0009-2614(81)80311-9 10.1021/bm301275g 10.1038/s41565-019-0470-6 10.1371/journal.pone.0066428 10.1016/S0009-8981(03)00191-8 10.1039/C7EN00887B 10.1007/s11738-016-2113-y 10.1039/C9QM00614A 10.1021/acs.jpcc.6b03145 10.1002/smll.201201003 10.1016/j.jddst.2019.101408 10.1016/j.arabjc.2013.06.013 10.3389/fenvs.2014.0005 10.1038/s41467-020-15731-w 10.1038/s43016-020-0110-1 10.1016/j.jhazmat.2020.124534 10.1021/j100140a006 10.1039/C8EN00645H 10.1016/0921-8777(94)00054-A 10.1016/j.jplph.2004.05.011 10.1038/s41565-019-0461-7 |
ContentType | Journal Article |
Copyright | 2022 American Chemical Society |
Copyright_xml | – notice: 2022 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/acsnano.2c02714 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 12173 |
ExternalDocumentID | 35943045 10_1021_acsnano_2c02714 b768321394 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | - 23M 4.4 55A 5GY 5VS 6J9 7~N AABXI ABFRP ABMVS ABUCX ACGFO ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED F5P GGK GNL IH9 IHE JG K2 P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHGD BAANH CITATION CUPRZ ED~ JG~ CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-a399t-78f8f68c38ec29ea8fc44b33600885646f649bdad8d4fc2879208c6a97f5a5663 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Fri Jul 11 09:27:43 EDT 2025 Thu Apr 03 07:08:50 EDT 2025 Tue Jul 01 03:37:28 EDT 2025 Thu Apr 24 22:59:43 EDT 2025 Thu Aug 25 03:11:02 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | gene delivery peptides chloroplast biotechnology agrochemical delivery smart agriculture nanomaterial−plant interactions |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a399t-78f8f68c38ec29ea8fc44b33600885646f649bdad8d4fc2879208c6a97f5a5663 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8400-8944 0000-0002-5917-8837 |
PMID | 35943045 |
PQID | 2700317408 |
PQPubID | 23479 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_2700317408 pubmed_primary_35943045 crossref_citationtrail_10_1021_acsnano_2c02714 crossref_primary_10_1021_acsnano_2c02714 acs_journals_10_1021_acsnano_2c02714 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-23 |
PublicationDateYYYYMMDD | 2022-08-23 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref45/cit45 ref99/cit99 ref3/cit3 ref81/cit81 ref16/cit16 ref52/cit52 ref23/cit23 ref110/cit110 ref111/cit111 ref2/cit2 ref112/cit112 ref77/cit77 ref71/cit71 ref20/cit20 ref48/cit48 ref10/cit10 ref35/cit35 ref89/cit89 ref19/cit19 ref93/cit93 ref42/cit42 ref107/cit107 ref109/cit109 ref13/cit13 ref105/cit105 ref61/cit61 ref67/cit67 ref38/cit38 ref90/cit90 ref64/cit64 ref54/cit54 ref6/cit6 ref18/cit18 ref65/cit65 ref97/cit97 ref101/cit101 ref11/cit11 ref102/cit102 ref29/cit29 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref5/cit5 ref43/cit43 ref80/cit80 ref28/cit28 ref91/cit91 ref55/cit55 ref12/cit12 ref66/cit66 ref22/cit22 ref33/cit33 Cheeseman J. M. (ref74/cit74) 2007; 1 ref87/cit87 ref106/cit106 ref44/cit44 ref70/cit70 ref98/cit98 ref9/cit9 ref27/cit27 ref63/cit63 ref56/cit56 ref92/cit92 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref60/cit60 ref88/cit88 ref17/cit17 ref82/cit82 ref53/cit53 ref21/cit21 ref46/cit46 ref49/cit49 ref75/cit75 ref24/cit24 ref50/cit50 ref78/cit78 ref36/cit36 ref83/cit83 ref79/cit79 ref100/cit100 ref25/cit25 ref103/cit103 ref72/cit72 ref14/cit14 ref57/cit57 ref51/cit51 ref40/cit40 ref68/cit68 ref94/cit94 ref26/cit26 ref73/cit73 ref69/cit69 ref15/cit15 ref62/cit62 Nafees M. (ref96/cit96) 2019 ref41/cit41 ref58/cit58 ref95/cit95 ref108/cit108 ref104/cit104 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref1/cit1 ref7/cit7 |
References_xml | – ident: ref28/cit28 doi: 10.1039/C9EN00599D – ident: ref95/cit95 doi: 10.1016/j.bbamcr.2012.03.006 – ident: ref43/cit43 doi: 10.1104/pp.17.00857 – ident: ref99/cit99 doi: 10.1111/nph.15488 – ident: ref107/cit107 doi: 10.1016/j.chemphyslip.2017.09.004 – start-page: 259 volume-title: Plant Abiotic Stress Tolerance: Agronomic, Molecular and Biotechnological Approaches year: 2019 ident: ref96/cit96 doi: 10.1007/978-3-030-06118-0_11 – ident: ref67/cit67 doi: 10.1111/j.1469-8137.1975.tb01365.x – ident: ref59/cit59 doi: 10.1021/acssuschemeng.8b03457 – ident: ref69/cit69 doi: 10.1104/pp.106.082040 – ident: ref53/cit53 doi: 10.1002/EXP.20210002 – ident: ref78/cit78 doi: 10.3389/fpls.2013.00277 – ident: ref100/cit100 doi: 10.1007/978-1-62703-462-3_20 – ident: ref92/cit92 doi: 10.1016/S0304-4165(89)80016-9 – ident: ref32/cit32 doi: 10.1007/s12274-019-2397-5 – ident: ref60/cit60 doi: 10.1371/journal.pone.0154081 – ident: ref87/cit87 doi: 10.1038/nmat3890 – ident: ref68/cit68 doi: 10.1007/978-1-60327-210-0_16 – ident: ref26/cit26 doi: 10.21769/BioProtoc.4060 – ident: ref48/cit48 doi: 10.3390/nano10020325 – ident: ref24/cit24 doi: 10.1038/s41565-019-0382-5 – ident: ref5/cit5 doi: 10.1088/1748-9326/5/1/014010 – ident: ref104/cit104 doi: 10.1038/s41477-019-0413-0 – ident: ref42/cit42 doi: 10.1016/j.plaphy.2016.07.030 – ident: ref76/cit76 doi: 10.1111/j.1744-7909.2012.01147.x – ident: ref19/cit19 doi: 10.1038/s41565-019-0375-4 – ident: ref93/cit93 doi: 10.1093/jexbot/51.345.659 – ident: ref14/cit14 doi: 10.1016/j.impact.2015.12.002 – ident: ref110/cit110 doi: 10.1039/C5RA12258A – ident: ref85/cit85 doi: 10.1007/s10661-019-7540-y – ident: ref40/cit40 doi: 10.1016/j.jhazmat.2012.10.025 – ident: ref21/cit21 doi: 10.1039/C9EN00461K – ident: ref39/cit39 doi: 10.3389/fbioe.2019.00120 – ident: ref73/cit73 doi: 10.3389/fpls.2020.00596 – ident: ref72/cit72 doi: 10.3390/ijms19092812 – ident: ref112/cit112 doi: 10.1093/bioinformatics/btm091 – ident: ref46/cit46 doi: 10.1038/s41598-019-47168-7 – ident: ref71/cit71 doi: 10.1093/jxb/erl004 – ident: ref64/cit64 doi: 10.1006/meth.2001.1262 – ident: ref1/cit1 – ident: ref9/cit9 doi: 10.3389/fpls.2021.691295 – ident: ref38/cit38 doi: 10.1021/acsnano.1c06343 – ident: ref63/cit63 doi: 10.1093/nar/29.9.e45 – ident: ref97/cit97 doi: 10.1007/s10265-006-0266-2 – ident: ref33/cit33 doi: 10.1038/s41598-017-15054-9 – ident: ref23/cit23 doi: 10.1021/acs.nanolett.5b04467 – ident: ref58/cit58 doi: 10.1007/s10853-020-05054-y – ident: ref89/cit89 doi: 10.1186/s11671-015-0922-3 – ident: ref103/cit103 doi: 10.1016/j.addr.2012.09.039 – ident: ref79/cit79 doi: 10.1080/10590500902885684 – volume: 1 start-page: 4 issue: 1 year: 2007 ident: ref74/cit74 publication-title: Plant stress – ident: ref84/cit84 doi: 10.1111/j.1399-3054.2006.00720.x – ident: ref30/cit30 doi: 10.1021/acsami.6b07268 – ident: ref61/cit61 doi: 10.1021/acs.biomac.8b00323 – ident: ref35/cit35 doi: 10.1038/srep35764 – ident: ref49/cit49 doi: 10.1016/j.bios.2016.04.047 – ident: ref11/cit11 doi: 10.1016/j.molp.2019.06.010 – ident: ref82/cit82 doi: 10.1093/jxb/eru359 – ident: ref94/cit94 doi: 10.1016/S0167-4889(02)00176-3 – ident: ref4/cit4 – ident: ref91/cit91 doi: 10.1039/D1EN00140J – ident: ref44/cit44 doi: 10.1002/anie.201300519 – ident: ref18/cit18 doi: 10.1021/acsnano.9b09178 – ident: ref66/cit66 doi: 10.1016/j.pbi.2018.07.012 – ident: ref41/cit41 doi: 10.1002/smll.200801556 – ident: ref65/cit65 doi: 10.1111/j.1365-313X.2007.03191.x – ident: ref13/cit13 doi: 10.1038/s41565-022-01082-8 – ident: ref70/cit70 doi: 10.1016/S0981-9428(02)01417-1 – ident: ref45/cit45 doi: 10.1021/acsnano.7b06399 – ident: ref111/cit111 doi: 10.1021/ar200113c – ident: ref98/cit98 doi: 10.1104/pp.113.234641 – ident: ref27/cit27 doi: 10.1016/j.chemosphere.2019.124856 – ident: ref101/cit101 doi: 10.1104/pp.109.140673 – ident: ref36/cit36 doi: 10.1038/s41596-020-0370-0 – ident: ref83/cit83 doi: 10.3389/fpls.2015.00883 – ident: ref7/cit7 doi: 10.1186/2048-7010-1-7 – ident: ref25/cit25 doi: 10.1039/C9NR08100C – ident: ref37/cit37 doi: 10.1038/s41596-019-0208-9 – ident: ref55/cit55 doi: 10.1016/S0169-409X(98)00058-1 – ident: ref90/cit90 doi: 10.1039/c2nr33611a – ident: ref62/cit62 doi: 10.1038/sj.gt.3301294 – ident: ref6/cit6 doi: 10.1016/S0140-6736(18)31788-4 – ident: ref109/cit109 doi: 10.1007/BF01044998 – ident: ref54/cit54 doi: 10.1038/s41565-019-0382-5 – ident: ref34/cit34 doi: 10.1016/j.talanta.2006.10.016 – ident: ref20/cit20 doi: 10.1021/acsnano.8b09781 – ident: ref31/cit31 doi: 10.1111/nph.16886 – ident: ref56/cit56 doi: 10.1021/jp911539r – ident: ref88/cit88 doi: 10.1039/C1CS15233E – ident: ref17/cit17 doi: 10.1016/j.tplants.2016.04.005 – ident: ref3/cit3 doi: 10.1038/s41565-019-0439-5 – ident: ref22/cit22 doi: 10.1002/smll.201802086 – ident: ref108/cit108 doi: 10.1016/0009-2614(81)80311-9 – ident: ref102/cit102 doi: 10.1021/bm301275g – ident: ref12/cit12 doi: 10.1038/s41565-019-0470-6 – ident: ref2/cit2 doi: 10.1371/journal.pone.0066428 – ident: ref80/cit80 doi: 10.1016/S0009-8981(03)00191-8 – ident: ref52/cit52 doi: 10.1039/C7EN00887B – ident: ref86/cit86 doi: 10.1007/s11738-016-2113-y – ident: ref29/cit29 doi: 10.1039/C9QM00614A – ident: ref51/cit51 doi: 10.1021/acs.jpcc.6b03145 – ident: ref106/cit106 doi: 10.1002/smll.201201003 – ident: ref57/cit57 doi: 10.1016/j.jddst.2019.101408 – ident: ref47/cit47 doi: 10.1016/j.arabjc.2013.06.013 – ident: ref77/cit77 doi: 10.3389/fenvs.2014.0005 – ident: ref16/cit16 doi: 10.1038/s41467-020-15731-w – ident: ref10/cit10 doi: 10.1038/s43016-020-0110-1 – ident: ref50/cit50 doi: 10.1016/j.jhazmat.2020.124534 – ident: ref105/cit105 doi: 10.1021/j100140a006 – ident: ref15/cit15 doi: 10.1039/C8EN00645H – ident: ref81/cit81 doi: 10.1016/0921-8777(94)00054-A – ident: ref75/cit75 doi: 10.1016/j.jplph.2004.05.011 – ident: ref8/cit8 doi: 10.1038/s41565-019-0461-7 |
SSID | ssj0057876 |
Score | 2.5840304 |
Snippet | Nanotechnology approaches for improving the delivery efficiency of chemicals and molecular cargoes in plants through plant biorecognition mechanisms remain... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12156 |
SubjectTerms | Agrochemicals - analysis Agrochemicals - metabolism Agrochemicals - pharmacology Chloroplasts - metabolism Hydrogen Peroxide - metabolism Nanostructures - chemistry Nanotubes, Carbon - chemistry Photosynthesis Plant Leaves - chemistry Plants |
Title | Targeted Carbon Nanostructures for Chemical and Gene Delivery to Plant Chloroplasts |
URI | http://dx.doi.org/10.1021/acsnano.2c02714 https://www.ncbi.nlm.nih.gov/pubmed/35943045 https://www.proquest.com/docview/2700317408 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELYQLDDwfpSXjNSBJSX1K_aIClWFBEtbqVvk2M5ClVQkHeDXc07S8qgq2G0ruTvb36c7f4dQ2zBHrKVhEFILBIUxHijlZCC087lXZrnzb4efX8RgzJ4mfPIlFv07g0-6d9oUmc7yDjHAoHzL6i0iAGR7FNQbLg5dH3eiTiADQQYUsVTxWVnAX0Om-HkNrcGW1R3T36urs4pKmtCXlrx25mXSMR-rwo1_f_4-2m2QJr6vQ-MAbbjsEO180x88QsNRVQfuLO7ptyTPMJy1ea0oOwcajgHQ4oWiANaZxV6kGj-4qS_meMdljn3PoxLGAOvPZwDEy-IYjfuPo94gaLosBBrASRlEMpWpkIZKZ4hyWqaGsYRSQEJScsFEKphKrLbSstQAwVIklEZoFaVcAxikJ2gzyzN3hjBPQtc1hDIgKUwJqyLDIwUQx0vUKCdaqA3miJtdUsRVApx048ZGcWOjFuosfBObRqncN8yYrp9wu5wwq0U61g-9WTg7ho3ksyM6c_m8iH0GHsAUC2ULndZRsFyMcq9Sz_j5_37gAm0T_0oihEOIXqJN8Ju7AuxSJtdV1H4ChObn6Q |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT-swEB4hOMA7sL9HWY3EgUv60nipfUQFVFYJUSRukWM7l1cliKQH-PWMs5RNlR5Xy7a8jMffaGa-ATgyzEXW0jAIqUUDhTEeKOVkILTzvldmufO5wze3YvjALh_54xyEbS4MLqLAmYrKif_OLtD7i22ZzvJuZNCQ8pWrFxCKRD6I72Rw3-peL36i9iOjnYxgYkrm820C_xuZ4vNvNANiVl_N-QrcTRdZRZj8607KpGtev_A3_mQXq7Dc4E5yUgvKGsy5bB1-fWAj3ID7URUV7iwZ6Ockzwhq3rzml52gUU4Q3pKWX4DozBJPWU1O3diHdryQMie-AlKJfcb5c_6EsLwsNuHh_Gw0GAZNzYVAI1Qpg75MZSqkodKZSDktU8NYQiniIim5YCIVTCVWW2lZatDcUlEojdCqn3KN0JD-hvksz9wWEJ6ErmciytBkYUpY1Te8rxDweMIa5UQHjvA44ubNFHHlDo96cXNGcXNGHei2VxSbhrfcl88Yzx5wPB3wVFN2zO562N55jM_K-0p05vJJEXt_PEIrFsoO_KmFYToZ5Z6znvHt_9vAASwORzfX8fXF7dUOLEU-fyJE9UR3YR7v0O0hqimT_UqQ3wDrZ_BK |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYQSBU9AKW0XaCtK3HgkiUbP2If0dIVlIcqsSvtLXJs58IqWZHsAX49M3mJUq3UXiPH8mNsf6Nv5htCTiz3kXMsDELmwEHhXARaexVI45F75U54zB2-vZOXM_5rLuZtUhjmwsAgSuiprEl8PNVLl7UKA6Mz-J6bvBhGFpwprF69haQdBvKdj--7-xdNUDZcMvjKACh6QZ-_OsAXyZZ_vkhrYGb93Ex2yawfaB1l8jBcVenQPr_RcPzfmeyRnRZ_0vPGYD6QDZ_vk_evVAk_kvtpHR3uHR2bx7TIKdzARaMzuwLnnALMpZ3OADW5oyhdTS_8AkM8nmhVUKyEVEGbRfFYLAGeV-UBmU1-TseXQVt7ITAAWaogVpnKpLJMeRtpb1RmOU8ZA3yklJBcZpLr1BmnHM8suF06CpWVRseZMAAR2SeymRe5_0KoSEM_shHj4LpwLZ2OrYg1AB8UrtFeDsgJLEfSnp0yqWnxaJS0a5S0azQgw26bEtvql2MZjcX6H077H5aNdMf6pj-6fU_geCFnYnJfrMoEeXmAWDxUA_K5MYi-MyZQu56Lw3-bwHfy7vfFJLm5urs-ItsRplGEcEuxY7IJW-i_Arip0m-1Lb8AzTLyzQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeted+Carbon+Nanostructures+for+Chemical+and+Gene+Delivery+to+Plant+Chloroplasts&rft.jtitle=ACS+nano&rft.au=Santana%2C+Israel&rft.au=Jeon%2C+Su-Ji&rft.au=Kim%2C+Hye-In&rft.au=Islam%2C+Md+Reyazul&rft.date=2022-08-23&rft.issn=1936-086X&rft.eissn=1936-086X&rft.volume=16&rft.issue=8&rft.spage=12156&rft_id=info:doi/10.1021%2Facsnano.2c02714&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |