Ultrastable Silicon Anode by Three-Dimensional Nanoarchitecture Design

State-of-the-art carbonaceous anodes are approaching their achievable performance limit in Li-ion batteries (LIBs). Silicon has been recognized as one of the most promising anodes for next-generation LIBs because of its advantageous specific capacity and secure working potential. However, the practi...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 14; no. 4; pp. 4374 - 4382
Main Authors Huang, Gang, Han, Jiuhui, Lu, Zhen, Wei, Daixiu, Kashani, Hamzeh, Watanabe, Kentaro, Chen, Mingwei
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 28.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract State-of-the-art carbonaceous anodes are approaching their achievable performance limit in Li-ion batteries (LIBs). Silicon has been recognized as one of the most promising anodes for next-generation LIBs because of its advantageous specific capacity and secure working potential. However, the practical implementation of silicon anodes needs to overcome the challenges of substantial volume changes, intrinsic low conductivity, and unstable solid electrolyte interphase (SEI) films. Here, we report an inventive design of a sandwich N-doped graphene@Si@hybrid silicate anode with bicontinuous porous nanoarchitecture, which is expected to simultaneously conquer all these critical issues. In the ingeniously designed hybrid Si anode, the nanoporous N-doped graphene acts as a flexible and conductive support and the amorphous hybrid silicate coating enhances the robustness and suppleness of the electrode and facilitates the formation of stable SEI films. This binder-free and stackable hybrid electrode achieves excellent rate capability and cycling performance (817 mAh/g at 5 C for 10 000 cycles). Paired with LiFePO4 cathodes, more than 100 stable cycles can be readily realized in full batteries.
AbstractList State-of-the-art carbonaceous anodes are approaching their achievable performance limit in Li-ion batteries (LIBs). Silicon has been recognized as one of the most promising anodes for next-generation LIBs because of its advantageous specific capacity and secure working potential. However, the practical implementation of silicon anodes needs to overcome the challenges of substantial volume changes, intrinsic low conductivity, and unstable solid electrolyte interphase (SEI) films. Here, we report an inventive design of a sandwich N-doped graphene@Si@hybrid silicate anode with bicontinuous porous nanoarchitecture, which is expected to simultaneously conquer all these critical issues. In the ingeniously designed hybrid Si anode, the nanoporous N-doped graphene acts as a flexible and conductive support and the amorphous hybrid silicate coating enhances the robustness and suppleness of the electrode and facilitates the formation of stable SEI films. This binder-free and stackable hybrid electrode achieves excellent rate capability and cycling performance (817 mAh/g at 5 C for 10 000 cycles). Paired with LiFePO4 cathodes, more than 100 stable cycles can be readily realized in full batteries.
State-of-the-art carbonaceous anodes are approaching their achievable performance limit in Li-ion batteries (LIBs). Silicon has been recognized as one of the most promising anodes for next-generation LIBs because of its advantageous specific capacity and secure working potential. However, the practical implementation of silicon anodes needs to overcome the challenges of substantial volume changes, intrinsic low conductivity, and unstable solid electrolyte interphase (SEI) films. Here, we report an inventive design of a sandwich -doped graphene@Si@hybrid silicate anode with bicontinuous porous nanoarchitecture, which is expected to simultaneously conquer all these critical issues. In the ingeniously designed hybrid Si anode, the nanoporous -doped graphene acts as a flexible and conductive support and the amorphous hybrid silicate coating enhances the robustness and suppleness of the electrode and facilitates the formation of stable SEI films. This binder-free and stackable hybrid electrode achieves excellent rate capability and cycling performance (817 mAh/g at 5 for 10 000 cycles). Paired with LiFePO cathodes, more than 100 stable cycles can be readily realized in full batteries.
State-of-the-art carbonaceous anodes are approaching their achievable performance limit in Li-ion batteries (LIBs). Silicon has been recognized as one of the most promising anodes for next-generation LIBs because of its advantageous specific capacity and secure working potential. However, the practical implementation of silicon anodes needs to overcome the challenges of substantial volume changes, intrinsic low conductivity, and unstable solid electrolyte interphase (SEI) films. Here, we report an inventive design of a sandwich N-doped graphene@Si@hybrid silicate anode with bicontinuous porous nanoarchitecture, which is expected to simultaneously conquer all these critical issues. In the ingeniously designed hybrid Si anode, the nanoporous N-doped graphene acts as a flexible and conductive support and the amorphous hybrid silicate coating enhances the robustness and suppleness of the electrode and facilitates the formation of stable SEI films. This binder-free and stackable hybrid electrode achieves excellent rate capability and cycling performance (817 mAh/g at 5 C for 10 000 cycles). Paired with LiFePO4 cathodes, more than 100 stable cycles can be readily realized in full batteries.State-of-the-art carbonaceous anodes are approaching their achievable performance limit in Li-ion batteries (LIBs). Silicon has been recognized as one of the most promising anodes for next-generation LIBs because of its advantageous specific capacity and secure working potential. However, the practical implementation of silicon anodes needs to overcome the challenges of substantial volume changes, intrinsic low conductivity, and unstable solid electrolyte interphase (SEI) films. Here, we report an inventive design of a sandwich N-doped graphene@Si@hybrid silicate anode with bicontinuous porous nanoarchitecture, which is expected to simultaneously conquer all these critical issues. In the ingeniously designed hybrid Si anode, the nanoporous N-doped graphene acts as a flexible and conductive support and the amorphous hybrid silicate coating enhances the robustness and suppleness of the electrode and facilitates the formation of stable SEI films. This binder-free and stackable hybrid electrode achieves excellent rate capability and cycling performance (817 mAh/g at 5 C for 10 000 cycles). Paired with LiFePO4 cathodes, more than 100 stable cycles can be readily realized in full batteries.
Author Lu, Zhen
Han, Jiuhui
Wei, Daixiu
Chen, Mingwei
Huang, Gang
Kashani, Hamzeh
Watanabe, Kentaro
AuthorAffiliation Institute for Materials Research
WPI Advanced Institute for Materials Research
Johns Hopkins University
Department of Materials Science and Engineering
CREST, JST
AuthorAffiliation_xml – name: Institute for Materials Research
– name: WPI Advanced Institute for Materials Research
– name: CREST, JST
– name: Department of Materials Science and Engineering
– name: Johns Hopkins University
Author_xml – sequence: 1
  givenname: Gang
  surname: Huang
  fullname: Huang, Gang
  organization: WPI Advanced Institute for Materials Research
– sequence: 2
  givenname: Jiuhui
  surname: Han
  fullname: Han, Jiuhui
  organization: WPI Advanced Institute for Materials Research
– sequence: 3
  givenname: Zhen
  surname: Lu
  fullname: Lu, Zhen
  organization: WPI Advanced Institute for Materials Research
– sequence: 4
  givenname: Daixiu
  surname: Wei
  fullname: Wei, Daixiu
  organization: Institute for Materials Research
– sequence: 5
  givenname: Hamzeh
  surname: Kashani
  fullname: Kashani, Hamzeh
  organization: Johns Hopkins University
– sequence: 6
  givenname: Kentaro
  surname: Watanabe
  fullname: Watanabe, Kentaro
  organization: WPI Advanced Institute for Materials Research
– sequence: 7
  givenname: Mingwei
  orcidid: 0000-0003-0145-3872
  surname: Chen
  fullname: Chen, Mingwei
  email: mwchen@jhu.edu
  organization: CREST, JST
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32207604$$D View this record in MEDLINE/PubMed
BookMark eNp1kMFLwzAUh4Mo6qZnb9KjIN3SpE2T43BOhaEHN_AWkvTVRbpkJu1h_72VbR6End6D9_3e430DdOq8A4RuMjzKMMnGykSnnB8JjYUg_ARdZoKyFHP2cfrXF9kFGsT4hXFR8pKdowtKCC4Zzi_RbNm0QcVW6QaSd9tY410ycb6CRG-TxSoApFO7Bhetd6pJXvtrKpiVbcG0XYBkCtF-uit0VqsmwvW-DtFy9rh4eE7nb08vD5N5qqgQbUprnmtdQc0JESSvGC2EEozqEmugrCqYULXWBJuK15TovC4NBQ6mwkTVqqRDdLfbuwn-u4PYyrWNBppGOfBdlIRywkrOc9Kjt3u002uo5CbYtQpbefi9B4odYIKPMUAtjW1V2__ZG7GNzLD8dSz3juXecZ8b_8sdVh9P3O8S_UB--S70JuNR-geCnI_i
CitedBy_id crossref_primary_10_1002_adma_202108750
crossref_primary_10_1039_D0TA10301B
crossref_primary_10_1016_j_matlet_2024_137558
crossref_primary_10_1039_D3SU00168G
crossref_primary_10_1016_j_cclet_2022_107946
crossref_primary_10_1021_acsami_0c14979
crossref_primary_10_1021_acs_iecr_4c01178
crossref_primary_10_1016_j_cej_2024_157371
crossref_primary_10_3390_molecules29132975
crossref_primary_10_1007_s12274_023_5454_z
crossref_primary_10_1016_j_carbon_2025_120080
crossref_primary_10_1016_j_jpowsour_2024_234657
crossref_primary_10_1016_j_jclepro_2023_140209
crossref_primary_10_3390_nano10101994
crossref_primary_10_1126_science_abg7217
crossref_primary_10_1016_j_electacta_2022_139893
crossref_primary_10_1002_smll_202308109
crossref_primary_10_1002_sstr_202400433
crossref_primary_10_1002_cssc_202101837
crossref_primary_10_1002_sus2_177
crossref_primary_10_1016_j_apsusc_2023_157254
crossref_primary_10_1016_j_cej_2023_145017
crossref_primary_10_1039_D2NR03469G
crossref_primary_10_1016_j_ensm_2021_03_003
crossref_primary_10_1002_adfm_202303020
crossref_primary_10_1021_acsnano_3c07424
crossref_primary_10_1002_batt_202100403
crossref_primary_10_1021_acsami_3c07241
crossref_primary_10_1016_j_carbon_2021_04_042
crossref_primary_10_1016_j_apmt_2021_101300
crossref_primary_10_1039_D3TA00388D
crossref_primary_10_1039_D0NR08297J
crossref_primary_10_1039_D0NR09209F
crossref_primary_10_1002_ange_202418794
crossref_primary_10_1002_aenm_202300466
crossref_primary_10_1002_aenm_202301874
crossref_primary_10_1002_smll_202306262
crossref_primary_10_1002_adfm_202403574
crossref_primary_10_3390_electrochem2040041
crossref_primary_10_1002_advs_202203162
crossref_primary_10_1016_j_surfcoat_2021_127336
crossref_primary_10_1039_D1QM00071C
crossref_primary_10_1002_adfm_202423700
crossref_primary_10_1016_j_cej_2024_157197
crossref_primary_10_2139_ssrn_4118143
crossref_primary_10_1002_ppsc_202100007
crossref_primary_10_1016_j_electacta_2022_140795
crossref_primary_10_1016_j_ensm_2024_103395
crossref_primary_10_1016_j_est_2023_110314
crossref_primary_10_1016_j_rechem_2023_100800
crossref_primary_10_1016_j_enchem_2022_100069
crossref_primary_10_1016_j_cej_2021_133982
crossref_primary_10_1016_j_cej_2022_139567
crossref_primary_10_1039_D4CS00202D
crossref_primary_10_1021_acsami_2c15355
crossref_primary_10_1016_j_electacta_2021_139552
crossref_primary_10_1016_j_jcis_2023_07_199
crossref_primary_10_1021_acsanm_2c01281
crossref_primary_10_1016_j_mtener_2024_101567
crossref_primary_10_1039_D4NJ02608J
crossref_primary_10_1039_D1GC00630D
crossref_primary_10_1149_1945_7111_aceb36
crossref_primary_10_1021_acsanm_2c03749
crossref_primary_10_2139_ssrn_3982081
crossref_primary_10_1016_j_ensm_2024_103819
crossref_primary_10_1007_s11581_024_05608_z
crossref_primary_10_1002_adfm_202200796
crossref_primary_10_1002_aenm_202100775
crossref_primary_10_1021_acsanm_3c04824
crossref_primary_10_1007_s12274_022_4264_z
crossref_primary_10_1002_smll_202300431
crossref_primary_10_1016_j_cej_2023_146285
crossref_primary_10_1039_D3CP00633F
crossref_primary_10_1016_j_jelechem_2023_117427
crossref_primary_10_1002_tcr_202200125
crossref_primary_10_1016_j_jallcom_2022_166704
crossref_primary_10_1016_j_jpowsour_2025_236520
crossref_primary_10_1002_adfm_202211648
crossref_primary_10_1039_D3NA00285C
crossref_primary_10_1021_acssuschemeng_1c03879
crossref_primary_10_1021_acs_energyfuels_1c04334
crossref_primary_10_1016_j_est_2024_111666
crossref_primary_10_1002_adfm_202311925
crossref_primary_10_3390_ma16062451
crossref_primary_10_1016_j_electacta_2020_137278
crossref_primary_10_1039_D4NH00349G
crossref_primary_10_1007_s40820_023_01308_x
crossref_primary_10_1016_j_jallcom_2023_170137
crossref_primary_10_1002_chem_202403924
crossref_primary_10_1002_aenm_202202342
crossref_primary_10_1007_s40820_021_00758_5
crossref_primary_10_1002_admi_202201389
crossref_primary_10_1038_s41524_023_01047_y
crossref_primary_10_1002_adfm_202401686
crossref_primary_10_1016_j_xcrp_2022_100862
crossref_primary_10_1021_acs_energyfuels_2c00693
crossref_primary_10_3390_batteries9120569
crossref_primary_10_3390_inorganics11050182
crossref_primary_10_1002_smll_202102894
crossref_primary_10_1016_j_jallcom_2024_173507
crossref_primary_10_26599_EMD_2023_9370020
crossref_primary_10_1021_acs_nanolett_4c04106
crossref_primary_10_1016_j_est_2024_115238
crossref_primary_10_1002_advs_202004036
crossref_primary_10_1016_j_nanoen_2021_105935
crossref_primary_10_1002_smll_202303804
crossref_primary_10_1016_j_jechem_2022_09_020
crossref_primary_10_1016_j_jpowsour_2023_232965
crossref_primary_10_1021_jacs_2c04124
crossref_primary_10_1021_acsami_1c04277
crossref_primary_10_1021_acsnano_0c10664
crossref_primary_10_1021_acsami_1c14907
crossref_primary_10_1021_acsami_2c01460
crossref_primary_10_1039_D4TA02708F
crossref_primary_10_1016_j_gee_2022_08_005
crossref_primary_10_1016_j_ccr_2022_214998
crossref_primary_10_1016_j_elecom_2023_107536
crossref_primary_10_1002_adfm_202102546
crossref_primary_10_1021_acs_jpclett_2c02090
crossref_primary_10_1002_cey2_176
crossref_primary_10_1002_aenm_202102103
crossref_primary_10_1002_eem2_12436
crossref_primary_10_1088_1361_6439_ac12a3
crossref_primary_10_3390_batteries8010002
crossref_primary_10_1002_anie_202418794
crossref_primary_10_1002_adma_202404360
crossref_primary_10_1021_acsnano_2c03922
crossref_primary_10_1016_j_matlet_2021_131638
crossref_primary_10_1039_D4NR04002C
crossref_primary_10_1021_acsnano_4c06067
crossref_primary_10_1016_j_cej_2020_126836
crossref_primary_10_1021_acsami_0c18743
crossref_primary_10_1039_D2CE00595F
crossref_primary_10_1016_j_electacta_2024_144907
crossref_primary_10_1002_sstr_202100009
crossref_primary_10_1021_acsami_3c02925
Cites_doi 10.1021/acs.chemrev.8b00422
10.1038/nenergy.2015.29
10.1002/adma.201605650
10.1002/anie.201903709
10.1021/cr3001884
10.1038/s41467-018-05398-9
10.1002/adma.201503182
10.1021/acsnano.8b02219
10.1038/ncomms5105
10.1002/celc.201801115
10.1038/nenergy.2016.113
10.1002/adma.201501832
10.1002/adma.201400578
10.1039/c2ee21892e
10.1038/s41560-019-0398-y
10.1021/nn901409q
10.1038/natrevmats.2016.13
10.1126/sciadv.aaw4856
10.1016/j.mattod.2014.10.040
10.1021/acsnano.9b04725
10.1038/451652a
10.1002/aenm.201501870
10.1039/b919877f
10.1016/j.joule.2019.05.026
10.1007/s12274-013-0293-y
10.1016/j.electacta.2017.09.105
10.1021/acsnano.8b03312
10.1021/acsnano.6b07450
10.1002/aenm.201701744
10.1002/anie.201906612
10.1002/aenm.201803480
10.1002/anie.201201429
10.1002/aenm.201500289
10.1002/adma.201604318
10.1021/nl300206e
10.1002/anie.201809315
10.1002/adma.201400570
10.1039/C7CS00871F
10.1002/aenm.201802918
10.1039/C6CS00875E
10.1016/j.nanoen.2018.01.006
10.1021/cm901452z
10.1002/aenm.201601481
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acsnano.9b09928
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 4382
ExternalDocumentID 32207604
10_1021_acsnano_9b09928
i63066840
Genre Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
F5P
GNL
IH9
IHE
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
4.4
5VS
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
ID FETCH-LOGICAL-a399t-3f84bbdef822924d6359a963b70be36d569afbb20cd8f32b4f7c3e8ecd02afa73
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 02:55:43 EDT 2025
Thu Jan 02 22:59:16 EST 2025
Tue Jul 01 02:21:04 EDT 2025
Thu Apr 24 22:56:20 EDT 2025
Thu Aug 27 22:10:25 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords N-doped graphene@Si@hybrid silicate
sandwich structure
Si anode
Li-ion batteries
porous architecture
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a399t-3f84bbdef822924d6359a963b70be36d569afbb20cd8f32b4f7c3e8ecd02afa73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0145-3872
PMID 32207604
PQID 2382678842
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2382678842
pubmed_primary_32207604
crossref_citationtrail_10_1021_acsnano_9b09928
crossref_primary_10_1021_acsnano_9b09928
acs_journals_10_1021_acsnano_9b09928
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-28
PublicationDateYYYYMMDD 2020-04-28
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-28
  day: 28
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref10/cit10
  doi: 10.1021/acs.chemrev.8b00422
– ident: ref19/cit19
  doi: 10.1038/nenergy.2015.29
– ident: ref28/cit28
  doi: 10.1002/adma.201605650
– ident: ref17/cit17
  doi: 10.1002/anie.201903709
– ident: ref7/cit7
  doi: 10.1021/cr3001884
– ident: ref22/cit22
  doi: 10.1038/s41467-018-05398-9
– ident: ref36/cit36
  doi: 10.1002/adma.201503182
– ident: ref13/cit13
  doi: 10.1021/acsnano.8b02219
– ident: ref24/cit24
  doi: 10.1038/ncomms5105
– ident: ref29/cit29
  doi: 10.1002/celc.201801115
– ident: ref23/cit23
  doi: 10.1038/nenergy.2016.113
– ident: ref40/cit40
  doi: 10.1002/adma.201501832
– ident: ref25/cit25
  doi: 10.1002/adma.201400578
– ident: ref6/cit6
  doi: 10.1039/c2ee21892e
– ident: ref16/cit16
  doi: 10.1038/s41560-019-0398-y
– ident: ref20/cit20
  doi: 10.1021/nn901409q
– ident: ref4/cit4
  doi: 10.1038/natrevmats.2016.13
– ident: ref42/cit42
  doi: 10.1126/sciadv.aaw4856
– ident: ref2/cit2
  doi: 10.1016/j.mattod.2014.10.040
– ident: ref15/cit15
  doi: 10.1021/acsnano.9b04725
– ident: ref3/cit3
  doi: 10.1038/451652a
– ident: ref35/cit35
  doi: 10.1002/aenm.201501870
– ident: ref11/cit11
  doi: 10.1039/b919877f
– ident: ref43/cit43
  doi: 10.1016/j.joule.2019.05.026
– ident: ref18/cit18
  doi: 10.1007/s12274-013-0293-y
– ident: ref30/cit30
  doi: 10.1016/j.electacta.2017.09.105
– ident: ref33/cit33
  doi: 10.1021/acsnano.8b03312
– ident: ref14/cit14
  doi: 10.1021/acsnano.6b07450
– ident: ref41/cit41
  doi: 10.1002/aenm.201701744
– ident: ref31/cit31
  doi: 10.1002/anie.201906612
– ident: ref12/cit12
  doi: 10.1002/aenm.201803480
– ident: ref5/cit5
  doi: 10.1002/anie.201201429
– ident: ref26/cit26
  doi: 10.1002/aenm.201500289
– ident: ref38/cit38
  doi: 10.1002/adma.201604318
– ident: ref21/cit21
  doi: 10.1021/nl300206e
– ident: ref39/cit39
  doi: 10.1002/anie.201809315
– ident: ref37/cit37
  doi: 10.1002/adma.201400570
– ident: ref9/cit9
  doi: 10.1039/C7CS00871F
– ident: ref32/cit32
  doi: 10.1002/aenm.201802918
– ident: ref8/cit8
  doi: 10.1039/C6CS00875E
– ident: ref34/cit34
  doi: 10.1016/j.nanoen.2018.01.006
– ident: ref1/cit1
  doi: 10.1021/cm901452z
– ident: ref27/cit27
  doi: 10.1002/aenm.201601481
SSID ssj0057876
Score 2.6289473
Snippet State-of-the-art carbonaceous anodes are approaching their achievable performance limit in Li-ion batteries (LIBs). Silicon has been recognized as one of the...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4374
Title Ultrastable Silicon Anode by Three-Dimensional Nanoarchitecture Design
URI http://dx.doi.org/10.1021/acsnano.9b09928
https://www.ncbi.nlm.nih.gov/pubmed/32207604
https://www.proquest.com/docview/2382678842
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT8JAFJ4oXvTgvuCWmnDw0lqmpcuRgISY6AVIuDVvtsTYTA0tB_31vmkLooTovTNp3_Z9L2_6DSEtxgXCmlA2DwAbFCTMNkjzFwh3XYhBKbcUq35-CYYT_2namX6LRf-e4NP2A_Bcg86cmCGZodE22aEBprBhQb3RouiauAuqATI2yMgilio-axsYGOL5TxjawC1LjBkcVKez8lKa0BwteXPmBXP457pw49-vf0j2a6ZpdavQOCJbUh-TvRX9wRMymKTFDJAfslRao9cUo0JbXZ0JabEPa4xulnbfyP9X0h0WluJsdfJg9cvzH6dkMngc94Z2fbGCDchHCttTkc-YkMqovVNfIOmIATORhS6TXiA6AXqJMepyESmPMl-F3JOR5MKloCD0zkhDZ1peEIsCUKUkIqECX0gwYp8AcRRLysNO22uSFlogqRMjT8qZN20ntVmS2ixN4izckfBanNzckZFuXnC_XPBe6XJsfvRu4d8Ec8cMREDLbJ4nSFcognXk0yY5rxy_3AwLnRla-pf_-4ArsktNJ-76No2uSaOYzeUN0pWC3ZaB-gX6W-br
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xHIAD-1LWIPXAJSV10jQ5VpSqbJVQW4lbNN4kRJWgJj3A1zNO0rKpElyjeGR7xp5nPfsNQJULSWlNalv4SAcUAsw2KvMKRDgOhqi1k4tVP_T87tC7fWo8LYAzfQtDnUjJUpqT-J_qAvVL-hZjnNRCTpiGBYuwTFCEmZhuXfWne68JP7_gkemcTGBiJubzy4DJRiL9no3mQMw81XQ24HHWyfyGyUttkvGaeP-h3_ifUWzCeok7rVYRKFuwoOJtWPuiRrgDneEoGyOhRT5SVv95RDESW604kcrib9aAnK7stikGUAh5WLQxJ195CKud3wbZhWHnenDVtcsyCzYSOslsVwce51Jpo_3OPEkQJERal7zpcOX6suGTzzhnjpCBdhn3dFO4KlBCOgw1Nt09WIqTWB2AxRCZ1oryokZPKjTSn4hhECommo26W4EqzUBULpM0yhlwVo_KaYnKaalAbeqVSJRS5aZixmh-g4tZg9dCpWP-r-dTN0e0kgw9grFKJmlE4IVR6g48VoH9wv8zY7TtGQrTO_zbAM5gpTt4uI_ub3p3R7DKzBnd8WwWHMNSNp6oEwIyGT_NY_cDFufvTA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JasMwEB26QGkP3Zd0dSGHXpw6suPYx5A0dA2FJJCbGW1QGuxQO4f26zuyndCFQHs11iBpZjRPPOkJoMqFpLImtS18pA0KAWYblbkFIhwHQ9TaycWqn3r-7dC7HzVG5aUwcxeGOpGSpTQn8U1WT6QuFQbq1_Q9xjiphZxwDQuWYdWQdiauW-3-bP01IegXXDLtlQlQzAV9fhkwFUmk3yvSApiZl5vuFgznHc1PmbzWphmviY8fGo7_Hck2bJb402oVAbMDSyrehY0vqoR70B2Oszck1MjHyuq_jClWYqsVJ1JZ_N0akPOV3TGPAhSCHhYt0MlXPsLq5KdC9mHYvRm0b-3yuQUbCaVktqsDj3OptNGAZ54kKBIi5SdvOly5vmz45DvOmSNkoF3GPd0UrgqUkA5DjU33AFbiJFZHYDFEprWi-qjRkwqNBChiGISKiWaj7lagSjMQlemSRjkTzupROS1ROS0VqM08E4lSsty8nDFe3OBq3mBSqHUs_vVy5uqIMsrQJBirZJpGBGIYlfDAYxU4LGJgboyWP0Nlesd_G8AFrD13utHjXe_hBNaZ2ao7ns2CU1jJ3qbqjPBMxs_z8P0E2WHxzw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrastable+Silicon+Anode+by+Three-Dimensional+Nanoarchitecture+Design&rft.jtitle=ACS+nano&rft.au=Huang%2C+Gang&rft.au=Han%2C+Jiuhui&rft.au=Lu%2C+Zhen&rft.au=Wei%2C+Daixiu&rft.date=2020-04-28&rft.eissn=1936-086X&rft.volume=14&rft.issue=4&rft.spage=4374&rft_id=info:doi/10.1021%2Facsnano.9b09928&rft_id=info%3Apmid%2F32207604&rft.externalDocID=32207604
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon