Pnictogen Semimetal (Sb, Bi)-Based Nanomaterials for Cancer Imaging and Therapy: A Materials Perspective
Innovative multifunctional nanomaterials have attracted tremendous interest in current research by facilitating simultaneous cancer imaging and therapy. Among them, antimony (Sb)- and bismuth (Bi)-based nanoparticles are important species with multifunction to boost cancer theranostic efficacy. Desp...
Saved in:
Published in | ACS nano Vol. 15; no. 2; pp. 2038 - 2067 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
23.02.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Innovative multifunctional nanomaterials have attracted tremendous interest in current research by facilitating simultaneous cancer imaging and therapy. Among them, antimony (Sb)- and bismuth (Bi)-based nanoparticles are important species with multifunction to boost cancer theranostic efficacy. Despite the rapid development, the extensive previous work treated Sb- and Bi-based nanoparticles as mutually independent species, and therefore a thorough understanding of their relationship in cancer theranostics was lacking. We propose here that the identical chemical nature of Sb and Bi, being semimetals, provides their derived nanoparticles with inherent multifunction for near-infrared laser-driven and/or X-ray-based cancer imaging and therapy as well as some other imparted functions. An overview of recent progress on Sb- and Bi-based nanoparticles for cancer theranostics is provided to highlight the relationship between chemical nature and multifunction. The understanding of Sb- and Bi-based nanoparticles in this way might shed light on the further design of smart multifunctional nanoparticles for cancer theranostics. |
---|---|
AbstractList | Innovative multifunctional nanomaterials have attracted tremendous interest in current research by facilitating simultaneous cancer imaging and therapy. Among them, antimony (Sb)- and bismuth (Bi)-based nanoparticles are important species with multifunction to boost cancer theranostic efficacy. Despite the rapid development, the extensive previous work treated Sb- and Bi-based nanoparticles as mutually independent species, and therefore a thorough understanding of their relationship in cancer theranostics was lacking. We propose here that the identical chemical nature of Sb and Bi, being semimetals, provides their derived nanoparticles with inherent multifunction for near-infrared laser-driven and/or X-ray-based cancer imaging and therapy as well as some other imparted functions. An overview of recent progress on Sb- and Bi-based nanoparticles for cancer theranostics is provided to highlight the relationship between chemical nature and multifunction. The understanding of Sb- and Bi-based nanoparticles in this way might shed light on the further design of smart multifunctional nanoparticles for cancer theranostics.Innovative multifunctional nanomaterials have attracted tremendous interest in current research by facilitating simultaneous cancer imaging and therapy. Among them, antimony (Sb)- and bismuth (Bi)-based nanoparticles are important species with multifunction to boost cancer theranostic efficacy. Despite the rapid development, the extensive previous work treated Sb- and Bi-based nanoparticles as mutually independent species, and therefore a thorough understanding of their relationship in cancer theranostics was lacking. We propose here that the identical chemical nature of Sb and Bi, being semimetals, provides their derived nanoparticles with inherent multifunction for near-infrared laser-driven and/or X-ray-based cancer imaging and therapy as well as some other imparted functions. An overview of recent progress on Sb- and Bi-based nanoparticles for cancer theranostics is provided to highlight the relationship between chemical nature and multifunction. The understanding of Sb- and Bi-based nanoparticles in this way might shed light on the further design of smart multifunctional nanoparticles for cancer theranostics. Innovative multifunctional nanomaterials have attracted tremendous interest in current research by facilitating simultaneous cancer imaging and therapy. Among them, antimony (Sb)- and bismuth (Bi)-based nanoparticles are important species with multifunction to boost cancer theranostic efficacy. Despite the rapid development, the extensive previous work treated Sb- and Bi-based nanoparticles as mutually independent species, and therefore a thorough understanding of their relationship in cancer theranostics was lacking. We propose here that the identical chemical nature of Sb and Bi, being semimetals, provides their derived nanoparticles with inherent multifunction for near-infrared laser-driven and/or X-ray-based cancer imaging and therapy as well as some other imparted functions. An overview of recent progress on Sb- and Bi-based nanoparticles for cancer theranostics is provided to highlight the relationship between chemical nature and multifunction. The understanding of Sb- and Bi-based nanoparticles in this way might shed light on the further design of smart multifunctional nanoparticles for cancer theranostics. |
Author | Yu, Xujiang Li, Wanwan Chen, Xiaoyuan Yang, Kai Liu, Xinyi |
AuthorAffiliation | State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine School of Radiation Medicine and Protection (SRMP) and School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions National University of Singapore School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composite Yong Loo Lin School of Medicine and Faculty of Engineering Soochow University |
AuthorAffiliation_xml | – name: School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composite – name: Soochow University – name: State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine – name: School of Radiation Medicine and Protection (SRMP) and School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions – name: Yong Loo Lin School of Medicine and Faculty of Engineering – name: National University of Singapore |
Author_xml | – sequence: 1 givenname: Xujiang orcidid: 0000-0002-8916-0742 surname: Yu fullname: Yu, Xujiang organization: School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composite – sequence: 2 givenname: Xinyi surname: Liu fullname: Liu, Xinyi organization: State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine – sequence: 3 givenname: Kai orcidid: 0000-0002-6670-1024 surname: Yang fullname: Yang, Kai email: kyang@suda.edu.cn organization: Soochow University – sequence: 4 givenname: Xiaoyuan orcidid: 0000-0002-9622-0870 surname: Chen fullname: Chen, Xiaoyuan email: chen.shawn@nus.edu.sg organization: National University of Singapore – sequence: 5 givenname: Wanwan orcidid: 0000-0003-3809-0737 surname: Li fullname: Li, Wanwan email: wwli@sjtu.edu.cn organization: State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33486944$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1P3DAQxa0KVD7ac2-Vj1RtwE6c2OEGq7YgQYsElXqzJpPJYpTYW9tbif--qXbhgMRpRjO_NyO9d8B2fPDE2AcpjqUo5Qlg8uDDsUChTdu-YfuyrZpCmOb3znNfyz12kNKDELU2unnL9qpKmaZVap_d33iHOSzJ81ua3EQZRn50233h5-5TcQ6Jev5j_jBBpuhgTHwIkS_AI0V-OcHS-SUH3_O7e4qwejzlZ_z6mb2hmFaE2f2ld2x3mEf0flsP2a9vX-8WF8XVz--Xi7OrAqq2zYUaJJLGvusAS9NDpU2FIIcBy6HUykjdqA4HwFb2fW2o09gqoUEaYxRhUx2yo83dVQx_1pSynVxCGkfwFNbJlsoIXdWqVDP6cYuuu4l6u4pugvhon9yZgXoDYAwpRRosugzZBZ8juNFKYf-nYLcp2G0Ks-7khe7p9OuKzxvFvLAPYR397NGr9D8ZTZrw |
CitedBy_id | crossref_primary_10_1002_adtp_202200027 crossref_primary_10_1016_j_jddst_2024_106136 crossref_primary_10_1016_j_matlet_2025_138201 crossref_primary_10_1002_advs_202106049 crossref_primary_10_1021_acsanm_4c01422 crossref_primary_10_1016_j_desal_2023_116680 crossref_primary_10_1021_acsnano_4c05100 crossref_primary_10_1021_acsami_2c00574 crossref_primary_10_1021_acs_analchem_2c04602 crossref_primary_10_1021_acsanm_3c02441 crossref_primary_10_1016_j_jssc_2021_122489 crossref_primary_10_1016_j_jconrel_2022_04_033 crossref_primary_10_1039_D2RA00993E crossref_primary_10_3389_fphar_2023_1324764 crossref_primary_10_1016_j_jddst_2023_104958 crossref_primary_10_1021_acsnano_2c07286 crossref_primary_10_1016_j_biomaterials_2022_121811 crossref_primary_10_1021_acs_langmuir_4c00800 crossref_primary_10_1016_j_biomaterials_2024_122709 crossref_primary_10_1039_D2NR02908A crossref_primary_10_1016_j_bioadv_2025_214236 crossref_primary_10_1021_acsnano_1c10663 crossref_primary_10_1021_acssuschemeng_2c00935 crossref_primary_10_1186_s12951_024_02931_5 crossref_primary_10_3390_nano13061130 crossref_primary_10_1016_j_envint_2023_108292 crossref_primary_10_1007_s12274_021_3454_4 crossref_primary_10_3389_fbioe_2024_1361347 crossref_primary_10_1007_s12598_023_02568_7 crossref_primary_10_1038_s41467_021_27835_y crossref_primary_10_1038_s41467_025_56110_7 crossref_primary_10_1039_D4NR04024D crossref_primary_10_1080_03067319_2023_2287123 crossref_primary_10_1016_j_ccr_2024_216168 crossref_primary_10_1093_nsr_nwae233 crossref_primary_10_1016_j_apmt_2022_101584 crossref_primary_10_1039_D2NJ01466A crossref_primary_10_1021_acs_inorgchem_1c02621 crossref_primary_10_1002_adhm_202301926 crossref_primary_10_1016_j_colsurfb_2022_113116 |
Cites_doi | 10.1016/j.biomaterials.2020.119771 10.1002/anie.201703657 10.1038/nchem.609 10.1002/adma.201908109 10.1002/chem.201904586 10.1016/j.biomaterials.2018.04.022 10.1039/C8NH00440D 10.1021/ed3008457 10.1002/adma.201901778 10.1021/ar200061q 10.1038/srep31339 10.1002/anie.201710399 10.1039/C8NR04870C 10.1021/acs.nanolett.6b05055 10.1039/C9CC02677K 10.1002/chem.201801588 10.1002/adfm.201706827 10.1002/anie.201706389 10.1021/acsami.6b08335 10.1021/acsnano.7b04230 10.1038/am.2017.167 10.1002/adma.201704136 10.1021/acsnano.6b06067 10.18632/oncotarget.14733 10.1039/C9BM00351G 10.1038/srep01998 10.1038/s41467-018-07947-8 10.1016/j.biomaterials.2017.10.048 10.1021/ja906797z 10.1016/j.apcatb.2019.03.008 10.1021/acs.nanolett.7b04741 10.1016/j.biomaterials.2017.06.033 10.1155/2012/751075 10.1002/adhm.201900250 10.1016/j.colsurfb.2017.09.043 10.1016/j.biomaterials.2020.120140 10.1002/adfm.201900017 10.1021/acsami.9b02104 10.1002/adhm.201901695 10.1039/C8CS00618K 10.1002/adfm.201704623 10.1016/j.biomaterials.2014.12.037 10.1002/anie.201900811 10.1002/adma.201902333 10.1021/cm8004425 10.1016/j.biomaterials.2016.10.024 10.1039/C6NR01543C 10.1038/nrc.2017.83 10.1039/C7TB01983A 10.1016/j.biopha.2018.12.146 10.1002/anie.201005023 10.1002/adma.200600460 10.1039/C9NR01557D 10.1002/adfm.202007073 10.1002/anie.201913675 10.1021/jp046423v 10.1103/PhysRevB.52.1566 10.1002/adfm.201302312 10.1002/adfm.201700371 10.1002/adma.201504617 10.1039/C7RA01526G 10.1021/acsnano.6b05427 10.1002/adfm.202003587 10.1039/C7TC05711C 10.1002/anie.201812272 10.1038/nmat1571 10.1021/nn506640h 10.1002/adma.201802061 10.1039/D0RA01638A 10.1007/BF03041964 10.1021/acsnano.9b09858 10.1016/j.addr.2012.08.005 10.1039/C8CS00805A 10.1021/acs.chemrev.8b00401 10.1039/c2nr31227a 10.1016/j.apradiso.2003.09.005 10.1002/chem.201801574 10.1002/adma.201605299 10.1016/j.biomaterials.2018.10.016 10.1002/anie.201005657 10.1039/C6TB00261G 10.1016/j.humpath.2005.10.013 10.1039/C9CC00576E 10.1016/j.biomaterials.2017.12.022 10.1021/nn506137n 10.1021/jz301345x 10.1021/acsami.8b19304 10.1002/adfm.202000189 10.1002/adma.201503006 10.1002/adfm.201504810 10.1039/D0TB00080A 10.1021/cr200358s 10.1002/adfm.201702018 10.1039/C9BM01077G 10.1021/acsami.8b21280 10.1002/ppsc.201700337 10.7150/thno.25286 10.1039/C8TB02189A 10.1039/C9NR09401F 10.1002/ppsc.201400238 10.1021/acsami.8b16395 10.1002/adfm.201601341 10.1016/j.biomaterials.2014.10.001 10.2147/IJN.S157541 10.1039/C9CS00283A 10.1021/acs.nanolett.8b02639 10.1039/C8BM00336J 10.1039/C6TB02137A 10.1016/j.addr.2013.07.015 10.1021/acs.inorgchem.9b03280 10.1021/acsami.9b16962 10.1039/C5NR03068D 10.1016/j.cej.2018.06.170 10.1002/adma.201806808 10.1021/acsami.9b13647 10.1016/j.biomaterials.2019.119419 10.1021/acsnano.6b00745 10.7150/thno.20548 10.1002/adfm.201807105 10.1038/nmeth.3925 10.1016/j.biomaterials.2019.119282 10.1002/smll.201601050 10.1021/cr980425s 10.1039/c3cc47710j 10.1021/acsnano.5b06259 10.1021/acsami.9b03636 10.1039/C7NR02213A 10.1158/1078-0432.CCR-07-1516 10.1002/anie.201411246 10.1039/C5NR06041A 10.1021/acsnano.0c04375 10.1021/acsnano.7b00476 10.1002/adfm.201906010 10.1016/j.biomaterials.2018.01.047 10.1103/PhysRevB.85.201410 10.1103/PhysRevB.65.195417 10.1002/adhm.201800602 10.1038/nmat3824 10.2217/nnm-2018-0106 10.1021/acs.chemmater.8b00565 10.1002/adma.201500870 10.1039/C9MH00014C 10.1039/C7NR02384G 10.1021/acsami.7b17838 10.1016/j.biomaterials.2014.06.010 10.1039/C9TB00991D 10.1002/adma.201404257 10.1021/acsami.5b11507 10.1016/j.biomaterials.2012.01.003 10.1002/adma.201103289 10.1039/C7NR06758E 10.1021/acsnano.0c02458 10.1002/adfm.201907203 10.1073/pnas.1900527116 10.1039/C7TB00688H 10.1021/acsami.5b09990 10.1021/ja107458s 10.1002/anie.201104507 10.1016/j.actbio.2018.05.011 10.7150/thno.33472 |
ContentType | Journal Article |
Copyright | 2021 American Chemical
Society |
Copyright_xml | – notice: 2021 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/acsnano.0c07899 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 2067 |
ExternalDocumentID | 33486944 10_1021_acsnano_0c07899 c513073728 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 5VS 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ F5P GNL IH9 IHE JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 4.4 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ BAANH CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-a399t-4f1ce7cdbbac28da3783ca1ffc2f27481764bcfac91dd58eb7c9407a18884ec63 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Fri Jul 11 01:08:55 EDT 2025 Thu Apr 03 06:53:00 EDT 2025 Tue Jul 01 03:37:06 EDT 2025 Thu Apr 24 23:03:11 EDT 2025 Thu Feb 25 04:42:15 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | semimetal multifunctional cancer theranostics antimony near-infrared laser nanomaterials pnictogen X-ray irradiation bismuth |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a399t-4f1ce7cdbbac28da3783ca1ffc2f27481764bcfac91dd58eb7c9407a18884ec63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9622-0870 0000-0002-6670-1024 0000-0003-3809-0737 0000-0002-8916-0742 |
PMID | 33486944 |
PQID | 2480735424 |
PQPubID | 23479 |
PageCount | 30 |
ParticipantIDs | proquest_miscellaneous_2480735424 pubmed_primary_33486944 crossref_citationtrail_10_1021_acsnano_0c07899 crossref_primary_10_1021_acsnano_0c07899 acs_journals_10_1021_acsnano_0c07899 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-23 |
PublicationDateYYYYMMDD | 2021-02-23 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref45/cit45 ref99/cit99 ref3/cit3 ref81/cit81 Adler D. (ref27/cit27) 1969; 72 ref16/cit16 ref52/cit52 ref114/cit114 ref23/cit23 ref115/cit115 ref116/cit116 ref110/cit110 ref111/cit111 ref2/cit2 ref112/cit112 ref77/cit77 ref113/cit113 ref71/cit71 ref117/cit117 ref20/cit20 ref48/cit48 ref118/cit118 ref74/cit74 ref119/cit119 ref10/cit10 ref35/cit35 ref89/cit89 ref19/cit19 ref93/cit93 ref42/cit42 ref96/cit96 ref107/cit107 ref120/cit120 ref109/cit109 ref13/cit13 ref122/cit122 ref105/cit105 ref61/cit61 ref67/cit67 ref38/cit38 ref128/cit128 ref90/cit90 ref124/cit124 ref64/cit64 ref126/cit126 ref54/cit54 ref6/cit6 ref18/cit18 ref136/cit136 ref137/cit137 ref65/cit65 ref97/cit97 ref101/cit101 ref11/cit11 ref102/cit102 ref29/cit29 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref5/cit5 ref43/cit43 ref80/cit80 ref133/cit133 ref28/cit28 ref132/cit132 ref91/cit91 ref148/cit148 ref55/cit55 ref144/cit144 ref12/cit12 ref66/cit66 ref22/cit22 ref121/cit121 ref33/cit33 ref87/cit87 ref106/cit106 ref140/cit140 ref129/cit129 ref44/cit44 ref70/cit70 ref98/cit98 ref125/cit125 ref9/cit9 ref152/cit152 ref153/cit153 ref154/cit154 ref150/cit150 ref63/cit63 ref151/cit151 ref56/cit56 ref159/cit159 ref92/cit92 ref155/cit155 ref156/cit156 ref157/cit157 ref158/cit158 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref60/cit60 ref88/cit88 ref17/cit17 ref82/cit82 ref147/cit147 ref160/cit160 ref143/cit143 ref53/cit53 ref145/cit145 ref21/cit21 ref149/cit149 ref162/cit162 ref46/cit46 ref49/cit49 ref75/cit75 ref24/cit24 ref141/cit141 ref50/cit50 ref78/cit78 ref36/cit36 ref83/cit83 ref138/cit138 ref79/cit79 ref139/cit139 ref100/cit100 ref25/cit25 ref103/cit103 ref72/cit72 ref14/cit14 ref57/cit57 ref51/cit51 ref134/cit134 ref135/cit135 ref40/cit40 ref68/cit68 ref94/cit94 ref130/cit130 ref131/cit131 ref146/cit146 ref161/cit161 ref142/cit142 ref73/cit73 ref69/cit69 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref95/cit95 ref108/cit108 ref104/cit104 Burns G. (ref26/cit26) 1985 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref127/cit127 ref1/cit1 ref123/cit123 ref7/cit7 |
References_xml | – ident: ref123/cit123 doi: 10.1016/j.biomaterials.2020.119771 – ident: ref43/cit43 doi: 10.1002/anie.201703657 – ident: ref53/cit53 doi: 10.1038/nchem.609 – ident: ref105/cit105 doi: 10.1002/adma.201908109 – ident: ref113/cit113 doi: 10.1002/chem.201904586 – ident: ref75/cit75 doi: 10.1016/j.biomaterials.2018.04.022 – ident: ref155/cit155 doi: 10.1039/C8NH00440D – ident: ref28/cit28 doi: 10.1021/ed3008457 – ident: ref3/cit3 doi: 10.1002/adma.201901778 – ident: ref8/cit8 doi: 10.1021/ar200061q – ident: ref158/cit158 doi: 10.1038/srep31339 – ident: ref104/cit104 doi: 10.1002/anie.201710399 – ident: ref141/cit141 doi: 10.1039/C8NR04870C – ident: ref160/cit160 doi: 10.1021/acs.nanolett.6b05055 – ident: ref130/cit130 doi: 10.1039/C9CC02677K – ident: ref24/cit24 doi: 10.1002/chem.201801588 – ident: ref150/cit150 doi: 10.1002/adfm.201706827 – ident: ref21/cit21 doi: 10.1002/anie.201706389 – ident: ref162/cit162 doi: 10.1021/acsami.6b08335 – ident: ref126/cit126 doi: 10.1021/acsnano.7b04230 – ident: ref114/cit114 doi: 10.1038/am.2017.167 – ident: ref85/cit85 doi: 10.1002/adma.201704136 – ident: ref110/cit110 doi: 10.1021/acsnano.6b06067 – ident: ref37/cit37 doi: 10.18632/oncotarget.14733 – ident: ref117/cit117 doi: 10.1039/C9BM00351G – ident: ref16/cit16 doi: 10.1038/srep01998 – ident: ref45/cit45 doi: 10.1038/s41467-018-07947-8 – ident: ref63/cit63 doi: 10.1016/j.biomaterials.2017.10.048 – ident: ref156/cit156 doi: 10.1021/ja906797z – ident: ref145/cit145 doi: 10.1016/j.apcatb.2019.03.008 – ident: ref159/cit159 doi: 10.1021/acs.nanolett.7b04741 – ident: ref60/cit60 doi: 10.1016/j.biomaterials.2017.06.033 – ident: ref10/cit10 doi: 10.1155/2012/751075 – ident: ref118/cit118 doi: 10.1002/adhm.201900250 – ident: ref86/cit86 doi: 10.1016/j.colsurfb.2017.09.043 – ident: ref72/cit72 doi: 10.1016/j.biomaterials.2020.120140 – ident: ref59/cit59 doi: 10.1002/adfm.201900017 – ident: ref47/cit47 doi: 10.1021/acsami.9b02104 – ident: ref25/cit25 doi: 10.1002/adhm.201901695 – ident: ref9/cit9 doi: 10.1039/C8CS00618K – ident: ref97/cit97 doi: 10.1002/adfm.201704623 – ident: ref18/cit18 doi: 10.1016/j.biomaterials.2014.12.037 – ident: ref23/cit23 doi: 10.1002/anie.201900811 – ident: ref41/cit41 doi: 10.1002/adma.201902333 – ident: ref56/cit56 doi: 10.1021/cm8004425 – ident: ref135/cit135 doi: 10.1016/j.biomaterials.2016.10.024 – ident: ref100/cit100 doi: 10.1039/C6NR01543C – ident: ref1/cit1 doi: 10.1038/nrc.2017.83 – ident: ref152/cit152 doi: 10.1039/C7TB01983A – ident: ref108/cit108 doi: 10.1016/j.biopha.2018.12.146 – ident: ref55/cit55 doi: 10.1002/anie.201005023 – ident: ref79/cit79 doi: 10.1002/adma.200600460 – ident: ref62/cit62 doi: 10.1039/C9NR01557D – ident: ref149/cit149 doi: 10.1002/adfm.202007073 – ident: ref34/cit34 doi: 10.1002/anie.201913675 – ident: ref54/cit54 doi: 10.1021/jp046423v – ident: ref31/cit31 doi: 10.1103/PhysRevB.52.1566 – ident: ref124/cit124 doi: 10.1002/adfm.201302312 – ident: ref11/cit11 doi: 10.1002/adfm.201700371 – ident: ref122/cit122 doi: 10.1002/adma.201504617 – ident: ref87/cit87 doi: 10.1039/C7RA01526G – ident: ref116/cit116 doi: 10.1021/acsnano.6b05427 – ident: ref154/cit154 doi: 10.1002/adfm.202003587 – ident: ref140/cit140 doi: 10.1039/C7TC05711C – ident: ref143/cit143 doi: 10.1002/anie.201812272 – ident: ref13/cit13 doi: 10.1038/nmat1571 – ident: ref38/cit38 doi: 10.1021/nn506640h – ident: ref44/cit44 doi: 10.1002/adma.201802061 – ident: ref49/cit49 doi: 10.1039/D0RA01638A – ident: ref107/cit107 doi: 10.1007/BF03041964 – ident: ref139/cit139 doi: 10.1021/acsnano.9b09858 – ident: ref5/cit5 doi: 10.1016/j.addr.2012.08.005 – ident: ref2/cit2 doi: 10.1039/C8CS00805A – ident: ref6/cit6 doi: 10.1021/acs.chemrev.8b00401 – ident: ref52/cit52 doi: 10.1039/c2nr31227a – ident: ref40/cit40 doi: 10.1016/j.apradiso.2003.09.005 – ident: ref20/cit20 doi: 10.1002/chem.201801574 – ident: ref22/cit22 doi: 10.1002/adma.201605299 – ident: ref147/cit147 doi: 10.1016/j.biomaterials.2018.10.016 – ident: ref157/cit157 doi: 10.1002/anie.201005657 – ident: ref92/cit92 doi: 10.1039/C6TB00261G – ident: ref36/cit36 doi: 10.1016/j.humpath.2005.10.013 – ident: ref48/cit48 doi: 10.1039/C9CC00576E – ident: ref70/cit70 doi: 10.1016/j.biomaterials.2017.12.022 – ident: ref82/cit82 doi: 10.1021/nn506137n – ident: ref50/cit50 doi: 10.1021/jz301345x – ident: ref69/cit69 doi: 10.1021/acsami.8b19304 – ident: ref148/cit148 doi: 10.1002/adfm.202000189 – ident: ref120/cit120 doi: 10.1002/adma.201503006 – ident: ref121/cit121 doi: 10.1002/adfm.201504810 – ident: ref98/cit98 doi: 10.1039/D0TB00080A – ident: ref7/cit7 doi: 10.1021/cr200358s – volume: 72 start-page: 18 year: 1969 ident: ref27/cit27 publication-title: Technol. Rev. – ident: ref58/cit58 doi: 10.1002/adfm.201702018 – ident: ref142/cit142 doi: 10.1039/C9BM01077G – ident: ref103/cit103 doi: 10.1021/acsami.8b21280 – ident: ref112/cit112 doi: 10.1002/ppsc.201700337 – ident: ref137/cit137 doi: 10.7150/thno.25286 – ident: ref64/cit64 doi: 10.1039/C8TB02189A – ident: ref131/cit131 doi: 10.1039/C9NR09401F – ident: ref132/cit132 doi: 10.1002/ppsc.201400238 – ident: ref89/cit89 doi: 10.1021/acsami.8b16395 – ident: ref84/cit84 doi: 10.1002/adfm.201601341 – ident: ref94/cit94 doi: 10.1016/j.biomaterials.2014.10.001 – ident: ref109/cit109 doi: 10.2147/IJN.S157541 – ident: ref15/cit15 doi: 10.1039/C9CS00283A – ident: ref65/cit65 doi: 10.1021/acs.nanolett.8b02639 – ident: ref102/cit102 doi: 10.1039/C8BM00336J – ident: ref111/cit111 doi: 10.1039/C6TB02137A – ident: ref4/cit4 doi: 10.1016/j.addr.2013.07.015 – ident: ref78/cit78 doi: 10.1021/acs.inorgchem.9b03280 – ident: ref161/cit161 doi: 10.1021/acsami.9b16962 – ident: ref95/cit95 doi: 10.1039/C5NR03068D – ident: ref144/cit144 doi: 10.1016/j.cej.2018.06.170 – ident: ref106/cit106 doi: 10.1002/adma.201806808 – ident: ref129/cit129 doi: 10.1021/acsami.9b13647 – ident: ref66/cit66 doi: 10.1016/j.biomaterials.2019.119419 – ident: ref136/cit136 doi: 10.1021/acsnano.6b00745 – ident: ref83/cit83 doi: 10.7150/thno.20548 – ident: ref12/cit12 doi: 10.1002/adfm.201807105 – ident: ref39/cit39 doi: 10.1038/nmeth.3925 – ident: ref119/cit119 doi: 10.1016/j.biomaterials.2019.119282 – ident: ref125/cit125 doi: 10.1002/smll.201601050 – ident: ref14/cit14 doi: 10.1021/cr980425s – ident: ref93/cit93 doi: 10.1039/c3cc47710j – ident: ref115/cit115 doi: 10.1021/acsnano.5b06259 – ident: ref146/cit146 doi: 10.1021/acsami.9b03636 – ident: ref138/cit138 doi: 10.1039/C7NR02213A – start-page: 339 volume-title: Solid State Physics year: 1985 ident: ref26/cit26 – ident: ref35/cit35 doi: 10.1158/1078-0432.CCR-07-1516 – ident: ref42/cit42 doi: 10.1002/anie.201411246 – ident: ref134/cit134 doi: 10.1039/C5NR06041A – ident: ref74/cit74 doi: 10.1021/acsnano.0c04375 – ident: ref17/cit17 doi: 10.1021/acsnano.7b00476 – ident: ref19/cit19 doi: 10.1002/adfm.201906010 – ident: ref61/cit61 doi: 10.1016/j.biomaterials.2018.01.047 – ident: ref32/cit32 doi: 10.1103/PhysRevB.85.201410 – ident: ref33/cit33 doi: 10.1103/PhysRevB.65.195417 – ident: ref96/cit96 doi: 10.1002/adhm.201800602 – ident: ref29/cit29 doi: 10.1038/nmat3824 – ident: ref68/cit68 doi: 10.2217/nnm-2018-0106 – ident: ref73/cit73 doi: 10.1021/acs.chemmater.8b00565 – ident: ref99/cit99 doi: 10.1002/adma.201500870 – ident: ref67/cit67 doi: 10.1039/C9MH00014C – ident: ref101/cit101 doi: 10.1039/C7NR02384G – ident: ref71/cit71 doi: 10.1021/acsami.7b17838 – ident: ref91/cit91 doi: 10.1016/j.biomaterials.2014.06.010 – ident: ref88/cit88 doi: 10.1039/C9TB00991D – ident: ref133/cit133 doi: 10.1002/adma.201404257 – ident: ref46/cit46 doi: 10.1021/acsami.5b11507 – ident: ref76/cit76 doi: 10.1016/j.biomaterials.2012.01.003 – ident: ref80/cit80 doi: 10.1002/adma.201103289 – ident: ref128/cit128 doi: 10.1039/C7NR06758E – ident: ref151/cit151 doi: 10.1021/acsnano.0c02458 – ident: ref127/cit127 doi: 10.1002/adfm.201907203 – ident: ref30/cit30 doi: 10.1073/pnas.1900527116 – ident: ref153/cit153 doi: 10.1039/C7TB00688H – ident: ref77/cit77 doi: 10.1021/acsami.5b09990 – ident: ref57/cit57 doi: 10.1021/ja107458s – ident: ref81/cit81 doi: 10.1002/anie.201104507 – ident: ref51/cit51 doi: 10.1016/j.actbio.2018.05.011 – ident: ref90/cit90 doi: 10.7150/thno.33472 |
SSID | ssj0057876 |
Score | 2.5347307 |
SecondaryResourceType | review_article |
Snippet | Innovative multifunctional nanomaterials have attracted tremendous interest in current research by facilitating simultaneous cancer imaging and therapy. Among... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2038 |
SubjectTerms | Antimony Bismuth Nanostructures Phototherapy Theranostic Nanomedicine |
Title | Pnictogen Semimetal (Sb, Bi)-Based Nanomaterials for Cancer Imaging and Therapy: A Materials Perspective |
URI | http://dx.doi.org/10.1021/acsnano.0c07899 https://www.ncbi.nlm.nih.gov/pubmed/33486944 https://www.proquest.com/docview/2480735424 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFA4uFz24L3UjQg8VnNpkMpu3WiwqVApV8DZkxaKdEWd68df7MjNtXSh6HEjCJPmS9z1e3vcQqhOjPKa9luNx33WYy1sOt0KQLuG2vHEoeJFf0bv3bx7Z3ZP3NBOL_hnBp-SCyyzhSdpsSauMHi2iZeqHgfWz2p3B5NK1uPPLADI4yMAipio-vwawZkhm383QHG5Z2Jjuevk6KyukCe3TkpfmOBdN-fFbuPHv399AaxXTxO0SGptoQSdbaPWL_uA2eu4nQ5mngCE80KPhSAMTx42BOMdXwzPnCgycwnD9psBqS6BioLi4Y4Hyjm9HRYEjzBOFH0ptgkvcxr1p2_4sj3MHPXavHzo3TlV6weHAWHKHGSJ1IJUQXNJQcTcIXcmJMZIa8GNDEvhMSMNlRJTyQi0CGYFryAk41ExL391FS0ma6H2ElWCMBpHRwo-YUIEw8MFDQQEiBuhGDdVhjeLq6GRxERWnJK4WLq4Wroaakw2LZSVfbqtovM7v0Jh2eCuVO-Y3PZ0gIIbTZUMmPNHpOIupzbh3PUZZDe2V0JgOZnOYYUrs4H8TOEQr1L6Hsenw7hFayt_H-hgITS5OCih_Amqk8Pw |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LbxMxEB6VcoAeKK-W8DRSkYrEprHX-0LikAaqhDZVpaRSb4ufIoLsou5GiP4a_gr_jPHuZstDkbhU4rgr27I9M55v5PE3ADvU6oCboOcFIvQ97oueJxwRpE-FK28cS1G9rxgfh8NT_v4sOFuD78u3MDiJAkcqqkv8S3YBuof_MpHl3Z5yBOlJk0Z5aL59xSCteDN6ixJ9wdjBu-lg6DV1BDyB7rf0uKXKREpLKRSLtfCj2FeCWquYxaAsplHIpbJCJVTrIDYyUgnGOYJidMiNCn0c9xpcR-jDXHjXH0yWZ71T97C-t8a4HMFLSx7014Sd91PF795vBaStXNvBJvxoN6XKaPnUXZSyqy7-4Iv8n3ftNtxqcDXp14ZwB9ZMdhc2fmFbvAcfT7KZKnO0GDIx89ncYNxBdifyFdmfvfT20Z1rgs4mRwxfmyVBQE8GzizOyWhelXMiItNkWjMxvCZ9Mm7bnly-Wr0Pp1ey1C1Yz_LMPACiJecsSqyRYcKljqTFDxFLhgZhEVx1YAdlkjYHRZFWOQCMpo2g0kZQHegu9SRVDVm7qxnyeXWH3bbDl5qnZHXT50vFS_EscRdEIjP5okiZ4xfwA854B7ZrjWwHcy-2cUn84b8t4BncGE7HR-nR6PjwEdxkLhPIEQH4j2G9PF-YJwjlSvm0siYCH65aEX8CoKVW4A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Za9tAEB7SFEr7kPSukx5bSCGFyvWuVlehD45TEzdNMDiBvKl7UpNYCpFMaX9P_0r-V2YlWb0w9CXQR4ndZXdnZmeGmfkGYItaHXAT9LxAhL7HfdHzhAOC9Klw7Y1jKar6ioPDcO-YfzwJTlbgx6IWBjdR4EpFFcR3Un2ubYMwQN_i_0xkebenHEh60qRS7ptvX9FRK96PdpGqrxgbfjga7HlNLwFPoAouPW6pMpHSUgrFYi38KPaVoNYqZtExi2kUcqmsUAnVOoiNjFSCvo6g6CFyo0If170BN12Q0Ll4_cFk8d47lg_r2DX65mjAtABCf23YaUBV_K4Bl5i1lXobrsNlezFVVstpd17Krvr-B2bk_35zd2Gtsa9JvxaIe7Bisvtw5xfUxQfwZZxNVZmj5JCJmU1nBv0Psj2Rb8jO9LW3g2pdE1Q6OdrytXgSNOzJwInHBRnNqrZORGSaHNWIDO9Inxy0Y8c_q1cfwvG1HPURrGZ5Zp4A0ZJzFiXWyDDhUkfS4oeIJUPBsGhkdWALaZI2D0aRVrkAjKYNodKGUB3oLnglVQ1ou-sdcrZ8wnY74bzGK1k-9OWC-VJ8U1ygSGQmnxcpczgDfsAZ78DjmivbxVzlNh6Jb_zbAV7ArfHuMP00OtzfhNvMJQQ5PAD_KayWF3PzDC26Uj6vBIrA5-vmwyvS81lj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pnictogen+Semimetal+%28Sb%2C+Bi%29-Based+Nanomaterials+for+Cancer+Imaging+and+Therapy%3A+A+Materials+Perspective&rft.jtitle=ACS+nano&rft.au=Yu%2C+Xujiang&rft.au=Liu%2C+Xinyi&rft.au=Yang%2C+Kai&rft.au=Chen%2C+Xiaoyuan&rft.date=2021-02-23&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=15&rft.issue=2&rft.spage=2038&rft.epage=2067&rft_id=info:doi/10.1021%2Facsnano.0c07899&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsnano_0c07899 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |