Few-Layered Boronic Ester Based Covalent Organic Frameworks/Carbon Nanotube Composites for High-Performance K‑Organic Batteries
Organic electrodes for low-cost potassium ion batteries (PIBs) are attracting more interest by virtue of their molecular diversity, environmental friendliness, and operation safety. But the sluggish potassium diffusion kinetics, dissolution in organic electrolyte, poor electronic conductivity, and l...
Saved in:
Published in | ACS nano Vol. 13; no. 3; pp. 3600 - 3607 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
26.03.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Organic electrodes for low-cost potassium ion batteries (PIBs) are attracting more interest by virtue of their molecular diversity, environmental friendliness, and operation safety. But the sluggish potassium diffusion kinetics, dissolution in organic electrolyte, poor electronic conductivity, and low reversible capacities are several drawbacks compared with inorganic counterparts. Herein, the boronic ester based covalent organic framework (COF) material is successfully prepared on the exterior surface of carbon nanotubes (CNTs) via rational design of the organic condensation reaction and used as an anode material for PIBs. The few-layered structure of COF-10@CNT can provide more exposed active sites and fast K+ kinetics. It exhibits ultrahigh potassium storage performances (large reversible capacities of 288 mAh g–1 after 500 cycles at 0.1 A g–1 and 161 mAh g–1 after 4000 cycles at 1 A g–1), which is superior to previous organic electrodes and most inorganic electrodes. Moreover, the K-storage mechanism is proposed to be π-cation interaction between K+ and conjugated π-electrons of benzene rings. |
---|---|
AbstractList | Organic electrodes for low-cost potassium ion batteries (PIBs) are attracting more interest by virtue of their molecular diversity, environmental friendliness, and operation safety. But the sluggish potassium diffusion kinetics, dissolution in organic electrolyte, poor electronic conductivity, and low reversible capacities are several drawbacks compared with inorganic counterparts. Herein, the boronic ester based covalent organic framework (COF) material is successfully prepared on the exterior surface of carbon nanotubes (CNTs) via rational design of the organic condensation reaction and used as an anode material for PIBs. The few-layered structure of COF-10@CNT can provide more exposed active sites and fast K+ kinetics. It exhibits ultrahigh potassium storage performances (large reversible capacities of 288 mAh g–1 after 500 cycles at 0.1 A g–1 and 161 mAh g–1 after 4000 cycles at 1 A g–1), which is superior to previous organic electrodes and most inorganic electrodes. Moreover, the K-storage mechanism is proposed to be π-cation interaction between K+ and conjugated π-electrons of benzene rings. Organic electrodes for low-cost potassium ion batteries (PIBs) are attracting more interest by virtue of their molecular diversity, environmental friendliness, and operation safety. But the sluggish potassium diffusion kinetics, dissolution in organic electrolyte, poor electronic conductivity, and low reversible capacities are several drawbacks compared with inorganic counterparts. Herein, the boronic ester based covalent organic framework (COF) material is successfully prepared on the exterior surface of carbon nanotubes (CNTs) via rational design of the organic condensation reaction and used as an anode material for PIBs. The few-layered structure of COF-10@CNT can provide more exposed active sites and fast K kinetics. It exhibits ultrahigh potassium storage performances (large reversible capacities of 288 mAh g after 500 cycles at 0.1 A g and 161 mAh g after 4000 cycles at 1 A g ), which is superior to previous organic electrodes and most inorganic electrodes. Moreover, the K-storage mechanism is proposed to be π-cation interaction between K and conjugated π-electrons of benzene rings. Organic electrodes for low-cost potassium ion batteries (PIBs) are attracting more interest by virtue of their molecular diversity, environmental friendliness, and operation safety. But the sluggish potassium diffusion kinetics, dissolution in organic electrolyte, poor electronic conductivity, and low reversible capacities are several drawbacks compared with inorganic counterparts. Herein, the boronic ester based covalent organic framework (COF) material is successfully prepared on the exterior surface of carbon nanotubes (CNTs) via rational design of the organic condensation reaction and used as an anode material for PIBs. The few-layered structure of COF-10@CNT can provide more exposed active sites and fast K+ kinetics. It exhibits ultrahigh potassium storage performances (large reversible capacities of 288 mAh g-1 after 500 cycles at 0.1 A g-1 and 161 mAh g-1 after 4000 cycles at 1 A g-1), which is superior to previous organic electrodes and most inorganic electrodes. Moreover, the K-storage mechanism is proposed to be π-cation interaction between K+ and conjugated π-electrons of benzene rings.Organic electrodes for low-cost potassium ion batteries (PIBs) are attracting more interest by virtue of their molecular diversity, environmental friendliness, and operation safety. But the sluggish potassium diffusion kinetics, dissolution in organic electrolyte, poor electronic conductivity, and low reversible capacities are several drawbacks compared with inorganic counterparts. Herein, the boronic ester based covalent organic framework (COF) material is successfully prepared on the exterior surface of carbon nanotubes (CNTs) via rational design of the organic condensation reaction and used as an anode material for PIBs. The few-layered structure of COF-10@CNT can provide more exposed active sites and fast K+ kinetics. It exhibits ultrahigh potassium storage performances (large reversible capacities of 288 mAh g-1 after 500 cycles at 0.1 A g-1 and 161 mAh g-1 after 4000 cycles at 1 A g-1), which is superior to previous organic electrodes and most inorganic electrodes. Moreover, the K-storage mechanism is proposed to be π-cation interaction between K+ and conjugated π-electrons of benzene rings. |
Author | Zhang, Hang Chen, Xiudong Wang, Yong Ci, Chenggang Sun, Weiwei |
AuthorAffiliation | Department of Chemical Engineering, School of Environmental and Chemical Engineering School of Chemistry and Chemical Engineering |
AuthorAffiliation_xml | – name: Department of Chemical Engineering, School of Environmental and Chemical Engineering – name: School of Chemistry and Chemical Engineering |
Author_xml | – sequence: 1 givenname: Xiudong surname: Chen fullname: Chen, Xiudong organization: School of Chemistry and Chemical Engineering – sequence: 2 givenname: Hang surname: Zhang fullname: Zhang, Hang organization: Department of Chemical Engineering, School of Environmental and Chemical Engineering – sequence: 3 givenname: Chenggang surname: Ci fullname: Ci, Chenggang organization: School of Chemistry and Chemical Engineering – sequence: 4 givenname: Weiwei surname: Sun fullname: Sun, Weiwei organization: Department of Chemical Engineering, School of Environmental and Chemical Engineering – sequence: 5 givenname: Yong orcidid: 0000-0003-3489-7672 surname: Wang fullname: Wang, Yong email: yongwang@shu.edu.cn organization: Department of Chemical Engineering, School of Environmental and Chemical Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30807104$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc9O3DAQxi1Exb_2zA3liITC2knsxEd2xZaqK-BApd6sSTIBQ2IvtgPiRh-hr9gnqdHuckDi5JHn930zmm-fbBtrkJBDRk8ZzdgEGm_A2FNZU8oE3yJ7TOYipZX4vf1ec7ZL9r2_p5SXVSl2yG5OK1oyWuyRP3N8Thfwgg7bZGqdNbpJzn1Al0zBx7-ZfYIeTUiu3C28NecOBny27sFPZuBqa5LLuEEYa4zssLReB_RJZ11yoW_v0mt0sR7ANJj8_Pf6d2MzhRCHaPRfyZcOeo_f1u8B-TU_v5ldpIur7z9mZ4sUcilDWhacMVbWpeRUFIXsRNlUIhNS8DpnWFHWCpllLTDOc17VLfJCAgqetW3HRZ0fkOOV79LZxxF9UIP2DfY9GLSjVxmrhGCiknlEj9boWA_YqqXTA7gXtTlbBPgKaJz13mGnGh0gaGuCA90rRtVbPGodj1rHE3WTD7qN9eeKk5UiNtS9HZ2JN_qU_g80oKOp |
CitedBy_id | crossref_primary_10_1002_chem_202303320 crossref_primary_10_1016_j_jmat_2023_06_010 crossref_primary_10_1016_j_cej_2020_127559 crossref_primary_10_1002_aenm_202003735 crossref_primary_10_1039_D0TA10785A crossref_primary_10_1016_j_jssc_2023_124068 crossref_primary_10_1039_D0QI01104E crossref_primary_10_1021_acsami_2c04831 crossref_primary_10_1016_j_snb_2020_128501 crossref_primary_10_1002_anie_202424641 crossref_primary_10_1002_eem2_12059 crossref_primary_10_5796_electrochemistry_23_00015 crossref_primary_10_1002_adma_202105647 crossref_primary_10_1016_j_ensm_2024_103849 crossref_primary_10_1039_D0CS00017E crossref_primary_10_1016_j_ensm_2021_03_007 crossref_primary_10_1007_s41918_022_00152_8 crossref_primary_10_1016_j_pmatsci_2024_101373 crossref_primary_10_1016_j_cclet_2023_108233 crossref_primary_10_1021_acsami_1c10870 crossref_primary_10_1039_D1CS00983D crossref_primary_10_1039_C9CS00880B crossref_primary_10_3390_molecules28165953 crossref_primary_10_1002_ange_202316116 crossref_primary_10_1016_j_chempr_2020_08_021 crossref_primary_10_1016_S1872_5805_21_60001_X crossref_primary_10_1016_j_electacta_2022_139947 crossref_primary_10_1021_acs_jpcc_4c04602 crossref_primary_10_1002_inf2_12101 crossref_primary_10_1002_batt_202200545 crossref_primary_10_1016_j_cclet_2022_108095 crossref_primary_10_1021_acsami_0c06267 crossref_primary_10_1039_D4TC01270D crossref_primary_10_1002_aenm_202003054 crossref_primary_10_1016_j_seppur_2023_124750 crossref_primary_10_1039_D2TA07101K crossref_primary_10_1002_ange_202117661 crossref_primary_10_1038_s43586_022_00181_z crossref_primary_10_1002_batt_202200429 crossref_primary_10_1002_adfm_202300138 crossref_primary_10_1021_acssensors_4c00613 crossref_primary_10_1038_s41467_019_13739_5 crossref_primary_10_1039_D1MA00158B crossref_primary_10_1016_j_carbon_2020_09_003 crossref_primary_10_1021_acsami_4c17756 crossref_primary_10_1002_smll_202304406 crossref_primary_10_1002_adma_202301190 crossref_primary_10_1002_anie_202213276 crossref_primary_10_1002_adfm_202108574 crossref_primary_10_1002_admt_202201591 crossref_primary_10_1007_s40242_022_1494_2 crossref_primary_10_1002_adma_202305795 crossref_primary_10_1002_ange_202414566 crossref_primary_10_1016_j_est_2023_107940 crossref_primary_10_1021_acsami_9b13118 crossref_primary_10_1039_D1NJ01269J crossref_primary_10_1088_2053_1591_ac76a2 crossref_primary_10_3390_inorganics11040156 crossref_primary_10_1016_j_ensm_2025_104097 crossref_primary_10_1016_j_mattod_2023_02_027 crossref_primary_10_1039_C9TA11221A crossref_primary_10_1039_D3CS00601H crossref_primary_10_1039_D3NR01701J crossref_primary_10_1021_acsanm_2c03634 crossref_primary_10_1016_j_jpowsour_2022_231951 crossref_primary_10_1016_j_jpowsour_2025_236425 crossref_primary_10_1039_D1CP01209F crossref_primary_10_2139_ssrn_4160393 crossref_primary_10_1002_marc_202100897 crossref_primary_10_1002_tcr_202200125 crossref_primary_10_1021_acsnano_2c03857 crossref_primary_10_1039_D3CC00712J crossref_primary_10_1002_smtd_202101131 crossref_primary_10_1002_adma_202210082 crossref_primary_10_1002_aenm_201904199 crossref_primary_10_1039_C9CC07293D crossref_primary_10_1016_j_gee_2022_05_007 crossref_primary_10_1002_smtd_202000159 crossref_primary_10_20964_2022_12_83 crossref_primary_10_1002_smll_202100918 crossref_primary_10_1039_C9TA10088A crossref_primary_10_1002_adma_202002038 crossref_primary_10_1039_D0TA04741D crossref_primary_10_1016_j_cej_2020_125967 crossref_primary_10_1016_j_polymer_2023_126214 crossref_primary_10_1039_D0TA03947K crossref_primary_10_1016_j_jcis_2023_03_106 crossref_primary_10_1016_j_polymer_2024_127244 crossref_primary_10_1002_adsu_202000227 crossref_primary_10_1016_j_cej_2024_156873 crossref_primary_10_1021_acs_chemrev_9b00550 crossref_primary_10_1002_aenm_202200057 crossref_primary_10_1016_j_apsusc_2022_153862 crossref_primary_10_1002_aenm_202101926 crossref_primary_10_1016_j_ijhydene_2022_08_060 crossref_primary_10_1016_j_jaap_2023_105952 crossref_primary_10_1007_s41918_022_00135_9 crossref_primary_10_1039_D3TA07337H crossref_primary_10_1016_j_ensm_2024_103199 crossref_primary_10_1016_j_jmrt_2023_03_112 crossref_primary_10_1002_eem2_12166 crossref_primary_10_1016_j_cej_2023_143941 crossref_primary_10_1039_D0TA12243B crossref_primary_10_1002_aenm_202100177 crossref_primary_10_1002_anie_202405426 crossref_primary_10_1002_celc_202000963 crossref_primary_10_1016_j_indcrop_2023_116788 crossref_primary_10_1021_acs_chemrev_9b00463 crossref_primary_10_1002_anie_201916595 crossref_primary_10_1016_j_cej_2022_140116 crossref_primary_10_1002_chem_202101587 crossref_primary_10_1002_inf2_12277 crossref_primary_10_1021_acsami_9b20384 crossref_primary_10_1039_D2CE01132H crossref_primary_10_1002_smtd_201900338 crossref_primary_10_1016_j_rser_2021_111161 crossref_primary_10_1002_adfm_202421697 crossref_primary_10_1016_j_synthmet_2022_117112 crossref_primary_10_1002_smtd_202300687 crossref_primary_10_1039_D1TC01506K crossref_primary_10_1007_s11426_021_1016_6 crossref_primary_10_1016_j_pnsc_2023_12_018 crossref_primary_10_1039_D2SE00520D crossref_primary_10_1002_adfm_202306424 crossref_primary_10_1016_j_est_2023_107691 crossref_primary_10_1002_ange_202405426 crossref_primary_10_1002_ange_201916595 crossref_primary_10_1039_D0CS00620C crossref_primary_10_1039_D3CC02652C crossref_primary_10_1016_j_pdpdt_2024_104063 crossref_primary_10_1016_j_ensm_2020_06_025 crossref_primary_10_1016_j_jechem_2025_01_062 crossref_primary_10_1016_j_fuel_2023_130562 crossref_primary_10_1002_aenm_202003215 crossref_primary_10_1002_anie_202414566 crossref_primary_10_1016_j_ensm_2022_04_040 crossref_primary_10_1021_acsanm_9b00567 crossref_primary_10_1016_j_cej_2022_138051 crossref_primary_10_1016_j_apsusc_2023_157124 crossref_primary_10_1073_pnas_2315407121 crossref_primary_10_1016_j_mattod_2022_02_013 crossref_primary_10_1002_sus2_180 crossref_primary_10_1016_j_cej_2023_142714 crossref_primary_10_1039_D3AN00947E crossref_primary_10_1021_acsami_9b21802 crossref_primary_10_1007_s10854_023_10832_w crossref_primary_10_1039_D0TA03310C crossref_primary_10_3390_catal13030620 crossref_primary_10_3390_catal13030621 crossref_primary_10_1021_acsnano_3c08240 crossref_primary_10_1038_s41560_022_01188_2 crossref_primary_10_1002_anie_202117661 crossref_primary_10_1016_j_chemosphere_2021_132795 crossref_primary_10_3390_catal13040659 crossref_primary_10_1016_j_carbon_2020_08_074 crossref_primary_10_1016_j_compositesa_2022_107281 crossref_primary_10_1002_aenm_202400521 crossref_primary_10_1021_acsaem_3c00828 crossref_primary_10_1002_adfm_202001592 crossref_primary_10_1016_j_jelechem_2022_116051 crossref_primary_10_1016_j_foodchem_2024_141063 crossref_primary_10_1142_S1793604719300020 crossref_primary_10_1016_j_cej_2023_147275 crossref_primary_10_1016_j_micron_2024_103595 crossref_primary_10_1039_D1EE00166C crossref_primary_10_1016_j_cej_2020_127850 crossref_primary_10_1016_j_compscitech_2023_110216 crossref_primary_10_1039_D2SC03980J crossref_primary_10_1016_j_jallcom_2023_169998 crossref_primary_10_1002_anie_202415759 crossref_primary_10_1016_j_mtcomm_2021_102612 crossref_primary_10_1016_j_surfin_2023_102977 crossref_primary_10_1039_D0EE02917C crossref_primary_10_1016_j_est_2025_116269 crossref_primary_10_1039_D1TA09433E crossref_primary_10_1002_anie_202316116 crossref_primary_10_1002_anie_202302143 crossref_primary_10_1016_j_ccr_2022_214781 crossref_primary_10_1002_chem_202005259 crossref_primary_10_1039_D1NR07209A crossref_primary_10_1021_jacs_3c04657 crossref_primary_10_1002_ange_202424641 crossref_primary_10_1016_j_mattod_2022_02_001 crossref_primary_10_1088_2515_7655_acbf76 crossref_primary_10_3390_molecules26133995 crossref_primary_10_1002_adma_202207245 crossref_primary_10_1002_eom2_12246 crossref_primary_10_1016_j_ensm_2022_12_015 crossref_primary_10_1021_acsami_9b08625 crossref_primary_10_1021_jacs_3c11182 crossref_primary_10_1016_j_jcis_2019_11_042 crossref_primary_10_1021_acsami_0c17692 crossref_primary_10_1016_j_cej_2021_133215 crossref_primary_10_1002_ange_202302143 crossref_primary_10_1002_slct_202200656 crossref_primary_10_3390_nano13081432 crossref_primary_10_1002_adma_201901640 crossref_primary_10_1002_aenm_202302589 crossref_primary_10_1002_aenm_202300442 crossref_primary_10_1021_acsnano_4c16314 crossref_primary_10_1039_D0NR08973G crossref_primary_10_1039_D0EE02309D crossref_primary_10_1002_tcr_202000074 crossref_primary_10_1021_acsami_2c15092 crossref_primary_10_1002_adfm_202100505 crossref_primary_10_1016_j_cej_2023_141703 crossref_primary_10_1016_j_cej_2022_137561 crossref_primary_10_1016_j_est_2024_112111 crossref_primary_10_1016_j_cej_2022_136598 crossref_primary_10_1002_pol_20210940 crossref_primary_10_1016_j_apcata_2023_119283 crossref_primary_10_1002_ange_202415759 crossref_primary_10_1039_D2EE02742A crossref_primary_10_1007_s00289_021_03876_7 crossref_primary_10_1016_j_mtchem_2024_102137 crossref_primary_10_1002_smll_202206588 crossref_primary_10_1016_j_ensm_2023_103142 crossref_primary_10_1021_acsami_1c15441 crossref_primary_10_1002_ange_202213276 crossref_primary_10_1002_elan_202100287 crossref_primary_10_1039_D3CC04322C crossref_primary_10_1016_j_est_2023_108006 crossref_primary_10_1016_j_cej_2021_132704 crossref_primary_10_1016_j_foodchem_2020_127376 crossref_primary_10_1039_D2TA01431A crossref_primary_10_1016_j_seppur_2022_122147 crossref_primary_10_1002_adfm_202107718 crossref_primary_10_1021_acs_jpclett_1c02004 crossref_primary_10_1002_idm2_12070 crossref_primary_10_1016_j_aej_2024_07_113 crossref_primary_10_1002_adfm_201907006 crossref_primary_10_1021_acsami_3c13027 crossref_primary_10_1007_s12209_020_00274_4 crossref_primary_10_1007_s11426_022_1269_0 crossref_primary_10_1055_s_0041_1723020 crossref_primary_10_1002_adma_202310434 crossref_primary_10_1002_aenm_202100321 crossref_primary_10_1016_j_jcis_2023_02_012 crossref_primary_10_1016_j_jallcom_2019_151854 crossref_primary_10_1007_s41918_024_00218_9 crossref_primary_10_1021_acsaem_3c02271 crossref_primary_10_1039_C9SC02340B crossref_primary_10_1002_aenm_202001445 crossref_primary_10_1021_acsnano_9b07360 crossref_primary_10_1039_D0CS00793E crossref_primary_10_1039_C9MH01381D crossref_primary_10_1021_acsami_2c08366 crossref_primary_10_1039_D2TA04581H crossref_primary_10_1007_s12598_023_02525_4 crossref_primary_10_1039_D4NR01092B crossref_primary_10_1007_s10853_021_05872_8 crossref_primary_10_1002_cssc_202001334 crossref_primary_10_1016_j_ensm_2023_103164 crossref_primary_10_34133_energymatadv_0078 crossref_primary_10_1021_acs_iecr_1c04638 crossref_primary_10_1039_D2RA01582J crossref_primary_10_1080_00268976_2024_2396055 crossref_primary_10_1007_s12274_023_5871_z crossref_primary_10_1021_acsami_3c10304 crossref_primary_10_1021_acsnano_0c10242 crossref_primary_10_1039_D1NA00404B |
Cites_doi | 10.1038/ncomms6002 10.1002/adma.201802074 10.1039/C8TA03921F 10.1126/science.8378771 10.1021/acsami.8b09546 10.1016/j.joule.2018.07.008 10.1002/aenm.201801010 10.1021/cr9603744 10.1002/aenm.201602911 10.1002/aenm.201703496 10.1016/j.nanoen.2018.01.001 10.1002/adfm.201801989 10.1021/j150613a011 10.1002/adma.201702093 10.1002/anie.201802248 10.1002/aenm.201701681 10.1002/adfm.201705553 10.1038/nature24044 10.1038/nenergy.2017.74 10.1002/aenm.201702384 10.1002/aenm.201801149 10.1039/C6EE03185D 10.1002/aenm.201800171 10.1016/j.ensm.2017.09.009 10.1021/ja0751781 10.1002/aenm.201801888 10.1002/adma.201800804 10.1038/s41557-018-0061-4 10.1038/s41467-018-04190-z 10.1039/C8TA03176B 10.1021/acsnano.6b05998 10.1002/anie.201710841 10.1021/jacs.7b07027 10.1016/j.nanoen.2017.01.016 10.1039/C1SC00260K 10.1038/s41467-018-02889-7 10.1002/adma.201700104 10.1038/s41467-018-05786-1 10.1002/adfm.201604307 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acsnano.9b00165 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 3607 |
ExternalDocumentID | 30807104 10_1021_acsnano_9b00165 h45430002 |
Genre | Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 4.4 5VS 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 |
ID | FETCH-LOGICAL-a399t-7451117b79506449f67c8626965b31e801d6922da155358bde549ae652ddf56b3 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Thu Jul 10 19:28:48 EDT 2025 Mon Jul 21 05:58:23 EDT 2025 Tue Jul 01 01:34:25 EDT 2025 Thu Apr 24 22:59:54 EDT 2025 Thu Aug 27 13:44:02 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | organic electrode carbon nanotubes potassium ion batteries π-cation interaction covalent organic framework |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a399t-7451117b79506449f67c8626965b31e801d6922da155358bde549ae652ddf56b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3489-7672 |
PMID | 30807104 |
PQID | 2186616893 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2186616893 pubmed_primary_30807104 crossref_citationtrail_10_1021_acsnano_9b00165 crossref_primary_10_1021_acsnano_9b00165 acs_journals_10_1021_acsnano_9b00165 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-26 |
PublicationDateYYYYMMDD | 2019-03-26 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-26 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref35/cit35 doi: 10.1038/ncomms6002 – ident: ref36/cit36 doi: 10.1002/adma.201802074 – ident: ref13/cit13 doi: 10.1039/C8TA03921F – ident: ref22/cit22 doi: 10.1126/science.8378771 – ident: ref25/cit25 doi: 10.1021/acsami.8b09546 – ident: ref11/cit11 doi: 10.1016/j.joule.2018.07.008 – ident: ref18/cit18 doi: 10.1002/aenm.201801010 – ident: ref34/cit34 doi: 10.1021/cr9603744 – ident: ref2/cit2 doi: 10.1002/aenm.201602911 – ident: ref15/cit15 doi: 10.1002/aenm.201703496 – ident: ref10/cit10 doi: 10.1016/j.nanoen.2018.01.001 – ident: ref30/cit30 doi: 10.1002/adfm.201801989 – ident: ref19/cit19 doi: 10.1021/j150613a011 – ident: ref38/cit38 doi: 10.1002/adma.201702093 – ident: ref14/cit14 doi: 10.1002/anie.201802248 – ident: ref37/cit37 doi: 10.1002/aenm.201701681 – ident: ref16/cit16 doi: 10.1002/adfm.201705553 – ident: ref20/cit20 doi: 10.1038/nature24044 – ident: ref26/cit26 doi: 10.1038/nenergy.2017.74 – ident: ref40/cit40 – ident: ref4/cit4 doi: 10.1002/aenm.201702384 – ident: ref32/cit32 doi: 10.1002/aenm.201801149 – ident: ref12/cit12 doi: 10.1039/C6EE03185D – ident: ref33/cit33 doi: 10.1002/aenm.201800171 – ident: ref29/cit29 doi: 10.1016/j.ensm.2017.09.009 – ident: ref23/cit23 doi: 10.1021/ja0751781 – ident: ref3/cit3 doi: 10.1002/aenm.201801888 – ident: ref9/cit9 doi: 10.1002/adma.201800804 – ident: ref21/cit21 doi: 10.1038/s41557-018-0061-4 – ident: ref6/cit6 doi: 10.1038/s41467-018-04190-z – ident: ref39/cit39 doi: 10.1039/C8TA03176B – ident: ref28/cit28 doi: 10.1021/acsnano.6b05998 – ident: ref1/cit1 doi: 10.1002/anie.201710841 – ident: ref7/cit7 doi: 10.1021/jacs.7b07027 – ident: ref27/cit27 doi: 10.1016/j.nanoen.2017.01.016 – ident: ref24/cit24 doi: 10.1039/C1SC00260K – ident: ref17/cit17 doi: 10.1038/s41467-018-02889-7 – ident: ref31/cit31 doi: 10.1002/adma.201700104 – ident: ref8/cit8 doi: 10.1038/s41467-018-05786-1 – ident: ref5/cit5 doi: 10.1002/adfm.201604307 |
SSID | ssj0057876 |
Score | 2.6593401 |
Snippet | Organic electrodes for low-cost potassium ion batteries (PIBs) are attracting more interest by virtue of their molecular diversity, environmental friendliness,... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3600 |
Title | Few-Layered Boronic Ester Based Covalent Organic Frameworks/Carbon Nanotube Composites for High-Performance K‑Organic Batteries |
URI | http://dx.doi.org/10.1021/acsnano.9b00165 https://www.ncbi.nlm.nih.gov/pubmed/30807104 https://www.proquest.com/docview/2186616893 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgXODAvpRNRuLAJYU4iZMc26pVxSYkQOIWecsFlKAmFYITfAK_yJcwk6VlUQW3RIqtZPLseaMZvyHkUMWh1FIxyyiPWa6GK2D5xgoNi33HODwoxHQuLvng1j298-4mYtE_M_jMPhYqS0SStlC8z-beLJljPPAxzmp3r-tNF3HHywQyBMjAIsYqPr8mQDeksu9uaAq3LHxMf6mszsoKaUIsLblvjXLZUi-_hRv_fv1lslgxTdouobFCZkyySha-6A-ukbe-ebLOxTP266SdtJDJpT2UTqAd8G6adlMAIrglWh7ZVLRf13Jlx10xlGlCYXtO85E0FHcWrAAzGQUiTLGAxLqaHEugZx-v7_U0paonBOnr5Lbfu-kOrKongyWAyuSWj3pmti_9EJXu3DDmvsKgKOSedGwD_k7zkDEtsB-RF0htIAAVhntM69jj0tkgjSRNzBahgvMYwBEaRwvXC7T0T1wRQLAOt0bxoEkOwXhRtaayqEiXMzuqLBpVFm2SVv0nI1XpmmN7jYfpA47GAx5LSY_pjx7U0Ihg2WEuRSQmHWURtvLiNge21ySbJWbGkznAwoG4udv_-4AdMg8sLMTCNsZ3SSMfjsweMJ1c7hcY_wSaJfq7 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JbtRAEC2FcIAc2JdhbaQgcfEkbttt94FDMmQ0YSYREomUm-mlLKEgG6U9isIJPoE_4Ff4Fb6Eai8TFo3EJRI323K37K7tlbr6FcC6KaS22vAATcKD2NIVoXwMJPIijTASWUOms7cvJofx66PkaAW-9Wdh6CMczeSaTfxzdoFwg56VqqyGnsMvFH0Z5RTPTilJcy93X5FEn3M-3jkYTYKuj0CgKPzWQeo5uMJUp9Kzs8WyEKnxQF6KREchko-2QnJule-hk2TaIiVNCkXCrS0SoSOa9xJcJujDfXq3NXrb-3qv7qLdt6a8nMDLgjzorw_20c-436PfEkjbhLbxdfi-WJSmouV4OK_10Hz6gy_yf161G3Ctw9VsqzWEm7CC5S1Y-4Vt8TZ8GeNpMFNnvjsp264aUmC244ki2DbFcstGFZkdBWHWHlA1bNxXrrmNkTrRVckoGFX1XCPzftTXu6FjBPuZL5cJ3pwfwmDTH5-_9tO0HKbv0d2BwwtZg7uwWlYl3gemhCjIFCRGVsVJZnW6GatMbqZ0i0ZkA1gnYeWdB3F5UxzAw7yTYN5JcADDXoFy07G4-2YiH5YPeLEY8LElMFn-6rNeI3NyMn7nSJVYzV3uG5eJUBC2HcC9VlUXk0WUcxBMjR_82w88hSuTg71ZPtvdnz6Eq4Q_pS_p4-IRrNYnc3xMGK_WTxozY_DuojX0J_VTWXw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JatxAEC0cB0J8yL5M1g44kIvGVktqqQ852GMLO-MYQ2LwTelNEBwk49ZgnFPyCfmH_Ep-JF-SKi2TjYFcDLlJQt1I3bW8oqpfAayaUmqrDQ-cSXgQW7xClO8C6XiZRi4SWUum83pf7BzGr46SoyX4OpyFwY_wOJNvk_ik1Se27BkGwjV8XqmqHhOPXyiGUsqpOz_DQM2_3N3CXX3Oeb79drIT9L0EAoUuuAlS4uEKU51KYmiLZSlSQ2BeikRHoUM7bYXk3Crqo5Nk2joMnJQTCbe2TISOcN5LcJmShBTibUzeDPaeRF50uWuMzRHAzAmE_vpg8oDG_-4BF8Da1r3l1-HbfGHaqpbj8azRY_PxD87I_33lbsC1Hl-zjU4hbsKSq27Byi-si7fhc-7Ogj11Tl1K2WbdkgOzbSKMYJvo0y2b1Kh-6IxZd1DVsHyoYPNrE3Wq64qhU6qbmXaM7CnVvTnPEP4zKpsJDn4exmDT75--DNN0XKbvnb8DhxeyBndhuaordx-YEqJElZAusipOMqvT9Vhlcj3FW2dENoJV3KyityS-aIsEeFj0O1j0OziC8SBEhenZ3KmpyIfFA17MB5x0RCaLX302SGWBxoYySKpy9cwX1MBMhAIx7gjudeI6nyzC2APhavzg337gKVw52MqLvd396UO4ijBUUmUfF49guTmduccI9Rr9pNU0Bu8uWkB_AGlJW_8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Few-Layered+Boronic+Ester+Based+Covalent+Organic+Frameworks%2FCarbon+Nanotube+Composites+for+High-Performance+K-Organic+Batteries&rft.jtitle=ACS+nano&rft.au=Chen%2C+Xiudong&rft.au=Zhang%2C+Hang&rft.au=Ci%2C+Chenggang&rft.au=Sun%2C+Weiwei&rft.date=2019-03-26&rft.issn=1936-086X&rft.eissn=1936-086X&rft.volume=13&rft.issue=3&rft.spage=3600&rft_id=info:doi/10.1021%2Facsnano.9b00165&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |