Nanoparticle Charge and Size Control Foliar Delivery Efficiency to Plant Cells and Organelles

Fundamental and quantitative understanding of the interactions between nanoparticles and plant leaves is crucial for advancing the field of nanoenabled agriculture. Herein, we systematically investigated and modeled how ζ potential (−52.3 mV to +36.6 mV) and hydrodynamic size (1.7–18 nm) of hydrophi...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 14; no. 7; pp. 7970 - 7986
Main Authors Hu, Peiguang, An, Jing, Faulkner, Maquela M, Wu, Honghong, Li, Zhaohu, Tian, Xiaoli, Giraldo, Juan Pablo
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 28.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fundamental and quantitative understanding of the interactions between nanoparticles and plant leaves is crucial for advancing the field of nanoenabled agriculture. Herein, we systematically investigated and modeled how ζ potential (−52.3 mV to +36.6 mV) and hydrodynamic size (1.7–18 nm) of hydrophilic nanoparticles influence delivery efficiency and pathways to specific leaf cells and organelles. We studied interactions of nanoparticles of agricultural interest including carbon dots (CDs, 0.5 and 5 mg/mL), cerium oxide (CeO2, 0.5 mg/mL), and silica (SiO2, 0.5 mg/mL) nanoparticles with leaves of two major crop species having contrasting leaf anatomies: cotton (dicotyledon) and maize (monocotyledon). Biocompatible CDs allowed real-time tracking of nanoparticle translocation and distribution in planta by confocal fluorescence microscopy at high spatial (∼200 nm) and temporal (2–5 min) resolution. Nanoparticle formulations with surfactants (Silwet L-77) that reduced surface tension to 22 mN/m were found to be crucial for enabling rapid uptake (<10 min) of nanoparticles through the leaf stomata and cuticle pathways. Nanoparticle–leaf interaction (NLI) empirical models based on hydrodynamic size and ζ potential indicate that hydrophilic nanoparticles with <20 and 11 nm for cotton and maize, respectively, and positive charge (>15 mV), exhibit the highest foliar delivery efficiencies into guard cells (100%), extracellular space (90.3%), and chloroplasts (55.8%). Systematic assessments of nanoparticle–plant interactions would lead to the development of NLI models that predict the translocation and distribution of nanomaterials in plants based on their chemical and physical properties.
AbstractList Fundamental and quantitative understanding of the interactions between nanoparticles and plant leaves is crucial for advancing the field of nanoenabled agriculture. Herein, we systematically investigated and modeled how ζ potential (−52.3 mV to +36.6 mV) and hydrodynamic size (1.7–18 nm) of hydrophilic nanoparticles influence delivery efficiency and pathways to specific leaf cells and organelles. We studied interactions of nanoparticles of agricultural interest including carbon dots (CDs, 0.5 and 5 mg/mL), cerium oxide (CeO2, 0.5 mg/mL), and silica (SiO2, 0.5 mg/mL) nanoparticles with leaves of two major crop species having contrasting leaf anatomies: cotton (dicotyledon) and maize (monocotyledon). Biocompatible CDs allowed real-time tracking of nanoparticle translocation and distribution in planta by confocal fluorescence microscopy at high spatial (∼200 nm) and temporal (2–5 min) resolution. Nanoparticle formulations with surfactants (Silwet L-77) that reduced surface tension to 22 mN/m were found to be crucial for enabling rapid uptake (<10 min) of nanoparticles through the leaf stomata and cuticle pathways. Nanoparticle–leaf interaction (NLI) empirical models based on hydrodynamic size and ζ potential indicate that hydrophilic nanoparticles with <20 and 11 nm for cotton and maize, respectively, and positive charge (>15 mV), exhibit the highest foliar delivery efficiencies into guard cells (100%), extracellular space (90.3%), and chloroplasts (55.8%). Systematic assessments of nanoparticle–plant interactions would lead to the development of NLI models that predict the translocation and distribution of nanomaterials in plants based on their chemical and physical properties.
Fundamental and quantitative understanding of the interactions between nanoparticles and plant leaves is crucial for advancing the field of nanoenabled agriculture. Herein, we systematically investigated and modeled how ζ potential (-52.3 mV to +36.6 mV) and hydrodynamic size (1.7-18 nm) of hydrophilic nanoparticles influence delivery efficiency and pathways to specific leaf cells and organelles. We studied interactions of nanoparticles of agricultural interest including carbon dots (CDs, 0.5 and 5 mg/mL), cerium oxide (CeO , 0.5 mg/mL), and silica (SiO , 0.5 mg/mL) nanoparticles with leaves of two major crop species having contrasting leaf anatomies: cotton (dicotyledon) and maize (monocotyledon). Biocompatible CDs allowed real-time tracking of nanoparticle translocation and distribution by confocal fluorescence microscopy at high spatial (∼200 nm) and temporal (2-5 min) resolution. Nanoparticle formulations with surfactants (Silwet L-77) that reduced surface tension to 22 mN/m were found to be crucial for enabling rapid uptake (<10 min) of nanoparticles through the leaf stomata and cuticle pathways. Nanoparticle-leaf interaction (NLI) empirical models based on hydrodynamic size and ζ potential indicate that hydrophilic nanoparticles with <20 and 11 nm for cotton and maize, respectively, and positive charge (>15 mV), exhibit the highest foliar delivery efficiencies into guard cells (100%), extracellular space (90.3%), and chloroplasts (55.8%). Systematic assessments of nanoparticle-plant interactions would lead to the development of NLI models that predict the translocation and distribution of nanomaterials in plants based on their chemical and physical properties.
Fundamental and quantitative understanding of the interactions between nanoparticles and plant leaves is crucial for advancing the field of nanoenabled agriculture. Herein, we systematically investigated and modeled how ζ potential (-52.3 mV to +36.6 mV) and hydrodynamic size (1.7-18 nm) of hydrophilic nanoparticles influence delivery efficiency and pathways to specific leaf cells and organelles. We studied interactions of nanoparticles of agricultural interest including carbon dots (CDs, 0.5 and 5 mg/mL), cerium oxide (CeO2, 0.5 mg/mL), and silica (SiO2, 0.5 mg/mL) nanoparticles with leaves of two major crop species having contrasting leaf anatomies: cotton (dicotyledon) and maize (monocotyledon). Biocompatible CDs allowed real-time tracking of nanoparticle translocation and distribution in planta by confocal fluorescence microscopy at high spatial (∼200 nm) and temporal (2-5 min) resolution. Nanoparticle formulations with surfactants (Silwet L-77) that reduced surface tension to 22 mN/m were found to be crucial for enabling rapid uptake (<10 min) of nanoparticles through the leaf stomata and cuticle pathways. Nanoparticle-leaf interaction (NLI) empirical models based on hydrodynamic size and ζ potential indicate that hydrophilic nanoparticles with <20 and 11 nm for cotton and maize, respectively, and positive charge (>15 mV), exhibit the highest foliar delivery efficiencies into guard cells (100%), extracellular space (90.3%), and chloroplasts (55.8%). Systematic assessments of nanoparticle-plant interactions would lead to the development of NLI models that predict the translocation and distribution of nanomaterials in plants based on their chemical and physical properties.Fundamental and quantitative understanding of the interactions between nanoparticles and plant leaves is crucial for advancing the field of nanoenabled agriculture. Herein, we systematically investigated and modeled how ζ potential (-52.3 mV to +36.6 mV) and hydrodynamic size (1.7-18 nm) of hydrophilic nanoparticles influence delivery efficiency and pathways to specific leaf cells and organelles. We studied interactions of nanoparticles of agricultural interest including carbon dots (CDs, 0.5 and 5 mg/mL), cerium oxide (CeO2, 0.5 mg/mL), and silica (SiO2, 0.5 mg/mL) nanoparticles with leaves of two major crop species having contrasting leaf anatomies: cotton (dicotyledon) and maize (monocotyledon). Biocompatible CDs allowed real-time tracking of nanoparticle translocation and distribution in planta by confocal fluorescence microscopy at high spatial (∼200 nm) and temporal (2-5 min) resolution. Nanoparticle formulations with surfactants (Silwet L-77) that reduced surface tension to 22 mN/m were found to be crucial for enabling rapid uptake (<10 min) of nanoparticles through the leaf stomata and cuticle pathways. Nanoparticle-leaf interaction (NLI) empirical models based on hydrodynamic size and ζ potential indicate that hydrophilic nanoparticles with <20 and 11 nm for cotton and maize, respectively, and positive charge (>15 mV), exhibit the highest foliar delivery efficiencies into guard cells (100%), extracellular space (90.3%), and chloroplasts (55.8%). Systematic assessments of nanoparticle-plant interactions would lead to the development of NLI models that predict the translocation and distribution of nanomaterials in plants based on their chemical and physical properties.
Author Hu, Peiguang
Giraldo, Juan Pablo
An, Jing
Faulkner, Maquela M
Tian, Xiaoli
Wu, Honghong
Li, Zhaohu
AuthorAffiliation State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology
Department of Botany and Plant Sciences
AuthorAffiliation_xml – name: Department of Botany and Plant Sciences
– name: State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology
Author_xml – sequence: 1
  givenname: Peiguang
  orcidid: 0000-0002-9526-6295
  surname: Hu
  fullname: Hu, Peiguang
  organization: Department of Botany and Plant Sciences
– sequence: 2
  givenname: Jing
  surname: An
  fullname: An, Jing
  organization: State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology
– sequence: 3
  givenname: Maquela M
  surname: Faulkner
  fullname: Faulkner, Maquela M
  organization: Department of Botany and Plant Sciences
– sequence: 4
  givenname: Honghong
  surname: Wu
  fullname: Wu, Honghong
  organization: Department of Botany and Plant Sciences
– sequence: 5
  givenname: Zhaohu
  surname: Li
  fullname: Li, Zhaohu
  organization: State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology
– sequence: 6
  givenname: Xiaoli
  surname: Tian
  fullname: Tian, Xiaoli
  organization: State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology
– sequence: 7
  givenname: Juan Pablo
  orcidid: 0000-0002-8400-8944
  surname: Giraldo
  fullname: Giraldo, Juan Pablo
  email: juanpablo.giraldo@ucr.edu
  organization: Department of Botany and Plant Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32628442$$D View this record in MEDLINE/PubMed
BookMark eNp9kN9LAyEcwCUWbaueewsfg7jmj7ubPsbaKogKKuglDs_T5XC69Basvz7XVg9B-aJf_HxEPn3Qcd4pAI4wOsOI4IGQ0Qnnz3iNOB6yHdDDnJYZYuVz5-dc4C7oxzhDqBiyYbkHupSUhOU56YGX26QvRGiNtAqOXkWYKihcAx_MR5q9a4O3cOKtEQFeKGveVVjBsdZGGuXkCrYe3lvhWjhS1sYv9S5MhUuTigdgVwsb1eF23wdPk_Hj6Cq7ubu8Hp3fZIJy3mY5LQRlUnOZ182Q8FxLxknBNGdEa8p1g0vZiBprxnNeNzUty5pQggqkG0ok3Qcnm3cXwb8tVWyruYkyfSH9wy9jRXKC0-IcJfR4iy7ruWqqRTBzEVbVd5IEDDaADD7GoPQPglG1jl5to1fb6MkofhnStKI163jC2H-8042XLqqZXwaXGv1JfwL3Xpbl
CitedBy_id crossref_primary_10_1186_s12951_021_01176_w
crossref_primary_10_1007_s40820_024_01413_5
crossref_primary_10_1016_j_copbio_2021_06_005
crossref_primary_10_1039_D0EN01129K
crossref_primary_10_1186_s40538_021_00222_x
crossref_primary_10_3390_gels9020115
crossref_primary_10_1016_j_ecoenv_2021_113008
crossref_primary_10_1016_j_scitotenv_2022_158352
crossref_primary_10_1016_j_chemosphere_2022_136911
crossref_primary_10_1039_D3LF00145H
crossref_primary_10_3390_ijms23169236
crossref_primary_10_1007_s12274_023_6284_8
crossref_primary_10_1039_D1EN01124C
crossref_primary_10_1021_acs_est_1c00178
crossref_primary_10_1007_s00253_021_11725_w
crossref_primary_10_1016_j_bcab_2024_103446
crossref_primary_10_3390_ijms241914836
crossref_primary_10_1021_acs_nanolett_4c04704
crossref_primary_10_3390_plants13213011
crossref_primary_10_1021_acssuschemeng_2c06461
crossref_primary_10_1039_D2EN00651K
crossref_primary_10_1021_acsomega_4c11102
crossref_primary_10_1016_j_impact_2021_100329
crossref_primary_10_1039_D1EN00630D
crossref_primary_10_1038_s41467_024_54013_7
crossref_primary_10_1111_jipb_13887
crossref_primary_10_1007_s11101_024_10022_4
crossref_primary_10_1021_acsnano_1c02917
crossref_primary_10_1016_j_jhazmat_2023_130911
crossref_primary_10_1016_j_pbi_2023_102441
crossref_primary_10_1021_acs_est_3c00327
crossref_primary_10_1007_s13205_023_03727_4
crossref_primary_10_3390_nano11020267
crossref_primary_10_3390_nano13010165
crossref_primary_10_3389_fpls_2022_963756
crossref_primary_10_3390_ijms25052703
crossref_primary_10_3390_agriculture11020134
crossref_primary_10_3389_fpls_2022_1081165
crossref_primary_10_1016_j_stress_2024_100651
crossref_primary_10_3390_genes15081091
crossref_primary_10_1021_acsnano_4c09803
crossref_primary_10_1016_j_envpol_2023_121044
crossref_primary_10_1016_j_scitotenv_2022_157160
crossref_primary_10_1088_1755_1315_1060_1_012043
crossref_primary_10_1038_s41565_021_00854_y
crossref_primary_10_1016_j_ijbiomac_2025_141579
crossref_primary_10_1021_acs_est_3c08723
crossref_primary_10_1021_acs_est_3c06424
crossref_primary_10_1016_j_watres_2024_121394
crossref_primary_10_3389_fpls_2021_663849
crossref_primary_10_3389_fpls_2023_1324176
crossref_primary_10_1002_smll_202301137
crossref_primary_10_1039_D4EN00520A
crossref_primary_10_1016_j_scitotenv_2024_171433
crossref_primary_10_1016_j_scitotenv_2024_176327
crossref_primary_10_3389_fgeed_2022_1029944
crossref_primary_10_1080_07388551_2022_2090315
crossref_primary_10_1021_acs_est_3c01783
crossref_primary_10_1016_j_pedsph_2024_08_003
crossref_primary_10_1021_acsnano_4c02620
crossref_primary_10_1021_acssusresmgt_4c00041
crossref_primary_10_1039_D1EN00870F
crossref_primary_10_1039_D0EN01281E
crossref_primary_10_1016_j_jhazmat_2023_131421
crossref_primary_10_3390_molecules30030446
crossref_primary_10_1016_j_plaphy_2024_108704
crossref_primary_10_1021_acsami_4c03800
crossref_primary_10_1016_j_envres_2023_116849
crossref_primary_10_1016_j_xplc_2022_100346
crossref_primary_10_1042_BSR20230817
crossref_primary_10_1016_j_envint_2024_108859
crossref_primary_10_1021_acsnano_3c02215
crossref_primary_10_1021_acs_est_3c09757
crossref_primary_10_1016_j_scitotenv_2021_151506
crossref_primary_10_3389_fpls_2023_1158031
crossref_primary_10_1016_j_aquatox_2024_106964
crossref_primary_10_1021_acsomega_3c04638
crossref_primary_10_32604_biocell_2023_025740
crossref_primary_10_1039_D2EN01040B
crossref_primary_10_1002_smll_202304588
crossref_primary_10_1016_j_tplants_2022_08_017
crossref_primary_10_1002_anbr_202000028
crossref_primary_10_1039_D4EN00080C
crossref_primary_10_1016_j_bcab_2023_102892
crossref_primary_10_1002_ps_6374
crossref_primary_10_1016_j_bcab_2023_102891
crossref_primary_10_1016_j_pbi_2021_102052
crossref_primary_10_3389_fenvs_2021_702490
crossref_primary_10_1039_D2NR01904C
crossref_primary_10_1016_j_impact_2022_100418
crossref_primary_10_1039_D3NR02221H
crossref_primary_10_3390_nano11113073
crossref_primary_10_1016_j_surfin_2024_105190
crossref_primary_10_1038_s41565_024_01667_5
crossref_primary_10_1016_j_jhazmat_2024_136479
crossref_primary_10_1016_j_envpol_2021_118448
crossref_primary_10_1021_acs_est_3c10506
crossref_primary_10_1016_j_cpb_2024_100381
crossref_primary_10_1021_acs_est_3c09086
crossref_primary_10_1080_10643389_2022_2156225
crossref_primary_10_1007_s10142_025_01528_x
crossref_primary_10_1021_acsnano_4c05362
crossref_primary_10_3390_su151310083
crossref_primary_10_1016_j_indcrop_2025_120600
crossref_primary_10_1016_j_scitotenv_2022_155097
crossref_primary_10_1039_D4EN00547C
crossref_primary_10_1039_D2EN00975G
crossref_primary_10_1007_s42452_024_06009_7
crossref_primary_10_1016_j_jhazmat_2023_132269
crossref_primary_10_3390_nano12030310
crossref_primary_10_1016_j_stress_2024_100576
crossref_primary_10_3390_ma16083097
crossref_primary_10_1039_D4EN00753K
crossref_primary_10_1016_j_seppur_2023_124202
crossref_primary_10_1038_s41596_024_01044_5
crossref_primary_10_1016_j_mtbio_2025_101534
crossref_primary_10_1246_bcsj_20230147
crossref_primary_10_1021_acs_jafc_2c09153
crossref_primary_10_2139_ssrn_4199873
crossref_primary_10_1021_acsabm_5c00112
crossref_primary_10_1016_j_cej_2022_137074
crossref_primary_10_1039_D2QM00480A
crossref_primary_10_1016_j_scitotenv_2023_166818
crossref_primary_10_1038_s41929_022_00823_1
crossref_primary_10_1021_acsami_4c16912
crossref_primary_10_1021_acs_est_3c03649
crossref_primary_10_1016_j_envpol_2023_123013
crossref_primary_10_1016_j_scitotenv_2021_148927
crossref_primary_10_1016_j_tplants_2024_06_010
crossref_primary_10_1021_acs_est_2c04500
crossref_primary_10_1093_plphys_kiab303
crossref_primary_10_1016_j_epm_2024_11_002
crossref_primary_10_34016_pjbt_2024_21_02_935
crossref_primary_10_1016_j_fochx_2024_101422
crossref_primary_10_1021_acsnano_1c08977
crossref_primary_10_31857_S0015330322600371
crossref_primary_10_3389_fpls_2023_1226484
crossref_primary_10_1007_s10142_024_01485_x
crossref_primary_10_1016_j_indcrop_2025_120789
crossref_primary_10_1039_D3EN00640A
crossref_primary_10_1002_adsu_202100048
crossref_primary_10_1186_s43170_024_00255_w
crossref_primary_10_1016_j_nantod_2021_101143
crossref_primary_10_3390_agronomy13102455
crossref_primary_10_1021_acs_est_3c01154
crossref_primary_10_1021_acsnano_4c12707
crossref_primary_10_1080_10426507_2025_2482090
crossref_primary_10_1080_10643389_2024_2303299
crossref_primary_10_1016_j_chemosphere_2021_132672
crossref_primary_10_1186_s12951_023_02135_3
crossref_primary_10_1016_j_jia_2024_05_028
crossref_primary_10_1021_acs_est_1c00447
crossref_primary_10_3389_fnano_2020_579954
crossref_primary_10_3390_nano14231939
crossref_primary_10_1021_acsnano_4c06282
crossref_primary_10_3390_life13010039
crossref_primary_10_1016_j_envres_2023_116585
crossref_primary_10_1016_j_envpol_2021_116978
crossref_primary_10_1021_acs_jafc_4c08328
crossref_primary_10_1007_s13204_021_02307_3
crossref_primary_10_1016_j_tplants_2024_09_014
crossref_primary_10_1039_D2EN00158F
crossref_primary_10_1016_j_plana_2023_100033
crossref_primary_10_1007_s11356_023_26482_8
crossref_primary_10_1039_D3EN00140G
crossref_primary_10_3389_fmats_2024_1379836
crossref_primary_10_1016_j_jconrel_2021_04_016
crossref_primary_10_1016_j_jhazmat_2023_133346
crossref_primary_10_3390_molecules26216710
crossref_primary_10_1021_acs_jafc_1c07873
crossref_primary_10_1039_D4EN00695J
crossref_primary_10_1016_j_chemosphere_2024_142772
crossref_primary_10_1021_acs_est_1c08503
crossref_primary_10_1007_s12892_024_00235_6
crossref_primary_10_1007_s11356_024_32378_y
crossref_primary_10_1016_j_enmm_2022_100687
crossref_primary_10_1021_acs_est_1c08185
crossref_primary_10_1016_j_cj_2021_06_002
crossref_primary_10_3389_fpls_2021_691295
crossref_primary_10_3390_ijms231810763
crossref_primary_10_3390_nano14020131
crossref_primary_10_3390_nano10091654
crossref_primary_10_1002_admi_202102480
crossref_primary_10_1021_acssensors_1c01159
crossref_primary_10_1016_j_jhazmat_2022_130309
crossref_primary_10_1021_acsnano_1c10828
crossref_primary_10_1039_D1EN01154E
crossref_primary_10_1016_j_bcab_2024_103182
crossref_primary_10_1021_acsabm_3c00972
crossref_primary_10_3389_fpls_2024_1393458
crossref_primary_10_3389_fsufs_2024_1480193
crossref_primary_10_1021_acsnano_3c05182
crossref_primary_10_1016_j_scitotenv_2024_171948
crossref_primary_10_1002_smll_202300671
crossref_primary_10_1007_s13237_024_00496_0
crossref_primary_10_1016_j_trechm_2023_07_004
crossref_primary_10_1021_acs_chemrev_1c00525
crossref_primary_10_3390_polym14112287
crossref_primary_10_1007_s41204_020_00100_1
crossref_primary_10_1021_acsnano_1c07723
crossref_primary_10_1002_adma_202301810
crossref_primary_10_15258_sst_2023_51_3_10
crossref_primary_10_1021_acsnano_3c03701
crossref_primary_10_1080_10643389_2024_2448048
crossref_primary_10_1021_acs_analchem_4c04032
crossref_primary_10_1039_D3EN00402C
crossref_primary_10_1021_acs_est_3c01878
crossref_primary_10_1016_j_aiepr_2024_11_001
crossref_primary_10_1016_j_trac_2022_116889
crossref_primary_10_1016_j_fcr_2023_109208
crossref_primary_10_1021_acs_est_1c01065
crossref_primary_10_1016_j_jece_2024_113574
crossref_primary_10_1007_s11051_025_06226_0
crossref_primary_10_1016_j_indcrop_2024_119001
crossref_primary_10_1016_j_biotechadv_2022_107929
crossref_primary_10_3390_ijms21228497
crossref_primary_10_1016_j_scitotenv_2021_146578
crossref_primary_10_1021_acs_est_3c03821
crossref_primary_10_1039_D4NR03760J
crossref_primary_10_1016_j_jia_2023_02_031
crossref_primary_10_1016_j_mser_2024_100821
crossref_primary_10_1016_j_sajb_2024_02_052
crossref_primary_10_1021_acs_est_3c05686
crossref_primary_10_1111_gtc_13075
crossref_primary_10_1016_j_envpol_2021_118724
crossref_primary_10_1016_j_carbpol_2022_119356
crossref_primary_10_1039_D1EN00715G
crossref_primary_10_1016_j_impact_2022_100381
crossref_primary_10_1039_D5EN00055F
crossref_primary_10_1021_acsnano_1c02715
crossref_primary_10_1039_D3TB00322A
crossref_primary_10_3390_plants12030659
crossref_primary_10_1002_sae2_12061
crossref_primary_10_1016_j_plana_2024_100121
crossref_primary_10_1002_adma_202205794
crossref_primary_10_1021_acs_est_4c03123
crossref_primary_10_1016_j_microc_2023_109133
crossref_primary_10_1016_j_plana_2023_100035
crossref_primary_10_1186_s12951_021_00892_7
crossref_primary_10_1016_j_scitotenv_2025_178544
crossref_primary_10_1021_acs_est_1c01876
crossref_primary_10_3390_ijms23041947
crossref_primary_10_3389_fgeed_2022_1011934
crossref_primary_10_1186_s13007_024_01289_x
crossref_primary_10_1016_j_chemosphere_2022_134474
crossref_primary_10_1021_acsnano_2c02714
crossref_primary_10_1134_S1021443722602312
crossref_primary_10_1073_pnas_2304306120
crossref_primary_10_1016_j_scitotenv_2024_177732
crossref_primary_10_1021_acsnano_2c11790
crossref_primary_10_1039_D4TB02083A
crossref_primary_10_1039_D0EN00658K
crossref_primary_10_1007_s11103_024_01527_9
crossref_primary_10_1016_j_pestbp_2023_105524
crossref_primary_10_1038_s44287_024_00131_9
crossref_primary_10_1039_D4EN00213J
crossref_primary_10_1021_acssuschemeng_1c04080
crossref_primary_10_3389_fmars_2022_960173
Cites_doi 10.1007/978-981-10-4573-8_13
10.1002/cpch.29
10.1021/ar200113c
10.1039/C9EN00626E
10.3389/fpls.2016.01288
10.1016/j.plantsci.2013.05.016
10.1039/C8EN00645H
10.1038/s41565-019-0375-4
10.1007/s10930-015-9627-9
10.1007/BF00392427
10.1021/es504375t
10.1021/ar300128j
10.1007/s13205-019-1626-7
10.1002/ppsc.201900174
10.1007/s004250050660
10.2478/v10102-009-0001-7
10.1039/C8EN01287C
10.1021/nn100816s
10.1039/C7EN00887B
10.1186/s13068-017-0953-3
10.1021/es404503c
10.1186/s12951-015-0114-4
10.1201/9780203833476
10.1039/C4CS00269E
10.1021/cm7026866
10.1016/j.tifs.2011.09.004
10.1002/smll.201502458
10.1021/nn200629g
10.1104/pp.111.2.419
10.1002/gch2.201770071
10.1002/smll.201403276
10.1007/BF01062109
10.1097/00000539-199910001-00003
10.1046/j.0016-8025.2003.01117.x
10.1039/C5EN00229J
10.1017/S1431927607070420
10.1073/pnas.0805135105
10.1186/1471-2229-9-45
10.1016/S0924-8579(02)00022-5
10.1002/anie.200805279
10.1111/j.1399-3054.2008.01135.x
10.1038/s41565-019-0439-5
10.1021/acs.jafc.7b02178
10.1039/c3tb20529k
10.1146/annurev.pp.34.060183.002301
10.1002/etc.1880
10.1111/j.0022-2720.2004.01348.x
10.1007/BF03325856
10.1021/es404931g
10.1007/s11051-018-4192-8
10.1038/nature09364
10.1021/ja904843x
10.1016/j.btre.2017.03.002
10.1016/j.sjbs.2013.04.005
10.1021/ja107583h
10.4161/psb.6.9.16425
10.3791/51381
10.1186/s12951-014-0050-8
10.1371/journal.pone.0181735
10.1016/j.dib.2017.12.031
10.1007/s11051-013-1417-8
10.1023/A:1017936318435
10.1039/C6TA08660H
10.1038/s41598-018-26167-0
10.1007/s10681-015-1572-3
10.1021/acs.est.7b00813
10.1104/pp.49.6.968
10.1002/smll.201802086
10.1016/j.gaitpost.2016.12.028
10.1039/C8EN00323H
10.1002/ps.2780380206
10.3389/fpls.2015.00071
10.1021/acs.nanolett.5b04467
10.1021/jp9033936
10.1105/tpc.010339
10.1002/adfm.201501250
10.1021/acsnano.7b05723
10.1038/s41598-017-15054-9
10.3389/fpls.2018.01202
10.21273/HORTSCI.51.6.732
10.1111/j.1365-3180.1994.tb01990.x
10.1093/jxb/erl017
10.1016/j.mtchem.2018.03.003
10.1038/srep46032
10.1093/jxb/erj217
10.1038/nmat4771
10.1021/acs.est.6b02763
10.1016/j.molp.2017.09.018
10.1021/acs.est.7b01133
10.1152/ajpcell.00462.2010
10.1007/s10311-013-0432-4
10.1021/nn4040553
10.1016/S0176-1617(86)80023-2
10.1186/s12951-016-0191-z
10.1146/annurev-food-030117-012657
10.1038/s41565-018-0223-y
10.1088/1748-9326/5/1/014010
10.1093/jxb/eri272
10.1038/srep26738
10.1038/nmat3890
10.1038/s41598-018-25197-y
10.1016/j.jplph.2017.05.017
10.1039/C6EN00136J
10.3923/ja.2005.109.115
10.1021/acsnano.8b09781
10.1111/j.1365-313X.2009.04102.x
10.3389/fchem.2015.00064
10.1016/S0065-2113(05)87003-8
10.1104/pp.113.233650
10.1007/BF02856749
10.1002/ps.2780380218
10.1111/j.1365-3040.1987.tb02077.x
10.1021/acsomega.8b01894
10.1039/C6EN00146G
10.1111/j.1399-3054.2007.01023.x
10.1021/acsomega.7b00657
10.1021/acsami.8b07179
10.1038/nnano.2007.108
10.1002/ps.2780240106
10.1111/nph.12916
10.1039/C7LC00930E
10.1038/s41565-019-0382-5
10.1021/acsabm.8b00345
10.1021/acsnano.6b07747
10.1016/j.trac.2015.07.003
10.1016/j.jhazmat.2013.10.053
10.1080/00380768.2004.10408447
10.1007/978-94-007-6836-9_7
10.1371/journal.pone.0066428
10.1039/c3ra47994c
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acsnano.9b09178
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 7986
ExternalDocumentID 32628442
10_1021_acsnano_9b09178
a676957908
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
F5P
GNL
IH9
IHE
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
4.4
5VS
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a399t-435a38cf9c4bd7294fc89258f982ff39fd16cdab1f8949bdb366b232050fd32c3
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Thu Jul 10 23:08:07 EDT 2025
Thu Jan 02 22:55:54 EST 2025
Tue Jul 01 03:37:01 EDT 2025
Thu Apr 24 22:58:32 EDT 2025
Thu Aug 27 13:41:52 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords agriculture
carbon dots
cerium oxide nanoparticles
crops
silica nanoparticles
surfactant
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a399t-435a38cf9c4bd7294fc89258f982ff39fd16cdab1f8949bdb366b232050fd32c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8400-8944
0000-0002-9526-6295
PMID 32628442
PQID 2421111990
PQPubID 23479
PageCount 17
ParticipantIDs proquest_miscellaneous_2421111990
pubmed_primary_32628442
crossref_primary_10_1021_acsnano_9b09178
crossref_citationtrail_10_1021_acsnano_9b09178
acs_journals_10_1021_acsnano_9b09178
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-28
PublicationDateYYYYMMDD 2020-07-28
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-28
  day: 28
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References El-Aila H. I. (ref30/cit30) 2015; 4
ref45/cit45
ref99/cit99
ref3/cit3
ref81/cit81
Raven P. H. (ref94/cit94) 2005
ref16/cit16
Castro M. J. L. (ref100/cit100) 2013
ref52/cit52
ref114/cit114
ref23/cit23
ref115/cit115
ref116/cit116
ref110/cit110
ref111/cit111
ref2/cit2
ref112/cit112
ref77/cit77
ref113/cit113
ref71/cit71
ref117/cit117
ref48/cit48
ref118/cit118
ref74/cit74
ref119/cit119
ref10/cit10
ref35/cit35
ref89/cit89
ref93/cit93
ref42/cit42
ref96/cit96
ref107/cit107
ref120/cit120
ref109/cit109
ref13/cit13
ref122/cit122
ref105/cit105
ref61/cit61
ref67/cit67
ref38/cit38
ref128/cit128
ref90/cit90
ref124/cit124
ref64/cit64
ref126/cit126
ref54/cit54
ref6/cit6
ref18/cit18
ref136/cit136
ref137/cit137
ref65/cit65
ref97/cit97
ref101/cit101
ref11/cit11
ref102/cit102
Wimalawansa S. A. (ref14/cit14) 2014; 3
ref29/cit29
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref5/cit5
ref43/cit43
ref80/cit80
ref133/cit133
ref28/cit28
Sangeetha J. (ref20/cit20) 2017
ref132/cit132
ref91/cit91
ref55/cit55
ref144/cit144
Marchiol L. (ref19/cit19) 2018
ref12/cit12
ref66/cit66
ref22/cit22
ref121/cit121
ref33/cit33
ref87/cit87
ref106/cit106
ref140/cit140
ref44/cit44
ref70/cit70
ref98/cit98
ref125/cit125
ref9/cit9
ref27/cit27
ref63/cit63
ref56/cit56
ref92/cit92
ref8/cit8
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref60/cit60
ref88/cit88
ref17/cit17
Kaushal M. (ref21/cit21) 2017
ref82/cit82
ref143/cit143
ref53/cit53
ref46/cit46
Singh A. (ref31/cit31) 2018
ref49/cit49
ref75/cit75
ref24/cit24
ref141/cit141
Graham M. A. (ref129/cit129) 2000; 6
ref50/cit50
ref78/cit78
ref36/cit36
ref83/cit83
ref138/cit138
ref79/cit79
ref139/cit139
ref25/cit25
ref103/cit103
ref72/cit72
ref57/cit57
ref51/cit51
ref134/cit134
ref135/cit135
ref40/cit40
ref68/cit68
ref130/cit130
ref131/cit131
ref26/cit26
ref142/cit142
ref73/cit73
ref69/cit69
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref95/cit95
ref108/cit108
ref104/cit104
ref4/cit4
ref47/cit47
ref84/cit84
ref127/cit127
ref1/cit1
ref123/cit123
ref7/cit7
References_xml – start-page: 279
  volume-title: Nanotechnology: An Agricultural Paradigm
  year: 2017
  ident: ref21/cit21
  doi: 10.1007/978-981-10-4573-8_13
– ident: ref45/cit45
  doi: 10.1002/cpch.29
– ident: ref137/cit137
  doi: 10.1021/ar200113c
– ident: ref93/cit93
  doi: 10.1039/C9EN00626E
– ident: ref50/cit50
  doi: 10.3389/fpls.2016.01288
– ident: ref113/cit113
  doi: 10.1016/j.plantsci.2013.05.016
– ident: ref49/cit49
  doi: 10.1039/C8EN00645H
– ident: ref38/cit38
  doi: 10.1038/s41565-019-0375-4
– ident: ref124/cit124
  doi: 10.1007/s10930-015-9627-9
– ident: ref117/cit117
  doi: 10.1007/BF00392427
– ident: ref44/cit44
  doi: 10.1021/es504375t
– ident: ref83/cit83
  doi: 10.1021/ar300128j
– ident: ref90/cit90
  doi: 10.1007/s13205-019-1626-7
– ident: ref122/cit122
  doi: 10.1002/ppsc.201900174
– ident: ref96/cit96
  doi: 10.1007/s004250050660
– ident: ref12/cit12
  doi: 10.2478/v10102-009-0001-7
– ident: ref64/cit64
  doi: 10.1039/C8EN01287C
– ident: ref134/cit134
  doi: 10.1021/nn100816s
– ident: ref53/cit53
  doi: 10.1039/C7EN00887B
– ident: ref72/cit72
  doi: 10.1186/s13068-017-0953-3
– start-page: 153
  volume-title: Nanotechnology in Environmental Science
  year: 2018
  ident: ref31/cit31
– ident: ref133/cit133
  doi: 10.1021/es404503c
– ident: ref121/cit121
  doi: 10.1186/s12951-015-0114-4
– ident: ref73/cit73
  doi: 10.1201/9780203833476
– ident: ref79/cit79
  doi: 10.1039/C4CS00269E
– ident: ref135/cit135
  doi: 10.1021/cm7026866
– ident: ref18/cit18
  doi: 10.1016/j.tifs.2011.09.004
– ident: ref123/cit123
  doi: 10.1002/smll.201502458
– ident: ref48/cit48
  doi: 10.1021/nn200629g
– ident: ref112/cit112
  doi: 10.1104/pp.111.2.419
– ident: ref43/cit43
  doi: 10.1002/gch2.201770071
– ident: ref35/cit35
  doi: 10.1002/smll.201403276
– ident: ref125/cit125
  doi: 10.1007/BF01062109
– ident: ref130/cit130
  doi: 10.1097/00000539-199910001-00003
– ident: ref111/cit111
  doi: 10.1046/j.0016-8025.2003.01117.x
– start-page: 1
  volume-title: Nanotechnology: An Agricultural Paradigm
  year: 2017
  ident: ref20/cit20
– ident: ref2/cit2
– ident: ref25/cit25
  doi: 10.1039/C5EN00229J
– ident: ref75/cit75
  doi: 10.1017/S1431927607070420
– ident: ref119/cit119
  doi: 10.1073/pnas.0805135105
– ident: ref59/cit59
  doi: 10.1186/1471-2229-9-45
– ident: ref128/cit128
  doi: 10.1016/S0924-8579(02)00022-5
– ident: ref132/cit132
  doi: 10.1002/anie.200805279
– ident: ref71/cit71
  doi: 10.1111/j.1399-3054.2008.01135.x
– ident: ref5/cit5
  doi: 10.1038/s41565-019-0439-5
– ident: ref17/cit17
  doi: 10.1021/acs.jafc.7b02178
– ident: ref88/cit88
  doi: 10.1039/c3tb20529k
– ident: ref105/cit105
  doi: 10.1146/annurev.pp.34.060183.002301
– ident: ref26/cit26
  doi: 10.1002/etc.1880
– ident: ref142/cit142
  doi: 10.1111/j.0022-2720.2004.01348.x
– ident: ref13/cit13
  doi: 10.1007/BF03325856
– ident: ref56/cit56
  doi: 10.1021/es404931g
– ident: ref57/cit57
  doi: 10.1007/s11051-018-4192-8
– ident: ref8/cit8
  doi: 10.1038/nature09364
– ident: ref82/cit82
  doi: 10.1021/ja904843x
– ident: ref16/cit16
  doi: 10.1016/j.btre.2017.03.002
– ident: ref92/cit92
  doi: 10.1016/j.sjbs.2013.04.005
– ident: ref120/cit120
  doi: 10.1021/ja107583h
– ident: ref106/cit106
  doi: 10.4161/psb.6.9.16425
– ident: ref139/cit139
  doi: 10.3791/51381
– ident: ref40/cit40
  doi: 10.1186/s12951-014-0050-8
– ident: ref138/cit138
  doi: 10.1371/journal.pone.0181735
– ident: ref47/cit47
  doi: 10.1016/j.dib.2017.12.031
– ident: ref52/cit52
  doi: 10.1007/s11051-013-1417-8
– ident: ref1/cit1
– ident: ref76/cit76
  doi: 10.1023/A:1017936318435
– ident: ref80/cit80
  doi: 10.1039/C6TA08660H
– ident: ref86/cit86
  doi: 10.1038/s41598-018-26167-0
– ident: ref10/cit10
  doi: 10.1007/s10681-015-1572-3
– ident: ref63/cit63
  doi: 10.1021/acs.est.7b00813
– ident: ref95/cit95
  doi: 10.1104/pp.49.6.968
– ident: ref66/cit66
  doi: 10.1002/smll.201802086
– ident: ref143/cit143
  doi: 10.1016/j.gaitpost.2016.12.028
– ident: ref22/cit22
  doi: 10.1039/C8EN00323H
– ident: ref99/cit99
  doi: 10.1002/ps.2780380206
– ident: ref109/cit109
  doi: 10.3389/fpls.2015.00071
– ident: ref28/cit28
  doi: 10.1021/acs.nanolett.5b04467
– ident: ref115/cit115
  doi: 10.1021/jp9033936
– ident: ref141/cit141
  doi: 10.1105/tpc.010339
– ident: ref78/cit78
  doi: 10.1002/adfm.201501250
– ident: ref24/cit24
  doi: 10.1021/acsnano.7b05723
– ident: ref131/cit131
  doi: 10.1038/s41598-017-15054-9
– ident: ref116/cit116
  doi: 10.3389/fpls.2018.01202
– ident: ref54/cit54
  doi: 10.21273/HORTSCI.51.6.732
– ident: ref101/cit101
  doi: 10.1111/j.1365-3180.1994.tb01990.x
– ident: ref68/cit68
  doi: 10.1093/jxb/erl017
– ident: ref81/cit81
  doi: 10.1016/j.mtchem.2018.03.003
– ident: ref29/cit29
  doi: 10.1038/srep46032
– ident: ref67/cit67
  doi: 10.1093/jxb/erj217
– ident: ref36/cit36
  doi: 10.1038/nmat4771
– ident: ref55/cit55
  doi: 10.1021/acs.est.6b02763
– ident: ref108/cit108
  doi: 10.1016/j.molp.2017.09.018
– ident: ref65/cit65
  doi: 10.1021/acs.est.7b01133
– ident: ref110/cit110
  doi: 10.1152/ajpcell.00462.2010
– ident: ref11/cit11
– ident: ref102/cit102
  doi: 10.1007/s10311-013-0432-4
– ident: ref114/cit114
  doi: 10.1021/nn4040553
– ident: ref74/cit74
  doi: 10.1016/S0176-1617(86)80023-2
– volume: 6
  start-page: 1205
  year: 2000
  ident: ref129/cit129
  publication-title: Clin. Cancer Res.
– ident: ref41/cit41
  doi: 10.1186/s12951-016-0191-z
– ident: ref61/cit61
  doi: 10.1146/annurev-food-030117-012657
– volume: 3
  start-page: 72
  year: 2014
  ident: ref14/cit14
  publication-title: Global J. Biol. Agric. Health Sci.
– ident: ref3/cit3
  doi: 10.1038/s41565-018-0223-y
– ident: ref7/cit7
  doi: 10.1088/1748-9326/5/1/014010
– ident: ref70/cit70
  doi: 10.1093/jxb/eri272
– ident: ref104/cit104
  doi: 10.1038/srep26738
– ident: ref34/cit34
  doi: 10.1038/nmat3890
– ident: ref144/cit144
– ident: ref51/cit51
  doi: 10.1038/s41598-018-25197-y
– ident: ref77/cit77
  doi: 10.1016/j.jplph.2017.05.017
– ident: ref136/cit136
  doi: 10.1039/C6EN00136J
– ident: ref15/cit15
  doi: 10.3923/ja.2005.109.115
– ident: ref103/cit103
  doi: 10.1021/acsnano.8b09781
– ident: ref140/cit140
  doi: 10.1111/j.1365-313X.2009.04102.x
– volume-title: Biology of Plants
  year: 2005
  ident: ref94/cit94
– ident: ref32/cit32
  doi: 10.3389/fchem.2015.00064
– ident: ref9/cit9
  doi: 10.1016/S0065-2113(05)87003-8
– ident: ref89/cit89
  doi: 10.1104/pp.113.233650
– ident: ref91/cit91
  doi: 10.1007/BF02856749
– ident: ref97/cit97
  doi: 10.1002/ps.2780380218
– ident: ref118/cit118
  doi: 10.1111/j.1365-3040.1987.tb02077.x
– volume: 4
  start-page: 181
  year: 2015
  ident: ref30/cit30
  publication-title: Int. J. Environ
– ident: ref23/cit23
  doi: 10.1021/acsomega.8b01894
– ident: ref42/cit42
  doi: 10.1039/C6EN00146G
– ident: ref69/cit69
  doi: 10.1111/j.1399-3054.2007.01023.x
– ident: ref85/cit85
  doi: 10.1021/acsomega.7b00657
– start-page: 121
  volume-title: New Visions in Plant Science
  year: 2018
  ident: ref19/cit19
– ident: ref33/cit33
  doi: 10.1021/acsami.8b07179
– ident: ref87/cit87
  doi: 10.1038/nnano.2007.108
– ident: ref6/cit6
– ident: ref98/cit98
  doi: 10.1002/ps.2780240106
– ident: ref107/cit107
  doi: 10.1111/nph.12916
– ident: ref37/cit37
  doi: 10.1039/C7LC00930E
– ident: ref39/cit39
  doi: 10.1038/s41565-019-0382-5
– ident: ref60/cit60
  doi: 10.1021/acsabm.8b00345
– ident: ref46/cit46
  doi: 10.1021/acsnano.6b07747
– ident: ref62/cit62
  doi: 10.1016/j.trac.2015.07.003
– ident: ref58/cit58
  doi: 10.1016/j.jhazmat.2013.10.053
– ident: ref27/cit27
  doi: 10.1080/00380768.2004.10408447
– start-page: 287
  volume-title: Green Materials for Energy, Products and Depollution
  year: 2013
  ident: ref100/cit100
  doi: 10.1007/978-94-007-6836-9_7
– ident: ref126/cit126
– ident: ref4/cit4
  doi: 10.1371/journal.pone.0066428
– ident: ref127/cit127
– ident: ref84/cit84
  doi: 10.1039/c3ra47994c
SSID ssj0057876
Score 2.6821208
Snippet Fundamental and quantitative understanding of the interactions between nanoparticles and plant leaves is crucial for advancing the field of nanoenabled...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7970
SubjectTerms Cerium
Chloroplasts
Nanoparticles
Plant Cells
Plant Leaves
Silicon Dioxide
Title Nanoparticle Charge and Size Control Foliar Delivery Efficiency to Plant Cells and Organelles
URI http://dx.doi.org/10.1021/acsnano.9b09178
https://www.ncbi.nlm.nih.gov/pubmed/32628442
https://www.proquest.com/docview/2421111990
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagLDDwfpSXjNSBJaVxnNQeUWlVIcFSKnVBkZ8IESWIpAP8es5JWh5VBdki-azkfOf7rDt_h1ArYkSI0HUNkIJ4NDTcE76iXigDLruWhLK84X13Hw3H9HYSTr7Ion9n8Il_JVSeijRrcwmhrctW0RqJwIUdCuqNZpuus7uoSiDDARlQxJzFZ2ECF4ZU_jMMLcGWZYwZbFXVWXlJTehKS17a00K21ccicePfn7-NNmukia8r09hBKybdRRvf-Af30CPsrXBorkZgl3l_MlikGo-eP-C9qmLHgyx5Fm_4xiSuhuMd90vWCXdlExcZdl2PCtwzSZKXouXlTpcNyPfReNB_6A29ut-CJwCmFB4gJxEwZbmiUgPoplYxTkJmOSPWBtxqP1JaSN8yTrnUMogiCYisE3asDogKDlAjzVJzhLA24OeUC6uMpoJZYUDSEO6apBKtgyZqgWLi2l_yuEyFEz-utRXX2mqi9myVYlVzlrvWGclygcu5wGtF17F86MVs2WNwKZcnAfVk0zx2WXJ4IE430WFlD_PJAO1CQKfk-H8_cILWiTugd7oeYaeoUbxNzRmgmEKel_b7CZii7i8
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9swDCbS7rD2sHfb7KkBOeziNJZlRzoWaYNsSwsMTYFeBkPPoqhhF7VzWH_9KNlJ90CAzTcbomBRlPgJFD8CDDJOpUx91QAlacRSKyIZaxalKhFq7GiqQob36Vk2u2BfLtPLHoxWuTD4EzX2VIcg_gO7QHyI30pZVkOh0MON-RY8QihCvU0fTc5Xe683v6yNI-M5GcHEmsznrw68N9L1795oA8QMrmb6FL6tfzLcMLkZLhs11Pd_8Df-zyiewZMOd5Kj1lCeQ8-WL2D3FzbCl_Add1o8QrctiI_DX1kiS0POr-_xvb3TTqZVcS3vyLEt_I2OH-QkcFD4BE7SVMTXQGrIxBZFHURDqqePDdSv4GJ6spjMoq76QiQRtDQR4iiZcO2EZsogBGdOc0FT7gSnziXCmTjTRqrYccGEMirJMoX4bJSOnEmoTvZgu6xKewDEWFz1TEinrWGSO2lR0lLhS6ZSY5I-DFAxebd66jwExmmcd9rKO231YbiarFx3DOa-kEaxWeDTWuC2Je_Y3PTjavZzXGA-aoLqqZZ17mPm-KDX7sN-axbrzhD7ontn9PW_DeADPJ4tTuf5_PPZ1zewQ_3RfTSOKH8L283d0r5DfNOo98GkfwKCGfaQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7aFEpzaPrONmmrQg69eLOWZa90DJss6SsU0oVcitGzhBo7xN5D8-s7I3uXtmGh9c1GI6TxSPOJTzMDcFBIrnVOVQOM5onIvUp0akWSm0yZaeC5iRHen8-K04X4cJFfDEFhFAuDg2ixpzaS-LSqr1wYMgykh_i91nUzVga93FTehXtE2pFdH83OV_svmWDRc8l4VkZAsU7oc6sD8ki2_dMjbYCZ0d3Md2CxHmi8ZfJjvOzM2N78lcPxf2fyCB4O-JMd9QbzGO74-gls_5aV8Cl8wx0Xj9J9C0Z8_HfPdO3Y-eUNvvd329m8qS71NTv2Fd3s-MlOYi4KCuRkXcOoFlLHZr6q2igaQz6JI2ifwWJ-8nV2mgxVGBKN4KVLEE_pTNqgrDAOobgIViqey6AkDyFTwaWFddqkQSqhjDNZURjEaZN8ElzGbfYctuqm9rvAnMfVL5QO1juhZdAeJT1XVDqVO5eN4AAVUw6rqC0jQc7TctBWOWhrBOPVDyvtkMmcCmpUmwXerQWu-iQem5u-XVlAiQuN2BNUT7NsS-LO8UHvPYIXvWmsO0MMjG5e8Jf_NoE3cP_L8bz89P7s4x484HSCn0wTLvdhq7te-lcIczrzOlr1L3ry-RM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoparticle+Charge+and+Size+Control+Foliar+Delivery+Efficiency+to+Plant+Cells+and+Organelles&rft.jtitle=ACS+nano&rft.au=Hu%2C+Peiguang&rft.au=An%2C+Jing&rft.au=Faulkner%2C+Maquela+M&rft.au=Wu%2C+Honghong&rft.date=2020-07-28&rft.eissn=1936-086X&rft.volume=14&rft.issue=7&rft.spage=7970&rft_id=info:doi/10.1021%2Facsnano.9b09178&rft_id=info%3Apmid%2F32628442&rft.externalDocID=32628442
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon