Highly Robust and Self-Powered Electronic Skin Based on Tough Conductive Self-Healing Elastomer

Self-powered electronic skin (E-skin) can be endowed with high robustness by employing self-healing materials. However, most self-powered E-skin employs two heterogeneous materials with high modulus mismatch at the interface and poor fully self-healing ability, which reduces the robustness of the wh...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 14; no. 7; pp. 9066 - 9072
Main Authors Xun, Xiaochen, Zhang, Zheng, Zhao, Xuan, Zhao, Bin, Gao, Fangfang, Kang, Zhuo, Liao, Qingliang, Zhang, Yue
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 28.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Self-powered electronic skin (E-skin) can be endowed with high robustness by employing self-healing materials. However, most self-powered E-skin employs two heterogeneous materials with high modulus mismatch at the interface and poor fully self-healing ability, which reduces the robustness of the whole device. Here, a conductive polyurethane elastomer (PUE) with excellent mechanical toughness and self-healing ability is prepared. Based on the self-healing insulated/conductive PUE homogeneous structure and triboelectric–electrostatic induction effect, a highly robust and self-powered E-skin (HRSE-skin) is developed. The HRSE-skin possesses stable mechanosensation capability during the 50% stretching deformation due to a low modulus mismatch in the homogeneous structure. In addition, the stretchability and mechanosensation capability of the HRSE-skin can be restored after the fracture owing to the fully self-healing ability of the homogeneous structure. Therefore, the HRSE-skin has high robustness of the whole device including stable service behaviors and excellent restorability. The developed HRSE-skin demonstrates high robustness in the detection of the force and bending angle of the prosthetic joint. This work solves the low robustness of self-powered E-skin by the preparation of conductive self-healing PUE and the construction of the homogeneous structure, which is important for the practical applications of self-powered E-skin in prosthetic limbs and advanced robotics.
AbstractList Self-powered electronic skin (E-skin) can be endowed with high robustness by employing self-healing materials. However, most self-powered E-skin employs two heterogeneous materials with high modulus mismatch at the interface and poor fully self-healing ability, which reduces the robustness of the whole device. Here, a conductive polyurethane elastomer (PUE) with excellent mechanical toughness and self-healing ability is prepared. Based on the self-healing insulated/conductive PUE homogeneous structure and triboelectric-electrostatic induction effect, a highly robust and self-powered E-skin (HRSE-skin) is developed. The HRSE-skin possesses stable mechanosensation capability during the 50% stretching deformation due to a low modulus mismatch in the homogeneous structure. In addition, the stretchability and mechanosensation capability of the HRSE-skin can be restored after the fracture owing to the fully self-healing ability of the homogeneous structure. Therefore, the HRSE-skin has high robustness of the whole device including stable service behaviors and excellent restorability. The developed HRSE-skin demonstrates high robustness in the detection of the force and bending angle of the prosthetic joint. This work solves the low robustness of self-powered E-skin by the preparation of conductive self-healing PUE and the construction of the homogeneous structure, which is important for the practical applications of self-powered E-skin in prosthetic limbs and advanced robotics.
Self-powered electronic skin (E-skin) can be endowed with high robustness by employing self-healing materials. However, most self-powered E-skin employs two heterogeneous materials with high modulus mismatch at the interface and poor fully self-healing ability, which reduces the robustness of the whole device. Here, a conductive polyurethane elastomer (PUE) with excellent mechanical toughness and self-healing ability is prepared. Based on the self-healing insulated/conductive PUE homogeneous structure and triboelectric-electrostatic induction effect, a highly robust and self-powered E-skin (HRSE-skin) is developed. The HRSE-skin possesses stable mechanosensation capability during the 50% stretching deformation due to a low modulus mismatch in the homogeneous structure. In addition, the stretchability and mechanosensation capability of the HRSE-skin can be restored after the fracture owing to the fully self-healing ability of the homogeneous structure. Therefore, the HRSE-skin has high robustness of the whole device including stable service behaviors and excellent restorability. The developed HRSE-skin demonstrates high robustness in the detection of the force and bending angle of the prosthetic joint. This work solves the low robustness of self-powered E-skin by the preparation of conductive self-healing PUE and the construction of the homogeneous structure, which is important for the practical applications of self-powered E-skin in prosthetic limbs and advanced robotics.Self-powered electronic skin (E-skin) can be endowed with high robustness by employing self-healing materials. However, most self-powered E-skin employs two heterogeneous materials with high modulus mismatch at the interface and poor fully self-healing ability, which reduces the robustness of the whole device. Here, a conductive polyurethane elastomer (PUE) with excellent mechanical toughness and self-healing ability is prepared. Based on the self-healing insulated/conductive PUE homogeneous structure and triboelectric-electrostatic induction effect, a highly robust and self-powered E-skin (HRSE-skin) is developed. The HRSE-skin possesses stable mechanosensation capability during the 50% stretching deformation due to a low modulus mismatch in the homogeneous structure. In addition, the stretchability and mechanosensation capability of the HRSE-skin can be restored after the fracture owing to the fully self-healing ability of the homogeneous structure. Therefore, the HRSE-skin has high robustness of the whole device including stable service behaviors and excellent restorability. The developed HRSE-skin demonstrates high robustness in the detection of the force and bending angle of the prosthetic joint. This work solves the low robustness of self-powered E-skin by the preparation of conductive self-healing PUE and the construction of the homogeneous structure, which is important for the practical applications of self-powered E-skin in prosthetic limbs and advanced robotics.
Author Xun, Xiaochen
Zhang, Zheng
Zhang, Yue
Liao, Qingliang
Zhao, Xuan
Zhao, Bin
Kang, Zhuo
Gao, Fangfang
AuthorAffiliation State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering
Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies
AuthorAffiliation_xml – name: Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies
– name: State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering
Author_xml – sequence: 1
  givenname: Xiaochen
  surname: Xun
  fullname: Xun, Xiaochen
  organization: State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering
– sequence: 2
  givenname: Zheng
  orcidid: 0000-0002-9104-7562
  surname: Zhang
  fullname: Zhang, Zheng
  organization: State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering
– sequence: 3
  givenname: Xuan
  surname: Zhao
  fullname: Zhao, Xuan
  organization: State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering
– sequence: 4
  givenname: Bin
  surname: Zhao
  fullname: Zhao, Bin
  organization: State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering
– sequence: 5
  givenname: Fangfang
  surname: Gao
  fullname: Gao, Fangfang
  organization: State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering
– sequence: 6
  givenname: Zhuo
  surname: Kang
  fullname: Kang, Zhuo
  organization: State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering
– sequence: 7
  givenname: Qingliang
  surname: Liao
  fullname: Liao, Qingliang
  email: liao@ustb.edu.cn
  organization: State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering
– sequence: 8
  givenname: Yue
  orcidid: 0000-0002-8213-1420
  surname: Zhang
  fullname: Zhang, Yue
  email: yuezhang@ustb.edu.cn
  organization: State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32658455$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1LxDAQQIMofp-9SY-CdE2aJm2OuqyuICiugreQJtM12k00SRX_vZVdPQh6ypB5bw5vB6077wChA4JHBBfkROnolPMjrHFJWL2GtomgPMc1f1j_mRnZQjsxPmHMqrrim2iLFpzVJWPbSE7t_LH7yG5908eUKWeyGXRtfuPfIYDJJh3oFLyzOps9W5edqTj8epfd-X7-mI29M71O9g2W2hRUZ9180FRMfgFhD220qouwv3p30f355G48za-uLy7Hp1e5okKkvGw5xkQRMKApA142RivSQA1AmRY1LzDlwvC6EaKphDKlBq4LwlusTEU13UVHy7svwb_2EJNc2Kih65QD30dZlAWtRM0oHtDDFdo3CzDyJdiFCh_yO8oAnCwBHXyMAdofhGD5lV2usstV9sFgvwxtk0rWuxSU7f7xjpfesJBPvg9uaPQn_Ql4TpfQ
CitedBy_id crossref_primary_10_1002_app_53085
crossref_primary_10_1007_s12274_023_5728_5
crossref_primary_10_20517_ss_2024_05
crossref_primary_10_1002_mame_202200310
crossref_primary_10_1016_j_cej_2021_130568
crossref_primary_10_1016_j_nanoen_2025_110757
crossref_primary_10_1126_sciadv_add8527
crossref_primary_10_1016_j_mtchem_2025_102580
crossref_primary_10_1002_advs_202407596
crossref_primary_10_1016_j_eurpolymj_2021_110569
crossref_primary_10_1016_j_cej_2024_157534
crossref_primary_10_1002_adfm_202411331
crossref_primary_10_1146_annurev_bioeng_103122_032652
crossref_primary_10_1002_adfm_202009869
crossref_primary_10_1007_s42114_021_00262_9
crossref_primary_10_1021_acs_macromol_2c00492
crossref_primary_10_1016_j_polymer_2021_124357
crossref_primary_10_1002_adsr_202200093
crossref_primary_10_1007_s42114_022_00472_9
crossref_primary_10_1016_j_cej_2023_142700
crossref_primary_10_1039_D2MH01005D
crossref_primary_10_1039_D1PY00715G
crossref_primary_10_1016_j_cej_2022_140543
crossref_primary_10_1002_advs_202308154
crossref_primary_10_1002_smsc_202300043
crossref_primary_10_1002_app_55957
crossref_primary_10_1021_acsami_2c07767
crossref_primary_10_1002_app_55684
crossref_primary_10_2139_ssrn_3989389
crossref_primary_10_1016_j_eurpolymj_2022_111437
crossref_primary_10_1016_j_cej_2025_159776
crossref_primary_10_1016_j_polymer_2023_126467
crossref_primary_10_1039_D2TC02706B
crossref_primary_10_1002_adfm_202102225
crossref_primary_10_3390_polym12112594
crossref_primary_10_1002_app_51367
crossref_primary_10_1016_j_cej_2021_134038
crossref_primary_10_1021_acsami_1c16061
crossref_primary_10_1002_advs_202305672
crossref_primary_10_1002_smtd_202402190
crossref_primary_10_1016_j_apmt_2023_101898
crossref_primary_10_1016_j_cej_2021_131846
crossref_primary_10_1021_acsnano_1c11096
crossref_primary_10_1007_s40820_022_00875_9
crossref_primary_10_1016_j_mattod_2023_02_023
crossref_primary_10_1002_advs_202400479
crossref_primary_10_1016_j_polymertesting_2022_107598
crossref_primary_10_1016_j_apsusc_2023_159136
crossref_primary_10_1016_j_cej_2023_148229
crossref_primary_10_1021_acsnano_1c09732
crossref_primary_10_1021_acsami_1c15784
crossref_primary_10_1016_j_colsurfa_2021_127669
crossref_primary_10_1002_adfm_202107006
crossref_primary_10_1002_advs_202004727
crossref_primary_10_1039_D1QM01346G
crossref_primary_10_1038_s41467_022_35434_8
crossref_primary_10_1039_D1TC05087G
crossref_primary_10_1002_admt_202201088
crossref_primary_10_1016_j_nanoen_2021_106001
crossref_primary_10_1016_j_orgel_2022_106535
crossref_primary_10_1039_D0NR05976E
crossref_primary_10_3390_s24144664
crossref_primary_10_1016_j_cej_2023_148214
crossref_primary_10_1021_acsami_2c04593
crossref_primary_10_1002_advs_202205485
crossref_primary_10_1002_adfm_202214479
crossref_primary_10_1007_s40820_022_00882_w
crossref_primary_10_1109_JSEN_2021_3055458
crossref_primary_10_34133_2021_9845482
crossref_primary_10_1016_j_mser_2022_100672
crossref_primary_10_1002_adfm_202316550
crossref_primary_10_1016_j_nanoen_2021_106695
crossref_primary_10_5254_RCT_D_23_00034
crossref_primary_10_1016_j_mtphys_2024_101448
crossref_primary_10_1021_acsmaterialslett_0c00364
crossref_primary_10_1002_aisy_202200071
crossref_primary_10_1002_smll_202312230
crossref_primary_10_1039_D1TA08093H
crossref_primary_10_1186_s40691_020_00235_4
crossref_primary_10_34133_2021_9801832
crossref_primary_10_1002_adma_202406967
crossref_primary_10_1039_D2QM00047D
crossref_primary_10_1016_j_cej_2022_140187
crossref_primary_10_1021_acs_chemmater_1c01242
crossref_primary_10_1039_D4TC05252H
crossref_primary_10_1002_adfm_202104686
crossref_primary_10_1002_adfm_202208372
crossref_primary_10_1002_agt2_319
crossref_primary_10_1016_j_cej_2023_146536
crossref_primary_10_1080_10584587_2024_2324683
crossref_primary_10_1021_acs_chemmater_1c03813
crossref_primary_10_1021_acs_macromol_2c01401
crossref_primary_10_3390_s21248422
crossref_primary_10_1007_s12274_023_6248_z
crossref_primary_10_1016_j_nanoen_2025_110805
crossref_primary_10_1002_app_55007
crossref_primary_10_1039_D2MH00820C
crossref_primary_10_1007_s10118_021_2612_1
crossref_primary_10_1016_j_mser_2021_100627
crossref_primary_10_1007_s10856_025_06860_z
crossref_primary_10_1002_adfm_202102713
crossref_primary_10_1021_acsapm_4c01523
crossref_primary_10_1039_D3MH00514C
crossref_primary_10_1016_j_reactfunctpolym_2021_105041
crossref_primary_10_1039_D2TA07410A
crossref_primary_10_1016_j_nanoen_2023_109239
crossref_primary_10_1016_j_nanoen_2023_108542
crossref_primary_10_1016_j_progpolymsci_2023_101724
crossref_primary_10_1016_j_cej_2022_134806
Cites_doi 10.1021/acs.accounts.8b00500
10.1021/acsami.8b08025
10.1039/c3ee42366b
10.1021/acsnano.8b02479
10.1016/j.nanoen.2014.11.009
10.1002/adma.201705918
10.1002/adma.201504299
10.1002/rcs.3
10.1002/adma.201702181
10.1063/1.2817234
10.1109/TRO.2009.2033627
10.1038/nmat4671
10.1039/C3MH00061C
10.1016/j.progpolymsci.2013.08.001
10.1021/nn404614z
10.1002/adma.201305682
10.1039/C5EE02711J
10.1002/adfm.201303799
10.1038/nmat2835
10.1039/C5SM01269D
10.1002/smtd.201600029
10.1039/c3cs60109a
10.1021/nl401006x
10.1002/adma.201606703
10.1126/sciadv.1700694
10.1016/j.nanoen.2017.01.004
10.1063/1.2382265
10.1002/anie.201607951
10.1038/nmat3711
10.1002/adfm.201904626
10.1016/j.nanoen.2017.08.045
10.1002/adma.201701985
10.1109/WHC.2013.6548392
10.1126/scirobotics.aat2516
10.1021/acsami.9b22707
10.1039/C5EE01532D
10.1063/1.1661034
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acsnano.0c04158
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 9072
ExternalDocumentID 32658455
10_1021_acsnano_0c04158
a636507247
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
F5P
GNL
IH9
IHE
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
4.4
5VS
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a399t-4f6001a1edec35e64bdca1be8ee35c98620369d68b99b79ad4ce6c216f0ad73c3
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 01:48:27 EDT 2025
Mon Jul 21 05:56:26 EDT 2025
Thu Apr 24 23:10:14 EDT 2025
Tue Jul 01 03:37:01 EDT 2025
Thu Aug 27 13:41:52 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords electronic skin
high robustness
self-powered mechanosensation
stable service behaviors
self-healing elastomer
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a399t-4f6001a1edec35e64bdca1be8ee35c98620369d68b99b79ad4ce6c216f0ad73c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8213-1420
0000-0002-9104-7562
PMID 32658455
PQID 2423798530
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2423798530
pubmed_primary_32658455
crossref_primary_10_1021_acsnano_0c04158
crossref_citationtrail_10_1021_acsnano_0c04158
acs_journals_10_1021_acsnano_0c04158
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-28
PublicationDateYYYYMMDD 2020-07-28
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-28
  day: 28
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
Allen R. (ref28/cit28) 2000; 39
ref32/cit32
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref7/cit7
  doi: 10.1021/acs.accounts.8b00500
– ident: ref13/cit13
  doi: 10.1021/acsami.8b08025
– ident: ref8/cit8
  doi: 10.1039/c3ee42366b
– volume: 39
  start-page: S4
  year: 2000
  ident: ref28/cit28
  publication-title: EE-Eval. Eng.
– ident: ref18/cit18
  doi: 10.1021/acsnano.8b02479
– ident: ref24/cit24
  doi: 10.1016/j.nanoen.2014.11.009
– ident: ref19/cit19
  doi: 10.1002/adma.201705918
– ident: ref26/cit26
  doi: 10.1002/adma.201504299
– ident: ref2/cit2
  doi: 10.1002/rcs.3
– ident: ref20/cit20
  doi: 10.1002/adma.201702181
– ident: ref21/cit21
  doi: 10.1063/1.2817234
– ident: ref1/cit1
  doi: 10.1109/TRO.2009.2033627
– ident: ref3/cit3
  doi: 10.1038/nmat4671
– ident: ref32/cit32
  doi: 10.1039/C3MH00061C
– ident: ref34/cit34
  doi: 10.1016/j.progpolymsci.2013.08.001
– ident: ref25/cit25
  doi: 10.1021/nn404614z
– ident: ref35/cit35
  doi: 10.1002/adma.201305682
– ident: ref38/cit38
  doi: 10.1039/C5EE02711J
– ident: ref30/cit30
  doi: 10.1002/adfm.201303799
– ident: ref5/cit5
  doi: 10.1038/nmat2835
– ident: ref37/cit37
  doi: 10.1039/C5SM01269D
– ident: ref15/cit15
  doi: 10.1002/smtd.201600029
– ident: ref33/cit33
  doi: 10.1039/c3cs60109a
– ident: ref29/cit29
  doi: 10.1021/nl401006x
– ident: ref9/cit9
  doi: 10.1002/adma.201606703
– ident: ref10/cit10
  doi: 10.1126/sciadv.1700694
– ident: ref11/cit11
  doi: 10.1016/j.nanoen.2017.01.004
– ident: ref22/cit22
  doi: 10.1063/1.2382265
– ident: ref36/cit36
  doi: 10.1002/anie.201607951
– ident: ref4/cit4
  doi: 10.1038/nmat3711
– ident: ref16/cit16
  doi: 10.1002/adfm.201904626
– ident: ref17/cit17
  doi: 10.1016/j.nanoen.2017.08.045
– ident: ref6/cit6
  doi: 10.1002/adma.201701985
– ident: ref23/cit23
  doi: 10.1109/WHC.2013.6548392
– ident: ref12/cit12
  doi: 10.1126/scirobotics.aat2516
– ident: ref14/cit14
  doi: 10.1021/acsami.9b22707
– ident: ref27/cit27
  doi: 10.1039/C5EE01532D
– ident: ref31/cit31
  doi: 10.1063/1.1661034
SSID ssj0057876
Score 2.6177237
Snippet Self-powered electronic skin (E-skin) can be endowed with high robustness by employing self-healing materials. However, most self-powered E-skin employs two...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9066
SubjectTerms Elastomers
Electric Conductivity
Mechanical Phenomena
Polyurethanes
Wearable Electronic Devices
Title Highly Robust and Self-Powered Electronic Skin Based on Tough Conductive Self-Healing Elastomer
URI http://dx.doi.org/10.1021/acsnano.0c04158
https://www.ncbi.nlm.nih.gov/pubmed/32658455
https://www.proquest.com/docview/2423798530
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDBa69LId1navpi9oQA67OItsWbaObdAiKNBiWFKgN0MP6rJMLmr7sP36UbaTbQ2C9i4StkSKn0DyIyGjPHUmllpFkDkZcchUpFOOjmecTsAmCW-bwm5uxeyOX9-n93_Jop9m8GP2VZnKK1-OJyZ0k-evyG4s0IUDCprOV5dusDvRJZDxgYwoYs3is6EghCFT_R-GtmDLNsZc7XXVWVVLTRhKS36Mm1qPze9N4sbnP3-fvO2RJj3vTOOA7IB_R978wz_4nhShymP5i34vdVPVVHlL57B00bcwOg0svVzPyKFhSBe9wJBnaenpIsz2odPSB7ZYvC87sdDShHpRTCGk_AmPH8jd1eViOov6iQuRQqBSR9wF_KMYWDBJCoJraxTTkAMkqZH4-sGAJ63ItZQ6k8pyA8LETLiJslliko9k4EsPh4Q6XJ0zx9BSM64M18KmmVPMiVw6ycyQjHBrit5jqqJNhses6Per6PdrSMarcypMz1oehmcstwt8WQs8dIQd25d-Xh18gU4VMiXKQ9lURQCZmUQkMxmST51FrJUh3kXQlqZHL_uBY_I6Dk_0SRbF-QkZ1I8NnCKOqfVZa8F_ALjp7tY
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcoAeKM-ybSlG6oFLljhxHj62q1ZbaCugW6k3y88Li4M22QP8esZJNlCqlcrV8oz8GHs-azzfAByWmdMJVzKyheMRs4WMVMbw4GmnUmvSlLVJYReX-fSafbzJbjYgXuXC4CBq1FS3Qfw_7AL0A7Z56atxrENSefkAHiIUSYJNH02uVndvML-8iyPjOxnBxEDmc0dB8Ea6vu2N1kDM1tWcbsOXYZDtD5Nv42WjxvrXP_yN_zOLp_Ckx53kqDOUZ7Bh_XPY-ouN8AWI8Odj_pN8rdSyboj0hlzZuYs-h0Jq1pCToWIOCSW7yDE6QEMqT2ah0g-ZVD5wx-Lt2YmFBCfUi2ISAeZ3u3gJ16cns8k06usvRBJhSxMxF9CQpNZYnWY2Z8poSZUtrU0zzfEthO6Pm7xUnKuCS8O0zXVCcxdLU6Q6fQWbvvL2NRCHvUvqKNptwaRmKjdZ4SR1eckdp3oEh7g0oj8_tWhD4wkV_XqJfr1GMF5tl9A9h3kopTFfL_B-EPjR0Xes7_putf8Cj1iIm0hvq2UtAuQsOOKaeAQ7nWEMyhD9IoTLst37TeAtPJrOLs7F-dnlpz14nITHe1xESbkPm81iad8gwmnUQWvUvwG9qvc3
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkRAceD8WChipBy5Z1onz8LHddlVeVUW7Um-WnxcWp2qyB_j1zCTZCIpWgmvkGdnOjOezxvMNwF6VB5tKoxNfBpkIX-rE5AIdzwaTeZdloisK-3JSHC_Fx4v8YigKo1oYnESDmpouiU9efenCwDDA3-P3qGM9nVkqLK9uwi1K2pFd78_PNucvmWDR55LxroyAYiT0-UsBRSTb_BmRtsDMLtws7sNynGj3yuTbdN2aqf15jcPxf1fyAO4N-JPt9wbzEG74-Aju_sZK-BgUvf1Y_WBfa7NuWqajY2d-FZJTaqjmHTsaO-cwat3FDjAQOlZHdk4df9i8jsQhi6doL0aFTqgXxTQCze_-6gksF0fn8-Nk6MOQaIQvbSICoSLNvfM2y30hjLOaG195n-VW4p0Iw6B0RWWkNKXUTlhf2JQXYaZdmdnsKezEOvrnwAKOrnjgaL-l0FaYwuVl0DwUlQyS2wns4daowY8a1aXIU66G_VLDfk1guvllyg5c5tRSY7Vd4N0ocNnTeGwf-nZjAwpdjfInOvp63SiCnqVEfDObwLPeOEZliIIRyuX5i39bwBu4fXq4UJ8_nHx6CXdSusPPyiStdmGnvVr7Vwh0WvO6s-tfwHr5ug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Robust+and+Self-Powered+Electronic+Skin+Based+on+Tough+Conductive+Self-Healing+Elastomer&rft.jtitle=ACS+nano&rft.au=Xun%2C+Xiaochen&rft.au=Zhang%2C+Zheng&rft.au=Zhao%2C+Xuan&rft.au=Zhao%2C+Bin&rft.date=2020-07-28&rft.issn=1936-086X&rft.eissn=1936-086X&rft.volume=14&rft.issue=7&rft.spage=9066&rft_id=info:doi/10.1021%2Facsnano.0c04158&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon