Perfluorocarbon@Porphyrin Nanoparticles for Tumor Hypoxia Relief to Enhance Photodynamic Therapy against Liver Metastasis of Colon Cancer
Photodynamic therapy (PDT) shows great promise for the treatment of colon cancer. However, practically, it is a great challenge to use a nanocarrier for the codelivery of both the photosensitizer and oxygen to improve PDT against PDT-induced hypoxia, which is closely related to tumor metastasis. Hen...
Saved in:
Published in | ACS nano Vol. 14; no. 10; pp. 13569 - 13583 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
27.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Photodynamic therapy (PDT) shows great promise for the treatment of colon cancer. However, practically, it is a great challenge to use a nanocarrier for the codelivery of both the photosensitizer and oxygen to improve PDT against PDT-induced hypoxia, which is closely related to tumor metastasis. Hence, an effective strategy was proposed to develop an oxygen self-supplemented PDT nanocarrier based on the ultrasonic dispersion of perfluorooctyl bromide (PFOB) liquid into the preformed porphyrin grafted lipid (PGL) nanoparticles (NPs) with high porphyrin loading content of 38.5%, followed by entrapping oxygen. Interestingly, the orderly arranging mode of porphyrins and alkyl chains in PGL NPs not only guarantees a high efficacy of singlet oxygen generation but also reduces fluorescence loss of porphyrins to enable PGL NPs to be highly fluorescent. More importantly, PFOB liquid was stabilized inside PGL NPs with an ultrahigh loading content of 98.15% due to the strong hydrophobic interaction between PGL and PFOB molecules, facilitating efficient oxygen delivery. Both in vitro and in vivo results demonstrated that the obtained O2@PFOB@PGL NPs could act as a prominent oxygen reservoir and effectively replenish oxygen into the hypoxic tumors with no need for external stimulation, conducive to augmented singlet oxygen generation, hypoxia relief, and subsequent downregulation of COX-2 expression. As a result, the use of O2@PFOB@PGL NPs for hypoxia relief dramatically inhibits tumor growth and liver metastasis in an HT-29 colon cancer mouse model. In addition, the O2@PFOB@PGL NPs could serve as a bimodal contrast agent to enhance fluorescence and CT imaging, visualizing nanoparticle accumulation to guide the subsequent laser irradiation for precise PDT. |
---|---|
AbstractList | Photodynamic therapy (PDT) shows great promise for the treatment of colon cancer. However, practically, it is a great challenge to use a nanocarrier for the codelivery of both the photosensitizer and oxygen to improve PDT against PDT-induced hypoxia, which is closely related to tumor metastasis. Hence, an effective strategy was proposed to develop an oxygen self-supplemented PDT nanocarrier based on the ultrasonic dispersion of perfluorooctyl bromide (PFOB) liquid into the preformed porphyrin grafted lipid (PGL) nanoparticles (NPs) with high porphyrin loading content of 38.5%, followed by entrapping oxygen. Interestingly, the orderly arranging mode of porphyrins and alkyl chains in PGL NPs not only guarantees a high efficacy of singlet oxygen generation but also reduces fluorescence loss of porphyrins to enable PGL NPs to be highly fluorescent. More importantly, PFOB liquid was stabilized inside PGL NPs with an ultrahigh loading content of 98.15% due to the strong hydrophobic interaction between PGL and PFOB molecules, facilitating efficient oxygen delivery. Both
and
results demonstrated that the obtained O
@PFOB@PGL NPs could act as a prominent oxygen reservoir and effectively replenish oxygen into the hypoxic tumors with no need for external stimulation, conducive to augmented singlet oxygen generation, hypoxia relief, and subsequent downregulation of COX-2 expression. As a result, the use of O
@PFOB@PGL NPs for hypoxia relief dramatically inhibits tumor growth and liver metastasis in an HT-29 colon cancer mouse model. In addition, the O
@PFOB@PGL NPs could serve as a bimodal contrast agent to enhance fluorescence and CT imaging, visualizing nanoparticle accumulation to guide the subsequent laser irradiation for precise PDT. Photodynamic therapy (PDT) shows great promise for the treatment of colon cancer. However, practically, it is a great challenge to use a nanocarrier for the codelivery of both the photosensitizer and oxygen to improve PDT against PDT-induced hypoxia, which is closely related to tumor metastasis. Hence, an effective strategy was proposed to develop an oxygen self-supplemented PDT nanocarrier based on the ultrasonic dispersion of perfluorooctyl bromide (PFOB) liquid into the preformed porphyrin grafted lipid (PGL) nanoparticles (NPs) with high porphyrin loading content of 38.5%, followed by entrapping oxygen. Interestingly, the orderly arranging mode of porphyrins and alkyl chains in PGL NPs not only guarantees a high efficacy of singlet oxygen generation but also reduces fluorescence loss of porphyrins to enable PGL NPs to be highly fluorescent. More importantly, PFOB liquid was stabilized inside PGL NPs with an ultrahigh loading content of 98.15% due to the strong hydrophobic interaction between PGL and PFOB molecules, facilitating efficient oxygen delivery. Both in vitro and in vivo results demonstrated that the obtained O2@PFOB@PGL NPs could act as a prominent oxygen reservoir and effectively replenish oxygen into the hypoxic tumors with no need for external stimulation, conducive to augmented singlet oxygen generation, hypoxia relief, and subsequent downregulation of COX-2 expression. As a result, the use of O2@PFOB@PGL NPs for hypoxia relief dramatically inhibits tumor growth and liver metastasis in an HT-29 colon cancer mouse model. In addition, the O2@PFOB@PGL NPs could serve as a bimodal contrast agent to enhance fluorescence and CT imaging, visualizing nanoparticle accumulation to guide the subsequent laser irradiation for precise PDT. Photodynamic therapy (PDT) shows great promise for the treatment of colon cancer. However, practically, it is a great challenge to use a nanocarrier for the codelivery of both the photosensitizer and oxygen to improve PDT against PDT-induced hypoxia, which is closely related to tumor metastasis. Hence, an effective strategy was proposed to develop an oxygen self-supplemented PDT nanocarrier based on the ultrasonic dispersion of perfluorooctyl bromide (PFOB) liquid into the preformed porphyrin grafted lipid (PGL) nanoparticles (NPs) with high porphyrin loading content of 38.5%, followed by entrapping oxygen. Interestingly, the orderly arranging mode of porphyrins and alkyl chains in PGL NPs not only guarantees a high efficacy of singlet oxygen generation but also reduces fluorescence loss of porphyrins to enable PGL NPs to be highly fluorescent. More importantly, PFOB liquid was stabilized inside PGL NPs with an ultrahigh loading content of 98.15% due to the strong hydrophobic interaction between PGL and PFOB molecules, facilitating efficient oxygen delivery. Both in vitro and in vivo results demonstrated that the obtained O2@PFOB@PGL NPs could act as a prominent oxygen reservoir and effectively replenish oxygen into the hypoxic tumors with no need for external stimulation, conducive to augmented singlet oxygen generation, hypoxia relief, and subsequent downregulation of COX-2 expression. As a result, the use of O2@PFOB@PGL NPs for hypoxia relief dramatically inhibits tumor growth and liver metastasis in an HT-29 colon cancer mouse model. In addition, the O2@PFOB@PGL NPs could serve as a bimodal contrast agent to enhance fluorescence and CT imaging, visualizing nanoparticle accumulation to guide the subsequent laser irradiation for precise PDT.Photodynamic therapy (PDT) shows great promise for the treatment of colon cancer. However, practically, it is a great challenge to use a nanocarrier for the codelivery of both the photosensitizer and oxygen to improve PDT against PDT-induced hypoxia, which is closely related to tumor metastasis. Hence, an effective strategy was proposed to develop an oxygen self-supplemented PDT nanocarrier based on the ultrasonic dispersion of perfluorooctyl bromide (PFOB) liquid into the preformed porphyrin grafted lipid (PGL) nanoparticles (NPs) with high porphyrin loading content of 38.5%, followed by entrapping oxygen. Interestingly, the orderly arranging mode of porphyrins and alkyl chains in PGL NPs not only guarantees a high efficacy of singlet oxygen generation but also reduces fluorescence loss of porphyrins to enable PGL NPs to be highly fluorescent. More importantly, PFOB liquid was stabilized inside PGL NPs with an ultrahigh loading content of 98.15% due to the strong hydrophobic interaction between PGL and PFOB molecules, facilitating efficient oxygen delivery. Both in vitro and in vivo results demonstrated that the obtained O2@PFOB@PGL NPs could act as a prominent oxygen reservoir and effectively replenish oxygen into the hypoxic tumors with no need for external stimulation, conducive to augmented singlet oxygen generation, hypoxia relief, and subsequent downregulation of COX-2 expression. As a result, the use of O2@PFOB@PGL NPs for hypoxia relief dramatically inhibits tumor growth and liver metastasis in an HT-29 colon cancer mouse model. In addition, the O2@PFOB@PGL NPs could serve as a bimodal contrast agent to enhance fluorescence and CT imaging, visualizing nanoparticle accumulation to guide the subsequent laser irradiation for precise PDT. |
Author | Dai, Zhifei Chen, Min Hameed, Sadaf Bhattarai, Pravin Liang, Xiaolong |
AuthorAffiliation | Department of Biomedical Engineering, College of Engineering Peking University Third Hospital Department of Ultrasound |
AuthorAffiliation_xml | – name: Department of Ultrasound – name: Department of Biomedical Engineering, College of Engineering – name: Peking University Third Hospital |
Author_xml | – sequence: 1 givenname: Xiaolong surname: Liang fullname: Liang, Xiaolong organization: Peking University Third Hospital – sequence: 2 givenname: Min surname: Chen fullname: Chen, Min organization: Department of Biomedical Engineering, College of Engineering – sequence: 3 givenname: Pravin surname: Bhattarai fullname: Bhattarai, Pravin organization: Department of Biomedical Engineering, College of Engineering – sequence: 4 givenname: Sadaf surname: Hameed fullname: Hameed, Sadaf organization: Department of Biomedical Engineering, College of Engineering – sequence: 5 givenname: Zhifei orcidid: 0000-0001-6231-3692 surname: Dai fullname: Dai, Zhifei email: zhifei.dai@pku.edu.cn organization: Department of Biomedical Engineering, College of Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32915537$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU2LFDEQhoOsuB969iY5CjK7SbrTPbkpw7orjDrICN5CdbraydKTapO02D9h_7W9zKwHYSEkBXme91DvOTsJFJCx11JcSqHkFbgUINClcEJXsn7GzqQpqoVYVj9O_s1anrLzlO6E0PWyrl6w00IZqXVRn7H7DcauHymSg9hQeL-hOOym6AP_MgcPELN3PSbeUeTbcT_ft9NAfzzwb9h77Hgmfh12EBzyzY4ytVOAvXd8u8MIw8ThJ_iQMl_73xj5Z8yQ5uMTp46vqKfAVw9yfMmed9AnfHV8L9j3j9fb1e1i_fXm0-rDegGFMXlRydKIWhvj0KiybUC7WopOtCW2VSOdMLopO6mXpQCFtTGolFGVKmVZIJq6uGBvD7lDpF8jpmz3PjnsewhIY7KqLJVSQggzo2-O6NjssbVD9HuIk31c3wzoA-AipRSxs85nyJ5CjuB7K4V9qMkea7LHmmbv6j_vMfpp493BmD_sHY0xzDt6kv4LmeKnOQ |
CitedBy_id | crossref_primary_10_3390_biom12010081 crossref_primary_10_1016_j_phrs_2022_106551 crossref_primary_10_1039_D1TB00554E crossref_primary_10_1016_j_nantod_2023_101827 crossref_primary_10_1021_acs_molpharmaceut_3c00116 crossref_primary_10_1002_smll_202401397 crossref_primary_10_1016_j_mtadv_2022_100289 crossref_primary_10_1002_adhm_202300089 crossref_primary_10_1002_adhm_202301453 crossref_primary_10_1021_acsnano_3c00360 crossref_primary_10_1016_j_ejphar_2021_174464 crossref_primary_10_1039_D4TB00011K crossref_primary_10_1007_s40820_020_00561_8 crossref_primary_10_1021_acsami_1c04868 crossref_primary_10_1002_ange_202411514 crossref_primary_10_1021_acs_molpharmaceut_4c01267 crossref_primary_10_1039_D1CC01830B crossref_primary_10_1016_j_jconrel_2025_02_019 crossref_primary_10_1016_j_jcis_2022_09_061 crossref_primary_10_1016_j_colsurfb_2020_111500 crossref_primary_10_1021_acs_biomac_1c01067 crossref_primary_10_1142_S1088424621500243 crossref_primary_10_3390_cancers16010066 crossref_primary_10_1002_adma_202212069 crossref_primary_10_1016_j_actbio_2025_01_017 crossref_primary_10_1186_s12951_021_01144_4 crossref_primary_10_2139_ssrn_3994525 crossref_primary_10_1002_smll_202309026 crossref_primary_10_1002_adma_202201978 crossref_primary_10_1039_D4QI03065F crossref_primary_10_1039_D3TB01323E crossref_primary_10_1021_acsomega_2c05852 crossref_primary_10_1016_j_jphotobiol_2023_112796 crossref_primary_10_1016_j_biomaterials_2022_121472 crossref_primary_10_1002_advs_202405583 crossref_primary_10_1039_D3CC01355C crossref_primary_10_1002_adhm_202300530 crossref_primary_10_1016_j_cej_2022_135993 crossref_primary_10_1002_adma_202103978 crossref_primary_10_1016_j_apmt_2022_101687 crossref_primary_10_1021_acsami_1c05848 crossref_primary_10_1016_j_actbio_2023_05_047 crossref_primary_10_1016_j_cej_2022_138621 crossref_primary_10_1016_j_nantod_2022_101376 crossref_primary_10_1016_j_mtbio_2023_100555 crossref_primary_10_1021_acsami_3c00603 crossref_primary_10_1039_D1QM00134E crossref_primary_10_1039_D1BM01280K crossref_primary_10_1021_acsnano_1c00616 crossref_primary_10_1039_D3DT04064J crossref_primary_10_3389_fphar_2023_1140362 crossref_primary_10_1016_j_jcis_2024_03_133 crossref_primary_10_2147_IJN_S362759 crossref_primary_10_1016_j_inoche_2024_112352 crossref_primary_10_2174_0118715206323900240807110122 crossref_primary_10_1021_acsabm_3c00566 crossref_primary_10_1155_2024_6618388 crossref_primary_10_1039_D3SC03877G crossref_primary_10_1126_sciadv_abn3883 crossref_primary_10_1016_j_ccr_2023_215482 crossref_primary_10_1039_D1TB00209K crossref_primary_10_1186_s12951_021_01013_0 crossref_primary_10_1002_chem_202400115 crossref_primary_10_1002_smll_202406860 crossref_primary_10_1016_j_ijpharm_2025_125508 crossref_primary_10_1016_j_jcis_2021_12_172 crossref_primary_10_1021_acs_nanolett_5c00090 crossref_primary_10_1021_jacs_3c13501 crossref_primary_10_1002_mco2_203 crossref_primary_10_3390_ijms241512204 crossref_primary_10_1038_s41598_022_14518_x crossref_primary_10_3390_molecules28052250 crossref_primary_10_1016_j_jcis_2022_08_125 crossref_primary_10_1039_D2CC06212G crossref_primary_10_1007_s40843_021_1706_4 crossref_primary_10_1002_smll_202403523 crossref_primary_10_1021_acsami_2c00448 crossref_primary_10_1016_j_apmt_2024_102193 crossref_primary_10_1016_j_jcis_2024_08_041 crossref_primary_10_1016_j_cclet_2024_109957 crossref_primary_10_1016_j_actbio_2021_02_030 crossref_primary_10_1016_j_biomaterials_2022_121920 crossref_primary_10_2147_IJN_S393194 crossref_primary_10_1016_j_nantod_2021_101297 crossref_primary_10_1016_j_nantod_2022_101477 crossref_primary_10_1002_adhm_202300752 crossref_primary_10_1016_j_jcis_2023_05_190 crossref_primary_10_1557_s43578_023_01256_7 crossref_primary_10_1021_acs_bioconjchem_3c00432 crossref_primary_10_1016_j_tranon_2023_101771 crossref_primary_10_1021_acsami_2c06655 crossref_primary_10_1016_j_ccr_2024_215866 crossref_primary_10_3892_ijo_2025_5728 crossref_primary_10_1002_adma_202104594 crossref_primary_10_1016_j_jconrel_2024_05_039 crossref_primary_10_1002_adma_202302508 crossref_primary_10_1021_acs_analchem_3c01505 crossref_primary_10_1002_wnan_1864 crossref_primary_10_1016_j_ajps_2023_100829 crossref_primary_10_1016_j_ijbiomac_2024_136891 crossref_primary_10_3389_fimmu_2024_1479483 crossref_primary_10_1002_VIW_20220051 crossref_primary_10_1016_j_carbpol_2021_118655 crossref_primary_10_1002_adfm_202010777 crossref_primary_10_1002_bio_4621 crossref_primary_10_1039_D0BM01898H crossref_primary_10_3390_ijms242316949 crossref_primary_10_1002_adma_202308286 crossref_primary_10_32948_ajo_2023_11_28 crossref_primary_10_1016_j_coco_2021_100950 crossref_primary_10_1016_j_bioactmat_2023_08_021 crossref_primary_10_3389_fchem_2021_649158 crossref_primary_10_1166_jbn_2023_3669 crossref_primary_10_1016_j_ccr_2023_215078 crossref_primary_10_1039_D5CC00278H crossref_primary_10_1002_adma_202402806 crossref_primary_10_1016_j_biomaterials_2021_121326 crossref_primary_10_1039_D3NJ02243A crossref_primary_10_1016_j_heliyon_2024_e28066 crossref_primary_10_1016_j_canlet_2023_216066 crossref_primary_10_1039_D2NA00549B crossref_primary_10_1002_adom_202102377 crossref_primary_10_1016_j_mtnano_2022_100236 crossref_primary_10_1002_advs_202103676 crossref_primary_10_1002_cjoc_202200334 crossref_primary_10_1007_s13562_024_00894_0 crossref_primary_10_1021_acsnano_1c00033 crossref_primary_10_1007_s10965_023_03546_4 crossref_primary_10_1021_acsnano_4c06051 crossref_primary_10_1039_D1TB02221K crossref_primary_10_1002_mabi_202100092 crossref_primary_10_1016_j_engreg_2021_09_002 crossref_primary_10_1002_anie_202411514 crossref_primary_10_1021_acsanm_1c03209 crossref_primary_10_1038_s41467_023_44429_y crossref_primary_10_1002_ppsc_202100048 crossref_primary_10_1039_D3MH01263H crossref_primary_10_1016_j_bioactmat_2022_11_013 crossref_primary_10_1021_acsnano_3c05034 crossref_primary_10_1039_D2BM01691E crossref_primary_10_1016_j_actbio_2024_05_016 crossref_primary_10_1021_acsabm_1c00174 crossref_primary_10_1038_s41598_024_80879_0 crossref_primary_10_1016_j_actbio_2021_05_016 crossref_primary_10_1021_acsami_2c02949 crossref_primary_10_1021_acsnano_2c08098 crossref_primary_10_1038_s41467_022_32066_w crossref_primary_10_3390_ijms24097995 crossref_primary_10_2147_IJN_S402821 crossref_primary_10_1038_s41467_023_40470_z crossref_primary_10_1016_j_actbio_2024_01_010 crossref_primary_10_3390_cancers15051576 crossref_primary_10_1021_acsnano_4c00516 crossref_primary_10_1002_med_22072 crossref_primary_10_1002_wnan_1930 crossref_primary_10_1016_j_actbio_2023_10_018 crossref_primary_10_1039_D2TB01775J crossref_primary_10_1166_jbn_2023_3489 crossref_primary_10_1021_acsanm_1c01662 crossref_primary_10_1016_j_nantod_2022_101434 crossref_primary_10_1016_j_ajps_2023_100775 crossref_primary_10_1021_acsmaterialsau_3c00060 crossref_primary_10_1002_mog2_67 crossref_primary_10_3390_pharmaceutics14091763 crossref_primary_10_1016_j_addr_2022_114554 crossref_primary_10_1155_2021_2990326 crossref_primary_10_1007_s12094_023_03304_4 crossref_primary_10_1021_acsami_3c02929 |
Cites_doi | 10.1172/JCI66715 10.1038/sj.bjc.6601186 10.1002/anie.201103557 10.1002/anie.201500478 10.1021/acs.bioconjchem.8b00812 10.1002/adfm.201804901 10.1021/acs.nanolett.6b02365 10.1177/153303461000900105 10.1158/0008-5472.CAN-06-2701 10.1073/pnas.1113483108 10.1016/j.bbrc.2011.06.186 10.1158/1078-0432.CCR-17-2725 10.1126/science.aaf4405 10.1016/S0142-9612(98)00071-4 10.1038/ncomms9785 10.1016/j.biomaterials.2015.02.117 10.1016/j.msec.2007.10.058 10.1158/1078-0432.CCR-05-2382 10.1038/ncomms5712 10.1021/acsami.0c00921 10.1146/annurev-med-051513-102539 10.1002/adfm.201603212 10.1039/C7CC07038A 10.1016/S1470-2045(04)01529-3 10.1007/s12029-013-9496-4 10.1158/0008-5472.CAN-06-2355 10.1074/jbc.M113.526814 10.3322/caac.21254 10.1038/onc.2011.365 10.1002/adma.201602111 10.1016/j.biomaterials.2014.04.094 10.1158/0008-5472.CAN-06-0425 10.1016/j.jconrel.2013.06.003 10.1038/nrc1071 10.1081/BIO-200046659 10.1038/ncb1691 10.1021/cr5004198 10.1016/j.biomaterials.2014.11.053 10.1002/adfm.201600676 10.1039/C5CC07353G 10.1056/NEJMra1513581 10.1021/acsami.9b14084 10.1002/advs.201700847 10.1021/acs.bioconjchem.8b00374 10.1126/science.6695191 10.1016/j.biomaterials.2018.08.011 10.1002/adma.201504617 10.3748/wjg.v22.i32.7215 10.1021/acsami.6b14885 10.1038/s41467-018-04318-1 10.1021/jacs.7b05559 10.1148/radiol.10092339 10.1016/j.biopha.2016.07.058 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/acsnano.0c05617 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 13583 |
ExternalDocumentID | 32915537 10_1021_acsnano_0c05617 b460470871 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 5VS 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ F5P GNL IH9 IHE JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 4.4 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ BAANH CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-a399t-614907599ce924dba5c710f0d4ed6b1c095b4f15840a2e799e2292624143ee973 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Thu Jul 10 17:41:56 EDT 2025 Mon Jul 21 05:56:35 EDT 2025 Tue Jul 01 03:37:03 EDT 2025 Thu Apr 24 23:02:15 EDT 2025 Fri Oct 30 03:45:43 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | nanoparticle liver metastasis porphyrin hypoxia relief photodynamic therapy |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a399t-614907599ce924dba5c710f0d4ed6b1c095b4f15840a2e799e2292624143ee973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6231-3692 |
PMID | 32915537 |
PQID | 2442220009 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2442220009 pubmed_primary_32915537 crossref_citationtrail_10_1021_acsnano_0c05617 crossref_primary_10_1021_acsnano_0c05617 acs_journals_10_1021_acsnano_0c05617 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-27 |
PublicationDateYYYYMMDD | 2020-10-27 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 Teicher B. A. (ref33/cit33) 1989; 49 ref7/cit7 |
References_xml | – ident: ref24/cit24 doi: 10.1172/JCI66715 – ident: ref17/cit17 doi: 10.1038/sj.bjc.6601186 – ident: ref52/cit52 doi: 10.1002/anie.201103557 – ident: ref15/cit15 doi: 10.1002/anie.201500478 – ident: ref49/cit49 doi: 10.1021/acs.bioconjchem.8b00812 – ident: ref38/cit38 doi: 10.1002/adfm.201804901 – ident: ref54/cit54 doi: 10.1021/acs.nanolett.6b02365 – ident: ref48/cit48 doi: 10.1177/153303461000900105 – ident: ref23/cit23 doi: 10.1158/0008-5472.CAN-06-2701 – ident: ref21/cit21 doi: 10.1073/pnas.1113483108 – ident: ref44/cit44 doi: 10.1016/j.bbrc.2011.06.186 – ident: ref46/cit46 doi: 10.1158/1078-0432.CCR-17-2725 – ident: ref16/cit16 doi: 10.1126/science.aaf4405 – ident: ref36/cit36 doi: 10.1016/S0142-9612(98)00071-4 – ident: ref6/cit6 doi: 10.1038/ncomms9785 – ident: ref37/cit37 doi: 10.1016/j.biomaterials.2015.02.117 – ident: ref53/cit53 doi: 10.1016/j.msec.2007.10.058 – ident: ref18/cit18 doi: 10.1158/1078-0432.CCR-05-2382 – ident: ref9/cit9 doi: 10.1038/ncomms5712 – ident: ref28/cit28 doi: 10.1021/acsami.0c00921 – ident: ref2/cit2 doi: 10.1146/annurev-med-051513-102539 – ident: ref14/cit14 doi: 10.1002/adfm.201603212 – ident: ref42/cit42 doi: 10.1039/C7CC07038A – ident: ref39/cit39 doi: 10.1039/C7CC07038A – ident: ref5/cit5 doi: 10.1016/S1470-2045(04)01529-3 – ident: ref10/cit10 doi: 10.1007/s12029-013-9496-4 – volume: 49 start-page: 2693 year: 1989 ident: ref33/cit33 publication-title: Cancer Res. – ident: ref20/cit20 doi: 10.1158/0008-5472.CAN-06-2355 – ident: ref45/cit45 doi: 10.1074/jbc.M113.526814 – ident: ref1/cit1 doi: 10.3322/caac.21254 – ident: ref22/cit22 doi: 10.1038/onc.2011.365 – ident: ref32/cit32 doi: 10.1002/adma.201602111 – ident: ref43/cit43 doi: 10.1016/j.biomaterials.2014.04.094 – ident: ref47/cit47 doi: 10.1158/0008-5472.CAN-06-0425 – ident: ref55/cit55 doi: 10.1016/j.jconrel.2013.06.003 – ident: ref7/cit7 doi: 10.1038/nrc1071 – ident: ref35/cit35 doi: 10.1081/BIO-200046659 – ident: ref19/cit19 doi: 10.1038/ncb1691 – ident: ref8/cit8 doi: 10.1021/cr5004198 – ident: ref50/cit50 doi: 10.1016/j.biomaterials.2014.11.053 – ident: ref26/cit26 doi: 10.1002/adfm.201600676 – ident: ref11/cit11 doi: 10.1039/C5CC07353G – ident: ref3/cit3 doi: 10.1056/NEJMra1513581 – ident: ref27/cit27 doi: 10.1021/acsami.9b14084 – ident: ref25/cit25 doi: 10.1002/advs.201700847 – ident: ref13/cit13 doi: 10.1021/acs.bioconjchem.8b00374 – ident: ref34/cit34 doi: 10.1126/science.6695191 – ident: ref31/cit31 doi: 10.1016/j.biomaterials.2018.08.011 – ident: ref40/cit40 doi: 10.1002/adma.201504617 – ident: ref4/cit4 doi: 10.3748/wjg.v22.i32.7215 – ident: ref41/cit41 doi: 10.1021/acsami.6b14885 – ident: ref29/cit29 doi: 10.1038/s41467-018-04318-1 – ident: ref30/cit30 doi: 10.1021/jacs.7b05559 – ident: ref51/cit51 doi: 10.1148/radiol.10092339 – ident: ref12/cit12 doi: 10.1016/j.biopha.2016.07.058 |
SSID | ssj0057876 |
Score | 2.6557708 |
Snippet | Photodynamic therapy (PDT) shows great promise for the treatment of colon cancer. However, practically, it is a great challenge to use a nanocarrier for the... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 13569 |
SubjectTerms | Animals Cell Line, Tumor Colonic Neoplasms - drug therapy Fluorocarbons Liver Neoplasms - diagnostic imaging Liver Neoplasms - drug therapy Mice Nanoparticles Oxygen Photochemotherapy Photosensitizing Agents - pharmacology Photosensitizing Agents - therapeutic use Porphyrins - pharmacology Tumor Hypoxia |
Title | Perfluorocarbon@Porphyrin Nanoparticles for Tumor Hypoxia Relief to Enhance Photodynamic Therapy against Liver Metastasis of Colon Cancer |
URI | http://dx.doi.org/10.1021/acsnano.0c05617 https://www.ncbi.nlm.nih.gov/pubmed/32915537 https://www.proquest.com/docview/2442220009 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1LS8QwEMeDj4sefD_WFxE8eOnaTZNme1MWZRGVBVfwVpI01UVNZNuC-g381k7a7vpi0UsvbUI7nWR-wwz_IHQQ-jQBLmAepyzwaNJmXsQZ80KqICFikQpk2W1xFXZv6Pktu_0Ui_5ZwSetI6EyI4xt-srBLp9GsyRsc5dnnXSuR5uu87uwKiBDggwUMVbx-TWBC0Mq-x6GJrBlGWPOFqvurKyUJnStJQ_NIpdN9fZbuPHv119CCzVp4pPKNZbRlDYraP6L_uAqeu_pYfpYWAhiYiitOe5ZZ3a4iWHXhXS67prDQLa4XzzBtfv6bF8GArtWZp3i3OJTc-88B_fubW6T6oB73K_ECrC4EwMAUHzh2j_wpc4F0Gg2yLBNcQf2XYM7bvBwDd2cnfY7Xa8-m8ETgDQ5ZJwU0moWRUpDBpdIwRSwSuonVCehbCkgN0nTFuCNL4jmUaQJcdKEFPhM64gH62jGWKM3EeYBlYCB0lcpp1EaSObrJFFpW4oAdgvRQAdgxLheW1lcls1JK64tG9eWbaDm6I_GqtY3d8dsPE4ecDge8FxJe0x-dH_kIjEsP1dTEUbbIouBjoCwHKk20EblO-PJAuLE9wO-9b8P2EZzxCXzEBgJ30Ez-bDQu0A8udwrff0DV-f8eg |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzZ3LbtQwFIaPSllAF5Q7Q7kYqUhsMmQcO2kWSFTTVlM6rUZiKnWX2o5DR23t0SQRDG_AW_AqvBnHuUy5aCQ2ldhkkcRWYh_7_058cgywGfosRS7gXsR44LF0i3txxLkXMoUOEY9VIKtoi6NwcMw-nPCTFfje_guDD5FjTXm1iH-VXaD3Fs8ZYWzXV455oyaM8kDPP6OTlr_b38EefU3p3u64P_CafQQ8gfJboHfE0AXkcaw0ehupFFyhrmZ-ynQayp5CypAs66EU-4LqKI41pS6NHkOW0DqOAqz3BtxE9KHOvdvuf2znemfuYb1ujX45wssiedBfD-zUT-W_q98SpK2kbW8dfiwapYpoOe-Wheyqr3_ki_yfW-0u3Gm4mmzXA-EerGhzH9Z-ybb4AL6N9Cy7KC1KtphJa96PrDMyvEhQY-y0jREkyPFkXF7icTCf2i8TQVzgts5IYcmuOXPjhIzObGHTuRGXE0XGdWoGIj6JCeI2GbpgF3KoC4HsnU9yYjPSR5UxpO8Kzx7C8bW0xSNYNdboJ0CigEmEXumrLGJxFkju6zRV2ZYUAc6NogOb2GlJM5PkSRUkQHtJ05NJ05Md6LaGlKgmm7vbVORieYE3iwLTOpHJ8ltftZaZ4GTjVpCE0bbME2RB5EnH5R14XJvsorKAuq0Ggujpv73AS7g1GB8Ok-H-0cEG3KbuMwYiAY2ewWoxK_VzZL1CvqiGG4HT67bUn7KcXDc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VIiE48H4sTyMViUuWbGLHzQGJatvVlpZqJbZSb8F2bLqitVebRLD8A_4Hf4X_xTiPFQ-txKUSlxyS2Eo8j--bzGQMsJWENEdewAJOWRzQfJsFKWcsSKjCgIilKpZ1tcVRMj6mb0_YyQZ87_6FwYcocKaiTuJ7q57npu0wMHiF562wrh8qz3t5W0p5oJefMVArXu_volRfRNFobzocB-1eAoFACC4xQqIYBrI0VRojjlwKphBbTZhTnSdyoJBpSGoGCMehiDRPUx1FvpUeRT6hdcpjnPcSXPZJQh_i7Qzfd_7eq3zS5K4xNkcCs2og9NcDewRUxe8IuIbW1vA2ugE_VgtTV7V86lel7Kuvf_SM_N9X7iZcb_k12WkM4hZsaHsbrv3SdfEOfJvohTmrHEK3WEhn30ycVza8SBBr3LyrFSTI58m0OsfjeDl3X2aC-AJubUjpyJ499fZCJqeudPnSivOZItOmRQMRH8UMaTc59EUv5J0uBXLwYlYQZ8gQ0caSoR-8uAvHF7IW92DTOqsfAOExlUh-ZagMp6mJJQt1niuzLUWMPlL0YAuFlrUepcjqYoFokLWSzFpJ9qDfKVOm2q7ufnORs_UDXq4GzJuGJutvfd5pZ4ZOx2eShNWuKjLkhMgrPT_vwf1GbVeTxZHfciDmD__tBZ7BlcnuKDvcPzp4BFcj_zUDmUHEH8Nmuaj0E6R8pXxaWxyBDxetqD8BLvpeug |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Perfluorocarbon%40Porphyrin+Nanoparticles+for+Tumor+Hypoxia+Relief+to+Enhance+Photodynamic+Therapy+against+Liver+Metastasis+of+Colon+Cancer&rft.jtitle=ACS+nano&rft.au=Liang%2C+Xiaolong&rft.au=Chen%2C+Min&rft.au=Bhattarai%2C+Pravin&rft.au=Hameed%2C+Sadaf&rft.date=2020-10-27&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=14&rft.issue=10&rft.spage=13569&rft.epage=13583&rft_id=info:doi/10.1021%2Facsnano.0c05617&rft.externalDocID=b460470871 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |