Highly Robust and Self-Powered Electronic Skin Based on Tough Conductive Self-Healing Elastomer
Self-powered electronic skin (E-skin) can be endowed with high robustness by employing self-healing materials. However, most self-powered E-skin employs two heterogeneous materials with high modulus mismatch at the interface and poor fully self-healing ability, which reduces the robustness of the wh...
Saved in:
Published in | ACS nano Vol. 14; no. 7; pp. 9066 - 9072 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
28.07.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Self-powered electronic skin (E-skin) can be endowed with high robustness by employing self-healing materials. However, most self-powered E-skin employs two heterogeneous materials with high modulus mismatch at the interface and poor fully self-healing ability, which reduces the robustness of the whole device. Here, a conductive polyurethane elastomer (PUE) with excellent mechanical toughness and self-healing ability is prepared. Based on the self-healing insulated/conductive PUE homogeneous structure and triboelectric–electrostatic induction effect, a highly robust and self-powered E-skin (HRSE-skin) is developed. The HRSE-skin possesses stable mechanosensation capability during the 50% stretching deformation due to a low modulus mismatch in the homogeneous structure. In addition, the stretchability and mechanosensation capability of the HRSE-skin can be restored after the fracture owing to the fully self-healing ability of the homogeneous structure. Therefore, the HRSE-skin has high robustness of the whole device including stable service behaviors and excellent restorability. The developed HRSE-skin demonstrates high robustness in the detection of the force and bending angle of the prosthetic joint. This work solves the low robustness of self-powered E-skin by the preparation of conductive self-healing PUE and the construction of the homogeneous structure, which is important for the practical applications of self-powered E-skin in prosthetic limbs and advanced robotics. |
---|---|
AbstractList | Self-powered electronic skin (E-skin) can be endowed with high robustness by employing self-healing materials. However, most self-powered E-skin employs two heterogeneous materials with high modulus mismatch at the interface and poor fully self-healing ability, which reduces the robustness of the whole device. Here, a conductive polyurethane elastomer (PUE) with excellent mechanical toughness and self-healing ability is prepared. Based on the self-healing insulated/conductive PUE homogeneous structure and triboelectric-electrostatic induction effect, a highly robust and self-powered E-skin (HRSE-skin) is developed. The HRSE-skin possesses stable mechanosensation capability during the 50% stretching deformation due to a low modulus mismatch in the homogeneous structure. In addition, the stretchability and mechanosensation capability of the HRSE-skin can be restored after the fracture owing to the fully self-healing ability of the homogeneous structure. Therefore, the HRSE-skin has high robustness of the whole device including stable service behaviors and excellent restorability. The developed HRSE-skin demonstrates high robustness in the detection of the force and bending angle of the prosthetic joint. This work solves the low robustness of self-powered E-skin by the preparation of conductive self-healing PUE and the construction of the homogeneous structure, which is important for the practical applications of self-powered E-skin in prosthetic limbs and advanced robotics. Self-powered electronic skin (E-skin) can be endowed with high robustness by employing self-healing materials. However, most self-powered E-skin employs two heterogeneous materials with high modulus mismatch at the interface and poor fully self-healing ability, which reduces the robustness of the whole device. Here, a conductive polyurethane elastomer (PUE) with excellent mechanical toughness and self-healing ability is prepared. Based on the self-healing insulated/conductive PUE homogeneous structure and triboelectric-electrostatic induction effect, a highly robust and self-powered E-skin (HRSE-skin) is developed. The HRSE-skin possesses stable mechanosensation capability during the 50% stretching deformation due to a low modulus mismatch in the homogeneous structure. In addition, the stretchability and mechanosensation capability of the HRSE-skin can be restored after the fracture owing to the fully self-healing ability of the homogeneous structure. Therefore, the HRSE-skin has high robustness of the whole device including stable service behaviors and excellent restorability. The developed HRSE-skin demonstrates high robustness in the detection of the force and bending angle of the prosthetic joint. This work solves the low robustness of self-powered E-skin by the preparation of conductive self-healing PUE and the construction of the homogeneous structure, which is important for the practical applications of self-powered E-skin in prosthetic limbs and advanced robotics.Self-powered electronic skin (E-skin) can be endowed with high robustness by employing self-healing materials. However, most self-powered E-skin employs two heterogeneous materials with high modulus mismatch at the interface and poor fully self-healing ability, which reduces the robustness of the whole device. Here, a conductive polyurethane elastomer (PUE) with excellent mechanical toughness and self-healing ability is prepared. Based on the self-healing insulated/conductive PUE homogeneous structure and triboelectric-electrostatic induction effect, a highly robust and self-powered E-skin (HRSE-skin) is developed. The HRSE-skin possesses stable mechanosensation capability during the 50% stretching deformation due to a low modulus mismatch in the homogeneous structure. In addition, the stretchability and mechanosensation capability of the HRSE-skin can be restored after the fracture owing to the fully self-healing ability of the homogeneous structure. Therefore, the HRSE-skin has high robustness of the whole device including stable service behaviors and excellent restorability. The developed HRSE-skin demonstrates high robustness in the detection of the force and bending angle of the prosthetic joint. This work solves the low robustness of self-powered E-skin by the preparation of conductive self-healing PUE and the construction of the homogeneous structure, which is important for the practical applications of self-powered E-skin in prosthetic limbs and advanced robotics. |
Author | Xun, Xiaochen Zhang, Zheng Zhang, Yue Liao, Qingliang Zhao, Xuan Zhao, Bin Kang, Zhuo Gao, Fangfang |
AuthorAffiliation | State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies |
AuthorAffiliation_xml | – name: Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies – name: State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering |
Author_xml | – sequence: 1 givenname: Xiaochen surname: Xun fullname: Xun, Xiaochen organization: State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering – sequence: 2 givenname: Zheng orcidid: 0000-0002-9104-7562 surname: Zhang fullname: Zhang, Zheng organization: State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering – sequence: 3 givenname: Xuan surname: Zhao fullname: Zhao, Xuan organization: State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering – sequence: 4 givenname: Bin surname: Zhao fullname: Zhao, Bin organization: State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering – sequence: 5 givenname: Fangfang surname: Gao fullname: Gao, Fangfang organization: State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering – sequence: 6 givenname: Zhuo surname: Kang fullname: Kang, Zhuo organization: State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering – sequence: 7 givenname: Qingliang surname: Liao fullname: Liao, Qingliang email: liao@ustb.edu.cn organization: State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering – sequence: 8 givenname: Yue orcidid: 0000-0002-8213-1420 surname: Zhang fullname: Zhang, Yue email: yuezhang@ustb.edu.cn organization: State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32658455$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kE1LxDAQQIMofp-9SY-CdE2aJm2OuqyuICiugreQJtM12k00SRX_vZVdPQh6ypB5bw5vB6077wChA4JHBBfkROnolPMjrHFJWL2GtomgPMc1f1j_mRnZQjsxPmHMqrrim2iLFpzVJWPbSE7t_LH7yG5908eUKWeyGXRtfuPfIYDJJh3oFLyzOps9W5edqTj8epfd-X7-mI29M71O9g2W2hRUZ9180FRMfgFhD220qouwv3p30f355G48za-uLy7Hp1e5okKkvGw5xkQRMKApA142RivSQA1AmRY1LzDlwvC6EaKphDKlBq4LwlusTEU13UVHy7svwb_2EJNc2Kih65QD30dZlAWtRM0oHtDDFdo3CzDyJdiFCh_yO8oAnCwBHXyMAdofhGD5lV2usstV9sFgvwxtk0rWuxSU7f7xjpfesJBPvg9uaPQn_Ql4TpfQ |
CitedBy_id | crossref_primary_10_1002_app_53085 crossref_primary_10_1007_s12274_023_5728_5 crossref_primary_10_20517_ss_2024_05 crossref_primary_10_1002_mame_202200310 crossref_primary_10_1016_j_cej_2021_130568 crossref_primary_10_1016_j_nanoen_2025_110757 crossref_primary_10_1126_sciadv_add8527 crossref_primary_10_1016_j_mtchem_2025_102580 crossref_primary_10_1002_advs_202407596 crossref_primary_10_1016_j_eurpolymj_2021_110569 crossref_primary_10_1016_j_cej_2024_157534 crossref_primary_10_1002_adfm_202411331 crossref_primary_10_1146_annurev_bioeng_103122_032652 crossref_primary_10_1002_adfm_202009869 crossref_primary_10_1007_s42114_021_00262_9 crossref_primary_10_1021_acs_macromol_2c00492 crossref_primary_10_1016_j_polymer_2021_124357 crossref_primary_10_1002_adsr_202200093 crossref_primary_10_1007_s42114_022_00472_9 crossref_primary_10_1016_j_cej_2023_142700 crossref_primary_10_1039_D2MH01005D crossref_primary_10_1039_D1PY00715G crossref_primary_10_1016_j_cej_2022_140543 crossref_primary_10_1002_advs_202308154 crossref_primary_10_1002_smsc_202300043 crossref_primary_10_1002_app_55957 crossref_primary_10_1021_acsami_2c07767 crossref_primary_10_1002_app_55684 crossref_primary_10_2139_ssrn_3989389 crossref_primary_10_1016_j_eurpolymj_2022_111437 crossref_primary_10_1016_j_cej_2025_159776 crossref_primary_10_1016_j_polymer_2023_126467 crossref_primary_10_1039_D2TC02706B crossref_primary_10_1002_adfm_202102225 crossref_primary_10_3390_polym12112594 crossref_primary_10_1002_app_51367 crossref_primary_10_1016_j_cej_2021_134038 crossref_primary_10_1021_acsami_1c16061 crossref_primary_10_1002_advs_202305672 crossref_primary_10_1002_smtd_202402190 crossref_primary_10_1016_j_apmt_2023_101898 crossref_primary_10_1016_j_cej_2021_131846 crossref_primary_10_1021_acsnano_1c11096 crossref_primary_10_1007_s40820_022_00875_9 crossref_primary_10_1016_j_mattod_2023_02_023 crossref_primary_10_1002_advs_202400479 crossref_primary_10_1016_j_polymertesting_2022_107598 crossref_primary_10_1016_j_apsusc_2023_159136 crossref_primary_10_1016_j_cej_2023_148229 crossref_primary_10_1021_acsnano_1c09732 crossref_primary_10_1021_acsami_1c15784 crossref_primary_10_1016_j_colsurfa_2021_127669 crossref_primary_10_1002_adfm_202107006 crossref_primary_10_1002_advs_202004727 crossref_primary_10_1039_D1QM01346G crossref_primary_10_1038_s41467_022_35434_8 crossref_primary_10_1039_D1TC05087G crossref_primary_10_1002_admt_202201088 crossref_primary_10_1016_j_nanoen_2021_106001 crossref_primary_10_1016_j_orgel_2022_106535 crossref_primary_10_1039_D0NR05976E crossref_primary_10_3390_s24144664 crossref_primary_10_1016_j_cej_2023_148214 crossref_primary_10_1021_acsami_2c04593 crossref_primary_10_1002_advs_202205485 crossref_primary_10_1002_adfm_202214479 crossref_primary_10_1007_s40820_022_00882_w crossref_primary_10_1109_JSEN_2021_3055458 crossref_primary_10_34133_2021_9845482 crossref_primary_10_1016_j_mser_2022_100672 crossref_primary_10_1002_adfm_202316550 crossref_primary_10_1016_j_nanoen_2021_106695 crossref_primary_10_5254_RCT_D_23_00034 crossref_primary_10_1016_j_mtphys_2024_101448 crossref_primary_10_1021_acsmaterialslett_0c00364 crossref_primary_10_1002_aisy_202200071 crossref_primary_10_1002_smll_202312230 crossref_primary_10_1039_D1TA08093H crossref_primary_10_1186_s40691_020_00235_4 crossref_primary_10_34133_2021_9801832 crossref_primary_10_1002_adma_202406967 crossref_primary_10_1039_D2QM00047D crossref_primary_10_1016_j_cej_2022_140187 crossref_primary_10_1021_acs_chemmater_1c01242 crossref_primary_10_1039_D4TC05252H crossref_primary_10_1002_adfm_202104686 crossref_primary_10_1002_adfm_202208372 crossref_primary_10_1002_agt2_319 crossref_primary_10_1016_j_cej_2023_146536 crossref_primary_10_1080_10584587_2024_2324683 crossref_primary_10_1021_acs_chemmater_1c03813 crossref_primary_10_1021_acs_macromol_2c01401 crossref_primary_10_3390_s21248422 crossref_primary_10_1007_s12274_023_6248_z crossref_primary_10_1016_j_nanoen_2025_110805 crossref_primary_10_1002_app_55007 crossref_primary_10_1039_D2MH00820C crossref_primary_10_1007_s10118_021_2612_1 crossref_primary_10_1016_j_mser_2021_100627 crossref_primary_10_1007_s10856_025_06860_z crossref_primary_10_1002_adfm_202102713 crossref_primary_10_1021_acsapm_4c01523 crossref_primary_10_1039_D3MH00514C crossref_primary_10_1016_j_reactfunctpolym_2021_105041 crossref_primary_10_1039_D2TA07410A crossref_primary_10_1016_j_nanoen_2023_109239 crossref_primary_10_1016_j_nanoen_2023_108542 crossref_primary_10_1016_j_progpolymsci_2023_101724 crossref_primary_10_1016_j_cej_2022_134806 |
Cites_doi | 10.1021/acs.accounts.8b00500 10.1021/acsami.8b08025 10.1039/c3ee42366b 10.1021/acsnano.8b02479 10.1016/j.nanoen.2014.11.009 10.1002/adma.201705918 10.1002/adma.201504299 10.1002/rcs.3 10.1002/adma.201702181 10.1063/1.2817234 10.1109/TRO.2009.2033627 10.1038/nmat4671 10.1039/C3MH00061C 10.1016/j.progpolymsci.2013.08.001 10.1021/nn404614z 10.1002/adma.201305682 10.1039/C5EE02711J 10.1002/adfm.201303799 10.1038/nmat2835 10.1039/C5SM01269D 10.1002/smtd.201600029 10.1039/c3cs60109a 10.1021/nl401006x 10.1002/adma.201606703 10.1126/sciadv.1700694 10.1016/j.nanoen.2017.01.004 10.1063/1.2382265 10.1002/anie.201607951 10.1038/nmat3711 10.1002/adfm.201904626 10.1016/j.nanoen.2017.08.045 10.1002/adma.201701985 10.1109/WHC.2013.6548392 10.1126/scirobotics.aat2516 10.1021/acsami.9b22707 10.1039/C5EE01532D 10.1063/1.1661034 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/acsnano.0c04158 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 9072 |
ExternalDocumentID | 32658455 10_1021_acsnano_0c04158 a636507247 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ F5P GNL IH9 IHE JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 4.4 5VS 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ BAANH CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-a399t-4f6001a1edec35e64bdca1be8ee35c98620369d68b99b79ad4ce6c216f0ad73c3 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Fri Jul 11 01:48:27 EDT 2025 Mon Jul 21 05:56:26 EDT 2025 Thu Apr 24 23:10:14 EDT 2025 Tue Jul 01 03:37:01 EDT 2025 Thu Aug 27 13:41:52 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | electronic skin high robustness self-powered mechanosensation stable service behaviors self-healing elastomer |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a399t-4f6001a1edec35e64bdca1be8ee35c98620369d68b99b79ad4ce6c216f0ad73c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8213-1420 0000-0002-9104-7562 |
PMID | 32658455 |
PQID | 2423798530 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2423798530 pubmed_primary_32658455 crossref_primary_10_1021_acsnano_0c04158 crossref_citationtrail_10_1021_acsnano_0c04158 acs_journals_10_1021_acsnano_0c04158 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-28 |
PublicationDateYYYYMMDD | 2020-07-28 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 Allen R. (ref28/cit28) 2000; 39 ref32/cit32 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref7/cit7 doi: 10.1021/acs.accounts.8b00500 – ident: ref13/cit13 doi: 10.1021/acsami.8b08025 – ident: ref8/cit8 doi: 10.1039/c3ee42366b – volume: 39 start-page: S4 year: 2000 ident: ref28/cit28 publication-title: EE-Eval. Eng. – ident: ref18/cit18 doi: 10.1021/acsnano.8b02479 – ident: ref24/cit24 doi: 10.1016/j.nanoen.2014.11.009 – ident: ref19/cit19 doi: 10.1002/adma.201705918 – ident: ref26/cit26 doi: 10.1002/adma.201504299 – ident: ref2/cit2 doi: 10.1002/rcs.3 – ident: ref20/cit20 doi: 10.1002/adma.201702181 – ident: ref21/cit21 doi: 10.1063/1.2817234 – ident: ref1/cit1 doi: 10.1109/TRO.2009.2033627 – ident: ref3/cit3 doi: 10.1038/nmat4671 – ident: ref32/cit32 doi: 10.1039/C3MH00061C – ident: ref34/cit34 doi: 10.1016/j.progpolymsci.2013.08.001 – ident: ref25/cit25 doi: 10.1021/nn404614z – ident: ref35/cit35 doi: 10.1002/adma.201305682 – ident: ref38/cit38 doi: 10.1039/C5EE02711J – ident: ref30/cit30 doi: 10.1002/adfm.201303799 – ident: ref5/cit5 doi: 10.1038/nmat2835 – ident: ref37/cit37 doi: 10.1039/C5SM01269D – ident: ref15/cit15 doi: 10.1002/smtd.201600029 – ident: ref33/cit33 doi: 10.1039/c3cs60109a – ident: ref29/cit29 doi: 10.1021/nl401006x – ident: ref9/cit9 doi: 10.1002/adma.201606703 – ident: ref10/cit10 doi: 10.1126/sciadv.1700694 – ident: ref11/cit11 doi: 10.1016/j.nanoen.2017.01.004 – ident: ref22/cit22 doi: 10.1063/1.2382265 – ident: ref36/cit36 doi: 10.1002/anie.201607951 – ident: ref4/cit4 doi: 10.1038/nmat3711 – ident: ref16/cit16 doi: 10.1002/adfm.201904626 – ident: ref17/cit17 doi: 10.1016/j.nanoen.2017.08.045 – ident: ref6/cit6 doi: 10.1002/adma.201701985 – ident: ref23/cit23 doi: 10.1109/WHC.2013.6548392 – ident: ref12/cit12 doi: 10.1126/scirobotics.aat2516 – ident: ref14/cit14 doi: 10.1021/acsami.9b22707 – ident: ref27/cit27 doi: 10.1039/C5EE01532D – ident: ref31/cit31 doi: 10.1063/1.1661034 |
SSID | ssj0057876 |
Score | 2.6177237 |
Snippet | Self-powered electronic skin (E-skin) can be endowed with high robustness by employing self-healing materials. However, most self-powered E-skin employs two... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9066 |
SubjectTerms | Elastomers Electric Conductivity Mechanical Phenomena Polyurethanes Wearable Electronic Devices |
Title | Highly Robust and Self-Powered Electronic Skin Based on Tough Conductive Self-Healing Elastomer |
URI | http://dx.doi.org/10.1021/acsnano.0c04158 https://www.ncbi.nlm.nih.gov/pubmed/32658455 https://www.proquest.com/docview/2423798530 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDBa69LId1navpi9oQA67OItsWbaObdAiKNBiWFKgN0MP6rJMLmr7sP36UbaTbQ2C9i4StkSKn0DyIyGjPHUmllpFkDkZcchUpFOOjmecTsAmCW-bwm5uxeyOX9-n93_Jop9m8GP2VZnKK1-OJyZ0k-evyG4s0IUDCprOV5dusDvRJZDxgYwoYs3is6EghCFT_R-GtmDLNsZc7XXVWVVLTRhKS36Mm1qPze9N4sbnP3-fvO2RJj3vTOOA7IB_R978wz_4nhShymP5i34vdVPVVHlL57B00bcwOg0svVzPyKFhSBe9wJBnaenpIsz2odPSB7ZYvC87sdDShHpRTCGk_AmPH8jd1eViOov6iQuRQqBSR9wF_KMYWDBJCoJraxTTkAMkqZH4-sGAJ63ItZQ6k8pyA8LETLiJslliko9k4EsPh4Q6XJ0zx9BSM64M18KmmVPMiVw6ycyQjHBrit5jqqJNhses6Per6PdrSMarcypMz1oehmcstwt8WQs8dIQd25d-Xh18gU4VMiXKQ9lURQCZmUQkMxmST51FrJUh3kXQlqZHL_uBY_I6Dk_0SRbF-QkZ1I8NnCKOqfVZa8F_ALjp7tY |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcoAeKM-ybSlG6oFLljhxHj62q1ZbaCugW6k3y88Li4M22QP8esZJNlCqlcrV8oz8GHs-azzfAByWmdMJVzKyheMRs4WMVMbw4GmnUmvSlLVJYReX-fSafbzJbjYgXuXC4CBq1FS3Qfw_7AL0A7Z56atxrENSefkAHiIUSYJNH02uVndvML-8iyPjOxnBxEDmc0dB8Ea6vu2N1kDM1tWcbsOXYZDtD5Nv42WjxvrXP_yN_zOLp_Ckx53kqDOUZ7Bh_XPY-ouN8AWI8Odj_pN8rdSyboj0hlzZuYs-h0Jq1pCToWIOCSW7yDE6QEMqT2ah0g-ZVD5wx-Lt2YmFBCfUi2ISAeZ3u3gJ16cns8k06usvRBJhSxMxF9CQpNZYnWY2Z8poSZUtrU0zzfEthO6Pm7xUnKuCS8O0zXVCcxdLU6Q6fQWbvvL2NRCHvUvqKNptwaRmKjdZ4SR1eckdp3oEh7g0oj8_tWhD4wkV_XqJfr1GMF5tl9A9h3kopTFfL_B-EPjR0Xes7_putf8Cj1iIm0hvq2UtAuQsOOKaeAQ7nWEMyhD9IoTLst37TeAtPJrOLs7F-dnlpz14nITHe1xESbkPm81iad8gwmnUQWvUvwG9qvc3 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkRAceD8WChipBy5Z1onz8LHddlVeVUW7Um-WnxcWp2qyB_j1zCTZCIpWgmvkGdnOjOezxvMNwF6VB5tKoxNfBpkIX-rE5AIdzwaTeZdloisK-3JSHC_Fx4v8YigKo1oYnESDmpouiU9efenCwDDA3-P3qGM9nVkqLK9uwi1K2pFd78_PNucvmWDR55LxroyAYiT0-UsBRSTb_BmRtsDMLtws7sNynGj3yuTbdN2aqf15jcPxf1fyAO4N-JPt9wbzEG74-Aju_sZK-BgUvf1Y_WBfa7NuWqajY2d-FZJTaqjmHTsaO-cwat3FDjAQOlZHdk4df9i8jsQhi6doL0aFTqgXxTQCze_-6gksF0fn8-Nk6MOQaIQvbSICoSLNvfM2y30hjLOaG195n-VW4p0Iw6B0RWWkNKXUTlhf2JQXYaZdmdnsKezEOvrnwAKOrnjgaL-l0FaYwuVl0DwUlQyS2wns4daowY8a1aXIU66G_VLDfk1guvllyg5c5tRSY7Vd4N0ocNnTeGwf-nZjAwpdjfInOvp63SiCnqVEfDObwLPeOEZliIIRyuX5i39bwBu4fXq4UJ8_nHx6CXdSusPPyiStdmGnvVr7Vwh0WvO6s-tfwHr5ug |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Robust+and+Self-Powered+Electronic+Skin+Based+on+Tough+Conductive+Self-Healing+Elastomer&rft.jtitle=ACS+nano&rft.au=Xun%2C+Xiaochen&rft.au=Zhang%2C+Zheng&rft.au=Zhao%2C+Xuan&rft.au=Zhao%2C+Bin&rft.date=2020-07-28&rft.issn=1936-086X&rft.eissn=1936-086X&rft.volume=14&rft.issue=7&rft.spage=9066&rft_id=info:doi/10.1021%2Facsnano.0c04158&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |