Nanoparticle Charge and Size Control Foliar Delivery Efficiency to Plant Cells and Organelles
Fundamental and quantitative understanding of the interactions between nanoparticles and plant leaves is crucial for advancing the field of nanoenabled agriculture. Herein, we systematically investigated and modeled how ζ potential (−52.3 mV to +36.6 mV) and hydrodynamic size (1.7–18 nm) of hydrophi...
Saved in:
Published in | ACS nano Vol. 14; no. 7; pp. 7970 - 7986 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
28.07.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fundamental and quantitative understanding of the interactions between nanoparticles and plant leaves is crucial for advancing the field of nanoenabled agriculture. Herein, we systematically investigated and modeled how ζ potential (−52.3 mV to +36.6 mV) and hydrodynamic size (1.7–18 nm) of hydrophilic nanoparticles influence delivery efficiency and pathways to specific leaf cells and organelles. We studied interactions of nanoparticles of agricultural interest including carbon dots (CDs, 0.5 and 5 mg/mL), cerium oxide (CeO2, 0.5 mg/mL), and silica (SiO2, 0.5 mg/mL) nanoparticles with leaves of two major crop species having contrasting leaf anatomies: cotton (dicotyledon) and maize (monocotyledon). Biocompatible CDs allowed real-time tracking of nanoparticle translocation and distribution in planta by confocal fluorescence microscopy at high spatial (∼200 nm) and temporal (2–5 min) resolution. Nanoparticle formulations with surfactants (Silwet L-77) that reduced surface tension to 22 mN/m were found to be crucial for enabling rapid uptake (<10 min) of nanoparticles through the leaf stomata and cuticle pathways. Nanoparticle–leaf interaction (NLI) empirical models based on hydrodynamic size and ζ potential indicate that hydrophilic nanoparticles with <20 and 11 nm for cotton and maize, respectively, and positive charge (>15 mV), exhibit the highest foliar delivery efficiencies into guard cells (100%), extracellular space (90.3%), and chloroplasts (55.8%). Systematic assessments of nanoparticle–plant interactions would lead to the development of NLI models that predict the translocation and distribution of nanomaterials in plants based on their chemical and physical properties. |
---|---|
AbstractList | Fundamental and quantitative understanding of the interactions between nanoparticles and plant leaves is crucial for advancing the field of nanoenabled agriculture. Herein, we systematically investigated and modeled how ζ potential (−52.3 mV to +36.6 mV) and hydrodynamic size (1.7–18 nm) of hydrophilic nanoparticles influence delivery efficiency and pathways to specific leaf cells and organelles. We studied interactions of nanoparticles of agricultural interest including carbon dots (CDs, 0.5 and 5 mg/mL), cerium oxide (CeO2, 0.5 mg/mL), and silica (SiO2, 0.5 mg/mL) nanoparticles with leaves of two major crop species having contrasting leaf anatomies: cotton (dicotyledon) and maize (monocotyledon). Biocompatible CDs allowed real-time tracking of nanoparticle translocation and distribution in planta by confocal fluorescence microscopy at high spatial (∼200 nm) and temporal (2–5 min) resolution. Nanoparticle formulations with surfactants (Silwet L-77) that reduced surface tension to 22 mN/m were found to be crucial for enabling rapid uptake (<10 min) of nanoparticles through the leaf stomata and cuticle pathways. Nanoparticle–leaf interaction (NLI) empirical models based on hydrodynamic size and ζ potential indicate that hydrophilic nanoparticles with <20 and 11 nm for cotton and maize, respectively, and positive charge (>15 mV), exhibit the highest foliar delivery efficiencies into guard cells (100%), extracellular space (90.3%), and chloroplasts (55.8%). Systematic assessments of nanoparticle–plant interactions would lead to the development of NLI models that predict the translocation and distribution of nanomaterials in plants based on their chemical and physical properties. Fundamental and quantitative understanding of the interactions between nanoparticles and plant leaves is crucial for advancing the field of nanoenabled agriculture. Herein, we systematically investigated and modeled how ζ potential (-52.3 mV to +36.6 mV) and hydrodynamic size (1.7-18 nm) of hydrophilic nanoparticles influence delivery efficiency and pathways to specific leaf cells and organelles. We studied interactions of nanoparticles of agricultural interest including carbon dots (CDs, 0.5 and 5 mg/mL), cerium oxide (CeO , 0.5 mg/mL), and silica (SiO , 0.5 mg/mL) nanoparticles with leaves of two major crop species having contrasting leaf anatomies: cotton (dicotyledon) and maize (monocotyledon). Biocompatible CDs allowed real-time tracking of nanoparticle translocation and distribution by confocal fluorescence microscopy at high spatial (∼200 nm) and temporal (2-5 min) resolution. Nanoparticle formulations with surfactants (Silwet L-77) that reduced surface tension to 22 mN/m were found to be crucial for enabling rapid uptake (<10 min) of nanoparticles through the leaf stomata and cuticle pathways. Nanoparticle-leaf interaction (NLI) empirical models based on hydrodynamic size and ζ potential indicate that hydrophilic nanoparticles with <20 and 11 nm for cotton and maize, respectively, and positive charge (>15 mV), exhibit the highest foliar delivery efficiencies into guard cells (100%), extracellular space (90.3%), and chloroplasts (55.8%). Systematic assessments of nanoparticle-plant interactions would lead to the development of NLI models that predict the translocation and distribution of nanomaterials in plants based on their chemical and physical properties. Fundamental and quantitative understanding of the interactions between nanoparticles and plant leaves is crucial for advancing the field of nanoenabled agriculture. Herein, we systematically investigated and modeled how ζ potential (-52.3 mV to +36.6 mV) and hydrodynamic size (1.7-18 nm) of hydrophilic nanoparticles influence delivery efficiency and pathways to specific leaf cells and organelles. We studied interactions of nanoparticles of agricultural interest including carbon dots (CDs, 0.5 and 5 mg/mL), cerium oxide (CeO2, 0.5 mg/mL), and silica (SiO2, 0.5 mg/mL) nanoparticles with leaves of two major crop species having contrasting leaf anatomies: cotton (dicotyledon) and maize (monocotyledon). Biocompatible CDs allowed real-time tracking of nanoparticle translocation and distribution in planta by confocal fluorescence microscopy at high spatial (∼200 nm) and temporal (2-5 min) resolution. Nanoparticle formulations with surfactants (Silwet L-77) that reduced surface tension to 22 mN/m were found to be crucial for enabling rapid uptake (<10 min) of nanoparticles through the leaf stomata and cuticle pathways. Nanoparticle-leaf interaction (NLI) empirical models based on hydrodynamic size and ζ potential indicate that hydrophilic nanoparticles with <20 and 11 nm for cotton and maize, respectively, and positive charge (>15 mV), exhibit the highest foliar delivery efficiencies into guard cells (100%), extracellular space (90.3%), and chloroplasts (55.8%). Systematic assessments of nanoparticle-plant interactions would lead to the development of NLI models that predict the translocation and distribution of nanomaterials in plants based on their chemical and physical properties.Fundamental and quantitative understanding of the interactions between nanoparticles and plant leaves is crucial for advancing the field of nanoenabled agriculture. Herein, we systematically investigated and modeled how ζ potential (-52.3 mV to +36.6 mV) and hydrodynamic size (1.7-18 nm) of hydrophilic nanoparticles influence delivery efficiency and pathways to specific leaf cells and organelles. We studied interactions of nanoparticles of agricultural interest including carbon dots (CDs, 0.5 and 5 mg/mL), cerium oxide (CeO2, 0.5 mg/mL), and silica (SiO2, 0.5 mg/mL) nanoparticles with leaves of two major crop species having contrasting leaf anatomies: cotton (dicotyledon) and maize (monocotyledon). Biocompatible CDs allowed real-time tracking of nanoparticle translocation and distribution in planta by confocal fluorescence microscopy at high spatial (∼200 nm) and temporal (2-5 min) resolution. Nanoparticle formulations with surfactants (Silwet L-77) that reduced surface tension to 22 mN/m were found to be crucial for enabling rapid uptake (<10 min) of nanoparticles through the leaf stomata and cuticle pathways. Nanoparticle-leaf interaction (NLI) empirical models based on hydrodynamic size and ζ potential indicate that hydrophilic nanoparticles with <20 and 11 nm for cotton and maize, respectively, and positive charge (>15 mV), exhibit the highest foliar delivery efficiencies into guard cells (100%), extracellular space (90.3%), and chloroplasts (55.8%). Systematic assessments of nanoparticle-plant interactions would lead to the development of NLI models that predict the translocation and distribution of nanomaterials in plants based on their chemical and physical properties. |
Author | Hu, Peiguang Giraldo, Juan Pablo An, Jing Faulkner, Maquela M Tian, Xiaoli Wu, Honghong Li, Zhaohu |
AuthorAffiliation | State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology Department of Botany and Plant Sciences |
AuthorAffiliation_xml | – name: Department of Botany and Plant Sciences – name: State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology |
Author_xml | – sequence: 1 givenname: Peiguang orcidid: 0000-0002-9526-6295 surname: Hu fullname: Hu, Peiguang organization: Department of Botany and Plant Sciences – sequence: 2 givenname: Jing surname: An fullname: An, Jing organization: State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology – sequence: 3 givenname: Maquela M surname: Faulkner fullname: Faulkner, Maquela M organization: Department of Botany and Plant Sciences – sequence: 4 givenname: Honghong surname: Wu fullname: Wu, Honghong organization: Department of Botany and Plant Sciences – sequence: 5 givenname: Zhaohu surname: Li fullname: Li, Zhaohu organization: State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology – sequence: 6 givenname: Xiaoli surname: Tian fullname: Tian, Xiaoli organization: State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology – sequence: 7 givenname: Juan Pablo orcidid: 0000-0002-8400-8944 surname: Giraldo fullname: Giraldo, Juan Pablo email: juanpablo.giraldo@ucr.edu organization: Department of Botany and Plant Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32628442$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kN9LAyEcwCUWbaueewsfg7jmj7ubPsbaKogKKuglDs_T5XC69Basvz7XVg9B-aJf_HxEPn3Qcd4pAI4wOsOI4IGQ0Qnnz3iNOB6yHdDDnJYZYuVz5-dc4C7oxzhDqBiyYbkHupSUhOU56YGX26QvRGiNtAqOXkWYKihcAx_MR5q9a4O3cOKtEQFeKGveVVjBsdZGGuXkCrYe3lvhWjhS1sYv9S5MhUuTigdgVwsb1eF23wdPk_Hj6Cq7ubu8Hp3fZIJy3mY5LQRlUnOZ182Q8FxLxknBNGdEa8p1g0vZiBprxnNeNzUty5pQggqkG0ok3Qcnm3cXwb8tVWyruYkyfSH9wy9jRXKC0-IcJfR4iy7ruWqqRTBzEVbVd5IEDDaADD7GoPQPglG1jl5to1fb6MkofhnStKI163jC2H-8042XLqqZXwaXGv1JfwL3Xpbl |
CitedBy_id | crossref_primary_10_1186_s12951_021_01176_w crossref_primary_10_1007_s40820_024_01413_5 crossref_primary_10_1016_j_copbio_2021_06_005 crossref_primary_10_1039_D0EN01129K crossref_primary_10_1186_s40538_021_00222_x crossref_primary_10_3390_gels9020115 crossref_primary_10_1016_j_ecoenv_2021_113008 crossref_primary_10_1016_j_scitotenv_2022_158352 crossref_primary_10_1016_j_chemosphere_2022_136911 crossref_primary_10_1039_D3LF00145H crossref_primary_10_3390_ijms23169236 crossref_primary_10_1007_s12274_023_6284_8 crossref_primary_10_1039_D1EN01124C crossref_primary_10_1021_acs_est_1c00178 crossref_primary_10_1007_s00253_021_11725_w crossref_primary_10_1016_j_bcab_2024_103446 crossref_primary_10_3390_ijms241914836 crossref_primary_10_1021_acs_nanolett_4c04704 crossref_primary_10_3390_plants13213011 crossref_primary_10_1021_acssuschemeng_2c06461 crossref_primary_10_1039_D2EN00651K crossref_primary_10_1021_acsomega_4c11102 crossref_primary_10_1016_j_impact_2021_100329 crossref_primary_10_1039_D1EN00630D crossref_primary_10_1038_s41467_024_54013_7 crossref_primary_10_1111_jipb_13887 crossref_primary_10_1007_s11101_024_10022_4 crossref_primary_10_1021_acsnano_1c02917 crossref_primary_10_1016_j_jhazmat_2023_130911 crossref_primary_10_1016_j_pbi_2023_102441 crossref_primary_10_1021_acs_est_3c00327 crossref_primary_10_1007_s13205_023_03727_4 crossref_primary_10_3390_nano11020267 crossref_primary_10_3390_nano13010165 crossref_primary_10_3389_fpls_2022_963756 crossref_primary_10_3390_ijms25052703 crossref_primary_10_3390_agriculture11020134 crossref_primary_10_3389_fpls_2022_1081165 crossref_primary_10_1016_j_stress_2024_100651 crossref_primary_10_3390_genes15081091 crossref_primary_10_1021_acsnano_4c09803 crossref_primary_10_1016_j_envpol_2023_121044 crossref_primary_10_1016_j_scitotenv_2022_157160 crossref_primary_10_1088_1755_1315_1060_1_012043 crossref_primary_10_1038_s41565_021_00854_y crossref_primary_10_1016_j_ijbiomac_2025_141579 crossref_primary_10_1021_acs_est_3c08723 crossref_primary_10_1021_acs_est_3c06424 crossref_primary_10_1016_j_watres_2024_121394 crossref_primary_10_3389_fpls_2021_663849 crossref_primary_10_3389_fpls_2023_1324176 crossref_primary_10_1002_smll_202301137 crossref_primary_10_1039_D4EN00520A crossref_primary_10_1016_j_scitotenv_2024_171433 crossref_primary_10_1016_j_scitotenv_2024_176327 crossref_primary_10_3389_fgeed_2022_1029944 crossref_primary_10_1080_07388551_2022_2090315 crossref_primary_10_1021_acs_est_3c01783 crossref_primary_10_1016_j_pedsph_2024_08_003 crossref_primary_10_1021_acsnano_4c02620 crossref_primary_10_1021_acssusresmgt_4c00041 crossref_primary_10_1039_D1EN00870F crossref_primary_10_1039_D0EN01281E crossref_primary_10_1016_j_jhazmat_2023_131421 crossref_primary_10_3390_molecules30030446 crossref_primary_10_1016_j_plaphy_2024_108704 crossref_primary_10_1021_acsami_4c03800 crossref_primary_10_1016_j_envres_2023_116849 crossref_primary_10_1016_j_xplc_2022_100346 crossref_primary_10_1042_BSR20230817 crossref_primary_10_1016_j_envint_2024_108859 crossref_primary_10_1021_acsnano_3c02215 crossref_primary_10_1021_acs_est_3c09757 crossref_primary_10_1016_j_scitotenv_2021_151506 crossref_primary_10_3389_fpls_2023_1158031 crossref_primary_10_1016_j_aquatox_2024_106964 crossref_primary_10_1021_acsomega_3c04638 crossref_primary_10_32604_biocell_2023_025740 crossref_primary_10_1039_D2EN01040B crossref_primary_10_1002_smll_202304588 crossref_primary_10_1016_j_tplants_2022_08_017 crossref_primary_10_1002_anbr_202000028 crossref_primary_10_1039_D4EN00080C crossref_primary_10_1016_j_bcab_2023_102892 crossref_primary_10_1002_ps_6374 crossref_primary_10_1016_j_bcab_2023_102891 crossref_primary_10_1016_j_pbi_2021_102052 crossref_primary_10_3389_fenvs_2021_702490 crossref_primary_10_1039_D2NR01904C crossref_primary_10_1016_j_impact_2022_100418 crossref_primary_10_1039_D3NR02221H crossref_primary_10_3390_nano11113073 crossref_primary_10_1016_j_surfin_2024_105190 crossref_primary_10_1038_s41565_024_01667_5 crossref_primary_10_1016_j_jhazmat_2024_136479 crossref_primary_10_1016_j_envpol_2021_118448 crossref_primary_10_1021_acs_est_3c10506 crossref_primary_10_1016_j_cpb_2024_100381 crossref_primary_10_1021_acs_est_3c09086 crossref_primary_10_1080_10643389_2022_2156225 crossref_primary_10_1007_s10142_025_01528_x crossref_primary_10_1021_acsnano_4c05362 crossref_primary_10_3390_su151310083 crossref_primary_10_1016_j_indcrop_2025_120600 crossref_primary_10_1016_j_scitotenv_2022_155097 crossref_primary_10_1039_D4EN00547C crossref_primary_10_1039_D2EN00975G crossref_primary_10_1007_s42452_024_06009_7 crossref_primary_10_1016_j_jhazmat_2023_132269 crossref_primary_10_3390_nano12030310 crossref_primary_10_1016_j_stress_2024_100576 crossref_primary_10_3390_ma16083097 crossref_primary_10_1039_D4EN00753K crossref_primary_10_1016_j_seppur_2023_124202 crossref_primary_10_1038_s41596_024_01044_5 crossref_primary_10_1016_j_mtbio_2025_101534 crossref_primary_10_1246_bcsj_20230147 crossref_primary_10_1021_acs_jafc_2c09153 crossref_primary_10_2139_ssrn_4199873 crossref_primary_10_1021_acsabm_5c00112 crossref_primary_10_1016_j_cej_2022_137074 crossref_primary_10_1039_D2QM00480A crossref_primary_10_1016_j_scitotenv_2023_166818 crossref_primary_10_1038_s41929_022_00823_1 crossref_primary_10_1021_acsami_4c16912 crossref_primary_10_1021_acs_est_3c03649 crossref_primary_10_1016_j_envpol_2023_123013 crossref_primary_10_1016_j_scitotenv_2021_148927 crossref_primary_10_1016_j_tplants_2024_06_010 crossref_primary_10_1021_acs_est_2c04500 crossref_primary_10_1093_plphys_kiab303 crossref_primary_10_1016_j_epm_2024_11_002 crossref_primary_10_34016_pjbt_2024_21_02_935 crossref_primary_10_1016_j_fochx_2024_101422 crossref_primary_10_1021_acsnano_1c08977 crossref_primary_10_31857_S0015330322600371 crossref_primary_10_3389_fpls_2023_1226484 crossref_primary_10_1007_s10142_024_01485_x crossref_primary_10_1016_j_indcrop_2025_120789 crossref_primary_10_1039_D3EN00640A crossref_primary_10_1002_adsu_202100048 crossref_primary_10_1186_s43170_024_00255_w crossref_primary_10_1016_j_nantod_2021_101143 crossref_primary_10_3390_agronomy13102455 crossref_primary_10_1021_acs_est_3c01154 crossref_primary_10_1021_acsnano_4c12707 crossref_primary_10_1080_10426507_2025_2482090 crossref_primary_10_1080_10643389_2024_2303299 crossref_primary_10_1016_j_chemosphere_2021_132672 crossref_primary_10_1186_s12951_023_02135_3 crossref_primary_10_1016_j_jia_2024_05_028 crossref_primary_10_1021_acs_est_1c00447 crossref_primary_10_3389_fnano_2020_579954 crossref_primary_10_3390_nano14231939 crossref_primary_10_1021_acsnano_4c06282 crossref_primary_10_3390_life13010039 crossref_primary_10_1016_j_envres_2023_116585 crossref_primary_10_1016_j_envpol_2021_116978 crossref_primary_10_1021_acs_jafc_4c08328 crossref_primary_10_1007_s13204_021_02307_3 crossref_primary_10_1016_j_tplants_2024_09_014 crossref_primary_10_1039_D2EN00158F crossref_primary_10_1016_j_plana_2023_100033 crossref_primary_10_1007_s11356_023_26482_8 crossref_primary_10_1039_D3EN00140G crossref_primary_10_3389_fmats_2024_1379836 crossref_primary_10_1016_j_jconrel_2021_04_016 crossref_primary_10_1016_j_jhazmat_2023_133346 crossref_primary_10_3390_molecules26216710 crossref_primary_10_1021_acs_jafc_1c07873 crossref_primary_10_1039_D4EN00695J crossref_primary_10_1016_j_chemosphere_2024_142772 crossref_primary_10_1021_acs_est_1c08503 crossref_primary_10_1007_s12892_024_00235_6 crossref_primary_10_1007_s11356_024_32378_y crossref_primary_10_1016_j_enmm_2022_100687 crossref_primary_10_1021_acs_est_1c08185 crossref_primary_10_1016_j_cj_2021_06_002 crossref_primary_10_3389_fpls_2021_691295 crossref_primary_10_3390_ijms231810763 crossref_primary_10_3390_nano14020131 crossref_primary_10_3390_nano10091654 crossref_primary_10_1002_admi_202102480 crossref_primary_10_1021_acssensors_1c01159 crossref_primary_10_1016_j_jhazmat_2022_130309 crossref_primary_10_1021_acsnano_1c10828 crossref_primary_10_1039_D1EN01154E crossref_primary_10_1016_j_bcab_2024_103182 crossref_primary_10_1021_acsabm_3c00972 crossref_primary_10_3389_fpls_2024_1393458 crossref_primary_10_3389_fsufs_2024_1480193 crossref_primary_10_1021_acsnano_3c05182 crossref_primary_10_1016_j_scitotenv_2024_171948 crossref_primary_10_1002_smll_202300671 crossref_primary_10_1007_s13237_024_00496_0 crossref_primary_10_1016_j_trechm_2023_07_004 crossref_primary_10_1021_acs_chemrev_1c00525 crossref_primary_10_3390_polym14112287 crossref_primary_10_1007_s41204_020_00100_1 crossref_primary_10_1021_acsnano_1c07723 crossref_primary_10_1002_adma_202301810 crossref_primary_10_15258_sst_2023_51_3_10 crossref_primary_10_1021_acsnano_3c03701 crossref_primary_10_1080_10643389_2024_2448048 crossref_primary_10_1021_acs_analchem_4c04032 crossref_primary_10_1039_D3EN00402C crossref_primary_10_1021_acs_est_3c01878 crossref_primary_10_1016_j_aiepr_2024_11_001 crossref_primary_10_1016_j_trac_2022_116889 crossref_primary_10_1016_j_fcr_2023_109208 crossref_primary_10_1021_acs_est_1c01065 crossref_primary_10_1016_j_jece_2024_113574 crossref_primary_10_1007_s11051_025_06226_0 crossref_primary_10_1016_j_indcrop_2024_119001 crossref_primary_10_1016_j_biotechadv_2022_107929 crossref_primary_10_3390_ijms21228497 crossref_primary_10_1016_j_scitotenv_2021_146578 crossref_primary_10_1021_acs_est_3c03821 crossref_primary_10_1039_D4NR03760J crossref_primary_10_1016_j_jia_2023_02_031 crossref_primary_10_1016_j_mser_2024_100821 crossref_primary_10_1016_j_sajb_2024_02_052 crossref_primary_10_1021_acs_est_3c05686 crossref_primary_10_1111_gtc_13075 crossref_primary_10_1016_j_envpol_2021_118724 crossref_primary_10_1016_j_carbpol_2022_119356 crossref_primary_10_1039_D1EN00715G crossref_primary_10_1016_j_impact_2022_100381 crossref_primary_10_1039_D5EN00055F crossref_primary_10_1021_acsnano_1c02715 crossref_primary_10_1039_D3TB00322A crossref_primary_10_3390_plants12030659 crossref_primary_10_1002_sae2_12061 crossref_primary_10_1016_j_plana_2024_100121 crossref_primary_10_1002_adma_202205794 crossref_primary_10_1021_acs_est_4c03123 crossref_primary_10_1016_j_microc_2023_109133 crossref_primary_10_1016_j_plana_2023_100035 crossref_primary_10_1186_s12951_021_00892_7 crossref_primary_10_1016_j_scitotenv_2025_178544 crossref_primary_10_1021_acs_est_1c01876 crossref_primary_10_3390_ijms23041947 crossref_primary_10_3389_fgeed_2022_1011934 crossref_primary_10_1186_s13007_024_01289_x crossref_primary_10_1016_j_chemosphere_2022_134474 crossref_primary_10_1021_acsnano_2c02714 crossref_primary_10_1134_S1021443722602312 crossref_primary_10_1073_pnas_2304306120 crossref_primary_10_1016_j_scitotenv_2024_177732 crossref_primary_10_1021_acsnano_2c11790 crossref_primary_10_1039_D4TB02083A crossref_primary_10_1039_D0EN00658K crossref_primary_10_1007_s11103_024_01527_9 crossref_primary_10_1016_j_pestbp_2023_105524 crossref_primary_10_1038_s44287_024_00131_9 crossref_primary_10_1039_D4EN00213J crossref_primary_10_1021_acssuschemeng_1c04080 crossref_primary_10_3389_fmars_2022_960173 |
Cites_doi | 10.1007/978-981-10-4573-8_13 10.1002/cpch.29 10.1021/ar200113c 10.1039/C9EN00626E 10.3389/fpls.2016.01288 10.1016/j.plantsci.2013.05.016 10.1039/C8EN00645H 10.1038/s41565-019-0375-4 10.1007/s10930-015-9627-9 10.1007/BF00392427 10.1021/es504375t 10.1021/ar300128j 10.1007/s13205-019-1626-7 10.1002/ppsc.201900174 10.1007/s004250050660 10.2478/v10102-009-0001-7 10.1039/C8EN01287C 10.1021/nn100816s 10.1039/C7EN00887B 10.1186/s13068-017-0953-3 10.1021/es404503c 10.1186/s12951-015-0114-4 10.1201/9780203833476 10.1039/C4CS00269E 10.1021/cm7026866 10.1016/j.tifs.2011.09.004 10.1002/smll.201502458 10.1021/nn200629g 10.1104/pp.111.2.419 10.1002/gch2.201770071 10.1002/smll.201403276 10.1007/BF01062109 10.1097/00000539-199910001-00003 10.1046/j.0016-8025.2003.01117.x 10.1039/C5EN00229J 10.1017/S1431927607070420 10.1073/pnas.0805135105 10.1186/1471-2229-9-45 10.1016/S0924-8579(02)00022-5 10.1002/anie.200805279 10.1111/j.1399-3054.2008.01135.x 10.1038/s41565-019-0439-5 10.1021/acs.jafc.7b02178 10.1039/c3tb20529k 10.1146/annurev.pp.34.060183.002301 10.1002/etc.1880 10.1111/j.0022-2720.2004.01348.x 10.1007/BF03325856 10.1021/es404931g 10.1007/s11051-018-4192-8 10.1038/nature09364 10.1021/ja904843x 10.1016/j.btre.2017.03.002 10.1016/j.sjbs.2013.04.005 10.1021/ja107583h 10.4161/psb.6.9.16425 10.3791/51381 10.1186/s12951-014-0050-8 10.1371/journal.pone.0181735 10.1016/j.dib.2017.12.031 10.1007/s11051-013-1417-8 10.1023/A:1017936318435 10.1039/C6TA08660H 10.1038/s41598-018-26167-0 10.1007/s10681-015-1572-3 10.1021/acs.est.7b00813 10.1104/pp.49.6.968 10.1002/smll.201802086 10.1016/j.gaitpost.2016.12.028 10.1039/C8EN00323H 10.1002/ps.2780380206 10.3389/fpls.2015.00071 10.1021/acs.nanolett.5b04467 10.1021/jp9033936 10.1105/tpc.010339 10.1002/adfm.201501250 10.1021/acsnano.7b05723 10.1038/s41598-017-15054-9 10.3389/fpls.2018.01202 10.21273/HORTSCI.51.6.732 10.1111/j.1365-3180.1994.tb01990.x 10.1093/jxb/erl017 10.1016/j.mtchem.2018.03.003 10.1038/srep46032 10.1093/jxb/erj217 10.1038/nmat4771 10.1021/acs.est.6b02763 10.1016/j.molp.2017.09.018 10.1021/acs.est.7b01133 10.1152/ajpcell.00462.2010 10.1007/s10311-013-0432-4 10.1021/nn4040553 10.1016/S0176-1617(86)80023-2 10.1186/s12951-016-0191-z 10.1146/annurev-food-030117-012657 10.1038/s41565-018-0223-y 10.1088/1748-9326/5/1/014010 10.1093/jxb/eri272 10.1038/srep26738 10.1038/nmat3890 10.1038/s41598-018-25197-y 10.1016/j.jplph.2017.05.017 10.1039/C6EN00136J 10.3923/ja.2005.109.115 10.1021/acsnano.8b09781 10.1111/j.1365-313X.2009.04102.x 10.3389/fchem.2015.00064 10.1016/S0065-2113(05)87003-8 10.1104/pp.113.233650 10.1007/BF02856749 10.1002/ps.2780380218 10.1111/j.1365-3040.1987.tb02077.x 10.1021/acsomega.8b01894 10.1039/C6EN00146G 10.1111/j.1399-3054.2007.01023.x 10.1021/acsomega.7b00657 10.1021/acsami.8b07179 10.1038/nnano.2007.108 10.1002/ps.2780240106 10.1111/nph.12916 10.1039/C7LC00930E 10.1038/s41565-019-0382-5 10.1021/acsabm.8b00345 10.1021/acsnano.6b07747 10.1016/j.trac.2015.07.003 10.1016/j.jhazmat.2013.10.053 10.1080/00380768.2004.10408447 10.1007/978-94-007-6836-9_7 10.1371/journal.pone.0066428 10.1039/c3ra47994c |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/acsnano.9b09178 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 7986 |
ExternalDocumentID | 32628442 10_1021_acsnano_9b09178 a676957908 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ F5P GNL IH9 IHE JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 4.4 5VS 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ BAANH CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-a399t-435a38cf9c4bd7294fc89258f982ff39fd16cdab1f8949bdb366b232050fd32c3 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Thu Jul 10 23:08:07 EDT 2025 Thu Jan 02 22:55:54 EST 2025 Tue Jul 01 03:37:01 EDT 2025 Thu Apr 24 22:58:32 EDT 2025 Thu Aug 27 13:41:52 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | agriculture carbon dots cerium oxide nanoparticles crops silica nanoparticles surfactant |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a399t-435a38cf9c4bd7294fc89258f982ff39fd16cdab1f8949bdb366b232050fd32c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8400-8944 0000-0002-9526-6295 |
PMID | 32628442 |
PQID | 2421111990 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_2421111990 pubmed_primary_32628442 crossref_primary_10_1021_acsnano_9b09178 crossref_citationtrail_10_1021_acsnano_9b09178 acs_journals_10_1021_acsnano_9b09178 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-28 |
PublicationDateYYYYMMDD | 2020-07-28 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | El-Aila H. I. (ref30/cit30) 2015; 4 ref45/cit45 ref99/cit99 ref3/cit3 ref81/cit81 Raven P. H. (ref94/cit94) 2005 ref16/cit16 Castro M. J. L. (ref100/cit100) 2013 ref52/cit52 ref114/cit114 ref23/cit23 ref115/cit115 ref116/cit116 ref110/cit110 ref111/cit111 ref2/cit2 ref112/cit112 ref77/cit77 ref113/cit113 ref71/cit71 ref117/cit117 ref48/cit48 ref118/cit118 ref74/cit74 ref119/cit119 ref10/cit10 ref35/cit35 ref89/cit89 ref93/cit93 ref42/cit42 ref96/cit96 ref107/cit107 ref120/cit120 ref109/cit109 ref13/cit13 ref122/cit122 ref105/cit105 ref61/cit61 ref67/cit67 ref38/cit38 ref128/cit128 ref90/cit90 ref124/cit124 ref64/cit64 ref126/cit126 ref54/cit54 ref6/cit6 ref18/cit18 ref136/cit136 ref137/cit137 ref65/cit65 ref97/cit97 ref101/cit101 ref11/cit11 ref102/cit102 Wimalawansa S. A. (ref14/cit14) 2014; 3 ref29/cit29 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref5/cit5 ref43/cit43 ref80/cit80 ref133/cit133 ref28/cit28 Sangeetha J. (ref20/cit20) 2017 ref132/cit132 ref91/cit91 ref55/cit55 ref144/cit144 Marchiol L. (ref19/cit19) 2018 ref12/cit12 ref66/cit66 ref22/cit22 ref121/cit121 ref33/cit33 ref87/cit87 ref106/cit106 ref140/cit140 ref44/cit44 ref70/cit70 ref98/cit98 ref125/cit125 ref9/cit9 ref27/cit27 ref63/cit63 ref56/cit56 ref92/cit92 ref8/cit8 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref60/cit60 ref88/cit88 ref17/cit17 Kaushal M. (ref21/cit21) 2017 ref82/cit82 ref143/cit143 ref53/cit53 ref46/cit46 Singh A. (ref31/cit31) 2018 ref49/cit49 ref75/cit75 ref24/cit24 ref141/cit141 Graham M. A. (ref129/cit129) 2000; 6 ref50/cit50 ref78/cit78 ref36/cit36 ref83/cit83 ref138/cit138 ref79/cit79 ref139/cit139 ref25/cit25 ref103/cit103 ref72/cit72 ref57/cit57 ref51/cit51 ref134/cit134 ref135/cit135 ref40/cit40 ref68/cit68 ref130/cit130 ref131/cit131 ref26/cit26 ref142/cit142 ref73/cit73 ref69/cit69 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref95/cit95 ref108/cit108 ref104/cit104 ref4/cit4 ref47/cit47 ref84/cit84 ref127/cit127 ref1/cit1 ref123/cit123 ref7/cit7 |
References_xml | – start-page: 279 volume-title: Nanotechnology: An Agricultural Paradigm year: 2017 ident: ref21/cit21 doi: 10.1007/978-981-10-4573-8_13 – ident: ref45/cit45 doi: 10.1002/cpch.29 – ident: ref137/cit137 doi: 10.1021/ar200113c – ident: ref93/cit93 doi: 10.1039/C9EN00626E – ident: ref50/cit50 doi: 10.3389/fpls.2016.01288 – ident: ref113/cit113 doi: 10.1016/j.plantsci.2013.05.016 – ident: ref49/cit49 doi: 10.1039/C8EN00645H – ident: ref38/cit38 doi: 10.1038/s41565-019-0375-4 – ident: ref124/cit124 doi: 10.1007/s10930-015-9627-9 – ident: ref117/cit117 doi: 10.1007/BF00392427 – ident: ref44/cit44 doi: 10.1021/es504375t – ident: ref83/cit83 doi: 10.1021/ar300128j – ident: ref90/cit90 doi: 10.1007/s13205-019-1626-7 – ident: ref122/cit122 doi: 10.1002/ppsc.201900174 – ident: ref96/cit96 doi: 10.1007/s004250050660 – ident: ref12/cit12 doi: 10.2478/v10102-009-0001-7 – ident: ref64/cit64 doi: 10.1039/C8EN01287C – ident: ref134/cit134 doi: 10.1021/nn100816s – ident: ref53/cit53 doi: 10.1039/C7EN00887B – ident: ref72/cit72 doi: 10.1186/s13068-017-0953-3 – start-page: 153 volume-title: Nanotechnology in Environmental Science year: 2018 ident: ref31/cit31 – ident: ref133/cit133 doi: 10.1021/es404503c – ident: ref121/cit121 doi: 10.1186/s12951-015-0114-4 – ident: ref73/cit73 doi: 10.1201/9780203833476 – ident: ref79/cit79 doi: 10.1039/C4CS00269E – ident: ref135/cit135 doi: 10.1021/cm7026866 – ident: ref18/cit18 doi: 10.1016/j.tifs.2011.09.004 – ident: ref123/cit123 doi: 10.1002/smll.201502458 – ident: ref48/cit48 doi: 10.1021/nn200629g – ident: ref112/cit112 doi: 10.1104/pp.111.2.419 – ident: ref43/cit43 doi: 10.1002/gch2.201770071 – ident: ref35/cit35 doi: 10.1002/smll.201403276 – ident: ref125/cit125 doi: 10.1007/BF01062109 – ident: ref130/cit130 doi: 10.1097/00000539-199910001-00003 – ident: ref111/cit111 doi: 10.1046/j.0016-8025.2003.01117.x – start-page: 1 volume-title: Nanotechnology: An Agricultural Paradigm year: 2017 ident: ref20/cit20 – ident: ref2/cit2 – ident: ref25/cit25 doi: 10.1039/C5EN00229J – ident: ref75/cit75 doi: 10.1017/S1431927607070420 – ident: ref119/cit119 doi: 10.1073/pnas.0805135105 – ident: ref59/cit59 doi: 10.1186/1471-2229-9-45 – ident: ref128/cit128 doi: 10.1016/S0924-8579(02)00022-5 – ident: ref132/cit132 doi: 10.1002/anie.200805279 – ident: ref71/cit71 doi: 10.1111/j.1399-3054.2008.01135.x – ident: ref5/cit5 doi: 10.1038/s41565-019-0439-5 – ident: ref17/cit17 doi: 10.1021/acs.jafc.7b02178 – ident: ref88/cit88 doi: 10.1039/c3tb20529k – ident: ref105/cit105 doi: 10.1146/annurev.pp.34.060183.002301 – ident: ref26/cit26 doi: 10.1002/etc.1880 – ident: ref142/cit142 doi: 10.1111/j.0022-2720.2004.01348.x – ident: ref13/cit13 doi: 10.1007/BF03325856 – ident: ref56/cit56 doi: 10.1021/es404931g – ident: ref57/cit57 doi: 10.1007/s11051-018-4192-8 – ident: ref8/cit8 doi: 10.1038/nature09364 – ident: ref82/cit82 doi: 10.1021/ja904843x – ident: ref16/cit16 doi: 10.1016/j.btre.2017.03.002 – ident: ref92/cit92 doi: 10.1016/j.sjbs.2013.04.005 – ident: ref120/cit120 doi: 10.1021/ja107583h – ident: ref106/cit106 doi: 10.4161/psb.6.9.16425 – ident: ref139/cit139 doi: 10.3791/51381 – ident: ref40/cit40 doi: 10.1186/s12951-014-0050-8 – ident: ref138/cit138 doi: 10.1371/journal.pone.0181735 – ident: ref47/cit47 doi: 10.1016/j.dib.2017.12.031 – ident: ref52/cit52 doi: 10.1007/s11051-013-1417-8 – ident: ref1/cit1 – ident: ref76/cit76 doi: 10.1023/A:1017936318435 – ident: ref80/cit80 doi: 10.1039/C6TA08660H – ident: ref86/cit86 doi: 10.1038/s41598-018-26167-0 – ident: ref10/cit10 doi: 10.1007/s10681-015-1572-3 – ident: ref63/cit63 doi: 10.1021/acs.est.7b00813 – ident: ref95/cit95 doi: 10.1104/pp.49.6.968 – ident: ref66/cit66 doi: 10.1002/smll.201802086 – ident: ref143/cit143 doi: 10.1016/j.gaitpost.2016.12.028 – ident: ref22/cit22 doi: 10.1039/C8EN00323H – ident: ref99/cit99 doi: 10.1002/ps.2780380206 – ident: ref109/cit109 doi: 10.3389/fpls.2015.00071 – ident: ref28/cit28 doi: 10.1021/acs.nanolett.5b04467 – ident: ref115/cit115 doi: 10.1021/jp9033936 – ident: ref141/cit141 doi: 10.1105/tpc.010339 – ident: ref78/cit78 doi: 10.1002/adfm.201501250 – ident: ref24/cit24 doi: 10.1021/acsnano.7b05723 – ident: ref131/cit131 doi: 10.1038/s41598-017-15054-9 – ident: ref116/cit116 doi: 10.3389/fpls.2018.01202 – ident: ref54/cit54 doi: 10.21273/HORTSCI.51.6.732 – ident: ref101/cit101 doi: 10.1111/j.1365-3180.1994.tb01990.x – ident: ref68/cit68 doi: 10.1093/jxb/erl017 – ident: ref81/cit81 doi: 10.1016/j.mtchem.2018.03.003 – ident: ref29/cit29 doi: 10.1038/srep46032 – ident: ref67/cit67 doi: 10.1093/jxb/erj217 – ident: ref36/cit36 doi: 10.1038/nmat4771 – ident: ref55/cit55 doi: 10.1021/acs.est.6b02763 – ident: ref108/cit108 doi: 10.1016/j.molp.2017.09.018 – ident: ref65/cit65 doi: 10.1021/acs.est.7b01133 – ident: ref110/cit110 doi: 10.1152/ajpcell.00462.2010 – ident: ref11/cit11 – ident: ref102/cit102 doi: 10.1007/s10311-013-0432-4 – ident: ref114/cit114 doi: 10.1021/nn4040553 – ident: ref74/cit74 doi: 10.1016/S0176-1617(86)80023-2 – volume: 6 start-page: 1205 year: 2000 ident: ref129/cit129 publication-title: Clin. Cancer Res. – ident: ref41/cit41 doi: 10.1186/s12951-016-0191-z – ident: ref61/cit61 doi: 10.1146/annurev-food-030117-012657 – volume: 3 start-page: 72 year: 2014 ident: ref14/cit14 publication-title: Global J. Biol. Agric. Health Sci. – ident: ref3/cit3 doi: 10.1038/s41565-018-0223-y – ident: ref7/cit7 doi: 10.1088/1748-9326/5/1/014010 – ident: ref70/cit70 doi: 10.1093/jxb/eri272 – ident: ref104/cit104 doi: 10.1038/srep26738 – ident: ref34/cit34 doi: 10.1038/nmat3890 – ident: ref144/cit144 – ident: ref51/cit51 doi: 10.1038/s41598-018-25197-y – ident: ref77/cit77 doi: 10.1016/j.jplph.2017.05.017 – ident: ref136/cit136 doi: 10.1039/C6EN00136J – ident: ref15/cit15 doi: 10.3923/ja.2005.109.115 – ident: ref103/cit103 doi: 10.1021/acsnano.8b09781 – ident: ref140/cit140 doi: 10.1111/j.1365-313X.2009.04102.x – volume-title: Biology of Plants year: 2005 ident: ref94/cit94 – ident: ref32/cit32 doi: 10.3389/fchem.2015.00064 – ident: ref9/cit9 doi: 10.1016/S0065-2113(05)87003-8 – ident: ref89/cit89 doi: 10.1104/pp.113.233650 – ident: ref91/cit91 doi: 10.1007/BF02856749 – ident: ref97/cit97 doi: 10.1002/ps.2780380218 – ident: ref118/cit118 doi: 10.1111/j.1365-3040.1987.tb02077.x – volume: 4 start-page: 181 year: 2015 ident: ref30/cit30 publication-title: Int. J. Environ – ident: ref23/cit23 doi: 10.1021/acsomega.8b01894 – ident: ref42/cit42 doi: 10.1039/C6EN00146G – ident: ref69/cit69 doi: 10.1111/j.1399-3054.2007.01023.x – ident: ref85/cit85 doi: 10.1021/acsomega.7b00657 – start-page: 121 volume-title: New Visions in Plant Science year: 2018 ident: ref19/cit19 – ident: ref33/cit33 doi: 10.1021/acsami.8b07179 – ident: ref87/cit87 doi: 10.1038/nnano.2007.108 – ident: ref6/cit6 – ident: ref98/cit98 doi: 10.1002/ps.2780240106 – ident: ref107/cit107 doi: 10.1111/nph.12916 – ident: ref37/cit37 doi: 10.1039/C7LC00930E – ident: ref39/cit39 doi: 10.1038/s41565-019-0382-5 – ident: ref60/cit60 doi: 10.1021/acsabm.8b00345 – ident: ref46/cit46 doi: 10.1021/acsnano.6b07747 – ident: ref62/cit62 doi: 10.1016/j.trac.2015.07.003 – ident: ref58/cit58 doi: 10.1016/j.jhazmat.2013.10.053 – ident: ref27/cit27 doi: 10.1080/00380768.2004.10408447 – start-page: 287 volume-title: Green Materials for Energy, Products and Depollution year: 2013 ident: ref100/cit100 doi: 10.1007/978-94-007-6836-9_7 – ident: ref126/cit126 – ident: ref4/cit4 doi: 10.1371/journal.pone.0066428 – ident: ref127/cit127 – ident: ref84/cit84 doi: 10.1039/c3ra47994c |
SSID | ssj0057876 |
Score | 2.6821208 |
Snippet | Fundamental and quantitative understanding of the interactions between nanoparticles and plant leaves is crucial for advancing the field of nanoenabled... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7970 |
SubjectTerms | Cerium Chloroplasts Nanoparticles Plant Cells Plant Leaves Silicon Dioxide |
Title | Nanoparticle Charge and Size Control Foliar Delivery Efficiency to Plant Cells and Organelles |
URI | http://dx.doi.org/10.1021/acsnano.9b09178 https://www.ncbi.nlm.nih.gov/pubmed/32628442 https://www.proquest.com/docview/2421111990 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagLDDwfpSXjNSBJaVxnNQeUWlVIcFSKnVBkZ8IESWIpAP8es5JWh5VBdki-azkfOf7rDt_h1ArYkSI0HUNkIJ4NDTcE76iXigDLruWhLK84X13Hw3H9HYSTr7Ion9n8Il_JVSeijRrcwmhrctW0RqJwIUdCuqNZpuus7uoSiDDARlQxJzFZ2ECF4ZU_jMMLcGWZYwZbFXVWXlJTehKS17a00K21ccicePfn7-NNmukia8r09hBKybdRRvf-Af30CPsrXBorkZgl3l_MlikGo-eP-C9qmLHgyx5Fm_4xiSuhuMd90vWCXdlExcZdl2PCtwzSZKXouXlTpcNyPfReNB_6A29ut-CJwCmFB4gJxEwZbmiUgPoplYxTkJmOSPWBtxqP1JaSN8yTrnUMogiCYisE3asDogKDlAjzVJzhLA24OeUC6uMpoJZYUDSEO6apBKtgyZqgWLi2l_yuEyFEz-utRXX2mqi9myVYlVzlrvWGclygcu5wGtF17F86MVs2WNwKZcnAfVk0zx2WXJ4IE430WFlD_PJAO1CQKfk-H8_cILWiTugd7oeYaeoUbxNzRmgmEKel_b7CZii7i8 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9swDCbS7rD2sHfb7KkBOeziNJZlRzoWaYNsSwsMTYFeBkPPoqhhF7VzWH_9KNlJ90CAzTcbomBRlPgJFD8CDDJOpUx91QAlacRSKyIZaxalKhFq7GiqQob36Vk2u2BfLtPLHoxWuTD4EzX2VIcg_gO7QHyI30pZVkOh0MON-RY8QihCvU0fTc5Xe683v6yNI-M5GcHEmsznrw68N9L1795oA8QMrmb6FL6tfzLcMLkZLhs11Pd_8Df-zyiewZMOd5Kj1lCeQ8-WL2D3FzbCl_Add1o8QrctiI_DX1kiS0POr-_xvb3TTqZVcS3vyLEt_I2OH-QkcFD4BE7SVMTXQGrIxBZFHURDqqePDdSv4GJ6spjMoq76QiQRtDQR4iiZcO2EZsogBGdOc0FT7gSnziXCmTjTRqrYccGEMirJMoX4bJSOnEmoTvZgu6xKewDEWFz1TEinrWGSO2lR0lLhS6ZSY5I-DFAxebd66jwExmmcd9rKO231YbiarFx3DOa-kEaxWeDTWuC2Je_Y3PTjavZzXGA-aoLqqZZ17mPm-KDX7sN-axbrzhD7ontn9PW_DeADPJ4tTuf5_PPZ1zewQ_3RfTSOKH8L283d0r5DfNOo98GkfwKCGfaQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7aFEpzaPrONmmrQg69eLOWZa90DJss6SsU0oVcitGzhBo7xN5D8-s7I3uXtmGh9c1GI6TxSPOJTzMDcFBIrnVOVQOM5onIvUp0akWSm0yZaeC5iRHen8-K04X4cJFfDEFhFAuDg2ixpzaS-LSqr1wYMgykh_i91nUzVga93FTehXtE2pFdH83OV_svmWDRc8l4VkZAsU7oc6sD8ki2_dMjbYCZ0d3Md2CxHmi8ZfJjvOzM2N78lcPxf2fyCB4O-JMd9QbzGO74-gls_5aV8Cl8wx0Xj9J9C0Z8_HfPdO3Y-eUNvvd329m8qS71NTv2Fd3s-MlOYi4KCuRkXcOoFlLHZr6q2igaQz6JI2ifwWJ-8nV2mgxVGBKN4KVLEE_pTNqgrDAOobgIViqey6AkDyFTwaWFddqkQSqhjDNZURjEaZN8ElzGbfYctuqm9rvAnMfVL5QO1juhZdAeJT1XVDqVO5eN4AAVUw6rqC0jQc7TctBWOWhrBOPVDyvtkMmcCmpUmwXerQWu-iQem5u-XVlAiQuN2BNUT7NsS-LO8UHvPYIXvWmsO0MMjG5e8Jf_NoE3cP_L8bz89P7s4x484HSCn0wTLvdhq7te-lcIczrzOlr1L3ry-RM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoparticle+Charge+and+Size+Control+Foliar+Delivery+Efficiency+to+Plant+Cells+and+Organelles&rft.jtitle=ACS+nano&rft.au=Hu%2C+Peiguang&rft.au=An%2C+Jing&rft.au=Faulkner%2C+Maquela+M&rft.au=Wu%2C+Honghong&rft.date=2020-07-28&rft.eissn=1936-086X&rft.volume=14&rft.issue=7&rft.spage=7970&rft_id=info:doi/10.1021%2Facsnano.9b09178&rft_id=info%3Apmid%2F32628442&rft.externalDocID=32628442 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |