Few-Layered Boronic Ester Based Covalent Organic Frameworks/Carbon Nanotube Composites for High-Performance K‑Organic Batteries

Organic electrodes for low-cost potassium ion batteries (PIBs) are attracting more interest by virtue of their molecular diversity, environmental friendliness, and operation safety. But the sluggish potassium diffusion kinetics, dissolution in organic electrolyte, poor electronic conductivity, and l...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 13; no. 3; pp. 3600 - 3607
Main Authors Chen, Xiudong, Zhang, Hang, Ci, Chenggang, Sun, Weiwei, Wang, Yong
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 26.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Organic electrodes for low-cost potassium ion batteries (PIBs) are attracting more interest by virtue of their molecular diversity, environmental friendliness, and operation safety. But the sluggish potassium diffusion kinetics, dissolution in organic electrolyte, poor electronic conductivity, and low reversible capacities are several drawbacks compared with inorganic counterparts. Herein, the boronic ester based covalent organic framework (COF) material is successfully prepared on the exterior surface of carbon nanotubes (CNTs) via rational design of the organic condensation reaction and used as an anode material for PIBs. The few-layered structure of COF-10@CNT can provide more exposed active sites and fast K+ kinetics. It exhibits ultrahigh potassium storage performances (large reversible capacities of 288 mAh g–1 after 500 cycles at 0.1 A g–1 and 161 mAh g–1 after 4000 cycles at 1 A g–1), which is superior to previous organic electrodes and most inorganic electrodes. Moreover, the K-storage mechanism is proposed to be π-cation interaction between K+ and conjugated π-electrons of benzene rings.
AbstractList Organic electrodes for low-cost potassium ion batteries (PIBs) are attracting more interest by virtue of their molecular diversity, environmental friendliness, and operation safety. But the sluggish potassium diffusion kinetics, dissolution in organic electrolyte, poor electronic conductivity, and low reversible capacities are several drawbacks compared with inorganic counterparts. Herein, the boronic ester based covalent organic framework (COF) material is successfully prepared on the exterior surface of carbon nanotubes (CNTs) via rational design of the organic condensation reaction and used as an anode material for PIBs. The few-layered structure of COF-10@CNT can provide more exposed active sites and fast K+ kinetics. It exhibits ultrahigh potassium storage performances (large reversible capacities of 288 mAh g–1 after 500 cycles at 0.1 A g–1 and 161 mAh g–1 after 4000 cycles at 1 A g–1), which is superior to previous organic electrodes and most inorganic electrodes. Moreover, the K-storage mechanism is proposed to be π-cation interaction between K+ and conjugated π-electrons of benzene rings.
Organic electrodes for low-cost potassium ion batteries (PIBs) are attracting more interest by virtue of their molecular diversity, environmental friendliness, and operation safety. But the sluggish potassium diffusion kinetics, dissolution in organic electrolyte, poor electronic conductivity, and low reversible capacities are several drawbacks compared with inorganic counterparts. Herein, the boronic ester based covalent organic framework (COF) material is successfully prepared on the exterior surface of carbon nanotubes (CNTs) via rational design of the organic condensation reaction and used as an anode material for PIBs. The few-layered structure of COF-10@CNT can provide more exposed active sites and fast K kinetics. It exhibits ultrahigh potassium storage performances (large reversible capacities of 288 mAh g after 500 cycles at 0.1 A g and 161 mAh g after 4000 cycles at 1 A g ), which is superior to previous organic electrodes and most inorganic electrodes. Moreover, the K-storage mechanism is proposed to be π-cation interaction between K and conjugated π-electrons of benzene rings.
Organic electrodes for low-cost potassium ion batteries (PIBs) are attracting more interest by virtue of their molecular diversity, environmental friendliness, and operation safety. But the sluggish potassium diffusion kinetics, dissolution in organic electrolyte, poor electronic conductivity, and low reversible capacities are several drawbacks compared with inorganic counterparts. Herein, the boronic ester based covalent organic framework (COF) material is successfully prepared on the exterior surface of carbon nanotubes (CNTs) via rational design of the organic condensation reaction and used as an anode material for PIBs. The few-layered structure of COF-10@CNT can provide more exposed active sites and fast K+ kinetics. It exhibits ultrahigh potassium storage performances (large reversible capacities of 288 mAh g-1 after 500 cycles at 0.1 A g-1 and 161 mAh g-1 after 4000 cycles at 1 A g-1), which is superior to previous organic electrodes and most inorganic electrodes. Moreover, the K-storage mechanism is proposed to be π-cation interaction between K+ and conjugated π-electrons of benzene rings.Organic electrodes for low-cost potassium ion batteries (PIBs) are attracting more interest by virtue of their molecular diversity, environmental friendliness, and operation safety. But the sluggish potassium diffusion kinetics, dissolution in organic electrolyte, poor electronic conductivity, and low reversible capacities are several drawbacks compared with inorganic counterparts. Herein, the boronic ester based covalent organic framework (COF) material is successfully prepared on the exterior surface of carbon nanotubes (CNTs) via rational design of the organic condensation reaction and used as an anode material for PIBs. The few-layered structure of COF-10@CNT can provide more exposed active sites and fast K+ kinetics. It exhibits ultrahigh potassium storage performances (large reversible capacities of 288 mAh g-1 after 500 cycles at 0.1 A g-1 and 161 mAh g-1 after 4000 cycles at 1 A g-1), which is superior to previous organic electrodes and most inorganic electrodes. Moreover, the K-storage mechanism is proposed to be π-cation interaction between K+ and conjugated π-electrons of benzene rings.
Author Zhang, Hang
Chen, Xiudong
Wang, Yong
Ci, Chenggang
Sun, Weiwei
AuthorAffiliation Department of Chemical Engineering, School of Environmental and Chemical Engineering
School of Chemistry and Chemical Engineering
AuthorAffiliation_xml – name: Department of Chemical Engineering, School of Environmental and Chemical Engineering
– name: School of Chemistry and Chemical Engineering
Author_xml – sequence: 1
  givenname: Xiudong
  surname: Chen
  fullname: Chen, Xiudong
  organization: School of Chemistry and Chemical Engineering
– sequence: 2
  givenname: Hang
  surname: Zhang
  fullname: Zhang, Hang
  organization: Department of Chemical Engineering, School of Environmental and Chemical Engineering
– sequence: 3
  givenname: Chenggang
  surname: Ci
  fullname: Ci, Chenggang
  organization: School of Chemistry and Chemical Engineering
– sequence: 4
  givenname: Weiwei
  surname: Sun
  fullname: Sun, Weiwei
  organization: Department of Chemical Engineering, School of Environmental and Chemical Engineering
– sequence: 5
  givenname: Yong
  orcidid: 0000-0003-3489-7672
  surname: Wang
  fullname: Wang, Yong
  email: yongwang@shu.edu.cn
  organization: Department of Chemical Engineering, School of Environmental and Chemical Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30807104$$D View this record in MEDLINE/PubMed
BookMark eNp1kc9O3DAQxi1Exb_2zA3liITC2knsxEd2xZaqK-BApd6sSTIBQ2IvtgPiRh-hr9gnqdHuckDi5JHn930zmm-fbBtrkJBDRk8ZzdgEGm_A2FNZU8oE3yJ7TOYipZX4vf1ec7ZL9r2_p5SXVSl2yG5OK1oyWuyRP3N8Thfwgg7bZGqdNbpJzn1Al0zBx7-ZfYIeTUiu3C28NecOBny27sFPZuBqa5LLuEEYa4zssLReB_RJZ11yoW_v0mt0sR7ANJj8_Pf6d2MzhRCHaPRfyZcOeo_f1u8B-TU_v5ldpIur7z9mZ4sUcilDWhacMVbWpeRUFIXsRNlUIhNS8DpnWFHWCpllLTDOc17VLfJCAgqetW3HRZ0fkOOV79LZxxF9UIP2DfY9GLSjVxmrhGCiknlEj9boWA_YqqXTA7gXtTlbBPgKaJz13mGnGh0gaGuCA90rRtVbPGodj1rHE3WTD7qN9eeKk5UiNtS9HZ2JN_qU_g80oKOp
CitedBy_id crossref_primary_10_1002_chem_202303320
crossref_primary_10_1016_j_jmat_2023_06_010
crossref_primary_10_1016_j_cej_2020_127559
crossref_primary_10_1002_aenm_202003735
crossref_primary_10_1039_D0TA10785A
crossref_primary_10_1016_j_jssc_2023_124068
crossref_primary_10_1039_D0QI01104E
crossref_primary_10_1021_acsami_2c04831
crossref_primary_10_1016_j_snb_2020_128501
crossref_primary_10_1002_anie_202424641
crossref_primary_10_1002_eem2_12059
crossref_primary_10_5796_electrochemistry_23_00015
crossref_primary_10_1002_adma_202105647
crossref_primary_10_1016_j_ensm_2024_103849
crossref_primary_10_1039_D0CS00017E
crossref_primary_10_1016_j_ensm_2021_03_007
crossref_primary_10_1007_s41918_022_00152_8
crossref_primary_10_1016_j_pmatsci_2024_101373
crossref_primary_10_1016_j_cclet_2023_108233
crossref_primary_10_1021_acsami_1c10870
crossref_primary_10_1039_D1CS00983D
crossref_primary_10_1039_C9CS00880B
crossref_primary_10_3390_molecules28165953
crossref_primary_10_1002_ange_202316116
crossref_primary_10_1016_j_chempr_2020_08_021
crossref_primary_10_1016_S1872_5805_21_60001_X
crossref_primary_10_1016_j_electacta_2022_139947
crossref_primary_10_1021_acs_jpcc_4c04602
crossref_primary_10_1002_inf2_12101
crossref_primary_10_1002_batt_202200545
crossref_primary_10_1016_j_cclet_2022_108095
crossref_primary_10_1021_acsami_0c06267
crossref_primary_10_1039_D4TC01270D
crossref_primary_10_1002_aenm_202003054
crossref_primary_10_1016_j_seppur_2023_124750
crossref_primary_10_1039_D2TA07101K
crossref_primary_10_1002_ange_202117661
crossref_primary_10_1038_s43586_022_00181_z
crossref_primary_10_1002_batt_202200429
crossref_primary_10_1002_adfm_202300138
crossref_primary_10_1021_acssensors_4c00613
crossref_primary_10_1038_s41467_019_13739_5
crossref_primary_10_1039_D1MA00158B
crossref_primary_10_1016_j_carbon_2020_09_003
crossref_primary_10_1021_acsami_4c17756
crossref_primary_10_1002_smll_202304406
crossref_primary_10_1002_adma_202301190
crossref_primary_10_1002_anie_202213276
crossref_primary_10_1002_adfm_202108574
crossref_primary_10_1002_admt_202201591
crossref_primary_10_1007_s40242_022_1494_2
crossref_primary_10_1002_adma_202305795
crossref_primary_10_1002_ange_202414566
crossref_primary_10_1016_j_est_2023_107940
crossref_primary_10_1021_acsami_9b13118
crossref_primary_10_1039_D1NJ01269J
crossref_primary_10_1088_2053_1591_ac76a2
crossref_primary_10_3390_inorganics11040156
crossref_primary_10_1016_j_ensm_2025_104097
crossref_primary_10_1016_j_mattod_2023_02_027
crossref_primary_10_1039_C9TA11221A
crossref_primary_10_1039_D3CS00601H
crossref_primary_10_1039_D3NR01701J
crossref_primary_10_1021_acsanm_2c03634
crossref_primary_10_1016_j_jpowsour_2022_231951
crossref_primary_10_1016_j_jpowsour_2025_236425
crossref_primary_10_1039_D1CP01209F
crossref_primary_10_2139_ssrn_4160393
crossref_primary_10_1002_marc_202100897
crossref_primary_10_1002_tcr_202200125
crossref_primary_10_1021_acsnano_2c03857
crossref_primary_10_1039_D3CC00712J
crossref_primary_10_1002_smtd_202101131
crossref_primary_10_1002_adma_202210082
crossref_primary_10_1002_aenm_201904199
crossref_primary_10_1039_C9CC07293D
crossref_primary_10_1016_j_gee_2022_05_007
crossref_primary_10_1002_smtd_202000159
crossref_primary_10_20964_2022_12_83
crossref_primary_10_1002_smll_202100918
crossref_primary_10_1039_C9TA10088A
crossref_primary_10_1002_adma_202002038
crossref_primary_10_1039_D0TA04741D
crossref_primary_10_1016_j_cej_2020_125967
crossref_primary_10_1016_j_polymer_2023_126214
crossref_primary_10_1039_D0TA03947K
crossref_primary_10_1016_j_jcis_2023_03_106
crossref_primary_10_1016_j_polymer_2024_127244
crossref_primary_10_1002_adsu_202000227
crossref_primary_10_1016_j_cej_2024_156873
crossref_primary_10_1021_acs_chemrev_9b00550
crossref_primary_10_1002_aenm_202200057
crossref_primary_10_1016_j_apsusc_2022_153862
crossref_primary_10_1002_aenm_202101926
crossref_primary_10_1016_j_ijhydene_2022_08_060
crossref_primary_10_1016_j_jaap_2023_105952
crossref_primary_10_1007_s41918_022_00135_9
crossref_primary_10_1039_D3TA07337H
crossref_primary_10_1016_j_ensm_2024_103199
crossref_primary_10_1016_j_jmrt_2023_03_112
crossref_primary_10_1002_eem2_12166
crossref_primary_10_1016_j_cej_2023_143941
crossref_primary_10_1039_D0TA12243B
crossref_primary_10_1002_aenm_202100177
crossref_primary_10_1002_anie_202405426
crossref_primary_10_1002_celc_202000963
crossref_primary_10_1016_j_indcrop_2023_116788
crossref_primary_10_1021_acs_chemrev_9b00463
crossref_primary_10_1002_anie_201916595
crossref_primary_10_1016_j_cej_2022_140116
crossref_primary_10_1002_chem_202101587
crossref_primary_10_1002_inf2_12277
crossref_primary_10_1021_acsami_9b20384
crossref_primary_10_1039_D2CE01132H
crossref_primary_10_1002_smtd_201900338
crossref_primary_10_1016_j_rser_2021_111161
crossref_primary_10_1002_adfm_202421697
crossref_primary_10_1016_j_synthmet_2022_117112
crossref_primary_10_1002_smtd_202300687
crossref_primary_10_1039_D1TC01506K
crossref_primary_10_1007_s11426_021_1016_6
crossref_primary_10_1016_j_pnsc_2023_12_018
crossref_primary_10_1039_D2SE00520D
crossref_primary_10_1002_adfm_202306424
crossref_primary_10_1016_j_est_2023_107691
crossref_primary_10_1002_ange_202405426
crossref_primary_10_1002_ange_201916595
crossref_primary_10_1039_D0CS00620C
crossref_primary_10_1039_D3CC02652C
crossref_primary_10_1016_j_pdpdt_2024_104063
crossref_primary_10_1016_j_ensm_2020_06_025
crossref_primary_10_1016_j_jechem_2025_01_062
crossref_primary_10_1016_j_fuel_2023_130562
crossref_primary_10_1002_aenm_202003215
crossref_primary_10_1002_anie_202414566
crossref_primary_10_1016_j_ensm_2022_04_040
crossref_primary_10_1021_acsanm_9b00567
crossref_primary_10_1016_j_cej_2022_138051
crossref_primary_10_1016_j_apsusc_2023_157124
crossref_primary_10_1073_pnas_2315407121
crossref_primary_10_1016_j_mattod_2022_02_013
crossref_primary_10_1002_sus2_180
crossref_primary_10_1016_j_cej_2023_142714
crossref_primary_10_1039_D3AN00947E
crossref_primary_10_1021_acsami_9b21802
crossref_primary_10_1007_s10854_023_10832_w
crossref_primary_10_1039_D0TA03310C
crossref_primary_10_3390_catal13030620
crossref_primary_10_3390_catal13030621
crossref_primary_10_1021_acsnano_3c08240
crossref_primary_10_1038_s41560_022_01188_2
crossref_primary_10_1002_anie_202117661
crossref_primary_10_1016_j_chemosphere_2021_132795
crossref_primary_10_3390_catal13040659
crossref_primary_10_1016_j_carbon_2020_08_074
crossref_primary_10_1016_j_compositesa_2022_107281
crossref_primary_10_1002_aenm_202400521
crossref_primary_10_1021_acsaem_3c00828
crossref_primary_10_1002_adfm_202001592
crossref_primary_10_1016_j_jelechem_2022_116051
crossref_primary_10_1016_j_foodchem_2024_141063
crossref_primary_10_1142_S1793604719300020
crossref_primary_10_1016_j_cej_2023_147275
crossref_primary_10_1016_j_micron_2024_103595
crossref_primary_10_1039_D1EE00166C
crossref_primary_10_1016_j_cej_2020_127850
crossref_primary_10_1016_j_compscitech_2023_110216
crossref_primary_10_1039_D2SC03980J
crossref_primary_10_1016_j_jallcom_2023_169998
crossref_primary_10_1002_anie_202415759
crossref_primary_10_1016_j_mtcomm_2021_102612
crossref_primary_10_1016_j_surfin_2023_102977
crossref_primary_10_1039_D0EE02917C
crossref_primary_10_1016_j_est_2025_116269
crossref_primary_10_1039_D1TA09433E
crossref_primary_10_1002_anie_202316116
crossref_primary_10_1002_anie_202302143
crossref_primary_10_1016_j_ccr_2022_214781
crossref_primary_10_1002_chem_202005259
crossref_primary_10_1039_D1NR07209A
crossref_primary_10_1021_jacs_3c04657
crossref_primary_10_1002_ange_202424641
crossref_primary_10_1016_j_mattod_2022_02_001
crossref_primary_10_1088_2515_7655_acbf76
crossref_primary_10_3390_molecules26133995
crossref_primary_10_1002_adma_202207245
crossref_primary_10_1002_eom2_12246
crossref_primary_10_1016_j_ensm_2022_12_015
crossref_primary_10_1021_acsami_9b08625
crossref_primary_10_1021_jacs_3c11182
crossref_primary_10_1016_j_jcis_2019_11_042
crossref_primary_10_1021_acsami_0c17692
crossref_primary_10_1016_j_cej_2021_133215
crossref_primary_10_1002_ange_202302143
crossref_primary_10_1002_slct_202200656
crossref_primary_10_3390_nano13081432
crossref_primary_10_1002_adma_201901640
crossref_primary_10_1002_aenm_202302589
crossref_primary_10_1002_aenm_202300442
crossref_primary_10_1021_acsnano_4c16314
crossref_primary_10_1039_D0NR08973G
crossref_primary_10_1039_D0EE02309D
crossref_primary_10_1002_tcr_202000074
crossref_primary_10_1021_acsami_2c15092
crossref_primary_10_1002_adfm_202100505
crossref_primary_10_1016_j_cej_2023_141703
crossref_primary_10_1016_j_cej_2022_137561
crossref_primary_10_1016_j_est_2024_112111
crossref_primary_10_1016_j_cej_2022_136598
crossref_primary_10_1002_pol_20210940
crossref_primary_10_1016_j_apcata_2023_119283
crossref_primary_10_1002_ange_202415759
crossref_primary_10_1039_D2EE02742A
crossref_primary_10_1007_s00289_021_03876_7
crossref_primary_10_1016_j_mtchem_2024_102137
crossref_primary_10_1002_smll_202206588
crossref_primary_10_1016_j_ensm_2023_103142
crossref_primary_10_1021_acsami_1c15441
crossref_primary_10_1002_ange_202213276
crossref_primary_10_1002_elan_202100287
crossref_primary_10_1039_D3CC04322C
crossref_primary_10_1016_j_est_2023_108006
crossref_primary_10_1016_j_cej_2021_132704
crossref_primary_10_1016_j_foodchem_2020_127376
crossref_primary_10_1039_D2TA01431A
crossref_primary_10_1016_j_seppur_2022_122147
crossref_primary_10_1002_adfm_202107718
crossref_primary_10_1021_acs_jpclett_1c02004
crossref_primary_10_1002_idm2_12070
crossref_primary_10_1016_j_aej_2024_07_113
crossref_primary_10_1002_adfm_201907006
crossref_primary_10_1021_acsami_3c13027
crossref_primary_10_1007_s12209_020_00274_4
crossref_primary_10_1007_s11426_022_1269_0
crossref_primary_10_1055_s_0041_1723020
crossref_primary_10_1002_adma_202310434
crossref_primary_10_1002_aenm_202100321
crossref_primary_10_1016_j_jcis_2023_02_012
crossref_primary_10_1016_j_jallcom_2019_151854
crossref_primary_10_1007_s41918_024_00218_9
crossref_primary_10_1021_acsaem_3c02271
crossref_primary_10_1039_C9SC02340B
crossref_primary_10_1002_aenm_202001445
crossref_primary_10_1021_acsnano_9b07360
crossref_primary_10_1039_D0CS00793E
crossref_primary_10_1039_C9MH01381D
crossref_primary_10_1021_acsami_2c08366
crossref_primary_10_1039_D2TA04581H
crossref_primary_10_1007_s12598_023_02525_4
crossref_primary_10_1039_D4NR01092B
crossref_primary_10_1007_s10853_021_05872_8
crossref_primary_10_1002_cssc_202001334
crossref_primary_10_1016_j_ensm_2023_103164
crossref_primary_10_34133_energymatadv_0078
crossref_primary_10_1021_acs_iecr_1c04638
crossref_primary_10_1039_D2RA01582J
crossref_primary_10_1080_00268976_2024_2396055
crossref_primary_10_1007_s12274_023_5871_z
crossref_primary_10_1021_acsami_3c10304
crossref_primary_10_1021_acsnano_0c10242
crossref_primary_10_1039_D1NA00404B
Cites_doi 10.1038/ncomms6002
10.1002/adma.201802074
10.1039/C8TA03921F
10.1126/science.8378771
10.1021/acsami.8b09546
10.1016/j.joule.2018.07.008
10.1002/aenm.201801010
10.1021/cr9603744
10.1002/aenm.201602911
10.1002/aenm.201703496
10.1016/j.nanoen.2018.01.001
10.1002/adfm.201801989
10.1021/j150613a011
10.1002/adma.201702093
10.1002/anie.201802248
10.1002/aenm.201701681
10.1002/adfm.201705553
10.1038/nature24044
10.1038/nenergy.2017.74
10.1002/aenm.201702384
10.1002/aenm.201801149
10.1039/C6EE03185D
10.1002/aenm.201800171
10.1016/j.ensm.2017.09.009
10.1021/ja0751781
10.1002/aenm.201801888
10.1002/adma.201800804
10.1038/s41557-018-0061-4
10.1038/s41467-018-04190-z
10.1039/C8TA03176B
10.1021/acsnano.6b05998
10.1002/anie.201710841
10.1021/jacs.7b07027
10.1016/j.nanoen.2017.01.016
10.1039/C1SC00260K
10.1038/s41467-018-02889-7
10.1002/adma.201700104
10.1038/s41467-018-05786-1
10.1002/adfm.201604307
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acsnano.9b00165
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 3607
ExternalDocumentID 30807104
10_1021_acsnano_9b00165
h45430002
Genre Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
4.4
5VS
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
ID FETCH-LOGICAL-a399t-7451117b79506449f67c8626965b31e801d6922da155358bde549ae652ddf56b3
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Thu Jul 10 19:28:48 EDT 2025
Mon Jul 21 05:58:23 EDT 2025
Tue Jul 01 01:34:25 EDT 2025
Thu Apr 24 22:59:54 EDT 2025
Thu Aug 27 13:44:02 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords organic electrode
carbon nanotubes
potassium ion batteries
π-cation interaction
covalent organic framework
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a399t-7451117b79506449f67c8626965b31e801d6922da155358bde549ae652ddf56b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3489-7672
PMID 30807104
PQID 2186616893
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2186616893
pubmed_primary_30807104
crossref_citationtrail_10_1021_acsnano_9b00165
crossref_primary_10_1021_acsnano_9b00165
acs_journals_10_1021_acsnano_9b00165
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-26
PublicationDateYYYYMMDD 2019-03-26
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-26
  day: 26
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref35/cit35
  doi: 10.1038/ncomms6002
– ident: ref36/cit36
  doi: 10.1002/adma.201802074
– ident: ref13/cit13
  doi: 10.1039/C8TA03921F
– ident: ref22/cit22
  doi: 10.1126/science.8378771
– ident: ref25/cit25
  doi: 10.1021/acsami.8b09546
– ident: ref11/cit11
  doi: 10.1016/j.joule.2018.07.008
– ident: ref18/cit18
  doi: 10.1002/aenm.201801010
– ident: ref34/cit34
  doi: 10.1021/cr9603744
– ident: ref2/cit2
  doi: 10.1002/aenm.201602911
– ident: ref15/cit15
  doi: 10.1002/aenm.201703496
– ident: ref10/cit10
  doi: 10.1016/j.nanoen.2018.01.001
– ident: ref30/cit30
  doi: 10.1002/adfm.201801989
– ident: ref19/cit19
  doi: 10.1021/j150613a011
– ident: ref38/cit38
  doi: 10.1002/adma.201702093
– ident: ref14/cit14
  doi: 10.1002/anie.201802248
– ident: ref37/cit37
  doi: 10.1002/aenm.201701681
– ident: ref16/cit16
  doi: 10.1002/adfm.201705553
– ident: ref20/cit20
  doi: 10.1038/nature24044
– ident: ref26/cit26
  doi: 10.1038/nenergy.2017.74
– ident: ref40/cit40
– ident: ref4/cit4
  doi: 10.1002/aenm.201702384
– ident: ref32/cit32
  doi: 10.1002/aenm.201801149
– ident: ref12/cit12
  doi: 10.1039/C6EE03185D
– ident: ref33/cit33
  doi: 10.1002/aenm.201800171
– ident: ref29/cit29
  doi: 10.1016/j.ensm.2017.09.009
– ident: ref23/cit23
  doi: 10.1021/ja0751781
– ident: ref3/cit3
  doi: 10.1002/aenm.201801888
– ident: ref9/cit9
  doi: 10.1002/adma.201800804
– ident: ref21/cit21
  doi: 10.1038/s41557-018-0061-4
– ident: ref6/cit6
  doi: 10.1038/s41467-018-04190-z
– ident: ref39/cit39
  doi: 10.1039/C8TA03176B
– ident: ref28/cit28
  doi: 10.1021/acsnano.6b05998
– ident: ref1/cit1
  doi: 10.1002/anie.201710841
– ident: ref7/cit7
  doi: 10.1021/jacs.7b07027
– ident: ref27/cit27
  doi: 10.1016/j.nanoen.2017.01.016
– ident: ref24/cit24
  doi: 10.1039/C1SC00260K
– ident: ref17/cit17
  doi: 10.1038/s41467-018-02889-7
– ident: ref31/cit31
  doi: 10.1002/adma.201700104
– ident: ref8/cit8
  doi: 10.1038/s41467-018-05786-1
– ident: ref5/cit5
  doi: 10.1002/adfm.201604307
SSID ssj0057876
Score 2.6593401
Snippet Organic electrodes for low-cost potassium ion batteries (PIBs) are attracting more interest by virtue of their molecular diversity, environmental friendliness,...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3600
Title Few-Layered Boronic Ester Based Covalent Organic Frameworks/Carbon Nanotube Composites for High-Performance K‑Organic Batteries
URI http://dx.doi.org/10.1021/acsnano.9b00165
https://www.ncbi.nlm.nih.gov/pubmed/30807104
https://www.proquest.com/docview/2186616893
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgXODAvpRNRuLAJYU4iZMc26pVxSYkQOIWecsFlKAmFYITfAK_yJcwk6VlUQW3RIqtZPLseaMZvyHkUMWh1FIxyyiPWa6GK2D5xgoNi33HODwoxHQuLvng1j298-4mYtE_M_jMPhYqS0SStlC8z-beLJljPPAxzmp3r-tNF3HHywQyBMjAIsYqPr8mQDeksu9uaAq3LHxMf6mszsoKaUIsLblvjXLZUi-_hRv_fv1lslgxTdouobFCZkyySha-6A-ukbe-ebLOxTP266SdtJDJpT2UTqAd8G6adlMAIrglWh7ZVLRf13Jlx10xlGlCYXtO85E0FHcWrAAzGQUiTLGAxLqaHEugZx-v7_U0paonBOnr5Lbfu-kOrKongyWAyuSWj3pmti_9EJXu3DDmvsKgKOSedGwD_k7zkDEtsB-RF0htIAAVhntM69jj0tkgjSRNzBahgvMYwBEaRwvXC7T0T1wRQLAOt0bxoEkOwXhRtaayqEiXMzuqLBpVFm2SVv0nI1XpmmN7jYfpA47GAx5LSY_pjx7U0Ihg2WEuRSQmHWURtvLiNge21ySbJWbGkznAwoG4udv_-4AdMg8sLMTCNsZ3SSMfjsweMJ1c7hcY_wSaJfq7
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JbtRAEC2FcIAc2JdhbaQgcfEkbttt94FDMmQ0YSYREomUm-mlLKEgG6U9isIJPoE_4Ff4Fb6Eai8TFo3EJRI323K37K7tlbr6FcC6KaS22vAATcKD2NIVoXwMJPIijTASWUOms7cvJofx66PkaAW-9Wdh6CMczeSaTfxzdoFwg56VqqyGnsMvFH0Z5RTPTilJcy93X5FEn3M-3jkYTYKuj0CgKPzWQeo5uMJUp9Kzs8WyEKnxQF6KREchko-2QnJule-hk2TaIiVNCkXCrS0SoSOa9xJcJujDfXq3NXrb-3qv7qLdt6a8nMDLgjzorw_20c-436PfEkjbhLbxdfi-WJSmouV4OK_10Hz6gy_yf161G3Ctw9VsqzWEm7CC5S1Y-4Vt8TZ8GeNpMFNnvjsp264aUmC244ki2DbFcstGFZkdBWHWHlA1bNxXrrmNkTrRVckoGFX1XCPzftTXu6FjBPuZL5cJ3pwfwmDTH5-_9tO0HKbv0d2BwwtZg7uwWlYl3gemhCjIFCRGVsVJZnW6GatMbqZ0i0ZkA1gnYeWdB3F5UxzAw7yTYN5JcADDXoFy07G4-2YiH5YPeLEY8LElMFn-6rNeI3NyMn7nSJVYzV3uG5eJUBC2HcC9VlUXk0WUcxBMjR_82w88hSuTg71ZPtvdnz6Eq4Q_pS_p4-IRrNYnc3xMGK_WTxozY_DuojX0J_VTWXw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JatxAEC0cB0J8yL5M1g44kIvGVktqqQ852GMLO-MYQ2LwTelNEBwk49ZgnFPyCfmH_Ep-JF-SKi2TjYFcDLlJQt1I3bW8oqpfAayaUmqrDQ-cSXgQW7xClO8C6XiZRi4SWUum83pf7BzGr46SoyX4OpyFwY_wOJNvk_ik1Se27BkGwjV8XqmqHhOPXyiGUsqpOz_DQM2_3N3CXX3Oeb79drIT9L0EAoUuuAlS4uEKU51KYmiLZSlSQ2BeikRHoUM7bYXk3Crqo5Nk2joMnJQTCbe2TISOcN5LcJmShBTibUzeDPaeRF50uWuMzRHAzAmE_vpg8oDG_-4BF8Da1r3l1-HbfGHaqpbj8azRY_PxD87I_33lbsC1Hl-zjU4hbsKSq27Byi-si7fhc-7Ogj11Tl1K2WbdkgOzbSKMYJvo0y2b1Kh-6IxZd1DVsHyoYPNrE3Wq64qhU6qbmXaM7CnVvTnPEP4zKpsJDn4exmDT75--DNN0XKbvnb8DhxeyBndhuaordx-YEqJElZAusipOMqvT9Vhlcj3FW2dENoJV3KyityS-aIsEeFj0O1j0OziC8SBEhenZ3KmpyIfFA17MB5x0RCaLX302SGWBxoYySKpy9cwX1MBMhAIx7gjudeI6nyzC2APhavzg337gKVw52MqLvd396UO4ijBUUmUfF49guTmduccI9Rr9pNU0Bu8uWkB_AGlJW_8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Few-Layered+Boronic+Ester+Based+Covalent+Organic+Frameworks%2FCarbon+Nanotube+Composites+for+High-Performance+K-Organic+Batteries&rft.jtitle=ACS+nano&rft.au=Chen%2C+Xiudong&rft.au=Zhang%2C+Hang&rft.au=Ci%2C+Chenggang&rft.au=Sun%2C+Weiwei&rft.date=2019-03-26&rft.issn=1936-086X&rft.eissn=1936-086X&rft.volume=13&rft.issue=3&rft.spage=3600&rft_id=info:doi/10.1021%2Facsnano.9b00165&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon