Highly Controllable Etchless Perovskite Microlasers Based on Bound States in the Continuum
Lead halide perovskites have been promising materials for lasing applications. Despite that a series of perovskite microlasers have been reported, their lasing modes are confined by either the as-grown morphology or the etched boundary. The first one is quite random and incompatible with integration...
Saved in:
Published in | ACS nano Vol. 15; no. 4; pp. 7386 - 7391 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
27.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lead halide perovskites have been promising materials for lasing applications. Despite that a series of perovskite microlasers have been reported, their lasing modes are confined by either the as-grown morphology or the etched boundary. The first one is quite random and incompatible with integration, whereas the latter one strongly spoils the laser performances. Herein, we propose and experimentally demonstrate a robust and generic mechanism to realize well-controlled perovskite microlasers without the etching process. By patterning a one-dimensional polymer grating onto a perovskite film, we show that the symmetry-protected bound states in the continuum (BICs) can be formed in it. The intriguing properties of BICs including a widely spread mode profile and high Q factor, associated with the exceptional gain of perovskite, produce single-mode microlasers with high repeatability, controllability, directionality, and a polarization vortex. This mechanism can also be extended to two-dimensional nanostructures, enabling BIC lasers with different topological charges. |
---|---|
AbstractList | Lead halide perovskites have been promising materials for lasing applications. Despite that a series of perovskite microlasers have been reported, their lasing modes are confined by either the as-grown morphology or the etched boundary. The first one is quite random and incompatible with integration, whereas the latter one strongly spoils the laser performances. Herein, we propose and experimentally demonstrate a robust and generic mechanism to realize well-controlled perovskite microlasers without the etching process. By patterning a one-dimensional polymer grating onto a perovskite film, we show that the symmetry-protected bound states in the continuum (BICs) can be formed in it. The intriguing properties of BICs including a widely spread mode profile and high
factor, associated with the exceptional gain of perovskite, produce single-mode microlasers with high repeatability, controllability, directionality, and a polarization vortex. This mechanism can also be extended to two-dimensional nanostructures, enabling BIC lasers with different topological charges. Lead halide perovskites have been promising materials for lasing applications. Despite that a series of perovskite microlasers have been reported, their lasing modes are confined by either the as-grown morphology or the etched boundary. The first one is quite random and incompatible with integration, whereas the latter one strongly spoils the laser performances. Herein, we propose and experimentally demonstrate a robust and generic mechanism to realize well-controlled perovskite microlasers without the etching process. By patterning a one-dimensional polymer grating onto a perovskite film, we show that the symmetry-protected bound states in the continuum (BICs) can be formed in it. The intriguing properties of BICs including a widely spread mode profile and high Q factor, associated with the exceptional gain of perovskite, produce single-mode microlasers with high repeatability, controllability, directionality, and a polarization vortex. This mechanism can also be extended to two-dimensional nanostructures, enabling BIC lasers with different topological charges. Lead halide perovskites have been promising materials for lasing applications. Despite that a series of perovskite microlasers have been reported, their lasing modes are confined by either the as-grown morphology or the etched boundary. The first one is quite random and incompatible with integration, whereas the latter one strongly spoils the laser performances. Herein, we propose and experimentally demonstrate a robust and generic mechanism to realize well-controlled perovskite microlasers without the etching process. By patterning a one-dimensional polymer grating onto a perovskite film, we show that the symmetry-protected bound states in the continuum (BICs) can be formed in it. The intriguing properties of BICs including a widely spread mode profile and high Q factor, associated with the exceptional gain of perovskite, produce single-mode microlasers with high repeatability, controllability, directionality, and a polarization vortex. This mechanism can also be extended to two-dimensional nanostructures, enabling BIC lasers with different topological charges.Lead halide perovskites have been promising materials for lasing applications. Despite that a series of perovskite microlasers have been reported, their lasing modes are confined by either the as-grown morphology or the etched boundary. The first one is quite random and incompatible with integration, whereas the latter one strongly spoils the laser performances. Herein, we propose and experimentally demonstrate a robust and generic mechanism to realize well-controlled perovskite microlasers without the etching process. By patterning a one-dimensional polymer grating onto a perovskite film, we show that the symmetry-protected bound states in the continuum (BICs) can be formed in it. The intriguing properties of BICs including a widely spread mode profile and high Q factor, associated with the exceptional gain of perovskite, produce single-mode microlasers with high repeatability, controllability, directionality, and a polarization vortex. This mechanism can also be extended to two-dimensional nanostructures, enabling BIC lasers with different topological charges. |
Author | Tang, Haijun Wang, Yuhan Han, Jiecai Song, Qinghai Fan, Yubin Zhang, Xudong Xiao, Shumin |
AuthorAffiliation | Collaborative Innovation Center of Extreme Optics Shanxi University Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School National Key Laboratory of Science and Technology on Advanced Composites in Special Environments |
AuthorAffiliation_xml | – name: National Key Laboratory of Science and Technology on Advanced Composites in Special Environments – name: Shanxi University – name: Collaborative Innovation Center of Extreme Optics – name: Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School |
Author_xml | – sequence: 1 givenname: Yuhan surname: Wang fullname: Wang, Yuhan organization: Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School – sequence: 2 givenname: Yubin surname: Fan fullname: Fan, Yubin organization: Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School – sequence: 3 givenname: Xudong surname: Zhang fullname: Zhang, Xudong organization: Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School – sequence: 4 givenname: Haijun surname: Tang fullname: Tang, Haijun organization: Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School – sequence: 5 givenname: Qinghai orcidid: 0000-0003-1048-411X surname: Song fullname: Song, Qinghai email: qinghai.song@hit.edu.cn organization: Shanxi University – sequence: 6 givenname: Jiecai surname: Han fullname: Han, Jiecai email: hanjc@hit.edu.cn organization: National Key Laboratory of Science and Technology on Advanced Composites in Special Environments – sequence: 7 givenname: Shumin surname: Xiao fullname: Xiao, Shumin email: shumin.xiao@hit.edu.cn organization: Shanxi University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33729762$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kEFLAzEQhYMo1qpnb5KjIG2TTZPdHLWoFSoKKoiXkM1ObHSb6GZX8N-b2taD4GmGmfcevK-Ptn3wgNARJUNKMjrSJnrtw5AaQkTOttAelUwMSCGetn93TnuoH-MrITwvcrGLeozlmcxFtoeep-5lXn_hSfBtE-palzXgi9bMa4gR30ETPuObawHfOJP-OkIT8XkaFQ4en4fOV_i-1S1E7Dxu5_CT5HzXLQ7QjtV1hMP13EePlxcPk-lgdnt1PTmbDTSTsh3wLBeS56UujC6sELwaE1IZQ6nMrOYW-NgSKcGWGkQuuWXMwpjYsiQsXQnbRyer3PcmfHQQW7Vw0UDq4iF0UWWcZAXhQhRJeryWduUCKvXeuIVuvtSGRxLwlSCVjbEBq4xL7dySjna1okQtuas1d7XmnnyjP75N9P-O05UjPdRr6BqfGP2r_gZLiZao |
CitedBy_id | crossref_primary_10_1021_acsphotonics_3c00206 crossref_primary_10_7498_aps_74_20241752 crossref_primary_10_1021_acs_jpclett_3c02763 crossref_primary_10_1039_D5CP00012B crossref_primary_10_1021_acsnano_1c05421 crossref_primary_10_1364_OE_522746 crossref_primary_10_3390_mi14101817 crossref_primary_10_1016_j_optcom_2024_130864 crossref_primary_10_1007_s11426_024_1986_6 crossref_primary_10_1364_OE_538811 crossref_primary_10_1016_j_jallcom_2022_167232 crossref_primary_10_1016_j_physrep_2023_01_001 crossref_primary_10_1117_1_AP_4_6_066004 crossref_primary_10_1002_lpor_202300350 crossref_primary_10_1364_OL_519298 crossref_primary_10_1364_OL_522831 crossref_primary_10_1103_PhysRevB_109_075134 crossref_primary_10_1364_OL_484472 crossref_primary_10_1002_adom_202201906 crossref_primary_10_1002_adom_202302496 crossref_primary_10_1038_s41377_023_01231_1 crossref_primary_10_1002_adfm_202314953 crossref_primary_10_1002_adom_202200534 crossref_primary_10_1002_lpor_202200611 crossref_primary_10_1364_AOP_531166 crossref_primary_10_1021_acs_chemrev_2c00048 crossref_primary_10_1038_s41467_025_57738_1 crossref_primary_10_1364_OE_446072 crossref_primary_10_2139_ssrn_3943843 crossref_primary_10_1002_adfm_202200385 crossref_primary_10_1016_j_omx_2022_100214 crossref_primary_10_1021_acsphotonics_2c01496 crossref_primary_10_1038_s41467_024_45284_1 crossref_primary_10_1007_s12274_023_6307_5 crossref_primary_10_1088_1674_1056_ac8ce5 crossref_primary_10_1364_PRJ_533613 crossref_primary_10_1038_s41467_024_47669_8 crossref_primary_10_1002_adfm_202304666 crossref_primary_10_23919_emsci_2023_0013 crossref_primary_10_26599_NR_2025_94907132 crossref_primary_10_3390_ma16227112 crossref_primary_10_1021_acs_nanolett_1c03656 crossref_primary_10_1515_nanoph_2021_0387 crossref_primary_10_1021_acsnano_2c03033 crossref_primary_10_1002_adom_202101120 crossref_primary_10_1016_j_optcom_2022_128864 crossref_primary_10_1002_adom_202400815 crossref_primary_10_1016_j_optlastec_2023_109578 crossref_primary_10_3390_mi13111945 crossref_primary_10_1007_s11433_023_2223_5 crossref_primary_10_1364_OE_531000 crossref_primary_10_1103_PhysRevB_105_L241301 crossref_primary_10_1103_PhysRevB_110_L081401 crossref_primary_10_1126_sciadv_adj3476 crossref_primary_10_1002_adom_202200753 crossref_primary_10_1021_acs_chemrev_1c01029 crossref_primary_10_1021_acsphotonics_4c00880 crossref_primary_10_1103_PhysRevApplied_21_034039 crossref_primary_10_1002_adma_202413559 crossref_primary_10_1063_5_0224766 crossref_primary_10_1021_acs_jpclett_4c02604 crossref_primary_10_1038_s41377_023_01130_5 crossref_primary_10_1038_s41467_023_38939_y crossref_primary_10_1063_5_0196849 crossref_primary_10_1021_acsphotonics_4c00705 crossref_primary_10_1126_sciadv_adf6649 crossref_primary_10_1002_adma_202500226 crossref_primary_10_1007_s11433_022_1937_8 crossref_primary_10_1039_D3EE00646H crossref_primary_10_1109_LPT_2023_3253711 crossref_primary_10_1364_JOSAB_506368 crossref_primary_10_1117_1_APN_3_1_016011 crossref_primary_10_1038_s41377_024_01548_5 crossref_primary_10_1021_acs_nanolett_1c01975 crossref_primary_10_1002_adom_202400296 crossref_primary_10_1021_acs_nanolett_3c00463 crossref_primary_10_1515_nanoph_2023_0156 |
Cites_doi | 10.1038/s41578-019-0080-9 10.1103/PhysRevLett.119.243901 10.1038/nphoton.2016.62 10.1021/acs.nanolett.7b04847 10.1364/PRJ.413229 10.1126/science.aaz3985 10.1021/acsnano.7b01351 10.1103/PhysRevLett.121.253901 10.1021/acs.nanolett.5b04053 10.1038/nmat3911 10.1038/s41586-020-2621-1 10.1038/s41586-019-1664-7 10.1002/adma.201903717 10.1021/jz5005285 10.1038/s41467-020-15609-x 10.1038/nature12289 10.1038/nature20799 10.1021/acs.nanolett.5b01166 10.1038/s41565-018-0245-5 10.1021/acs.nanolett.0c03593 10.1103/PhysRevLett.100.183902 10.1038/nmat4271 10.1103/PhysRevLett.112.213903 10.1126/science.aas9768 10.1038/natrevmats.2016.48 10.1103/PhysRevLett.105.053902 10.1103/PhysRevLett.113.257401 10.1103/PhysRevLett.123.253901 10.1038/541164a 10.1002/adma.201606205 10.1126/science.aba4597 10.1103/PhysRevLett.111.240403 10.1038/s41586-019-1868-x 10.1038/s41566-018-0177-5 10.1021/acsnano.8b08948 10.1116/1.4927542 10.1103/PhysRevLett.120.186103 |
ContentType | Journal Article |
Copyright | 2021 American
Chemical Society |
Copyright_xml | – notice: 2021 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acsnano.1c00673 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 7391 |
ExternalDocumentID | 33729762 10_1021_acsnano_1c00673 a136901112 |
Genre | Journal Article |
GroupedDBID | - .K2 23M 4.4 53G 55A 5GY 5VS 7~N AABXI ABFRP ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ F5P GGK GNL IH9 IHE JG JG~ K2 P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV BAANH CITATION CUPRZ NPM 7X8 |
ID | FETCH-LOGICAL-a399t-5276957ba8ca8f665d400dcc1192fa5fe54f099efbae6795f33fe40fbb039ef03 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Fri Jul 11 01:41:10 EDT 2025 Mon Jul 21 05:53:48 EDT 2025 Thu Apr 24 22:59:43 EDT 2025 Tue Jul 01 03:37:08 EDT 2025 Thu Apr 29 06:07:49 EDT 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | bound states in the continuum polarization vortex etchless grating well-controlled laser perovskite microlasers |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a399t-5276957ba8ca8f665d400dcc1192fa5fe54f099efbae6795f33fe40fbb039ef03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1048-411X |
PMID | 33729762 |
PQID | 2502805668 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2502805668 pubmed_primary_33729762 crossref_citationtrail_10_1021_acsnano_1c00673 crossref_primary_10_1021_acsnano_1c00673 acs_journals_10_1021_acsnano_1c00673 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 GGK W1F ABFRP ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-27 |
PublicationDateYYYYMMDD | 2021-04-27 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 Sun W. (ref14/cit14) 2020; 11 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref7/cit7 |
References_xml | – ident: ref2/cit2 doi: 10.1038/s41578-019-0080-9 – ident: ref29/cit29 doi: 10.1103/PhysRevLett.119.243901 – ident: ref1/cit1 doi: 10.1038/nphoton.2016.62 – ident: ref35/cit35 doi: 10.1021/acs.nanolett.7b04847 – ident: ref6/cit6 doi: 10.1364/PRJ.413229 – ident: ref26/cit26 doi: 10.1126/science.aaz3985 – ident: ref12/cit12 doi: 10.1021/acsnano.7b01351 – ident: ref21/cit21 doi: 10.1103/PhysRevLett.121.253901 – ident: ref10/cit10 doi: 10.1021/acs.nanolett.5b04053 – ident: ref3/cit3 doi: 10.1038/nmat3911 – ident: ref9/cit9 doi: 10.1038/s41586-020-2621-1 – ident: ref36/cit36 doi: 10.1038/s41586-019-1664-7 – ident: ref8/cit8 doi: 10.1002/adma.201903717 – ident: ref4/cit4 doi: 10.1021/jz5005285 – volume: 11 start-page: 1781 year: 2020 ident: ref14/cit14 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15609-x – ident: ref28/cit28 doi: 10.1038/nature12289 – ident: ref24/cit24 doi: 10.1038/nature20799 – ident: ref11/cit11 doi: 10.1021/acs.nanolett.5b01166 – ident: ref23/cit23 doi: 10.1038/s41565-018-0245-5 – ident: ref7/cit7 doi: 10.1021/acs.nanolett.0c03593 – ident: ref19/cit19 doi: 10.1103/PhysRevLett.100.183902 – ident: ref5/cit5 doi: 10.1038/nmat4271 – ident: ref30/cit30 doi: 10.1103/PhysRevLett.112.213903 – ident: ref27/cit27 doi: 10.1126/science.aas9768 – ident: ref18/cit18 doi: 10.1038/natrevmats.2016.48 – ident: ref31/cit31 doi: 10.1103/PhysRevLett.105.053902 – ident: ref32/cit32 doi: 10.1103/PhysRevLett.113.257401 – ident: ref25/cit25 doi: 10.1103/PhysRevLett.123.253901 – ident: ref22/cit22 doi: 10.1038/541164a – ident: ref15/cit15 doi: 10.1002/adma.201606205 – ident: ref13/cit13 doi: 10.1126/science.aba4597 – ident: ref20/cit20 doi: 10.1103/PhysRevLett.111.240403 – ident: ref37/cit37 doi: 10.1038/s41586-019-1868-x – ident: ref33/cit33 doi: 10.1038/s41566-018-0177-5 – ident: ref16/cit16 doi: 10.1021/acsnano.8b08948 – ident: ref17/cit17 doi: 10.1116/1.4927542 – ident: ref34/cit34 doi: 10.1103/PhysRevLett.120.186103 |
SSID | ssj0057876 |
Score | 2.6072874 |
Snippet | Lead halide perovskites have been promising materials for lasing applications. Despite that a series of perovskite microlasers have been reported, their lasing... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7386 |
Title | Highly Controllable Etchless Perovskite Microlasers Based on Bound States in the Continuum |
URI | http://dx.doi.org/10.1021/acsnano.1c00673 https://www.ncbi.nlm.nih.gov/pubmed/33729762 https://www.proquest.com/docview/2502805668 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA4-Lnrw_VhfRPDgpbXPtD26i8siKIIK4qUkaQKLayrbVtBf70zbXV8sSg-F0oQ2mel8yXz9hpCTIBCu1C63ZCIEbt0wS3hKW0kmOM8cjXoyyLa4ZoP74PIhfPgUi_6ZwffcMy4Lw01uu7IuqjJPFj0GLowoqHc7-eii3bEmgQwLZEARUxWfXx1gGJLF9zA0A1vWMaa_2rCzilqaEKklT3ZVClu-_xZu_Pvx18hKizTpeWMa62ROmQ2y_EV_cJM8Istj9EZ7DV99hL9R0QuYxxF8_-iNGuevBe7u0iuk7QHOBqxIu3DKaG5oFysy0Qat0qGhACXrnoamqp63yH3_4q43sNpiCxYHjFLCgjRiSRgJHksea8bCDLw7k9IFCKh5qFUYaECTSguuWJSE2ve1ChwthOPDVcffJgsmN2qXUFcrVLxFZRs_CBMpvFhqP4FD-TrKgg45gVFJW2cp0joP7rlpO1RpO1QdYk-mKJWtYDnWzRjNbnA6bfDSaHXMvvV4Mucp-BMmSbhReVWkAAm9GFAhiztkpzGGaWc-5jgheuz97wX2yZKHDBgnsLzogCyU40odAoQpxVFtvB9x_uzt |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZT-MwEB6x8LDwwH2UYzESD_uSkvt4pFVRl0usFiTES2Q7toQoDiINEvx6ZpK0XKrEKg-RonjkY-z57Bl_A7Dv-8KR2uGWTISgo5vQEq7SVpIJzjNbE58MRVuch_0r__g6uJ4Ce3QXBitRoKSicuK_sQs4B_jNcJO3HVnlVvkBMwhFXNLpw-6_0dpL6hfWfmTcJyOYGJP5fBFA1kgWH63RBIhZmZqjBfg7rmQVYXLXLoeiLV8-8Tf-TysWYb7BneywVpQlmFJmGebesRGuwA3FfAyeWbeOXh_QpSrWw1Ed4GrILtRj_lTQWS87oyA-RN2IHFkHXxnLDetQfiZWY1d2axgCy0rSrSnL-1W4OupddvtWk3rB4ohYhrg9jcIkiASPJY91GAYZzvVMSgcBoeaBVoGvEVsqLbgKoyTQnqeVb2shbA-_2t4aTJvcqA1gjlbEf0s8N54fJFK4sdRego_ydJT5LdjHXkmbqVOklVfcddKmq9Kmq1rQHo1UKhv6csqiMZhc4Pe4wEPN3DH5173R0Kc4u8hlwo3KyyJFgOjGiBHDuAXrtU6MhXnk8URbsvm9BuzCz_7l2Wl6-uf8ZAtmXYqNsX3LjbZhevhYqh0EN0Pxq9LnV0hA9U4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZSyQxEC48QPTB9XZ2V43ggy899n086qyDN4IOiC9Nkk5AHNPD9PTC-uut6u4ZVmVA6YeGplPkqEq-pCpfARz4vnCkdrglEyHo6Ca0hKu0lWSC88zWxCdD0RY34VnPv3gIHppLYXQXBitRoKSicuKTVQ8y3TAMOEf43XCTtx1Z5VeZhXly2pFeH3fuxvMvqWBY-5Jxr4yAYkLo80kArUiyeL8iTYGZ1XLT_QG9SUWrKJPndjkSbfn6gcPxuy1ZgeUGf7LjWmFWYUaZNVj6j5VwHR4p9qP_j3XqKPY-Xa5ipzi6fZwV2a0a5n8LOvNl1xTMh-gbESQ7wVfGcsNOKE8TqzEsezIMAWYl6cmU5csG9Lqn950zq0nBYHFELiPcpkZhEkSCx5LHOgyDDG0-k9JBYKh5oFXga8SYSguuwigJtOdp5dtaCNvDr7a3CXMmN2obmKMV8eAS343nB4kUbiy1l-CjPB1lfgsOsFfSxoSKtPKOu07adFXadFUL2uPRSmVDY07ZNPrTCxxOCgxqBo_pv-6Phz9FKyPXCTcqL4sUgaIbI1YM4xZs1XoxEeaR5xPXlJ9fa8AeLNz-6aZX5zeXv2DRpRAZ27fc6DfMjYal2kGMMxK7lUq_AUCr99E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Controllable+Etchless+Perovskite+Microlasers+Based+on+Bound+States+in+the+Continuum&rft.jtitle=ACS+nano&rft.au=Wang%2C+Yuhan&rft.au=Fan%2C+Yubin&rft.au=Zhang%2C+Xudong&rft.au=Tang%2C+Haijun&rft.date=2021-04-27&rft.eissn=1936-086X&rft.volume=15&rft.issue=4&rft.spage=7386&rft_id=info:doi/10.1021%2Facsnano.1c00673&rft_id=info%3Apmid%2F33729762&rft.externalDocID=33729762 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |