Perfluorocarbon@Porphyrin Nanoparticles for Tumor Hypoxia Relief to Enhance Photodynamic Therapy against Liver Metastasis of Colon Cancer

Photodynamic therapy (PDT) shows great promise for the treatment of colon cancer. However, practically, it is a great challenge to use a nanocarrier for the codelivery of both the photosensitizer and oxygen to improve PDT against PDT-induced hypoxia, which is closely related to tumor metastasis. Hen...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 14; no. 10; pp. 13569 - 13583
Main Authors Liang, Xiaolong, Chen, Min, Bhattarai, Pravin, Hameed, Sadaf, Dai, Zhifei
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 27.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Photodynamic therapy (PDT) shows great promise for the treatment of colon cancer. However, practically, it is a great challenge to use a nanocarrier for the codelivery of both the photosensitizer and oxygen to improve PDT against PDT-induced hypoxia, which is closely related to tumor metastasis. Hence, an effective strategy was proposed to develop an oxygen self-supplemented PDT nanocarrier based on the ultrasonic dispersion of perfluorooctyl bromide (PFOB) liquid into the preformed porphyrin grafted lipid (PGL) nanoparticles (NPs) with high porphyrin loading content of 38.5%, followed by entrapping oxygen. Interestingly, the orderly arranging mode of porphyrins and alkyl chains in PGL NPs not only guarantees a high efficacy of singlet oxygen generation but also reduces fluorescence loss of porphyrins to enable PGL NPs to be highly fluorescent. More importantly, PFOB liquid was stabilized inside PGL NPs with an ultrahigh loading content of 98.15% due to the strong hydrophobic interaction between PGL and PFOB molecules, facilitating efficient oxygen delivery. Both in vitro and in vivo results demonstrated that the obtained O2@PFOB@PGL NPs could act as a prominent oxygen reservoir and effectively replenish oxygen into the hypoxic tumors with no need for external stimulation, conducive to augmented singlet oxygen generation, hypoxia relief, and subsequent downregulation of COX-2 expression. As a result, the use of O2@PFOB@PGL NPs for hypoxia relief dramatically inhibits tumor growth and liver metastasis in an HT-29 colon cancer mouse model. In addition, the O2@PFOB@PGL NPs could serve as a bimodal contrast agent to enhance fluorescence and CT imaging, visualizing nanoparticle accumulation to guide the subsequent laser irradiation for precise PDT.
AbstractList Photodynamic therapy (PDT) shows great promise for the treatment of colon cancer. However, practically, it is a great challenge to use a nanocarrier for the codelivery of both the photosensitizer and oxygen to improve PDT against PDT-induced hypoxia, which is closely related to tumor metastasis. Hence, an effective strategy was proposed to develop an oxygen self-supplemented PDT nanocarrier based on the ultrasonic dispersion of perfluorooctyl bromide (PFOB) liquid into the preformed porphyrin grafted lipid (PGL) nanoparticles (NPs) with high porphyrin loading content of 38.5%, followed by entrapping oxygen. Interestingly, the orderly arranging mode of porphyrins and alkyl chains in PGL NPs not only guarantees a high efficacy of singlet oxygen generation but also reduces fluorescence loss of porphyrins to enable PGL NPs to be highly fluorescent. More importantly, PFOB liquid was stabilized inside PGL NPs with an ultrahigh loading content of 98.15% due to the strong hydrophobic interaction between PGL and PFOB molecules, facilitating efficient oxygen delivery. Both and results demonstrated that the obtained O @PFOB@PGL NPs could act as a prominent oxygen reservoir and effectively replenish oxygen into the hypoxic tumors with no need for external stimulation, conducive to augmented singlet oxygen generation, hypoxia relief, and subsequent downregulation of COX-2 expression. As a result, the use of O @PFOB@PGL NPs for hypoxia relief dramatically inhibits tumor growth and liver metastasis in an HT-29 colon cancer mouse model. In addition, the O @PFOB@PGL NPs could serve as a bimodal contrast agent to enhance fluorescence and CT imaging, visualizing nanoparticle accumulation to guide the subsequent laser irradiation for precise PDT.
Photodynamic therapy (PDT) shows great promise for the treatment of colon cancer. However, practically, it is a great challenge to use a nanocarrier for the codelivery of both the photosensitizer and oxygen to improve PDT against PDT-induced hypoxia, which is closely related to tumor metastasis. Hence, an effective strategy was proposed to develop an oxygen self-supplemented PDT nanocarrier based on the ultrasonic dispersion of perfluorooctyl bromide (PFOB) liquid into the preformed porphyrin grafted lipid (PGL) nanoparticles (NPs) with high porphyrin loading content of 38.5%, followed by entrapping oxygen. Interestingly, the orderly arranging mode of porphyrins and alkyl chains in PGL NPs not only guarantees a high efficacy of singlet oxygen generation but also reduces fluorescence loss of porphyrins to enable PGL NPs to be highly fluorescent. More importantly, PFOB liquid was stabilized inside PGL NPs with an ultrahigh loading content of 98.15% due to the strong hydrophobic interaction between PGL and PFOB molecules, facilitating efficient oxygen delivery. Both in vitro and in vivo results demonstrated that the obtained O2@PFOB@PGL NPs could act as a prominent oxygen reservoir and effectively replenish oxygen into the hypoxic tumors with no need for external stimulation, conducive to augmented singlet oxygen generation, hypoxia relief, and subsequent downregulation of COX-2 expression. As a result, the use of O2@PFOB@PGL NPs for hypoxia relief dramatically inhibits tumor growth and liver metastasis in an HT-29 colon cancer mouse model. In addition, the O2@PFOB@PGL NPs could serve as a bimodal contrast agent to enhance fluorescence and CT imaging, visualizing nanoparticle accumulation to guide the subsequent laser irradiation for precise PDT.
Photodynamic therapy (PDT) shows great promise for the treatment of colon cancer. However, practically, it is a great challenge to use a nanocarrier for the codelivery of both the photosensitizer and oxygen to improve PDT against PDT-induced hypoxia, which is closely related to tumor metastasis. Hence, an effective strategy was proposed to develop an oxygen self-supplemented PDT nanocarrier based on the ultrasonic dispersion of perfluorooctyl bromide (PFOB) liquid into the preformed porphyrin grafted lipid (PGL) nanoparticles (NPs) with high porphyrin loading content of 38.5%, followed by entrapping oxygen. Interestingly, the orderly arranging mode of porphyrins and alkyl chains in PGL NPs not only guarantees a high efficacy of singlet oxygen generation but also reduces fluorescence loss of porphyrins to enable PGL NPs to be highly fluorescent. More importantly, PFOB liquid was stabilized inside PGL NPs with an ultrahigh loading content of 98.15% due to the strong hydrophobic interaction between PGL and PFOB molecules, facilitating efficient oxygen delivery. Both in vitro and in vivo results demonstrated that the obtained O2@PFOB@PGL NPs could act as a prominent oxygen reservoir and effectively replenish oxygen into the hypoxic tumors with no need for external stimulation, conducive to augmented singlet oxygen generation, hypoxia relief, and subsequent downregulation of COX-2 expression. As a result, the use of O2@PFOB@PGL NPs for hypoxia relief dramatically inhibits tumor growth and liver metastasis in an HT-29 colon cancer mouse model. In addition, the O2@PFOB@PGL NPs could serve as a bimodal contrast agent to enhance fluorescence and CT imaging, visualizing nanoparticle accumulation to guide the subsequent laser irradiation for precise PDT.Photodynamic therapy (PDT) shows great promise for the treatment of colon cancer. However, practically, it is a great challenge to use a nanocarrier for the codelivery of both the photosensitizer and oxygen to improve PDT against PDT-induced hypoxia, which is closely related to tumor metastasis. Hence, an effective strategy was proposed to develop an oxygen self-supplemented PDT nanocarrier based on the ultrasonic dispersion of perfluorooctyl bromide (PFOB) liquid into the preformed porphyrin grafted lipid (PGL) nanoparticles (NPs) with high porphyrin loading content of 38.5%, followed by entrapping oxygen. Interestingly, the orderly arranging mode of porphyrins and alkyl chains in PGL NPs not only guarantees a high efficacy of singlet oxygen generation but also reduces fluorescence loss of porphyrins to enable PGL NPs to be highly fluorescent. More importantly, PFOB liquid was stabilized inside PGL NPs with an ultrahigh loading content of 98.15% due to the strong hydrophobic interaction between PGL and PFOB molecules, facilitating efficient oxygen delivery. Both in vitro and in vivo results demonstrated that the obtained O2@PFOB@PGL NPs could act as a prominent oxygen reservoir and effectively replenish oxygen into the hypoxic tumors with no need for external stimulation, conducive to augmented singlet oxygen generation, hypoxia relief, and subsequent downregulation of COX-2 expression. As a result, the use of O2@PFOB@PGL NPs for hypoxia relief dramatically inhibits tumor growth and liver metastasis in an HT-29 colon cancer mouse model. In addition, the O2@PFOB@PGL NPs could serve as a bimodal contrast agent to enhance fluorescence and CT imaging, visualizing nanoparticle accumulation to guide the subsequent laser irradiation for precise PDT.
Author Dai, Zhifei
Chen, Min
Hameed, Sadaf
Bhattarai, Pravin
Liang, Xiaolong
AuthorAffiliation Department of Biomedical Engineering, College of Engineering
Peking University Third Hospital
Department of Ultrasound
AuthorAffiliation_xml – name: Department of Ultrasound
– name: Department of Biomedical Engineering, College of Engineering
– name: Peking University Third Hospital
Author_xml – sequence: 1
  givenname: Xiaolong
  surname: Liang
  fullname: Liang, Xiaolong
  organization: Peking University Third Hospital
– sequence: 2
  givenname: Min
  surname: Chen
  fullname: Chen, Min
  organization: Department of Biomedical Engineering, College of Engineering
– sequence: 3
  givenname: Pravin
  surname: Bhattarai
  fullname: Bhattarai, Pravin
  organization: Department of Biomedical Engineering, College of Engineering
– sequence: 4
  givenname: Sadaf
  surname: Hameed
  fullname: Hameed, Sadaf
  organization: Department of Biomedical Engineering, College of Engineering
– sequence: 5
  givenname: Zhifei
  orcidid: 0000-0001-6231-3692
  surname: Dai
  fullname: Dai, Zhifei
  email: zhifei.dai@pku.edu.cn
  organization: Department of Biomedical Engineering, College of Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32915537$$D View this record in MEDLINE/PubMed
BookMark eNp1kU2LFDEQhoOsuB969iY5CjK7SbrTPbkpw7orjDrICN5CdbraydKTapO02D9h_7W9zKwHYSEkBXme91DvOTsJFJCx11JcSqHkFbgUINClcEJXsn7GzqQpqoVYVj9O_s1anrLzlO6E0PWyrl6w00IZqXVRn7H7DcauHymSg9hQeL-hOOym6AP_MgcPELN3PSbeUeTbcT_ft9NAfzzwb9h77Hgmfh12EBzyzY4ytVOAvXd8u8MIw8ThJ_iQMl_73xj5Z8yQ5uMTp46vqKfAVw9yfMmed9AnfHV8L9j3j9fb1e1i_fXm0-rDegGFMXlRydKIWhvj0KiybUC7WopOtCW2VSOdMLopO6mXpQCFtTGolFGVKmVZIJq6uGBvD7lDpF8jpmz3PjnsewhIY7KqLJVSQggzo2-O6NjssbVD9HuIk31c3wzoA-AipRSxs85nyJ5CjuB7K4V9qMkea7LHmmbv6j_vMfpp493BmD_sHY0xzDt6kv4LmeKnOQ
CitedBy_id crossref_primary_10_3390_biom12010081
crossref_primary_10_1016_j_phrs_2022_106551
crossref_primary_10_1039_D1TB00554E
crossref_primary_10_1016_j_nantod_2023_101827
crossref_primary_10_1021_acs_molpharmaceut_3c00116
crossref_primary_10_1002_smll_202401397
crossref_primary_10_1016_j_mtadv_2022_100289
crossref_primary_10_1002_adhm_202300089
crossref_primary_10_1002_adhm_202301453
crossref_primary_10_1021_acsnano_3c00360
crossref_primary_10_1016_j_ejphar_2021_174464
crossref_primary_10_1039_D4TB00011K
crossref_primary_10_1007_s40820_020_00561_8
crossref_primary_10_1021_acsami_1c04868
crossref_primary_10_1002_ange_202411514
crossref_primary_10_1021_acs_molpharmaceut_4c01267
crossref_primary_10_1039_D1CC01830B
crossref_primary_10_1016_j_jconrel_2025_02_019
crossref_primary_10_1016_j_jcis_2022_09_061
crossref_primary_10_1016_j_colsurfb_2020_111500
crossref_primary_10_1021_acs_biomac_1c01067
crossref_primary_10_1142_S1088424621500243
crossref_primary_10_3390_cancers16010066
crossref_primary_10_1002_adma_202212069
crossref_primary_10_1016_j_actbio_2025_01_017
crossref_primary_10_1186_s12951_021_01144_4
crossref_primary_10_2139_ssrn_3994525
crossref_primary_10_1002_smll_202309026
crossref_primary_10_1002_adma_202201978
crossref_primary_10_1039_D4QI03065F
crossref_primary_10_1039_D3TB01323E
crossref_primary_10_1021_acsomega_2c05852
crossref_primary_10_1016_j_jphotobiol_2023_112796
crossref_primary_10_1016_j_biomaterials_2022_121472
crossref_primary_10_1002_advs_202405583
crossref_primary_10_1039_D3CC01355C
crossref_primary_10_1002_adhm_202300530
crossref_primary_10_1016_j_cej_2022_135993
crossref_primary_10_1002_adma_202103978
crossref_primary_10_1016_j_apmt_2022_101687
crossref_primary_10_1021_acsami_1c05848
crossref_primary_10_1016_j_actbio_2023_05_047
crossref_primary_10_1016_j_cej_2022_138621
crossref_primary_10_1016_j_nantod_2022_101376
crossref_primary_10_1016_j_mtbio_2023_100555
crossref_primary_10_1021_acsami_3c00603
crossref_primary_10_1039_D1QM00134E
crossref_primary_10_1039_D1BM01280K
crossref_primary_10_1021_acsnano_1c00616
crossref_primary_10_1039_D3DT04064J
crossref_primary_10_3389_fphar_2023_1140362
crossref_primary_10_1016_j_jcis_2024_03_133
crossref_primary_10_2147_IJN_S362759
crossref_primary_10_1016_j_inoche_2024_112352
crossref_primary_10_2174_0118715206323900240807110122
crossref_primary_10_1021_acsabm_3c00566
crossref_primary_10_1155_2024_6618388
crossref_primary_10_1039_D3SC03877G
crossref_primary_10_1126_sciadv_abn3883
crossref_primary_10_1016_j_ccr_2023_215482
crossref_primary_10_1039_D1TB00209K
crossref_primary_10_1186_s12951_021_01013_0
crossref_primary_10_1002_chem_202400115
crossref_primary_10_1002_smll_202406860
crossref_primary_10_1016_j_ijpharm_2025_125508
crossref_primary_10_1016_j_jcis_2021_12_172
crossref_primary_10_1021_acs_nanolett_5c00090
crossref_primary_10_1021_jacs_3c13501
crossref_primary_10_1002_mco2_203
crossref_primary_10_3390_ijms241512204
crossref_primary_10_1038_s41598_022_14518_x
crossref_primary_10_3390_molecules28052250
crossref_primary_10_1016_j_jcis_2022_08_125
crossref_primary_10_1039_D2CC06212G
crossref_primary_10_1007_s40843_021_1706_4
crossref_primary_10_1002_smll_202403523
crossref_primary_10_1021_acsami_2c00448
crossref_primary_10_1016_j_apmt_2024_102193
crossref_primary_10_1016_j_jcis_2024_08_041
crossref_primary_10_1016_j_cclet_2024_109957
crossref_primary_10_1016_j_actbio_2021_02_030
crossref_primary_10_1016_j_biomaterials_2022_121920
crossref_primary_10_2147_IJN_S393194
crossref_primary_10_1016_j_nantod_2021_101297
crossref_primary_10_1016_j_nantod_2022_101477
crossref_primary_10_1002_adhm_202300752
crossref_primary_10_1016_j_jcis_2023_05_190
crossref_primary_10_1557_s43578_023_01256_7
crossref_primary_10_1021_acs_bioconjchem_3c00432
crossref_primary_10_1016_j_tranon_2023_101771
crossref_primary_10_1021_acsami_2c06655
crossref_primary_10_1016_j_ccr_2024_215866
crossref_primary_10_3892_ijo_2025_5728
crossref_primary_10_1002_adma_202104594
crossref_primary_10_1016_j_jconrel_2024_05_039
crossref_primary_10_1002_adma_202302508
crossref_primary_10_1021_acs_analchem_3c01505
crossref_primary_10_1002_wnan_1864
crossref_primary_10_1016_j_ajps_2023_100829
crossref_primary_10_1016_j_ijbiomac_2024_136891
crossref_primary_10_3389_fimmu_2024_1479483
crossref_primary_10_1002_VIW_20220051
crossref_primary_10_1016_j_carbpol_2021_118655
crossref_primary_10_1002_adfm_202010777
crossref_primary_10_1002_bio_4621
crossref_primary_10_1039_D0BM01898H
crossref_primary_10_3390_ijms242316949
crossref_primary_10_1002_adma_202308286
crossref_primary_10_32948_ajo_2023_11_28
crossref_primary_10_1016_j_coco_2021_100950
crossref_primary_10_1016_j_bioactmat_2023_08_021
crossref_primary_10_3389_fchem_2021_649158
crossref_primary_10_1166_jbn_2023_3669
crossref_primary_10_1016_j_ccr_2023_215078
crossref_primary_10_1039_D5CC00278H
crossref_primary_10_1002_adma_202402806
crossref_primary_10_1016_j_biomaterials_2021_121326
crossref_primary_10_1039_D3NJ02243A
crossref_primary_10_1016_j_heliyon_2024_e28066
crossref_primary_10_1016_j_canlet_2023_216066
crossref_primary_10_1039_D2NA00549B
crossref_primary_10_1002_adom_202102377
crossref_primary_10_1016_j_mtnano_2022_100236
crossref_primary_10_1002_advs_202103676
crossref_primary_10_1002_cjoc_202200334
crossref_primary_10_1007_s13562_024_00894_0
crossref_primary_10_1021_acsnano_1c00033
crossref_primary_10_1007_s10965_023_03546_4
crossref_primary_10_1021_acsnano_4c06051
crossref_primary_10_1039_D1TB02221K
crossref_primary_10_1002_mabi_202100092
crossref_primary_10_1016_j_engreg_2021_09_002
crossref_primary_10_1002_anie_202411514
crossref_primary_10_1021_acsanm_1c03209
crossref_primary_10_1038_s41467_023_44429_y
crossref_primary_10_1002_ppsc_202100048
crossref_primary_10_1039_D3MH01263H
crossref_primary_10_1016_j_bioactmat_2022_11_013
crossref_primary_10_1021_acsnano_3c05034
crossref_primary_10_1039_D2BM01691E
crossref_primary_10_1016_j_actbio_2024_05_016
crossref_primary_10_1021_acsabm_1c00174
crossref_primary_10_1038_s41598_024_80879_0
crossref_primary_10_1016_j_actbio_2021_05_016
crossref_primary_10_1021_acsami_2c02949
crossref_primary_10_1021_acsnano_2c08098
crossref_primary_10_1038_s41467_022_32066_w
crossref_primary_10_3390_ijms24097995
crossref_primary_10_2147_IJN_S402821
crossref_primary_10_1038_s41467_023_40470_z
crossref_primary_10_1016_j_actbio_2024_01_010
crossref_primary_10_3390_cancers15051576
crossref_primary_10_1021_acsnano_4c00516
crossref_primary_10_1002_med_22072
crossref_primary_10_1002_wnan_1930
crossref_primary_10_1016_j_actbio_2023_10_018
crossref_primary_10_1039_D2TB01775J
crossref_primary_10_1166_jbn_2023_3489
crossref_primary_10_1021_acsanm_1c01662
crossref_primary_10_1016_j_nantod_2022_101434
crossref_primary_10_1016_j_ajps_2023_100775
crossref_primary_10_1021_acsmaterialsau_3c00060
crossref_primary_10_1002_mog2_67
crossref_primary_10_3390_pharmaceutics14091763
crossref_primary_10_1016_j_addr_2022_114554
crossref_primary_10_1155_2021_2990326
crossref_primary_10_1007_s12094_023_03304_4
crossref_primary_10_1021_acsami_3c02929
Cites_doi 10.1172/JCI66715
10.1038/sj.bjc.6601186
10.1002/anie.201103557
10.1002/anie.201500478
10.1021/acs.bioconjchem.8b00812
10.1002/adfm.201804901
10.1021/acs.nanolett.6b02365
10.1177/153303461000900105
10.1158/0008-5472.CAN-06-2701
10.1073/pnas.1113483108
10.1016/j.bbrc.2011.06.186
10.1158/1078-0432.CCR-17-2725
10.1126/science.aaf4405
10.1016/S0142-9612(98)00071-4
10.1038/ncomms9785
10.1016/j.biomaterials.2015.02.117
10.1016/j.msec.2007.10.058
10.1158/1078-0432.CCR-05-2382
10.1038/ncomms5712
10.1021/acsami.0c00921
10.1146/annurev-med-051513-102539
10.1002/adfm.201603212
10.1039/C7CC07038A
10.1016/S1470-2045(04)01529-3
10.1007/s12029-013-9496-4
10.1158/0008-5472.CAN-06-2355
10.1074/jbc.M113.526814
10.3322/caac.21254
10.1038/onc.2011.365
10.1002/adma.201602111
10.1016/j.biomaterials.2014.04.094
10.1158/0008-5472.CAN-06-0425
10.1016/j.jconrel.2013.06.003
10.1038/nrc1071
10.1081/BIO-200046659
10.1038/ncb1691
10.1021/cr5004198
10.1016/j.biomaterials.2014.11.053
10.1002/adfm.201600676
10.1039/C5CC07353G
10.1056/NEJMra1513581
10.1021/acsami.9b14084
10.1002/advs.201700847
10.1021/acs.bioconjchem.8b00374
10.1126/science.6695191
10.1016/j.biomaterials.2018.08.011
10.1002/adma.201504617
10.3748/wjg.v22.i32.7215
10.1021/acsami.6b14885
10.1038/s41467-018-04318-1
10.1021/jacs.7b05559
10.1148/radiol.10092339
10.1016/j.biopha.2016.07.058
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acsnano.0c05617
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 13583
ExternalDocumentID 32915537
10_1021_acsnano_0c05617
b460470871
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
23M
53G
55A
5GY
5VS
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
F5P
GNL
IH9
IHE
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
4.4
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a399t-614907599ce924dba5c710f0d4ed6b1c095b4f15840a2e799e2292624143ee973
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Thu Jul 10 17:41:56 EDT 2025
Mon Jul 21 05:56:35 EDT 2025
Tue Jul 01 03:37:03 EDT 2025
Thu Apr 24 23:02:15 EDT 2025
Fri Oct 30 03:45:43 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords nanoparticle
liver metastasis
porphyrin
hypoxia relief
photodynamic therapy
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a399t-614907599ce924dba5c710f0d4ed6b1c095b4f15840a2e799e2292624143ee973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6231-3692
PMID 32915537
PQID 2442220009
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_2442220009
pubmed_primary_32915537
crossref_citationtrail_10_1021_acsnano_0c05617
crossref_primary_10_1021_acsnano_0c05617
acs_journals_10_1021_acsnano_0c05617
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-27
PublicationDateYYYYMMDD 2020-10-27
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-27
  day: 27
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
Teicher B. A. (ref33/cit33) 1989; 49
ref7/cit7
References_xml – ident: ref24/cit24
  doi: 10.1172/JCI66715
– ident: ref17/cit17
  doi: 10.1038/sj.bjc.6601186
– ident: ref52/cit52
  doi: 10.1002/anie.201103557
– ident: ref15/cit15
  doi: 10.1002/anie.201500478
– ident: ref49/cit49
  doi: 10.1021/acs.bioconjchem.8b00812
– ident: ref38/cit38
  doi: 10.1002/adfm.201804901
– ident: ref54/cit54
  doi: 10.1021/acs.nanolett.6b02365
– ident: ref48/cit48
  doi: 10.1177/153303461000900105
– ident: ref23/cit23
  doi: 10.1158/0008-5472.CAN-06-2701
– ident: ref21/cit21
  doi: 10.1073/pnas.1113483108
– ident: ref44/cit44
  doi: 10.1016/j.bbrc.2011.06.186
– ident: ref46/cit46
  doi: 10.1158/1078-0432.CCR-17-2725
– ident: ref16/cit16
  doi: 10.1126/science.aaf4405
– ident: ref36/cit36
  doi: 10.1016/S0142-9612(98)00071-4
– ident: ref6/cit6
  doi: 10.1038/ncomms9785
– ident: ref37/cit37
  doi: 10.1016/j.biomaterials.2015.02.117
– ident: ref53/cit53
  doi: 10.1016/j.msec.2007.10.058
– ident: ref18/cit18
  doi: 10.1158/1078-0432.CCR-05-2382
– ident: ref9/cit9
  doi: 10.1038/ncomms5712
– ident: ref28/cit28
  doi: 10.1021/acsami.0c00921
– ident: ref2/cit2
  doi: 10.1146/annurev-med-051513-102539
– ident: ref14/cit14
  doi: 10.1002/adfm.201603212
– ident: ref42/cit42
  doi: 10.1039/C7CC07038A
– ident: ref39/cit39
  doi: 10.1039/C7CC07038A
– ident: ref5/cit5
  doi: 10.1016/S1470-2045(04)01529-3
– ident: ref10/cit10
  doi: 10.1007/s12029-013-9496-4
– volume: 49
  start-page: 2693
  year: 1989
  ident: ref33/cit33
  publication-title: Cancer Res.
– ident: ref20/cit20
  doi: 10.1158/0008-5472.CAN-06-2355
– ident: ref45/cit45
  doi: 10.1074/jbc.M113.526814
– ident: ref1/cit1
  doi: 10.3322/caac.21254
– ident: ref22/cit22
  doi: 10.1038/onc.2011.365
– ident: ref32/cit32
  doi: 10.1002/adma.201602111
– ident: ref43/cit43
  doi: 10.1016/j.biomaterials.2014.04.094
– ident: ref47/cit47
  doi: 10.1158/0008-5472.CAN-06-0425
– ident: ref55/cit55
  doi: 10.1016/j.jconrel.2013.06.003
– ident: ref7/cit7
  doi: 10.1038/nrc1071
– ident: ref35/cit35
  doi: 10.1081/BIO-200046659
– ident: ref19/cit19
  doi: 10.1038/ncb1691
– ident: ref8/cit8
  doi: 10.1021/cr5004198
– ident: ref50/cit50
  doi: 10.1016/j.biomaterials.2014.11.053
– ident: ref26/cit26
  doi: 10.1002/adfm.201600676
– ident: ref11/cit11
  doi: 10.1039/C5CC07353G
– ident: ref3/cit3
  doi: 10.1056/NEJMra1513581
– ident: ref27/cit27
  doi: 10.1021/acsami.9b14084
– ident: ref25/cit25
  doi: 10.1002/advs.201700847
– ident: ref13/cit13
  doi: 10.1021/acs.bioconjchem.8b00374
– ident: ref34/cit34
  doi: 10.1126/science.6695191
– ident: ref31/cit31
  doi: 10.1016/j.biomaterials.2018.08.011
– ident: ref40/cit40
  doi: 10.1002/adma.201504617
– ident: ref4/cit4
  doi: 10.3748/wjg.v22.i32.7215
– ident: ref41/cit41
  doi: 10.1021/acsami.6b14885
– ident: ref29/cit29
  doi: 10.1038/s41467-018-04318-1
– ident: ref30/cit30
  doi: 10.1021/jacs.7b05559
– ident: ref51/cit51
  doi: 10.1148/radiol.10092339
– ident: ref12/cit12
  doi: 10.1016/j.biopha.2016.07.058
SSID ssj0057876
Score 2.6557708
Snippet Photodynamic therapy (PDT) shows great promise for the treatment of colon cancer. However, practically, it is a great challenge to use a nanocarrier for the...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 13569
SubjectTerms Animals
Cell Line, Tumor
Colonic Neoplasms - drug therapy
Fluorocarbons
Liver Neoplasms - diagnostic imaging
Liver Neoplasms - drug therapy
Mice
Nanoparticles
Oxygen
Photochemotherapy
Photosensitizing Agents - pharmacology
Photosensitizing Agents - therapeutic use
Porphyrins - pharmacology
Tumor Hypoxia
Title Perfluorocarbon@Porphyrin Nanoparticles for Tumor Hypoxia Relief to Enhance Photodynamic Therapy against Liver Metastasis of Colon Cancer
URI http://dx.doi.org/10.1021/acsnano.0c05617
https://www.ncbi.nlm.nih.gov/pubmed/32915537
https://www.proquest.com/docview/2442220009
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1LS8QwEMeDj4sefD_WFxE8eOnaTZNme1MWZRGVBVfwVpI01UVNZNuC-g381k7a7vpi0UsvbUI7nWR-wwz_IHQQ-jQBLmAepyzwaNJmXsQZ80KqICFikQpk2W1xFXZv6Pktu_0Ui_5ZwSetI6EyI4xt-srBLp9GsyRsc5dnnXSuR5uu87uwKiBDggwUMVbx-TWBC0Mq-x6GJrBlGWPOFqvurKyUJnStJQ_NIpdN9fZbuPHv119CCzVp4pPKNZbRlDYraP6L_uAqeu_pYfpYWAhiYiitOe5ZZ3a4iWHXhXS67prDQLa4XzzBtfv6bF8GArtWZp3i3OJTc-88B_fubW6T6oB73K_ECrC4EwMAUHzh2j_wpc4F0Gg2yLBNcQf2XYM7bvBwDd2cnfY7Xa8-m8ETgDQ5ZJwU0moWRUpDBpdIwRSwSuonVCehbCkgN0nTFuCNL4jmUaQJcdKEFPhM64gH62jGWKM3EeYBlYCB0lcpp1EaSObrJFFpW4oAdgvRQAdgxLheW1lcls1JK64tG9eWbaDm6I_GqtY3d8dsPE4ecDge8FxJe0x-dH_kIjEsP1dTEUbbIouBjoCwHKk20EblO-PJAuLE9wO-9b8P2EZzxCXzEBgJ30Ez-bDQu0A8udwrff0DV-f8eg
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzZ3LbtQwFIaPSllAF5Q7Q7kYqUhsMmQcO2kWSFTTVlM6rUZiKnWX2o5DR23t0SQRDG_AW_AqvBnHuUy5aCQ2ldhkkcRWYh_7_058cgywGfosRS7gXsR44LF0i3txxLkXMoUOEY9VIKtoi6NwcMw-nPCTFfje_guDD5FjTXm1iH-VXaD3Fs8ZYWzXV455oyaM8kDPP6OTlr_b38EefU3p3u64P_CafQQ8gfJboHfE0AXkcaw0ehupFFyhrmZ-ynQayp5CypAs66EU-4LqKI41pS6NHkOW0DqOAqz3BtxE9KHOvdvuf2znemfuYb1ujX45wssiedBfD-zUT-W_q98SpK2kbW8dfiwapYpoOe-Wheyqr3_ki_yfW-0u3Gm4mmzXA-EerGhzH9Z-ybb4AL6N9Cy7KC1KtphJa96PrDMyvEhQY-y0jREkyPFkXF7icTCf2i8TQVzgts5IYcmuOXPjhIzObGHTuRGXE0XGdWoGIj6JCeI2GbpgF3KoC4HsnU9yYjPSR5UxpO8Kzx7C8bW0xSNYNdboJ0CigEmEXumrLGJxFkju6zRV2ZYUAc6NogOb2GlJM5PkSRUkQHtJ05NJ05Md6LaGlKgmm7vbVORieYE3iwLTOpHJ8ltftZaZ4GTjVpCE0bbME2RB5EnH5R14XJvsorKAuq0Ggujpv73AS7g1GB8Ok-H-0cEG3KbuMwYiAY2ewWoxK_VzZL1CvqiGG4HT67bUn7KcXDc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VIiE48H4sTyMViUuWbGLHzQGJatvVlpZqJbZSb8F2bLqitVebRLD8A_4Hf4X_xTiPFQ-txKUSlxyS2Eo8j--bzGQMsJWENEdewAJOWRzQfJsFKWcsSKjCgIilKpZ1tcVRMj6mb0_YyQZ87_6FwYcocKaiTuJ7q57npu0wMHiF562wrh8qz3t5W0p5oJefMVArXu_volRfRNFobzocB-1eAoFACC4xQqIYBrI0VRojjlwKphBbTZhTnSdyoJBpSGoGCMehiDRPUx1FvpUeRT6hdcpjnPcSXPZJQh_i7Qzfd_7eq3zS5K4xNkcCs2og9NcDewRUxe8IuIbW1vA2ugE_VgtTV7V86lel7Kuvf_SM_N9X7iZcb_k12WkM4hZsaHsbrv3SdfEOfJvohTmrHEK3WEhn30ycVza8SBBr3LyrFSTI58m0OsfjeDl3X2aC-AJubUjpyJ499fZCJqeudPnSivOZItOmRQMRH8UMaTc59EUv5J0uBXLwYlYQZ8gQ0caSoR-8uAvHF7IW92DTOqsfAOExlUh-ZagMp6mJJQt1niuzLUWMPlL0YAuFlrUepcjqYoFokLWSzFpJ9qDfKVOm2q7ufnORs_UDXq4GzJuGJutvfd5pZ4ZOx2eShNWuKjLkhMgrPT_vwf1GbVeTxZHfciDmD__tBZ7BlcnuKDvcPzp4BFcj_zUDmUHEH8Nmuaj0E6R8pXxaWxyBDxetqD8BLvpeug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Perfluorocarbon%40Porphyrin+Nanoparticles+for+Tumor+Hypoxia+Relief+to+Enhance+Photodynamic+Therapy+against+Liver+Metastasis+of+Colon+Cancer&rft.jtitle=ACS+nano&rft.au=Liang%2C+Xiaolong&rft.au=Chen%2C+Min&rft.au=Bhattarai%2C+Pravin&rft.au=Hameed%2C+Sadaf&rft.date=2020-10-27&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=14&rft.issue=10&rft.spage=13569&rft.epage=13583&rft_id=info:doi/10.1021%2Facsnano.0c05617&rft.externalDocID=b460470871
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon