Ultrastable Silicon Anode by Three-Dimensional Nanoarchitecture Design
State-of-the-art carbonaceous anodes are approaching their achievable performance limit in Li-ion batteries (LIBs). Silicon has been recognized as one of the most promising anodes for next-generation LIBs because of its advantageous specific capacity and secure working potential. However, the practi...
Saved in:
Published in | ACS nano Vol. 14; no. 4; pp. 4374 - 4382 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
28.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | State-of-the-art carbonaceous anodes are approaching their achievable performance limit in Li-ion batteries (LIBs). Silicon has been recognized as one of the most promising anodes for next-generation LIBs because of its advantageous specific capacity and secure working potential. However, the practical implementation of silicon anodes needs to overcome the challenges of substantial volume changes, intrinsic low conductivity, and unstable solid electrolyte interphase (SEI) films. Here, we report an inventive design of a sandwich N-doped graphene@Si@hybrid silicate anode with bicontinuous porous nanoarchitecture, which is expected to simultaneously conquer all these critical issues. In the ingeniously designed hybrid Si anode, the nanoporous N-doped graphene acts as a flexible and conductive support and the amorphous hybrid silicate coating enhances the robustness and suppleness of the electrode and facilitates the formation of stable SEI films. This binder-free and stackable hybrid electrode achieves excellent rate capability and cycling performance (817 mAh/g at 5 C for 10 000 cycles). Paired with LiFePO4 cathodes, more than 100 stable cycles can be readily realized in full batteries. |
---|---|
AbstractList | State-of-the-art carbonaceous anodes are approaching their achievable performance limit in Li-ion batteries (LIBs). Silicon has been recognized as one of the most promising anodes for next-generation LIBs because of its advantageous specific capacity and secure working potential. However, the practical implementation of silicon anodes needs to overcome the challenges of substantial volume changes, intrinsic low conductivity, and unstable solid electrolyte interphase (SEI) films. Here, we report an inventive design of a sandwich N-doped graphene@Si@hybrid silicate anode with bicontinuous porous nanoarchitecture, which is expected to simultaneously conquer all these critical issues. In the ingeniously designed hybrid Si anode, the nanoporous N-doped graphene acts as a flexible and conductive support and the amorphous hybrid silicate coating enhances the robustness and suppleness of the electrode and facilitates the formation of stable SEI films. This binder-free and stackable hybrid electrode achieves excellent rate capability and cycling performance (817 mAh/g at 5 C for 10 000 cycles). Paired with LiFePO4 cathodes, more than 100 stable cycles can be readily realized in full batteries. State-of-the-art carbonaceous anodes are approaching their achievable performance limit in Li-ion batteries (LIBs). Silicon has been recognized as one of the most promising anodes for next-generation LIBs because of its advantageous specific capacity and secure working potential. However, the practical implementation of silicon anodes needs to overcome the challenges of substantial volume changes, intrinsic low conductivity, and unstable solid electrolyte interphase (SEI) films. Here, we report an inventive design of a sandwich -doped graphene@Si@hybrid silicate anode with bicontinuous porous nanoarchitecture, which is expected to simultaneously conquer all these critical issues. In the ingeniously designed hybrid Si anode, the nanoporous -doped graphene acts as a flexible and conductive support and the amorphous hybrid silicate coating enhances the robustness and suppleness of the electrode and facilitates the formation of stable SEI films. This binder-free and stackable hybrid electrode achieves excellent rate capability and cycling performance (817 mAh/g at 5 for 10 000 cycles). Paired with LiFePO cathodes, more than 100 stable cycles can be readily realized in full batteries. State-of-the-art carbonaceous anodes are approaching their achievable performance limit in Li-ion batteries (LIBs). Silicon has been recognized as one of the most promising anodes for next-generation LIBs because of its advantageous specific capacity and secure working potential. However, the practical implementation of silicon anodes needs to overcome the challenges of substantial volume changes, intrinsic low conductivity, and unstable solid electrolyte interphase (SEI) films. Here, we report an inventive design of a sandwich N-doped graphene@Si@hybrid silicate anode with bicontinuous porous nanoarchitecture, which is expected to simultaneously conquer all these critical issues. In the ingeniously designed hybrid Si anode, the nanoporous N-doped graphene acts as a flexible and conductive support and the amorphous hybrid silicate coating enhances the robustness and suppleness of the electrode and facilitates the formation of stable SEI films. This binder-free and stackable hybrid electrode achieves excellent rate capability and cycling performance (817 mAh/g at 5 C for 10 000 cycles). Paired with LiFePO4 cathodes, more than 100 stable cycles can be readily realized in full batteries.State-of-the-art carbonaceous anodes are approaching their achievable performance limit in Li-ion batteries (LIBs). Silicon has been recognized as one of the most promising anodes for next-generation LIBs because of its advantageous specific capacity and secure working potential. However, the practical implementation of silicon anodes needs to overcome the challenges of substantial volume changes, intrinsic low conductivity, and unstable solid electrolyte interphase (SEI) films. Here, we report an inventive design of a sandwich N-doped graphene@Si@hybrid silicate anode with bicontinuous porous nanoarchitecture, which is expected to simultaneously conquer all these critical issues. In the ingeniously designed hybrid Si anode, the nanoporous N-doped graphene acts as a flexible and conductive support and the amorphous hybrid silicate coating enhances the robustness and suppleness of the electrode and facilitates the formation of stable SEI films. This binder-free and stackable hybrid electrode achieves excellent rate capability and cycling performance (817 mAh/g at 5 C for 10 000 cycles). Paired with LiFePO4 cathodes, more than 100 stable cycles can be readily realized in full batteries. |
Author | Lu, Zhen Han, Jiuhui Wei, Daixiu Chen, Mingwei Huang, Gang Kashani, Hamzeh Watanabe, Kentaro |
AuthorAffiliation | Institute for Materials Research WPI Advanced Institute for Materials Research Johns Hopkins University Department of Materials Science and Engineering CREST, JST |
AuthorAffiliation_xml | – name: Institute for Materials Research – name: WPI Advanced Institute for Materials Research – name: CREST, JST – name: Department of Materials Science and Engineering – name: Johns Hopkins University |
Author_xml | – sequence: 1 givenname: Gang surname: Huang fullname: Huang, Gang organization: WPI Advanced Institute for Materials Research – sequence: 2 givenname: Jiuhui surname: Han fullname: Han, Jiuhui organization: WPI Advanced Institute for Materials Research – sequence: 3 givenname: Zhen surname: Lu fullname: Lu, Zhen organization: WPI Advanced Institute for Materials Research – sequence: 4 givenname: Daixiu surname: Wei fullname: Wei, Daixiu organization: Institute for Materials Research – sequence: 5 givenname: Hamzeh surname: Kashani fullname: Kashani, Hamzeh organization: Johns Hopkins University – sequence: 6 givenname: Kentaro surname: Watanabe fullname: Watanabe, Kentaro organization: WPI Advanced Institute for Materials Research – sequence: 7 givenname: Mingwei orcidid: 0000-0003-0145-3872 surname: Chen fullname: Chen, Mingwei email: mwchen@jhu.edu organization: CREST, JST |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32207604$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kMFLwzAUh4Mo6qZnb9KjIN3SpE2T43BOhaEHN_AWkvTVRbpkJu1h_72VbR6End6D9_3e430DdOq8A4RuMjzKMMnGykSnnB8JjYUg_ARdZoKyFHP2cfrXF9kFGsT4hXFR8pKdowtKCC4Zzi_RbNm0QcVW6QaSd9tY410ycb6CRG-TxSoApFO7Bhetd6pJXvtrKpiVbcG0XYBkCtF-uit0VqsmwvW-DtFy9rh4eE7nb08vD5N5qqgQbUprnmtdQc0JESSvGC2EEozqEmugrCqYULXWBJuK15TovC4NBQ6mwkTVqqRDdLfbuwn-u4PYyrWNBppGOfBdlIRywkrOc9Kjt3u002uo5CbYtQpbefi9B4odYIKPMUAtjW1V2__ZG7GNzLD8dSz3juXecZ8b_8sdVh9P3O8S_UB--S70JuNR-geCnI_i |
CitedBy_id | crossref_primary_10_1002_adma_202108750 crossref_primary_10_1039_D0TA10301B crossref_primary_10_1016_j_matlet_2024_137558 crossref_primary_10_1039_D3SU00168G crossref_primary_10_1016_j_cclet_2022_107946 crossref_primary_10_1021_acsami_0c14979 crossref_primary_10_1021_acs_iecr_4c01178 crossref_primary_10_1016_j_cej_2024_157371 crossref_primary_10_3390_molecules29132975 crossref_primary_10_1007_s12274_023_5454_z crossref_primary_10_1016_j_carbon_2025_120080 crossref_primary_10_1016_j_jpowsour_2024_234657 crossref_primary_10_1016_j_jclepro_2023_140209 crossref_primary_10_3390_nano10101994 crossref_primary_10_1126_science_abg7217 crossref_primary_10_1016_j_electacta_2022_139893 crossref_primary_10_1002_smll_202308109 crossref_primary_10_1002_sstr_202400433 crossref_primary_10_1002_cssc_202101837 crossref_primary_10_1002_sus2_177 crossref_primary_10_1016_j_apsusc_2023_157254 crossref_primary_10_1016_j_cej_2023_145017 crossref_primary_10_1039_D2NR03469G crossref_primary_10_1016_j_ensm_2021_03_003 crossref_primary_10_1002_adfm_202303020 crossref_primary_10_1021_acsnano_3c07424 crossref_primary_10_1002_batt_202100403 crossref_primary_10_1021_acsami_3c07241 crossref_primary_10_1016_j_carbon_2021_04_042 crossref_primary_10_1016_j_apmt_2021_101300 crossref_primary_10_1039_D3TA00388D crossref_primary_10_1039_D0NR08297J crossref_primary_10_1039_D0NR09209F crossref_primary_10_1002_ange_202418794 crossref_primary_10_1002_aenm_202300466 crossref_primary_10_1002_aenm_202301874 crossref_primary_10_1002_smll_202306262 crossref_primary_10_1002_adfm_202403574 crossref_primary_10_3390_electrochem2040041 crossref_primary_10_1002_advs_202203162 crossref_primary_10_1016_j_surfcoat_2021_127336 crossref_primary_10_1039_D1QM00071C crossref_primary_10_1002_adfm_202423700 crossref_primary_10_1016_j_cej_2024_157197 crossref_primary_10_2139_ssrn_4118143 crossref_primary_10_1002_ppsc_202100007 crossref_primary_10_1016_j_electacta_2022_140795 crossref_primary_10_1016_j_ensm_2024_103395 crossref_primary_10_1016_j_est_2023_110314 crossref_primary_10_1016_j_rechem_2023_100800 crossref_primary_10_1016_j_enchem_2022_100069 crossref_primary_10_1016_j_cej_2021_133982 crossref_primary_10_1016_j_cej_2022_139567 crossref_primary_10_1039_D4CS00202D crossref_primary_10_1021_acsami_2c15355 crossref_primary_10_1016_j_electacta_2021_139552 crossref_primary_10_1016_j_jcis_2023_07_199 crossref_primary_10_1021_acsanm_2c01281 crossref_primary_10_1016_j_mtener_2024_101567 crossref_primary_10_1039_D4NJ02608J crossref_primary_10_1039_D1GC00630D crossref_primary_10_1149_1945_7111_aceb36 crossref_primary_10_1021_acsanm_2c03749 crossref_primary_10_2139_ssrn_3982081 crossref_primary_10_1016_j_ensm_2024_103819 crossref_primary_10_1007_s11581_024_05608_z crossref_primary_10_1002_adfm_202200796 crossref_primary_10_1002_aenm_202100775 crossref_primary_10_1021_acsanm_3c04824 crossref_primary_10_1007_s12274_022_4264_z crossref_primary_10_1002_smll_202300431 crossref_primary_10_1016_j_cej_2023_146285 crossref_primary_10_1039_D3CP00633F crossref_primary_10_1016_j_jelechem_2023_117427 crossref_primary_10_1002_tcr_202200125 crossref_primary_10_1016_j_jallcom_2022_166704 crossref_primary_10_1016_j_jpowsour_2025_236520 crossref_primary_10_1002_adfm_202211648 crossref_primary_10_1039_D3NA00285C crossref_primary_10_1021_acssuschemeng_1c03879 crossref_primary_10_1021_acs_energyfuels_1c04334 crossref_primary_10_1016_j_est_2024_111666 crossref_primary_10_1002_adfm_202311925 crossref_primary_10_3390_ma16062451 crossref_primary_10_1016_j_electacta_2020_137278 crossref_primary_10_1039_D4NH00349G crossref_primary_10_1007_s40820_023_01308_x crossref_primary_10_1016_j_jallcom_2023_170137 crossref_primary_10_1002_chem_202403924 crossref_primary_10_1002_aenm_202202342 crossref_primary_10_1007_s40820_021_00758_5 crossref_primary_10_1002_admi_202201389 crossref_primary_10_1038_s41524_023_01047_y crossref_primary_10_1002_adfm_202401686 crossref_primary_10_1016_j_xcrp_2022_100862 crossref_primary_10_1021_acs_energyfuels_2c00693 crossref_primary_10_3390_batteries9120569 crossref_primary_10_3390_inorganics11050182 crossref_primary_10_1002_smll_202102894 crossref_primary_10_1016_j_jallcom_2024_173507 crossref_primary_10_26599_EMD_2023_9370020 crossref_primary_10_1021_acs_nanolett_4c04106 crossref_primary_10_1016_j_est_2024_115238 crossref_primary_10_1002_advs_202004036 crossref_primary_10_1016_j_nanoen_2021_105935 crossref_primary_10_1002_smll_202303804 crossref_primary_10_1016_j_jechem_2022_09_020 crossref_primary_10_1016_j_jpowsour_2023_232965 crossref_primary_10_1021_jacs_2c04124 crossref_primary_10_1021_acsami_1c04277 crossref_primary_10_1021_acsnano_0c10664 crossref_primary_10_1021_acsami_1c14907 crossref_primary_10_1021_acsami_2c01460 crossref_primary_10_1039_D4TA02708F crossref_primary_10_1016_j_gee_2022_08_005 crossref_primary_10_1016_j_ccr_2022_214998 crossref_primary_10_1016_j_elecom_2023_107536 crossref_primary_10_1002_adfm_202102546 crossref_primary_10_1021_acs_jpclett_2c02090 crossref_primary_10_1002_cey2_176 crossref_primary_10_1002_aenm_202102103 crossref_primary_10_1002_eem2_12436 crossref_primary_10_1088_1361_6439_ac12a3 crossref_primary_10_3390_batteries8010002 crossref_primary_10_1002_anie_202418794 crossref_primary_10_1002_adma_202404360 crossref_primary_10_1021_acsnano_2c03922 crossref_primary_10_1016_j_matlet_2021_131638 crossref_primary_10_1039_D4NR04002C crossref_primary_10_1021_acsnano_4c06067 crossref_primary_10_1016_j_cej_2020_126836 crossref_primary_10_1021_acsami_0c18743 crossref_primary_10_1039_D2CE00595F crossref_primary_10_1016_j_electacta_2024_144907 crossref_primary_10_1002_sstr_202100009 crossref_primary_10_1021_acsami_3c02925 |
Cites_doi | 10.1021/acs.chemrev.8b00422 10.1038/nenergy.2015.29 10.1002/adma.201605650 10.1002/anie.201903709 10.1021/cr3001884 10.1038/s41467-018-05398-9 10.1002/adma.201503182 10.1021/acsnano.8b02219 10.1038/ncomms5105 10.1002/celc.201801115 10.1038/nenergy.2016.113 10.1002/adma.201501832 10.1002/adma.201400578 10.1039/c2ee21892e 10.1038/s41560-019-0398-y 10.1021/nn901409q 10.1038/natrevmats.2016.13 10.1126/sciadv.aaw4856 10.1016/j.mattod.2014.10.040 10.1021/acsnano.9b04725 10.1038/451652a 10.1002/aenm.201501870 10.1039/b919877f 10.1016/j.joule.2019.05.026 10.1007/s12274-013-0293-y 10.1016/j.electacta.2017.09.105 10.1021/acsnano.8b03312 10.1021/acsnano.6b07450 10.1002/aenm.201701744 10.1002/anie.201906612 10.1002/aenm.201803480 10.1002/anie.201201429 10.1002/aenm.201500289 10.1002/adma.201604318 10.1021/nl300206e 10.1002/anie.201809315 10.1002/adma.201400570 10.1039/C7CS00871F 10.1002/aenm.201802918 10.1039/C6CS00875E 10.1016/j.nanoen.2018.01.006 10.1021/cm901452z 10.1002/aenm.201601481 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acsnano.9b09928 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 4382 |
ExternalDocumentID | 32207604 10_1021_acsnano_9b09928 i63066840 |
Genre | Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ F5P GNL IH9 IHE JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 4.4 5VS 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 |
ID | FETCH-LOGICAL-a399t-3f84bbdef822924d6359a963b70be36d569afbb20cd8f32b4f7c3e8ecd02afa73 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Fri Jul 11 02:55:43 EDT 2025 Thu Jan 02 22:59:16 EST 2025 Tue Jul 01 02:21:04 EDT 2025 Thu Apr 24 22:56:20 EDT 2025 Thu Aug 27 22:10:25 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | N-doped graphene@Si@hybrid silicate sandwich structure Si anode Li-ion batteries porous architecture |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a399t-3f84bbdef822924d6359a963b70be36d569afbb20cd8f32b4f7c3e8ecd02afa73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0145-3872 |
PMID | 32207604 |
PQID | 2382678842 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2382678842 pubmed_primary_32207604 crossref_citationtrail_10_1021_acsnano_9b09928 crossref_primary_10_1021_acsnano_9b09928 acs_journals_10_1021_acsnano_9b09928 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-28 |
PublicationDateYYYYMMDD | 2020-04-28 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref10/cit10 doi: 10.1021/acs.chemrev.8b00422 – ident: ref19/cit19 doi: 10.1038/nenergy.2015.29 – ident: ref28/cit28 doi: 10.1002/adma.201605650 – ident: ref17/cit17 doi: 10.1002/anie.201903709 – ident: ref7/cit7 doi: 10.1021/cr3001884 – ident: ref22/cit22 doi: 10.1038/s41467-018-05398-9 – ident: ref36/cit36 doi: 10.1002/adma.201503182 – ident: ref13/cit13 doi: 10.1021/acsnano.8b02219 – ident: ref24/cit24 doi: 10.1038/ncomms5105 – ident: ref29/cit29 doi: 10.1002/celc.201801115 – ident: ref23/cit23 doi: 10.1038/nenergy.2016.113 – ident: ref40/cit40 doi: 10.1002/adma.201501832 – ident: ref25/cit25 doi: 10.1002/adma.201400578 – ident: ref6/cit6 doi: 10.1039/c2ee21892e – ident: ref16/cit16 doi: 10.1038/s41560-019-0398-y – ident: ref20/cit20 doi: 10.1021/nn901409q – ident: ref4/cit4 doi: 10.1038/natrevmats.2016.13 – ident: ref42/cit42 doi: 10.1126/sciadv.aaw4856 – ident: ref2/cit2 doi: 10.1016/j.mattod.2014.10.040 – ident: ref15/cit15 doi: 10.1021/acsnano.9b04725 – ident: ref3/cit3 doi: 10.1038/451652a – ident: ref35/cit35 doi: 10.1002/aenm.201501870 – ident: ref11/cit11 doi: 10.1039/b919877f – ident: ref43/cit43 doi: 10.1016/j.joule.2019.05.026 – ident: ref18/cit18 doi: 10.1007/s12274-013-0293-y – ident: ref30/cit30 doi: 10.1016/j.electacta.2017.09.105 – ident: ref33/cit33 doi: 10.1021/acsnano.8b03312 – ident: ref14/cit14 doi: 10.1021/acsnano.6b07450 – ident: ref41/cit41 doi: 10.1002/aenm.201701744 – ident: ref31/cit31 doi: 10.1002/anie.201906612 – ident: ref12/cit12 doi: 10.1002/aenm.201803480 – ident: ref5/cit5 doi: 10.1002/anie.201201429 – ident: ref26/cit26 doi: 10.1002/aenm.201500289 – ident: ref38/cit38 doi: 10.1002/adma.201604318 – ident: ref21/cit21 doi: 10.1021/nl300206e – ident: ref39/cit39 doi: 10.1002/anie.201809315 – ident: ref37/cit37 doi: 10.1002/adma.201400570 – ident: ref9/cit9 doi: 10.1039/C7CS00871F – ident: ref32/cit32 doi: 10.1002/aenm.201802918 – ident: ref8/cit8 doi: 10.1039/C6CS00875E – ident: ref34/cit34 doi: 10.1016/j.nanoen.2018.01.006 – ident: ref1/cit1 doi: 10.1021/cm901452z – ident: ref27/cit27 doi: 10.1002/aenm.201601481 |
SSID | ssj0057876 |
Score | 2.6289473 |
Snippet | State-of-the-art carbonaceous anodes are approaching their achievable performance limit in Li-ion batteries (LIBs). Silicon has been recognized as one of the... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4374 |
Title | Ultrastable Silicon Anode by Three-Dimensional Nanoarchitecture Design |
URI | http://dx.doi.org/10.1021/acsnano.9b09928 https://www.ncbi.nlm.nih.gov/pubmed/32207604 https://www.proquest.com/docview/2382678842 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT8JAFJ4oXvTgvuCWmnDw0lqmpcuRgISY6AVIuDVvtsTYTA0tB_31vmkLooTovTNp3_Z9L2_6DSEtxgXCmlA2DwAbFCTMNkjzFwh3XYhBKbcUq35-CYYT_2namX6LRf-e4NP2A_Bcg86cmCGZodE22aEBprBhQb3RouiauAuqATI2yMgilio-axsYGOL5TxjawC1LjBkcVKez8lKa0BwteXPmBXP457pw49-vf0j2a6ZpdavQOCJbUh-TvRX9wRMymKTFDJAfslRao9cUo0JbXZ0JabEPa4xulnbfyP9X0h0WluJsdfJg9cvzH6dkMngc94Z2fbGCDchHCttTkc-YkMqovVNfIOmIATORhS6TXiA6AXqJMepyESmPMl-F3JOR5MKloCD0zkhDZ1peEIsCUKUkIqECX0gwYp8AcRRLysNO22uSFlogqRMjT8qZN20ntVmS2ixN4izckfBanNzckZFuXnC_XPBe6XJsfvRu4d8Ec8cMREDLbJ4nSFcognXk0yY5rxy_3AwLnRla-pf_-4ArsktNJ-76No2uSaOYzeUN0pWC3ZaB-gX6W-br |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xHIAD-1LWIPXAJSV10jQ5VpSqbJVQW4lbNN4kRJWgJj3A1zNO0rKpElyjeGR7xp5nPfsNQJULSWlNalv4SAcUAsw2KvMKRDgOhqi1k4tVP_T87tC7fWo8LYAzfQtDnUjJUpqT-J_qAvVL-hZjnNRCTpiGBYuwTFCEmZhuXfWne68JP7_gkemcTGBiJubzy4DJRiL9no3mQMw81XQ24HHWyfyGyUttkvGaeP-h3_ifUWzCeok7rVYRKFuwoOJtWPuiRrgDneEoGyOhRT5SVv95RDESW604kcrib9aAnK7stikGUAh5WLQxJ195CKud3wbZhWHnenDVtcsyCzYSOslsVwce51Jpo_3OPEkQJERal7zpcOX6suGTzzhnjpCBdhn3dFO4KlBCOgw1Nt09WIqTWB2AxRCZ1oryokZPKjTSn4hhECommo26W4EqzUBULpM0yhlwVo_KaYnKaalAbeqVSJRS5aZixmh-g4tZg9dCpWP-r-dTN0e0kgw9grFKJmlE4IVR6g48VoH9wv8zY7TtGQrTO_zbAM5gpTt4uI_ub3p3R7DKzBnd8WwWHMNSNp6oEwIyGT_NY_cDFufvTA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JasMwEB26QGkP3Zd0dSGHXpw6suPYx5A0dA2FJJCbGW1QGuxQO4f26zuyndCFQHs11iBpZjRPPOkJoMqFpLImtS18pA0KAWYblbkFIhwHQ9TaycWqn3r-7dC7HzVG5aUwcxeGOpGSpTQn8U1WT6QuFQbq1_Q9xjiphZxwDQuWYdWQdiauW-3-bP01IegXXDLtlQlQzAV9fhkwFUmk3yvSApiZl5vuFgznHc1PmbzWphmviY8fGo7_Hck2bJb402oVAbMDSyrehY0vqoR70B2Oszck1MjHyuq_jClWYqsVJ1JZ_N0akPOV3TGPAhSCHhYt0MlXPsLq5KdC9mHYvRm0b-3yuQUbCaVktqsDj3OptNGAZ54kKBIi5SdvOly5vmz45DvOmSNkoF3GPd0UrgqUkA5DjU33AFbiJFZHYDFEprWi-qjRkwqNBChiGISKiWaj7lagSjMQlemSRjkTzupROS1ROS0VqM08E4lSsty8nDFe3OBq3mBSqHUs_vVy5uqIMsrQJBirZJpGBGIYlfDAYxU4LGJgboyWP0Nlesd_G8AFrD13utHjXe_hBNaZ2ao7ns2CU1jJ3qbqjPBMxs_z8P0E2WHxzw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrastable+Silicon+Anode+by+Three-Dimensional+Nanoarchitecture+Design&rft.jtitle=ACS+nano&rft.au=Huang%2C+Gang&rft.au=Han%2C+Jiuhui&rft.au=Lu%2C+Zhen&rft.au=Wei%2C+Daixiu&rft.date=2020-04-28&rft.eissn=1936-086X&rft.volume=14&rft.issue=4&rft.spage=4374&rft_id=info:doi/10.1021%2Facsnano.9b09928&rft_id=info%3Apmid%2F32207604&rft.externalDocID=32207604 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |