Pnictogen Semimetal (Sb, Bi)-Based Nanomaterials for Cancer Imaging and Therapy: A Materials Perspective

Innovative multifunctional nanomaterials have attracted tremendous interest in current research by facilitating simultaneous cancer imaging and therapy. Among them, antimony (Sb)- and bismuth (Bi)-based nanoparticles are important species with multifunction to boost cancer theranostic efficacy. Desp...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 15; no. 2; pp. 2038 - 2067
Main Authors Yu, Xujiang, Liu, Xinyi, Yang, Kai, Chen, Xiaoyuan, Li, Wanwan
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 23.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Innovative multifunctional nanomaterials have attracted tremendous interest in current research by facilitating simultaneous cancer imaging and therapy. Among them, antimony (Sb)- and bismuth (Bi)-based nanoparticles are important species with multifunction to boost cancer theranostic efficacy. Despite the rapid development, the extensive previous work treated Sb- and Bi-based nanoparticles as mutually independent species, and therefore a thorough understanding of their relationship in cancer theranostics was lacking. We propose here that the identical chemical nature of Sb and Bi, being semimetals, provides their derived nanoparticles with inherent multifunction for near-infrared laser-driven and/or X-ray-based cancer imaging and therapy as well as some other imparted functions. An overview of recent progress on Sb- and Bi-based nanoparticles for cancer theranostics is provided to highlight the relationship between chemical nature and multifunction. The understanding of Sb- and Bi-based nanoparticles in this way might shed light on the further design of smart multifunctional nanoparticles for cancer theranostics.
AbstractList Innovative multifunctional nanomaterials have attracted tremendous interest in current research by facilitating simultaneous cancer imaging and therapy. Among them, antimony (Sb)- and bismuth (Bi)-based nanoparticles are important species with multifunction to boost cancer theranostic efficacy. Despite the rapid development, the extensive previous work treated Sb- and Bi-based nanoparticles as mutually independent species, and therefore a thorough understanding of their relationship in cancer theranostics was lacking. We propose here that the identical chemical nature of Sb and Bi, being semimetals, provides their derived nanoparticles with inherent multifunction for near-infrared laser-driven and/or X-ray-based cancer imaging and therapy as well as some other imparted functions. An overview of recent progress on Sb- and Bi-based nanoparticles for cancer theranostics is provided to highlight the relationship between chemical nature and multifunction. The understanding of Sb- and Bi-based nanoparticles in this way might shed light on the further design of smart multifunctional nanoparticles for cancer theranostics.Innovative multifunctional nanomaterials have attracted tremendous interest in current research by facilitating simultaneous cancer imaging and therapy. Among them, antimony (Sb)- and bismuth (Bi)-based nanoparticles are important species with multifunction to boost cancer theranostic efficacy. Despite the rapid development, the extensive previous work treated Sb- and Bi-based nanoparticles as mutually independent species, and therefore a thorough understanding of their relationship in cancer theranostics was lacking. We propose here that the identical chemical nature of Sb and Bi, being semimetals, provides their derived nanoparticles with inherent multifunction for near-infrared laser-driven and/or X-ray-based cancer imaging and therapy as well as some other imparted functions. An overview of recent progress on Sb- and Bi-based nanoparticles for cancer theranostics is provided to highlight the relationship between chemical nature and multifunction. The understanding of Sb- and Bi-based nanoparticles in this way might shed light on the further design of smart multifunctional nanoparticles for cancer theranostics.
Innovative multifunctional nanomaterials have attracted tremendous interest in current research by facilitating simultaneous cancer imaging and therapy. Among them, antimony (Sb)- and bismuth (Bi)-based nanoparticles are important species with multifunction to boost cancer theranostic efficacy. Despite the rapid development, the extensive previous work treated Sb- and Bi-based nanoparticles as mutually independent species, and therefore a thorough understanding of their relationship in cancer theranostics was lacking. We propose here that the identical chemical nature of Sb and Bi, being semimetals, provides their derived nanoparticles with inherent multifunction for near-infrared laser-driven and/or X-ray-based cancer imaging and therapy as well as some other imparted functions. An overview of recent progress on Sb- and Bi-based nanoparticles for cancer theranostics is provided to highlight the relationship between chemical nature and multifunction. The understanding of Sb- and Bi-based nanoparticles in this way might shed light on the further design of smart multifunctional nanoparticles for cancer theranostics.
Author Yu, Xujiang
Li, Wanwan
Chen, Xiaoyuan
Yang, Kai
Liu, Xinyi
AuthorAffiliation State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine
School of Radiation Medicine and Protection (SRMP) and School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions
National University of Singapore
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composite
Yong Loo Lin School of Medicine and Faculty of Engineering
Soochow University
AuthorAffiliation_xml – name: School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composite
– name: Soochow University
– name: State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine
– name: School of Radiation Medicine and Protection (SRMP) and School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions
– name: Yong Loo Lin School of Medicine and Faculty of Engineering
– name: National University of Singapore
Author_xml – sequence: 1
  givenname: Xujiang
  orcidid: 0000-0002-8916-0742
  surname: Yu
  fullname: Yu, Xujiang
  organization: School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composite
– sequence: 2
  givenname: Xinyi
  surname: Liu
  fullname: Liu, Xinyi
  organization: State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine
– sequence: 3
  givenname: Kai
  orcidid: 0000-0002-6670-1024
  surname: Yang
  fullname: Yang, Kai
  email: kyang@suda.edu.cn
  organization: Soochow University
– sequence: 4
  givenname: Xiaoyuan
  orcidid: 0000-0002-9622-0870
  surname: Chen
  fullname: Chen, Xiaoyuan
  email: chen.shawn@nus.edu.sg
  organization: National University of Singapore
– sequence: 5
  givenname: Wanwan
  orcidid: 0000-0003-3809-0737
  surname: Li
  fullname: Li, Wanwan
  email: wwli@sjtu.edu.cn
  organization: State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33486944$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1P3DAQxa0KVD7ac2-Vj1RtwE6c2OEGq7YgQYsElXqzJpPJYpTYW9tbif--qXbhgMRpRjO_NyO9d8B2fPDE2AcpjqUo5Qlg8uDDsUChTdu-YfuyrZpCmOb3znNfyz12kNKDELU2unnL9qpKmaZVap_d33iHOSzJ81ua3EQZRn50233h5-5TcQ6Jev5j_jBBpuhgTHwIkS_AI0V-OcHS-SUH3_O7e4qwejzlZ_z6mb2hmFaE2f2ld2x3mEf0flsP2a9vX-8WF8XVz--Xi7OrAqq2zYUaJJLGvusAS9NDpU2FIIcBy6HUykjdqA4HwFb2fW2o09gqoUEaYxRhUx2yo83dVQx_1pSynVxCGkfwFNbJlsoIXdWqVDP6cYuuu4l6u4pugvhon9yZgXoDYAwpRRosugzZBZ8juNFKYf-nYLcp2G0Ks-7khe7p9OuKzxvFvLAPYR397NGr9D8ZTZrw
CitedBy_id crossref_primary_10_1002_adtp_202200027
crossref_primary_10_1016_j_jddst_2024_106136
crossref_primary_10_1016_j_matlet_2025_138201
crossref_primary_10_1002_advs_202106049
crossref_primary_10_1021_acsanm_4c01422
crossref_primary_10_1016_j_desal_2023_116680
crossref_primary_10_1021_acsnano_4c05100
crossref_primary_10_1021_acsami_2c00574
crossref_primary_10_1021_acs_analchem_2c04602
crossref_primary_10_1021_acsanm_3c02441
crossref_primary_10_1016_j_jssc_2021_122489
crossref_primary_10_1016_j_jconrel_2022_04_033
crossref_primary_10_1039_D2RA00993E
crossref_primary_10_3389_fphar_2023_1324764
crossref_primary_10_1016_j_jddst_2023_104958
crossref_primary_10_1021_acsnano_2c07286
crossref_primary_10_1016_j_biomaterials_2022_121811
crossref_primary_10_1021_acs_langmuir_4c00800
crossref_primary_10_1016_j_biomaterials_2024_122709
crossref_primary_10_1039_D2NR02908A
crossref_primary_10_1016_j_bioadv_2025_214236
crossref_primary_10_1021_acsnano_1c10663
crossref_primary_10_1021_acssuschemeng_2c00935
crossref_primary_10_1186_s12951_024_02931_5
crossref_primary_10_3390_nano13061130
crossref_primary_10_1016_j_envint_2023_108292
crossref_primary_10_1007_s12274_021_3454_4
crossref_primary_10_3389_fbioe_2024_1361347
crossref_primary_10_1007_s12598_023_02568_7
crossref_primary_10_1038_s41467_021_27835_y
crossref_primary_10_1038_s41467_025_56110_7
crossref_primary_10_1039_D4NR04024D
crossref_primary_10_1080_03067319_2023_2287123
crossref_primary_10_1016_j_ccr_2024_216168
crossref_primary_10_1093_nsr_nwae233
crossref_primary_10_1016_j_apmt_2022_101584
crossref_primary_10_1039_D2NJ01466A
crossref_primary_10_1021_acs_inorgchem_1c02621
crossref_primary_10_1002_adhm_202301926
crossref_primary_10_1016_j_colsurfb_2022_113116
Cites_doi 10.1016/j.biomaterials.2020.119771
10.1002/anie.201703657
10.1038/nchem.609
10.1002/adma.201908109
10.1002/chem.201904586
10.1016/j.biomaterials.2018.04.022
10.1039/C8NH00440D
10.1021/ed3008457
10.1002/adma.201901778
10.1021/ar200061q
10.1038/srep31339
10.1002/anie.201710399
10.1039/C8NR04870C
10.1021/acs.nanolett.6b05055
10.1039/C9CC02677K
10.1002/chem.201801588
10.1002/adfm.201706827
10.1002/anie.201706389
10.1021/acsami.6b08335
10.1021/acsnano.7b04230
10.1038/am.2017.167
10.1002/adma.201704136
10.1021/acsnano.6b06067
10.18632/oncotarget.14733
10.1039/C9BM00351G
10.1038/srep01998
10.1038/s41467-018-07947-8
10.1016/j.biomaterials.2017.10.048
10.1021/ja906797z
10.1016/j.apcatb.2019.03.008
10.1021/acs.nanolett.7b04741
10.1016/j.biomaterials.2017.06.033
10.1155/2012/751075
10.1002/adhm.201900250
10.1016/j.colsurfb.2017.09.043
10.1016/j.biomaterials.2020.120140
10.1002/adfm.201900017
10.1021/acsami.9b02104
10.1002/adhm.201901695
10.1039/C8CS00618K
10.1002/adfm.201704623
10.1016/j.biomaterials.2014.12.037
10.1002/anie.201900811
10.1002/adma.201902333
10.1021/cm8004425
10.1016/j.biomaterials.2016.10.024
10.1039/C6NR01543C
10.1038/nrc.2017.83
10.1039/C7TB01983A
10.1016/j.biopha.2018.12.146
10.1002/anie.201005023
10.1002/adma.200600460
10.1039/C9NR01557D
10.1002/adfm.202007073
10.1002/anie.201913675
10.1021/jp046423v
10.1103/PhysRevB.52.1566
10.1002/adfm.201302312
10.1002/adfm.201700371
10.1002/adma.201504617
10.1039/C7RA01526G
10.1021/acsnano.6b05427
10.1002/adfm.202003587
10.1039/C7TC05711C
10.1002/anie.201812272
10.1038/nmat1571
10.1021/nn506640h
10.1002/adma.201802061
10.1039/D0RA01638A
10.1007/BF03041964
10.1021/acsnano.9b09858
10.1016/j.addr.2012.08.005
10.1039/C8CS00805A
10.1021/acs.chemrev.8b00401
10.1039/c2nr31227a
10.1016/j.apradiso.2003.09.005
10.1002/chem.201801574
10.1002/adma.201605299
10.1016/j.biomaterials.2018.10.016
10.1002/anie.201005657
10.1039/C6TB00261G
10.1016/j.humpath.2005.10.013
10.1039/C9CC00576E
10.1016/j.biomaterials.2017.12.022
10.1021/nn506137n
10.1021/jz301345x
10.1021/acsami.8b19304
10.1002/adfm.202000189
10.1002/adma.201503006
10.1002/adfm.201504810
10.1039/D0TB00080A
10.1021/cr200358s
10.1002/adfm.201702018
10.1039/C9BM01077G
10.1021/acsami.8b21280
10.1002/ppsc.201700337
10.7150/thno.25286
10.1039/C8TB02189A
10.1039/C9NR09401F
10.1002/ppsc.201400238
10.1021/acsami.8b16395
10.1002/adfm.201601341
10.1016/j.biomaterials.2014.10.001
10.2147/IJN.S157541
10.1039/C9CS00283A
10.1021/acs.nanolett.8b02639
10.1039/C8BM00336J
10.1039/C6TB02137A
10.1016/j.addr.2013.07.015
10.1021/acs.inorgchem.9b03280
10.1021/acsami.9b16962
10.1039/C5NR03068D
10.1016/j.cej.2018.06.170
10.1002/adma.201806808
10.1021/acsami.9b13647
10.1016/j.biomaterials.2019.119419
10.1021/acsnano.6b00745
10.7150/thno.20548
10.1002/adfm.201807105
10.1038/nmeth.3925
10.1016/j.biomaterials.2019.119282
10.1002/smll.201601050
10.1021/cr980425s
10.1039/c3cc47710j
10.1021/acsnano.5b06259
10.1021/acsami.9b03636
10.1039/C7NR02213A
10.1158/1078-0432.CCR-07-1516
10.1002/anie.201411246
10.1039/C5NR06041A
10.1021/acsnano.0c04375
10.1021/acsnano.7b00476
10.1002/adfm.201906010
10.1016/j.biomaterials.2018.01.047
10.1103/PhysRevB.85.201410
10.1103/PhysRevB.65.195417
10.1002/adhm.201800602
10.1038/nmat3824
10.2217/nnm-2018-0106
10.1021/acs.chemmater.8b00565
10.1002/adma.201500870
10.1039/C9MH00014C
10.1039/C7NR02384G
10.1021/acsami.7b17838
10.1016/j.biomaterials.2014.06.010
10.1039/C9TB00991D
10.1002/adma.201404257
10.1021/acsami.5b11507
10.1016/j.biomaterials.2012.01.003
10.1002/adma.201103289
10.1039/C7NR06758E
10.1021/acsnano.0c02458
10.1002/adfm.201907203
10.1073/pnas.1900527116
10.1039/C7TB00688H
10.1021/acsami.5b09990
10.1021/ja107458s
10.1002/anie.201104507
10.1016/j.actbio.2018.05.011
10.7150/thno.33472
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acsnano.0c07899
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 2067
ExternalDocumentID 33486944
10_1021_acsnano_0c07899
c513073728
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
23M
53G
55A
5GY
5VS
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
F5P
GNL
IH9
IHE
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
4.4
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a399t-4f1ce7cdbbac28da3783ca1ffc2f27481764bcfac91dd58eb7c9407a18884ec63
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 01:08:55 EDT 2025
Thu Apr 03 06:53:00 EDT 2025
Tue Jul 01 03:37:06 EDT 2025
Thu Apr 24 23:03:11 EDT 2025
Thu Feb 25 04:42:15 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords semimetal
multifunctional
cancer theranostics
antimony
near-infrared laser
nanomaterials
pnictogen
X-ray irradiation
bismuth
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a399t-4f1ce7cdbbac28da3783ca1ffc2f27481764bcfac91dd58eb7c9407a18884ec63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9622-0870
0000-0002-6670-1024
0000-0003-3809-0737
0000-0002-8916-0742
PMID 33486944
PQID 2480735424
PQPubID 23479
PageCount 30
ParticipantIDs proquest_miscellaneous_2480735424
pubmed_primary_33486944
crossref_citationtrail_10_1021_acsnano_0c07899
crossref_primary_10_1021_acsnano_0c07899
acs_journals_10_1021_acsnano_0c07899
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-23
PublicationDateYYYYMMDD 2021-02-23
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-23
  day: 23
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref99/cit99
ref3/cit3
ref81/cit81
Adler D. (ref27/cit27) 1969; 72
ref16/cit16
ref52/cit52
ref114/cit114
ref23/cit23
ref115/cit115
ref116/cit116
ref110/cit110
ref111/cit111
ref2/cit2
ref112/cit112
ref77/cit77
ref113/cit113
ref71/cit71
ref117/cit117
ref20/cit20
ref48/cit48
ref118/cit118
ref74/cit74
ref119/cit119
ref10/cit10
ref35/cit35
ref89/cit89
ref19/cit19
ref93/cit93
ref42/cit42
ref96/cit96
ref107/cit107
ref120/cit120
ref109/cit109
ref13/cit13
ref122/cit122
ref105/cit105
ref61/cit61
ref67/cit67
ref38/cit38
ref128/cit128
ref90/cit90
ref124/cit124
ref64/cit64
ref126/cit126
ref54/cit54
ref6/cit6
ref18/cit18
ref136/cit136
ref137/cit137
ref65/cit65
ref97/cit97
ref101/cit101
ref11/cit11
ref102/cit102
ref29/cit29
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref5/cit5
ref43/cit43
ref80/cit80
ref133/cit133
ref28/cit28
ref132/cit132
ref91/cit91
ref148/cit148
ref55/cit55
ref144/cit144
ref12/cit12
ref66/cit66
ref22/cit22
ref121/cit121
ref33/cit33
ref87/cit87
ref106/cit106
ref140/cit140
ref129/cit129
ref44/cit44
ref70/cit70
ref98/cit98
ref125/cit125
ref9/cit9
ref152/cit152
ref153/cit153
ref154/cit154
ref150/cit150
ref63/cit63
ref151/cit151
ref56/cit56
ref159/cit159
ref92/cit92
ref155/cit155
ref156/cit156
ref157/cit157
ref158/cit158
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref60/cit60
ref88/cit88
ref17/cit17
ref82/cit82
ref147/cit147
ref160/cit160
ref143/cit143
ref53/cit53
ref145/cit145
ref21/cit21
ref149/cit149
ref162/cit162
ref46/cit46
ref49/cit49
ref75/cit75
ref24/cit24
ref141/cit141
ref50/cit50
ref78/cit78
ref36/cit36
ref83/cit83
ref138/cit138
ref79/cit79
ref139/cit139
ref100/cit100
ref25/cit25
ref103/cit103
ref72/cit72
ref14/cit14
ref57/cit57
ref51/cit51
ref134/cit134
ref135/cit135
ref40/cit40
ref68/cit68
ref94/cit94
ref130/cit130
ref131/cit131
ref146/cit146
ref161/cit161
ref142/cit142
ref73/cit73
ref69/cit69
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref95/cit95
ref108/cit108
ref104/cit104
Burns G. (ref26/cit26) 1985
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref127/cit127
ref1/cit1
ref123/cit123
ref7/cit7
References_xml – ident: ref123/cit123
  doi: 10.1016/j.biomaterials.2020.119771
– ident: ref43/cit43
  doi: 10.1002/anie.201703657
– ident: ref53/cit53
  doi: 10.1038/nchem.609
– ident: ref105/cit105
  doi: 10.1002/adma.201908109
– ident: ref113/cit113
  doi: 10.1002/chem.201904586
– ident: ref75/cit75
  doi: 10.1016/j.biomaterials.2018.04.022
– ident: ref155/cit155
  doi: 10.1039/C8NH00440D
– ident: ref28/cit28
  doi: 10.1021/ed3008457
– ident: ref3/cit3
  doi: 10.1002/adma.201901778
– ident: ref8/cit8
  doi: 10.1021/ar200061q
– ident: ref158/cit158
  doi: 10.1038/srep31339
– ident: ref104/cit104
  doi: 10.1002/anie.201710399
– ident: ref141/cit141
  doi: 10.1039/C8NR04870C
– ident: ref160/cit160
  doi: 10.1021/acs.nanolett.6b05055
– ident: ref130/cit130
  doi: 10.1039/C9CC02677K
– ident: ref24/cit24
  doi: 10.1002/chem.201801588
– ident: ref150/cit150
  doi: 10.1002/adfm.201706827
– ident: ref21/cit21
  doi: 10.1002/anie.201706389
– ident: ref162/cit162
  doi: 10.1021/acsami.6b08335
– ident: ref126/cit126
  doi: 10.1021/acsnano.7b04230
– ident: ref114/cit114
  doi: 10.1038/am.2017.167
– ident: ref85/cit85
  doi: 10.1002/adma.201704136
– ident: ref110/cit110
  doi: 10.1021/acsnano.6b06067
– ident: ref37/cit37
  doi: 10.18632/oncotarget.14733
– ident: ref117/cit117
  doi: 10.1039/C9BM00351G
– ident: ref16/cit16
  doi: 10.1038/srep01998
– ident: ref45/cit45
  doi: 10.1038/s41467-018-07947-8
– ident: ref63/cit63
  doi: 10.1016/j.biomaterials.2017.10.048
– ident: ref156/cit156
  doi: 10.1021/ja906797z
– ident: ref145/cit145
  doi: 10.1016/j.apcatb.2019.03.008
– ident: ref159/cit159
  doi: 10.1021/acs.nanolett.7b04741
– ident: ref60/cit60
  doi: 10.1016/j.biomaterials.2017.06.033
– ident: ref10/cit10
  doi: 10.1155/2012/751075
– ident: ref118/cit118
  doi: 10.1002/adhm.201900250
– ident: ref86/cit86
  doi: 10.1016/j.colsurfb.2017.09.043
– ident: ref72/cit72
  doi: 10.1016/j.biomaterials.2020.120140
– ident: ref59/cit59
  doi: 10.1002/adfm.201900017
– ident: ref47/cit47
  doi: 10.1021/acsami.9b02104
– ident: ref25/cit25
  doi: 10.1002/adhm.201901695
– ident: ref9/cit9
  doi: 10.1039/C8CS00618K
– ident: ref97/cit97
  doi: 10.1002/adfm.201704623
– ident: ref18/cit18
  doi: 10.1016/j.biomaterials.2014.12.037
– ident: ref23/cit23
  doi: 10.1002/anie.201900811
– ident: ref41/cit41
  doi: 10.1002/adma.201902333
– ident: ref56/cit56
  doi: 10.1021/cm8004425
– ident: ref135/cit135
  doi: 10.1016/j.biomaterials.2016.10.024
– ident: ref100/cit100
  doi: 10.1039/C6NR01543C
– ident: ref1/cit1
  doi: 10.1038/nrc.2017.83
– ident: ref152/cit152
  doi: 10.1039/C7TB01983A
– ident: ref108/cit108
  doi: 10.1016/j.biopha.2018.12.146
– ident: ref55/cit55
  doi: 10.1002/anie.201005023
– ident: ref79/cit79
  doi: 10.1002/adma.200600460
– ident: ref62/cit62
  doi: 10.1039/C9NR01557D
– ident: ref149/cit149
  doi: 10.1002/adfm.202007073
– ident: ref34/cit34
  doi: 10.1002/anie.201913675
– ident: ref54/cit54
  doi: 10.1021/jp046423v
– ident: ref31/cit31
  doi: 10.1103/PhysRevB.52.1566
– ident: ref124/cit124
  doi: 10.1002/adfm.201302312
– ident: ref11/cit11
  doi: 10.1002/adfm.201700371
– ident: ref122/cit122
  doi: 10.1002/adma.201504617
– ident: ref87/cit87
  doi: 10.1039/C7RA01526G
– ident: ref116/cit116
  doi: 10.1021/acsnano.6b05427
– ident: ref154/cit154
  doi: 10.1002/adfm.202003587
– ident: ref140/cit140
  doi: 10.1039/C7TC05711C
– ident: ref143/cit143
  doi: 10.1002/anie.201812272
– ident: ref13/cit13
  doi: 10.1038/nmat1571
– ident: ref38/cit38
  doi: 10.1021/nn506640h
– ident: ref44/cit44
  doi: 10.1002/adma.201802061
– ident: ref49/cit49
  doi: 10.1039/D0RA01638A
– ident: ref107/cit107
  doi: 10.1007/BF03041964
– ident: ref139/cit139
  doi: 10.1021/acsnano.9b09858
– ident: ref5/cit5
  doi: 10.1016/j.addr.2012.08.005
– ident: ref2/cit2
  doi: 10.1039/C8CS00805A
– ident: ref6/cit6
  doi: 10.1021/acs.chemrev.8b00401
– ident: ref52/cit52
  doi: 10.1039/c2nr31227a
– ident: ref40/cit40
  doi: 10.1016/j.apradiso.2003.09.005
– ident: ref20/cit20
  doi: 10.1002/chem.201801574
– ident: ref22/cit22
  doi: 10.1002/adma.201605299
– ident: ref147/cit147
  doi: 10.1016/j.biomaterials.2018.10.016
– ident: ref157/cit157
  doi: 10.1002/anie.201005657
– ident: ref92/cit92
  doi: 10.1039/C6TB00261G
– ident: ref36/cit36
  doi: 10.1016/j.humpath.2005.10.013
– ident: ref48/cit48
  doi: 10.1039/C9CC00576E
– ident: ref70/cit70
  doi: 10.1016/j.biomaterials.2017.12.022
– ident: ref82/cit82
  doi: 10.1021/nn506137n
– ident: ref50/cit50
  doi: 10.1021/jz301345x
– ident: ref69/cit69
  doi: 10.1021/acsami.8b19304
– ident: ref148/cit148
  doi: 10.1002/adfm.202000189
– ident: ref120/cit120
  doi: 10.1002/adma.201503006
– ident: ref121/cit121
  doi: 10.1002/adfm.201504810
– ident: ref98/cit98
  doi: 10.1039/D0TB00080A
– ident: ref7/cit7
  doi: 10.1021/cr200358s
– volume: 72
  start-page: 18
  year: 1969
  ident: ref27/cit27
  publication-title: Technol. Rev.
– ident: ref58/cit58
  doi: 10.1002/adfm.201702018
– ident: ref142/cit142
  doi: 10.1039/C9BM01077G
– ident: ref103/cit103
  doi: 10.1021/acsami.8b21280
– ident: ref112/cit112
  doi: 10.1002/ppsc.201700337
– ident: ref137/cit137
  doi: 10.7150/thno.25286
– ident: ref64/cit64
  doi: 10.1039/C8TB02189A
– ident: ref131/cit131
  doi: 10.1039/C9NR09401F
– ident: ref132/cit132
  doi: 10.1002/ppsc.201400238
– ident: ref89/cit89
  doi: 10.1021/acsami.8b16395
– ident: ref84/cit84
  doi: 10.1002/adfm.201601341
– ident: ref94/cit94
  doi: 10.1016/j.biomaterials.2014.10.001
– ident: ref109/cit109
  doi: 10.2147/IJN.S157541
– ident: ref15/cit15
  doi: 10.1039/C9CS00283A
– ident: ref65/cit65
  doi: 10.1021/acs.nanolett.8b02639
– ident: ref102/cit102
  doi: 10.1039/C8BM00336J
– ident: ref111/cit111
  doi: 10.1039/C6TB02137A
– ident: ref4/cit4
  doi: 10.1016/j.addr.2013.07.015
– ident: ref78/cit78
  doi: 10.1021/acs.inorgchem.9b03280
– ident: ref161/cit161
  doi: 10.1021/acsami.9b16962
– ident: ref95/cit95
  doi: 10.1039/C5NR03068D
– ident: ref144/cit144
  doi: 10.1016/j.cej.2018.06.170
– ident: ref106/cit106
  doi: 10.1002/adma.201806808
– ident: ref129/cit129
  doi: 10.1021/acsami.9b13647
– ident: ref66/cit66
  doi: 10.1016/j.biomaterials.2019.119419
– ident: ref136/cit136
  doi: 10.1021/acsnano.6b00745
– ident: ref83/cit83
  doi: 10.7150/thno.20548
– ident: ref12/cit12
  doi: 10.1002/adfm.201807105
– ident: ref39/cit39
  doi: 10.1038/nmeth.3925
– ident: ref119/cit119
  doi: 10.1016/j.biomaterials.2019.119282
– ident: ref125/cit125
  doi: 10.1002/smll.201601050
– ident: ref14/cit14
  doi: 10.1021/cr980425s
– ident: ref93/cit93
  doi: 10.1039/c3cc47710j
– ident: ref115/cit115
  doi: 10.1021/acsnano.5b06259
– ident: ref146/cit146
  doi: 10.1021/acsami.9b03636
– ident: ref138/cit138
  doi: 10.1039/C7NR02213A
– start-page: 339
  volume-title: Solid State Physics
  year: 1985
  ident: ref26/cit26
– ident: ref35/cit35
  doi: 10.1158/1078-0432.CCR-07-1516
– ident: ref42/cit42
  doi: 10.1002/anie.201411246
– ident: ref134/cit134
  doi: 10.1039/C5NR06041A
– ident: ref74/cit74
  doi: 10.1021/acsnano.0c04375
– ident: ref17/cit17
  doi: 10.1021/acsnano.7b00476
– ident: ref19/cit19
  doi: 10.1002/adfm.201906010
– ident: ref61/cit61
  doi: 10.1016/j.biomaterials.2018.01.047
– ident: ref32/cit32
  doi: 10.1103/PhysRevB.85.201410
– ident: ref33/cit33
  doi: 10.1103/PhysRevB.65.195417
– ident: ref96/cit96
  doi: 10.1002/adhm.201800602
– ident: ref29/cit29
  doi: 10.1038/nmat3824
– ident: ref68/cit68
  doi: 10.2217/nnm-2018-0106
– ident: ref73/cit73
  doi: 10.1021/acs.chemmater.8b00565
– ident: ref99/cit99
  doi: 10.1002/adma.201500870
– ident: ref67/cit67
  doi: 10.1039/C9MH00014C
– ident: ref101/cit101
  doi: 10.1039/C7NR02384G
– ident: ref71/cit71
  doi: 10.1021/acsami.7b17838
– ident: ref91/cit91
  doi: 10.1016/j.biomaterials.2014.06.010
– ident: ref88/cit88
  doi: 10.1039/C9TB00991D
– ident: ref133/cit133
  doi: 10.1002/adma.201404257
– ident: ref46/cit46
  doi: 10.1021/acsami.5b11507
– ident: ref76/cit76
  doi: 10.1016/j.biomaterials.2012.01.003
– ident: ref80/cit80
  doi: 10.1002/adma.201103289
– ident: ref128/cit128
  doi: 10.1039/C7NR06758E
– ident: ref151/cit151
  doi: 10.1021/acsnano.0c02458
– ident: ref127/cit127
  doi: 10.1002/adfm.201907203
– ident: ref30/cit30
  doi: 10.1073/pnas.1900527116
– ident: ref153/cit153
  doi: 10.1039/C7TB00688H
– ident: ref77/cit77
  doi: 10.1021/acsami.5b09990
– ident: ref57/cit57
  doi: 10.1021/ja107458s
– ident: ref81/cit81
  doi: 10.1002/anie.201104507
– ident: ref51/cit51
  doi: 10.1016/j.actbio.2018.05.011
– ident: ref90/cit90
  doi: 10.7150/thno.33472
SSID ssj0057876
Score 2.5347307
SecondaryResourceType review_article
Snippet Innovative multifunctional nanomaterials have attracted tremendous interest in current research by facilitating simultaneous cancer imaging and therapy. Among...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2038
SubjectTerms Antimony
Bismuth
Nanostructures
Phototherapy
Theranostic Nanomedicine
Title Pnictogen Semimetal (Sb, Bi)-Based Nanomaterials for Cancer Imaging and Therapy: A Materials Perspective
URI http://dx.doi.org/10.1021/acsnano.0c07899
https://www.ncbi.nlm.nih.gov/pubmed/33486944
https://www.proquest.com/docview/2480735424
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFA4uFz24L3UjQg8VnNpkMpu3WiwqVApV8DZkxaKdEWd68df7MjNtXSh6HEjCJPmS9z1e3vcQqhOjPKa9luNx33WYy1sOt0KQLuG2vHEoeJFf0bv3bx7Z3ZP3NBOL_hnBp-SCyyzhSdpsSauMHi2iZeqHgfWz2p3B5NK1uPPLADI4yMAipio-vwawZkhm383QHG5Z2Jjuevk6KyukCe3TkpfmOBdN-fFbuPHv399AaxXTxO0SGptoQSdbaPWL_uA2eu4nQ5mngCE80KPhSAMTx42BOMdXwzPnCgycwnD9psBqS6BioLi4Y4Hyjm9HRYEjzBOFH0ptgkvcxr1p2_4sj3MHPXavHzo3TlV6weHAWHKHGSJ1IJUQXNJQcTcIXcmJMZIa8GNDEvhMSMNlRJTyQi0CGYFryAk41ExL391FS0ma6H2ElWCMBpHRwo-YUIEw8MFDQQEiBuhGDdVhjeLq6GRxERWnJK4WLq4Wroaakw2LZSVfbqtovM7v0Jh2eCuVO-Y3PZ0gIIbTZUMmPNHpOIupzbh3PUZZDe2V0JgOZnOYYUrs4H8TOEQr1L6Hsenw7hFayt_H-hgITS5OCih_Amqk8Pw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LbxMxEB6VcoAeKK-W8DRSkYrEprHX-0LikAaqhDZVpaRSb4ufIoLsou5GiP4a_gr_jPHuZstDkbhU4rgr27I9M55v5PE3ADvU6oCboOcFIvQ97oueJxwRpE-FK28cS1G9rxgfh8NT_v4sOFuD78u3MDiJAkcqqkv8S3YBuof_MpHl3Z5yBOlJk0Z5aL59xSCteDN6ixJ9wdjBu-lg6DV1BDyB7rf0uKXKREpLKRSLtfCj2FeCWquYxaAsplHIpbJCJVTrIDYyUgnGOYJidMiNCn0c9xpcR-jDXHjXH0yWZ71T97C-t8a4HMFLSx7014Sd91PF795vBaStXNvBJvxoN6XKaPnUXZSyqy7-4Iv8n3ftNtxqcDXp14ZwB9ZMdhc2fmFbvAcfT7KZKnO0GDIx89ncYNxBdifyFdmfvfT20Z1rgs4mRwxfmyVBQE8GzizOyWhelXMiItNkWjMxvCZ9Mm7bnly-Wr0Pp1ey1C1Yz_LMPACiJecsSqyRYcKljqTFDxFLhgZhEVx1YAdlkjYHRZFWOQCMpo2g0kZQHegu9SRVDVm7qxnyeXWH3bbDl5qnZHXT50vFS_EscRdEIjP5okiZ4xfwA854B7ZrjWwHcy-2cUn84b8t4BncGE7HR-nR6PjwEdxkLhPIEQH4j2G9PF-YJwjlSvm0siYCH65aEX8CoKVW4A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Za9tAEB7SFEr7kPSukx5bSCGFyvWuVlehD45TEzdNMDiBvKl7UpNYCpFMaX9P_0r-V2YlWb0w9CXQR4ndZXdnZmeGmfkGYItaHXAT9LxAhL7HfdHzhAOC9Klw7Y1jKar6ioPDcO-YfzwJTlbgx6IWBjdR4EpFFcR3Un2ubYMwQN_i_0xkebenHEh60qRS7ptvX9FRK96PdpGqrxgbfjga7HlNLwFPoAouPW6pMpHSUgrFYi38KPaVoNYqZtExi2kUcqmsUAnVOoiNjFSCvo6g6CFyo0If170BN12Q0Ll4_cFk8d47lg_r2DX65mjAtABCf23YaUBV_K4Bl5i1lXobrsNlezFVVstpd17Krvr-B2bk_35zd2Gtsa9JvxaIe7Bisvtw5xfUxQfwZZxNVZmj5JCJmU1nBv0Psj2Rb8jO9LW3g2pdE1Q6OdrytXgSNOzJwInHBRnNqrZORGSaHNWIDO9Inxy0Y8c_q1cfwvG1HPURrGZ5Zp4A0ZJzFiXWyDDhUkfS4oeIJUPBsGhkdWALaZI2D0aRVrkAjKYNodKGUB3oLnglVQ1ou-sdcrZ8wnY74bzGK1k-9OWC-VJ8U1ygSGQmnxcpczgDfsAZ78DjmivbxVzlNh6Jb_zbAV7ArfHuMP00OtzfhNvMJQQ5PAD_KayWF3PzDC26Uj6vBIrA5-vmwyvS81lj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pnictogen+Semimetal+%28Sb%2C+Bi%29-Based+Nanomaterials+for+Cancer+Imaging+and+Therapy%3A+A+Materials+Perspective&rft.jtitle=ACS+nano&rft.au=Yu%2C+Xujiang&rft.au=Liu%2C+Xinyi&rft.au=Yang%2C+Kai&rft.au=Chen%2C+Xiaoyuan&rft.date=2021-02-23&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=15&rft.issue=2&rft.spage=2038&rft.epage=2067&rft_id=info:doi/10.1021%2Facsnano.0c07899&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsnano_0c07899
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon