Highly Controllable Etchless Perovskite Microlasers Based on Bound States in the Continuum

Lead halide perovskites have been promising materials for lasing applications. Despite that a series of perovskite microlasers have been reported, their lasing modes are confined by either the as-grown morphology or the etched boundary. The first one is quite random and incompatible with integration...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 15; no. 4; pp. 7386 - 7391
Main Authors Wang, Yuhan, Fan, Yubin, Zhang, Xudong, Tang, Haijun, Song, Qinghai, Han, Jiecai, Xiao, Shumin
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 27.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lead halide perovskites have been promising materials for lasing applications. Despite that a series of perovskite microlasers have been reported, their lasing modes are confined by either the as-grown morphology or the etched boundary. The first one is quite random and incompatible with integration, whereas the latter one strongly spoils the laser performances. Herein, we propose and experimentally demonstrate a robust and generic mechanism to realize well-controlled perovskite microlasers without the etching process. By patterning a one-dimensional polymer grating onto a perovskite film, we show that the symmetry-protected bound states in the continuum (BICs) can be formed in it. The intriguing properties of BICs including a widely spread mode profile and high Q factor, associated with the exceptional gain of perovskite, produce single-mode microlasers with high repeatability, controllability, directionality, and a polarization vortex. This mechanism can also be extended to two-dimensional nanostructures, enabling BIC lasers with different topological charges.
AbstractList Lead halide perovskites have been promising materials for lasing applications. Despite that a series of perovskite microlasers have been reported, their lasing modes are confined by either the as-grown morphology or the etched boundary. The first one is quite random and incompatible with integration, whereas the latter one strongly spoils the laser performances. Herein, we propose and experimentally demonstrate a robust and generic mechanism to realize well-controlled perovskite microlasers without the etching process. By patterning a one-dimensional polymer grating onto a perovskite film, we show that the symmetry-protected bound states in the continuum (BICs) can be formed in it. The intriguing properties of BICs including a widely spread mode profile and high factor, associated with the exceptional gain of perovskite, produce single-mode microlasers with high repeatability, controllability, directionality, and a polarization vortex. This mechanism can also be extended to two-dimensional nanostructures, enabling BIC lasers with different topological charges.
Lead halide perovskites have been promising materials for lasing applications. Despite that a series of perovskite microlasers have been reported, their lasing modes are confined by either the as-grown morphology or the etched boundary. The first one is quite random and incompatible with integration, whereas the latter one strongly spoils the laser performances. Herein, we propose and experimentally demonstrate a robust and generic mechanism to realize well-controlled perovskite microlasers without the etching process. By patterning a one-dimensional polymer grating onto a perovskite film, we show that the symmetry-protected bound states in the continuum (BICs) can be formed in it. The intriguing properties of BICs including a widely spread mode profile and high Q factor, associated with the exceptional gain of perovskite, produce single-mode microlasers with high repeatability, controllability, directionality, and a polarization vortex. This mechanism can also be extended to two-dimensional nanostructures, enabling BIC lasers with different topological charges.
Lead halide perovskites have been promising materials for lasing applications. Despite that a series of perovskite microlasers have been reported, their lasing modes are confined by either the as-grown morphology or the etched boundary. The first one is quite random and incompatible with integration, whereas the latter one strongly spoils the laser performances. Herein, we propose and experimentally demonstrate a robust and generic mechanism to realize well-controlled perovskite microlasers without the etching process. By patterning a one-dimensional polymer grating onto a perovskite film, we show that the symmetry-protected bound states in the continuum (BICs) can be formed in it. The intriguing properties of BICs including a widely spread mode profile and high Q factor, associated with the exceptional gain of perovskite, produce single-mode microlasers with high repeatability, controllability, directionality, and a polarization vortex. This mechanism can also be extended to two-dimensional nanostructures, enabling BIC lasers with different topological charges.Lead halide perovskites have been promising materials for lasing applications. Despite that a series of perovskite microlasers have been reported, their lasing modes are confined by either the as-grown morphology or the etched boundary. The first one is quite random and incompatible with integration, whereas the latter one strongly spoils the laser performances. Herein, we propose and experimentally demonstrate a robust and generic mechanism to realize well-controlled perovskite microlasers without the etching process. By patterning a one-dimensional polymer grating onto a perovskite film, we show that the symmetry-protected bound states in the continuum (BICs) can be formed in it. The intriguing properties of BICs including a widely spread mode profile and high Q factor, associated with the exceptional gain of perovskite, produce single-mode microlasers with high repeatability, controllability, directionality, and a polarization vortex. This mechanism can also be extended to two-dimensional nanostructures, enabling BIC lasers with different topological charges.
Author Tang, Haijun
Wang, Yuhan
Han, Jiecai
Song, Qinghai
Fan, Yubin
Zhang, Xudong
Xiao, Shumin
AuthorAffiliation Collaborative Innovation Center of Extreme Optics
Shanxi University
Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School
National Key Laboratory of Science and Technology on Advanced Composites in Special Environments
AuthorAffiliation_xml – name: National Key Laboratory of Science and Technology on Advanced Composites in Special Environments
– name: Shanxi University
– name: Collaborative Innovation Center of Extreme Optics
– name: Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School
Author_xml – sequence: 1
  givenname: Yuhan
  surname: Wang
  fullname: Wang, Yuhan
  organization: Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School
– sequence: 2
  givenname: Yubin
  surname: Fan
  fullname: Fan, Yubin
  organization: Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School
– sequence: 3
  givenname: Xudong
  surname: Zhang
  fullname: Zhang, Xudong
  organization: Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School
– sequence: 4
  givenname: Haijun
  surname: Tang
  fullname: Tang, Haijun
  organization: Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School
– sequence: 5
  givenname: Qinghai
  orcidid: 0000-0003-1048-411X
  surname: Song
  fullname: Song, Qinghai
  email: qinghai.song@hit.edu.cn
  organization: Shanxi University
– sequence: 6
  givenname: Jiecai
  surname: Han
  fullname: Han, Jiecai
  email: hanjc@hit.edu.cn
  organization: National Key Laboratory of Science and Technology on Advanced Composites in Special Environments
– sequence: 7
  givenname: Shumin
  surname: Xiao
  fullname: Xiao, Shumin
  email: shumin.xiao@hit.edu.cn
  organization: Shanxi University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33729762$$D View this record in MEDLINE/PubMed
BookMark eNp1kEFLAzEQhYMo1qpnb5KjIG2TTZPdHLWoFSoKKoiXkM1ObHSb6GZX8N-b2taD4GmGmfcevK-Ptn3wgNARJUNKMjrSJnrtw5AaQkTOttAelUwMSCGetn93TnuoH-MrITwvcrGLeozlmcxFtoeep-5lXn_hSfBtE-palzXgi9bMa4gR30ETPuObawHfOJP-OkIT8XkaFQ4en4fOV_i-1S1E7Dxu5_CT5HzXLQ7QjtV1hMP13EePlxcPk-lgdnt1PTmbDTSTsh3wLBeS56UujC6sELwaE1IZQ6nMrOYW-NgSKcGWGkQuuWXMwpjYsiQsXQnbRyer3PcmfHQQW7Vw0UDq4iF0UWWcZAXhQhRJeryWduUCKvXeuIVuvtSGRxLwlSCVjbEBq4xL7dySjna1okQtuas1d7XmnnyjP75N9P-O05UjPdRr6BqfGP2r_gZLiZao
CitedBy_id crossref_primary_10_1021_acsphotonics_3c00206
crossref_primary_10_7498_aps_74_20241752
crossref_primary_10_1021_acs_jpclett_3c02763
crossref_primary_10_1039_D5CP00012B
crossref_primary_10_1021_acsnano_1c05421
crossref_primary_10_1364_OE_522746
crossref_primary_10_3390_mi14101817
crossref_primary_10_1016_j_optcom_2024_130864
crossref_primary_10_1007_s11426_024_1986_6
crossref_primary_10_1364_OE_538811
crossref_primary_10_1016_j_jallcom_2022_167232
crossref_primary_10_1016_j_physrep_2023_01_001
crossref_primary_10_1117_1_AP_4_6_066004
crossref_primary_10_1002_lpor_202300350
crossref_primary_10_1364_OL_519298
crossref_primary_10_1364_OL_522831
crossref_primary_10_1103_PhysRevB_109_075134
crossref_primary_10_1364_OL_484472
crossref_primary_10_1002_adom_202201906
crossref_primary_10_1002_adom_202302496
crossref_primary_10_1038_s41377_023_01231_1
crossref_primary_10_1002_adfm_202314953
crossref_primary_10_1002_adom_202200534
crossref_primary_10_1002_lpor_202200611
crossref_primary_10_1364_AOP_531166
crossref_primary_10_1021_acs_chemrev_2c00048
crossref_primary_10_1038_s41467_025_57738_1
crossref_primary_10_1364_OE_446072
crossref_primary_10_2139_ssrn_3943843
crossref_primary_10_1002_adfm_202200385
crossref_primary_10_1016_j_omx_2022_100214
crossref_primary_10_1021_acsphotonics_2c01496
crossref_primary_10_1038_s41467_024_45284_1
crossref_primary_10_1007_s12274_023_6307_5
crossref_primary_10_1088_1674_1056_ac8ce5
crossref_primary_10_1364_PRJ_533613
crossref_primary_10_1038_s41467_024_47669_8
crossref_primary_10_1002_adfm_202304666
crossref_primary_10_23919_emsci_2023_0013
crossref_primary_10_26599_NR_2025_94907132
crossref_primary_10_3390_ma16227112
crossref_primary_10_1021_acs_nanolett_1c03656
crossref_primary_10_1515_nanoph_2021_0387
crossref_primary_10_1021_acsnano_2c03033
crossref_primary_10_1002_adom_202101120
crossref_primary_10_1016_j_optcom_2022_128864
crossref_primary_10_1002_adom_202400815
crossref_primary_10_1016_j_optlastec_2023_109578
crossref_primary_10_3390_mi13111945
crossref_primary_10_1007_s11433_023_2223_5
crossref_primary_10_1364_OE_531000
crossref_primary_10_1103_PhysRevB_105_L241301
crossref_primary_10_1103_PhysRevB_110_L081401
crossref_primary_10_1126_sciadv_adj3476
crossref_primary_10_1002_adom_202200753
crossref_primary_10_1021_acs_chemrev_1c01029
crossref_primary_10_1021_acsphotonics_4c00880
crossref_primary_10_1103_PhysRevApplied_21_034039
crossref_primary_10_1002_adma_202413559
crossref_primary_10_1063_5_0224766
crossref_primary_10_1021_acs_jpclett_4c02604
crossref_primary_10_1038_s41377_023_01130_5
crossref_primary_10_1038_s41467_023_38939_y
crossref_primary_10_1063_5_0196849
crossref_primary_10_1021_acsphotonics_4c00705
crossref_primary_10_1126_sciadv_adf6649
crossref_primary_10_1002_adma_202500226
crossref_primary_10_1007_s11433_022_1937_8
crossref_primary_10_1039_D3EE00646H
crossref_primary_10_1109_LPT_2023_3253711
crossref_primary_10_1364_JOSAB_506368
crossref_primary_10_1117_1_APN_3_1_016011
crossref_primary_10_1038_s41377_024_01548_5
crossref_primary_10_1021_acs_nanolett_1c01975
crossref_primary_10_1002_adom_202400296
crossref_primary_10_1021_acs_nanolett_3c00463
crossref_primary_10_1515_nanoph_2023_0156
Cites_doi 10.1038/s41578-019-0080-9
10.1103/PhysRevLett.119.243901
10.1038/nphoton.2016.62
10.1021/acs.nanolett.7b04847
10.1364/PRJ.413229
10.1126/science.aaz3985
10.1021/acsnano.7b01351
10.1103/PhysRevLett.121.253901
10.1021/acs.nanolett.5b04053
10.1038/nmat3911
10.1038/s41586-020-2621-1
10.1038/s41586-019-1664-7
10.1002/adma.201903717
10.1021/jz5005285
10.1038/s41467-020-15609-x
10.1038/nature12289
10.1038/nature20799
10.1021/acs.nanolett.5b01166
10.1038/s41565-018-0245-5
10.1021/acs.nanolett.0c03593
10.1103/PhysRevLett.100.183902
10.1038/nmat4271
10.1103/PhysRevLett.112.213903
10.1126/science.aas9768
10.1038/natrevmats.2016.48
10.1103/PhysRevLett.105.053902
10.1103/PhysRevLett.113.257401
10.1103/PhysRevLett.123.253901
10.1038/541164a
10.1002/adma.201606205
10.1126/science.aba4597
10.1103/PhysRevLett.111.240403
10.1038/s41586-019-1868-x
10.1038/s41566-018-0177-5
10.1021/acsnano.8b08948
10.1116/1.4927542
10.1103/PhysRevLett.120.186103
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acsnano.1c00673
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 7391
ExternalDocumentID 33729762
10_1021_acsnano_1c00673
a136901112
Genre Journal Article
GroupedDBID -
.K2
23M
4.4
53G
55A
5GY
5VS
7~N
AABXI
ABFRP
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
F5P
GGK
GNL
IH9
IHE
JG
JG~
K2
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
BAANH
CITATION
CUPRZ
NPM
7X8
ID FETCH-LOGICAL-a399t-5276957ba8ca8f665d400dcc1192fa5fe54f099efbae6795f33fe40fbb039ef03
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 01:41:10 EDT 2025
Mon Jul 21 05:53:48 EDT 2025
Thu Apr 24 22:59:43 EDT 2025
Tue Jul 01 03:37:08 EDT 2025
Thu Apr 29 06:07:49 EDT 2021
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords bound states in the continuum
polarization vortex
etchless grating
well-controlled laser
perovskite microlasers
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a399t-5276957ba8ca8f665d400dcc1192fa5fe54f099efbae6795f33fe40fbb039ef03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1048-411X
PMID 33729762
PQID 2502805668
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_2502805668
pubmed_primary_33729762
crossref_citationtrail_10_1021_acsnano_1c00673
crossref_primary_10_1021_acsnano_1c00673
acs_journals_10_1021_acsnano_1c00673
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
GGK
W1F
ABFRP
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-27
PublicationDateYYYYMMDD 2021-04-27
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-27
  day: 27
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
Sun W. (ref14/cit14) 2020; 11
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref7/cit7
References_xml – ident: ref2/cit2
  doi: 10.1038/s41578-019-0080-9
– ident: ref29/cit29
  doi: 10.1103/PhysRevLett.119.243901
– ident: ref1/cit1
  doi: 10.1038/nphoton.2016.62
– ident: ref35/cit35
  doi: 10.1021/acs.nanolett.7b04847
– ident: ref6/cit6
  doi: 10.1364/PRJ.413229
– ident: ref26/cit26
  doi: 10.1126/science.aaz3985
– ident: ref12/cit12
  doi: 10.1021/acsnano.7b01351
– ident: ref21/cit21
  doi: 10.1103/PhysRevLett.121.253901
– ident: ref10/cit10
  doi: 10.1021/acs.nanolett.5b04053
– ident: ref3/cit3
  doi: 10.1038/nmat3911
– ident: ref9/cit9
  doi: 10.1038/s41586-020-2621-1
– ident: ref36/cit36
  doi: 10.1038/s41586-019-1664-7
– ident: ref8/cit8
  doi: 10.1002/adma.201903717
– ident: ref4/cit4
  doi: 10.1021/jz5005285
– volume: 11
  start-page: 1781
  year: 2020
  ident: ref14/cit14
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15609-x
– ident: ref28/cit28
  doi: 10.1038/nature12289
– ident: ref24/cit24
  doi: 10.1038/nature20799
– ident: ref11/cit11
  doi: 10.1021/acs.nanolett.5b01166
– ident: ref23/cit23
  doi: 10.1038/s41565-018-0245-5
– ident: ref7/cit7
  doi: 10.1021/acs.nanolett.0c03593
– ident: ref19/cit19
  doi: 10.1103/PhysRevLett.100.183902
– ident: ref5/cit5
  doi: 10.1038/nmat4271
– ident: ref30/cit30
  doi: 10.1103/PhysRevLett.112.213903
– ident: ref27/cit27
  doi: 10.1126/science.aas9768
– ident: ref18/cit18
  doi: 10.1038/natrevmats.2016.48
– ident: ref31/cit31
  doi: 10.1103/PhysRevLett.105.053902
– ident: ref32/cit32
  doi: 10.1103/PhysRevLett.113.257401
– ident: ref25/cit25
  doi: 10.1103/PhysRevLett.123.253901
– ident: ref22/cit22
  doi: 10.1038/541164a
– ident: ref15/cit15
  doi: 10.1002/adma.201606205
– ident: ref13/cit13
  doi: 10.1126/science.aba4597
– ident: ref20/cit20
  doi: 10.1103/PhysRevLett.111.240403
– ident: ref37/cit37
  doi: 10.1038/s41586-019-1868-x
– ident: ref33/cit33
  doi: 10.1038/s41566-018-0177-5
– ident: ref16/cit16
  doi: 10.1021/acsnano.8b08948
– ident: ref17/cit17
  doi: 10.1116/1.4927542
– ident: ref34/cit34
  doi: 10.1103/PhysRevLett.120.186103
SSID ssj0057876
Score 2.6072874
Snippet Lead halide perovskites have been promising materials for lasing applications. Despite that a series of perovskite microlasers have been reported, their lasing...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7386
Title Highly Controllable Etchless Perovskite Microlasers Based on Bound States in the Continuum
URI http://dx.doi.org/10.1021/acsnano.1c00673
https://www.ncbi.nlm.nih.gov/pubmed/33729762
https://www.proquest.com/docview/2502805668
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA4-Lnrw_VhfRPDgpbXPtD26i8siKIIK4qUkaQKLayrbVtBf70zbXV8sSg-F0oQ2mel8yXz9hpCTIBCu1C63ZCIEbt0wS3hKW0kmOM8cjXoyyLa4ZoP74PIhfPgUi_6ZwffcMy4Lw01uu7IuqjJPFj0GLowoqHc7-eii3bEmgQwLZEARUxWfXx1gGJLF9zA0A1vWMaa_2rCzilqaEKklT3ZVClu-_xZu_Pvx18hKizTpeWMa62ROmQ2y_EV_cJM8Istj9EZ7DV99hL9R0QuYxxF8_-iNGuevBe7u0iuk7QHOBqxIu3DKaG5oFysy0Qat0qGhACXrnoamqp63yH3_4q43sNpiCxYHjFLCgjRiSRgJHksea8bCDLw7k9IFCKh5qFUYaECTSguuWJSE2ve1ChwthOPDVcffJgsmN2qXUFcrVLxFZRs_CBMpvFhqP4FD-TrKgg45gVFJW2cp0joP7rlpO1RpO1QdYk-mKJWtYDnWzRjNbnA6bfDSaHXMvvV4Mucp-BMmSbhReVWkAAm9GFAhiztkpzGGaWc-5jgheuz97wX2yZKHDBgnsLzogCyU40odAoQpxVFtvB9x_uzt
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZT-MwEB6x8LDwwH2UYzESD_uSkvt4pFVRl0usFiTES2Q7toQoDiINEvx6ZpK0XKrEKg-RonjkY-z57Bl_A7Dv-8KR2uGWTISgo5vQEq7SVpIJzjNbE58MRVuch_0r__g6uJ4Ce3QXBitRoKSicuK_sQs4B_jNcJO3HVnlVvkBMwhFXNLpw-6_0dpL6hfWfmTcJyOYGJP5fBFA1kgWH63RBIhZmZqjBfg7rmQVYXLXLoeiLV8-8Tf-TysWYb7BneywVpQlmFJmGebesRGuwA3FfAyeWbeOXh_QpSrWw1Ed4GrILtRj_lTQWS87oyA-RN2IHFkHXxnLDetQfiZWY1d2axgCy0rSrSnL-1W4OupddvtWk3rB4ohYhrg9jcIkiASPJY91GAYZzvVMSgcBoeaBVoGvEVsqLbgKoyTQnqeVb2shbA-_2t4aTJvcqA1gjlbEf0s8N54fJFK4sdRego_ydJT5LdjHXkmbqVOklVfcddKmq9Kmq1rQHo1UKhv6csqiMZhc4Pe4wEPN3DH5173R0Kc4u8hlwo3KyyJFgOjGiBHDuAXrtU6MhXnk8URbsvm9BuzCz_7l2Wl6-uf8ZAtmXYqNsX3LjbZhevhYqh0EN0Pxq9LnV0hA9U4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZSyQxEC48QPTB9XZ2V43ggy899n086qyDN4IOiC9Nkk5AHNPD9PTC-uut6u4ZVmVA6YeGplPkqEq-pCpfARz4vnCkdrglEyHo6Ca0hKu0lWSC88zWxCdD0RY34VnPv3gIHppLYXQXBitRoKSicuKTVQ8y3TAMOEf43XCTtx1Z5VeZhXly2pFeH3fuxvMvqWBY-5Jxr4yAYkLo80kArUiyeL8iTYGZ1XLT_QG9SUWrKJPndjkSbfn6gcPxuy1ZgeUGf7LjWmFWYUaZNVj6j5VwHR4p9qP_j3XqKPY-Xa5ipzi6fZwV2a0a5n8LOvNl1xTMh-gbESQ7wVfGcsNOKE8TqzEsezIMAWYl6cmU5csG9Lqn950zq0nBYHFELiPcpkZhEkSCx5LHOgyDDG0-k9JBYKh5oFXga8SYSguuwigJtOdp5dtaCNvDr7a3CXMmN2obmKMV8eAS343nB4kUbiy1l-CjPB1lfgsOsFfSxoSKtPKOu07adFXadFUL2uPRSmVDY07ZNPrTCxxOCgxqBo_pv-6Phz9FKyPXCTcqL4sUgaIbI1YM4xZs1XoxEeaR5xPXlJ9fa8AeLNz-6aZX5zeXv2DRpRAZ27fc6DfMjYal2kGMMxK7lUq_AUCr99E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Controllable+Etchless+Perovskite+Microlasers+Based+on+Bound+States+in+the+Continuum&rft.jtitle=ACS+nano&rft.au=Wang%2C+Yuhan&rft.au=Fan%2C+Yubin&rft.au=Zhang%2C+Xudong&rft.au=Tang%2C+Haijun&rft.date=2021-04-27&rft.eissn=1936-086X&rft.volume=15&rft.issue=4&rft.spage=7386&rft_id=info:doi/10.1021%2Facsnano.1c00673&rft_id=info%3Apmid%2F33729762&rft.externalDocID=33729762
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon