Direct Epitaxial Synthesis of Selective Two-Dimensional Lateral Heterostructures
Two-dimensional (2D) heterostructured or alloyed monolayers composed of transition metal dichalcogenides (TMDCs) have recently emerged as promising materials with great potential for atomically thin electronic applications. However, fabrication of such artificial TMDC heterostructures with a sharp i...
Saved in:
Published in | ACS nano Vol. 13; no. 11; pp. 13047 - 13055 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
26.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Two-dimensional (2D) heterostructured or alloyed monolayers composed of transition metal dichalcogenides (TMDCs) have recently emerged as promising materials with great potential for atomically thin electronic applications. However, fabrication of such artificial TMDC heterostructures with a sharp interface and a large crystal size still remains a challenge because of the difficulty in controlling various growth parameters simultaneously during the growth process. Here, a facile synthetic protocol designed for the production of the lateral TMDC heterostructured and alloyed monolayers is presented. A chemical vapor deposition approach combined with solution-processed precursor deposition makes it possible to accurately control the sequential introduction time and the supersaturation levels of the vaporized precursors and thus reliably and exclusively produces selective and heterogeneous epitaxial growth of TMDC monolayer crystals. In addition, TMDC core/shell heterostructured (MoS2/alloy, alloy/WS2) or alloyed (Mo1–x W x S2) monolayers are also easily obtained with precisely controlled growth parameters, such as sulfur introduction timing and growth temperature. These results represent a significant step toward the development of various 2D materials with interesting properties. |
---|---|
AbstractList | Two-dimensional (2D) heterostructured or alloyed monolayers composed of transition metal dichalcogenides (TMDCs) have recently emerged as promising materials with great potential for atomically thin electronic applications. However, fabrication of such artificial TMDC heterostructures with a sharp interface and a large crystal size still remains a challenge because of the difficulty in controlling various growth parameters simultaneously during the growth process. Here, a facile synthetic protocol designed for the production of the lateral TMDC heterostructured and alloyed monolayers is presented. A chemical vapor deposition approach combined with solution-processed precursor deposition makes it possible to accurately control the sequential introduction time and the supersaturation levels of the vaporized precursors and thus reliably and exclusively produces selective and heterogeneous epitaxial growth of TMDC monolayer crystals. In addition, TMDC core/shell heterostructured (MoS2/alloy, alloy/WS2) or alloyed (Mo1–x W x S2) monolayers are also easily obtained with precisely controlled growth parameters, such as sulfur introduction timing and growth temperature. These results represent a significant step toward the development of various 2D materials with interesting properties. Two-dimensional (2D) heterostructured or alloyed monolayers composed of transition metal dichalcogenides (TMDCs) have recently emerged as promising materials with great potential for atomically thin electronic applications. However, fabrication of such artificial TMDC heterostructures with a sharp interface and a large crystal size still remains a challenge because of the difficulty in controlling various growth parameters simultaneously during the growth process. Here, a facile synthetic protocol designed for the production of the lateral TMDC heterostructured and alloyed monolayers is presented. A chemical vapor deposition approach combined with solution-processed precursor deposition makes it possible to accurately control the sequential introduction time and the supersaturation levels of the vaporized precursors and thus reliably and exclusively produces selective and heterogeneous epitaxial growth of TMDC monolayer crystals. In addition, TMDC core/shell heterostructured (MoS2/alloy, alloy/WS2) or alloyed (Mo1-xWxS2) monolayers are also easily obtained with precisely controlled growth parameters, such as sulfur introduction timing and growth temperature. These results represent a significant step toward the development of various 2D materials with interesting properties.Two-dimensional (2D) heterostructured or alloyed monolayers composed of transition metal dichalcogenides (TMDCs) have recently emerged as promising materials with great potential for atomically thin electronic applications. However, fabrication of such artificial TMDC heterostructures with a sharp interface and a large crystal size still remains a challenge because of the difficulty in controlling various growth parameters simultaneously during the growth process. Here, a facile synthetic protocol designed for the production of the lateral TMDC heterostructured and alloyed monolayers is presented. A chemical vapor deposition approach combined with solution-processed precursor deposition makes it possible to accurately control the sequential introduction time and the supersaturation levels of the vaporized precursors and thus reliably and exclusively produces selective and heterogeneous epitaxial growth of TMDC monolayer crystals. In addition, TMDC core/shell heterostructured (MoS2/alloy, alloy/WS2) or alloyed (Mo1-xWxS2) monolayers are also easily obtained with precisely controlled growth parameters, such as sulfur introduction timing and growth temperature. These results represent a significant step toward the development of various 2D materials with interesting properties. Two-dimensional (2D) heterostructured or alloyed monolayers composed of transition metal dichalcogenides (TMDCs) have recently emerged as promising materials with great potential for atomically thin electronic applications. However, fabrication of such artificial TMDC heterostructures with a sharp interface and a large crystal size still remains a challenge because of the difficulty in controlling various growth parameters simultaneously during the growth process. Here, a facile synthetic protocol designed for the production of the lateral TMDC heterostructured and alloyed monolayers is presented. A chemical vapor deposition approach combined with solution-processed precursor deposition makes it possible to accurately control the sequential introduction time and the supersaturation levels of the vaporized precursors and thus reliably and exclusively produces selective and heterogeneous epitaxial growth of TMDC monolayer crystals. In addition, TMDC core/shell heterostructured (MoS /alloy, alloy/WS ) or alloyed (Mo W S ) monolayers are also easily obtained with precisely controlled growth parameters, such as sulfur introduction timing and growth temperature. These results represent a significant step toward the development of various 2D materials with interesting properties. |
Author | Hou, Bo Jeong, Hu Young Cho, Yuljae Jang, A-Rang Park, Youngsin Cha, SeungNam Hong, John Lee, Juwon Lee, Sanghyo Sohn, Jung Inn Shin, Hyeon Suk Lee, Young-Woo Kim, Jong Min Pak, Sangyeon Morris, Stephen M |
AuthorAffiliation | Advanced Materials Division Electrical Engineering Division, Engineering Department Department of Chemistry Department of Engineering Science Division of Physics and Semiconductor Science UNIST Central Research Facilities (UCRF) School of Natural Science Ulsan National Institute of Science and Technology (UNIST) Soonchunhyang University Department of Energy Systems Department of Physics |
AuthorAffiliation_xml | – name: Department of Chemistry – name: Division of Physics and Semiconductor Science – name: School of Natural Science – name: Ulsan National Institute of Science and Technology (UNIST) – name: Department of Energy Systems – name: UNIST Central Research Facilities (UCRF) – name: Department of Physics – name: Soonchunhyang University – name: Advanced Materials Division – name: Department of Engineering Science – name: Electrical Engineering Division, Engineering Department |
Author_xml | – sequence: 1 givenname: Juwon surname: Lee fullname: Lee, Juwon organization: Department of Engineering Science – sequence: 2 givenname: Sangyeon orcidid: 0000-0003-1765-3043 surname: Pak fullname: Pak, Sangyeon organization: Department of Physics – sequence: 3 givenname: Young-Woo orcidid: 0000-0003-0777-8221 surname: Lee fullname: Lee, Young-Woo organization: Soonchunhyang University – sequence: 4 givenname: Youngsin orcidid: 0000-0002-1789-750X surname: Park fullname: Park, Youngsin organization: School of Natural Science – sequence: 5 givenname: A-Rang orcidid: 0000-0002-0758-9757 surname: Jang fullname: Jang, A-Rang organization: Advanced Materials Division – sequence: 6 givenname: John orcidid: 0000-0002-1513-8622 surname: Hong fullname: Hong, John organization: Department of Engineering Science – sequence: 7 givenname: Yuljae orcidid: 0000-0003-2976-0604 surname: Cho fullname: Cho, Yuljae organization: Electrical Engineering Division, Engineering Department – sequence: 8 givenname: Bo surname: Hou fullname: Hou, Bo organization: Electrical Engineering Division, Engineering Department – sequence: 9 givenname: Sanghyo surname: Lee fullname: Lee, Sanghyo organization: Electrical Engineering Division, Engineering Department – sequence: 10 givenname: Hu Young orcidid: 0000-0002-5550-5298 surname: Jeong fullname: Jeong, Hu Young organization: Ulsan National Institute of Science and Technology (UNIST) – sequence: 11 givenname: Hyeon Suk orcidid: 0000-0003-0495-7443 surname: Shin fullname: Shin, Hyeon Suk organization: Ulsan National Institute of Science and Technology (UNIST) – sequence: 12 givenname: Stephen M surname: Morris fullname: Morris, Stephen M organization: Department of Engineering Science – sequence: 13 givenname: SeungNam orcidid: 0000-0001-6284-8312 surname: Cha fullname: Cha, SeungNam email: chasn@skku.edu organization: Department of Physics – sequence: 14 givenname: Jung Inn orcidid: 0000-0002-3155-4327 surname: Sohn fullname: Sohn, Jung Inn email: junginn.sohn@dongguk.edu organization: Division of Physics and Semiconductor Science – sequence: 15 givenname: Jong Min surname: Kim fullname: Kim, Jong Min organization: Electrical Engineering Division, Engineering Department |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31618016$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kM9LwzAUx4NM3A89e5MeBemWNG3aHGWbThgobIK3kGWvmNE1M0nV_fdG1nkQdvo-eJ_vg_fpo05takDomuAhwQkZSeVqWZshX-EsT5Iz1COcshgX7K3zN2eki_rObXBgipxdoC4ljBSYsB56mWgLykfTnfbyW8sqWuxr_w5Ou8iU0QKqsNWfEC2_TDzRW6idNnXA5tKDDTmDkMZ52yjfWHCX6LyUlYOrNgfo9WG6HM_i-fPj0_h-HkvKuY-TcpWkGWVYcalKhjnNE1yUtMxAJirlYaQyL8JuTbjitChzUBnLFUCaYqLoAN0e7u6s-WjAebHVTkFVyRpM40RCMUt5TjkO6E2LNqstrMXO6q20e3G0EIDsAKjwibNQChVs-PCot1JXgmDxa1u0tkVrO_RG_3rH06cbd4dGWIiNaWxQ6U7SP_O5kzU |
CitedBy_id | crossref_primary_10_1002_adma_202102091 crossref_primary_10_1021_acsnano_1c02038 crossref_primary_10_1021_acsnano_1c08979 crossref_primary_10_1039_D2TA06105H crossref_primary_10_1002_smll_202312120 crossref_primary_10_1039_D1NR00455G crossref_primary_10_1021_acs_jpclett_3c02407 crossref_primary_10_1007_s11432_021_3432_6 crossref_primary_10_1002_admi_202100515 crossref_primary_10_1007_s12274_020_3160_7 crossref_primary_10_1002_advs_202205638 crossref_primary_10_1021_prechem_3c00115 crossref_primary_10_1039_D1CS01016F crossref_primary_10_1002_advs_202307196 crossref_primary_10_1016_j_susc_2024_122633 crossref_primary_10_3390_nano12172893 crossref_primary_10_1002_adfm_202101086 crossref_primary_10_1039_D2MH01207C crossref_primary_10_1007_s12274_021_3347_6 crossref_primary_10_1021_acsami_0c11456 crossref_primary_10_1063_5_0190442 crossref_primary_10_1002_adma_202304171 crossref_primary_10_1002_smll_202106600 crossref_primary_10_1007_s40820_023_01315_y crossref_primary_10_1016_j_nantod_2020_101059 crossref_primary_10_1021_acsnano_3c02411 crossref_primary_10_1016_j_jcis_2023_07_200 crossref_primary_10_1021_acs_jpcc_2c07542 crossref_primary_10_1016_j_nantod_2024_102540 crossref_primary_10_1021_acsaelm_3c01665 crossref_primary_10_1021_acsanm_1c03409 crossref_primary_10_1021_acsanm_3c00358 crossref_primary_10_1038_s43586_022_00139_1 crossref_primary_10_1007_s12274_020_2958_7 crossref_primary_10_1007_s42247_021_00219_0 crossref_primary_10_1021_acsami_1c09176 crossref_primary_10_3390_nano12091393 crossref_primary_10_1039_D4CE00462K crossref_primary_10_1021_acsomega_2c05151 crossref_primary_10_1088_1361_6528_ac952f crossref_primary_10_1021_acsnano_1c02985 crossref_primary_10_1021_acsaem_4c00189 crossref_primary_10_1021_acs_chemrev_3c00851 crossref_primary_10_1021_jacs_0c05691 crossref_primary_10_1039_D4TA03197K crossref_primary_10_1002_adma_202201630 crossref_primary_10_1002_smll_202402272 crossref_primary_10_1016_j_isci_2022_103942 crossref_primary_10_1007_s11433_021_1745_6 crossref_primary_10_1021_acsnano_2c05076 crossref_primary_10_1002_adfm_202002023 crossref_primary_10_1103_PhysRevB_103_174431 crossref_primary_10_1021_jacs_4c11363 crossref_primary_10_1002_smll_202306819 crossref_primary_10_1021_acs_jpclett_2c00618 crossref_primary_10_1002_smll_202308635 crossref_primary_10_1002_aelm_202300735 crossref_primary_10_1039_D3RA01867A crossref_primary_10_1021_acsanm_1c00890 |
Cites_doi | 10.1038/nmat3687 10.1021/acsnano.5b03188 10.1038/nmat4064 10.1002/adma.201603174 10.1126/science.aan6814 10.1021/nl5038177 10.1038/nmat3505 10.1038/ncomms7128 10.1002/anie.201502461 10.1038/nnano.2010.279 10.1021/nl903868w 10.1038/nature25155 10.1021/nl301335q 10.1021/acsnano.5b05596 10.1021/jacs.5b06643 10.1021/acs.nanolett.5b02423 10.1002/adma.201702206 10.1002/smll.201370112 10.1021/acsami.8b14408 10.1021/nl502075n 10.1039/C4CS00282B 10.1002/adma.201500846 10.1038/ncomms12512 10.1038/nnano.2014.222 10.1002/adma.201900861 10.1039/C8NR07655C 10.1021/acsnano.7b00640 10.1021/acsnano.5b06126 10.1038/nnano.2013.277 10.1002/adma.201502375 10.1021/jacs.5b03141 10.1021/nn501779y 10.1103/PhysRevB.90.115438 10.1002/adma.201505070 10.1021/acs.nanolett.7b02513 10.1038/nnano.2014.150 10.1021/nl503744f 10.1021/nn401420h 10.1063/1.122164 10.1021/nl501962c 10.1038/srep25456 10.1038/nmat4091 10.1021/acs.nanolett.6b02057 10.1103/PhysRevLett.105.136805 10.1126/science.aab4097 10.1039/c3cp55270e 10.1016/0031-8914(67)90062-6 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acsnano.9b05722 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 13055 |
ExternalDocumentID | 31618016 10_1021_acsnano_9b05722 a789353935 |
Genre | Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ F5P GNL IH9 IHE JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 4.4 5VS 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 |
ID | FETCH-LOGICAL-a399t-2fb245360c9acf60937208f3f5ea2c498f33a78acfd19c938f7ec567cee4401c3 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Fri Jul 11 05:21:08 EDT 2025 Thu Jan 02 22:59:21 EST 2025 Thu Apr 24 22:59:59 EDT 2025 Tue Jul 01 01:34:30 EDT 2025 Thu Aug 27 13:44:03 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | one-pot CVD synthesis growth parameters 2D heterostructure Mo1−x W x S2 alloy supersaturation level core−shell structure Mo1−xWxS2 alloy |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a399t-2fb245360c9acf60937208f3f5ea2c498f33a78acfd19c938f7ec567cee4401c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1765-3043 0000-0001-6284-8312 0000-0002-0758-9757 0000-0003-2976-0604 0000-0003-0777-8221 0000-0002-5550-5298 0000-0002-1789-750X 0000-0002-1513-8622 0000-0003-0495-7443 0000-0002-3155-4327 |
PMID | 31618016 |
PQID | 2306497390 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2306497390 pubmed_primary_31618016 crossref_citationtrail_10_1021_acsnano_9b05722 crossref_primary_10_1021_acsnano_9b05722 acs_journals_10_1021_acsnano_9b05722 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-26 |
PublicationDateYYYYMMDD | 2019-11-26 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-26 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref46/cit46 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref2/cit2 doi: 10.1038/nmat3687 – ident: ref33/cit33 doi: 10.1021/acsnano.5b03188 – ident: ref39/cit39 doi: 10.1038/nmat4064 – ident: ref13/cit13 doi: 10.1002/adma.201603174 – ident: ref31/cit31 doi: 10.1126/science.aan6814 – ident: ref22/cit22 doi: 10.1021/nl5038177 – ident: ref4/cit4 doi: 10.1038/nmat3505 – ident: ref42/cit42 doi: 10.1038/ncomms7128 – ident: ref23/cit23 doi: 10.1002/anie.201502461 – ident: ref1/cit1 doi: 10.1038/nnano.2010.279 – ident: ref5/cit5 doi: 10.1021/nl903868w – ident: ref30/cit30 doi: 10.1038/nature25155 – ident: ref8/cit8 doi: 10.1021/nl301335q – ident: ref20/cit20 doi: 10.1021/acsnano.5b05596 – ident: ref34/cit34 doi: 10.1021/jacs.5b06643 – ident: ref37/cit37 doi: 10.1021/acs.nanolett.5b02423 – ident: ref41/cit41 doi: 10.1002/adma.201702206 – ident: ref7/cit7 doi: 10.1002/smll.201370112 – ident: ref10/cit10 doi: 10.1021/acsami.8b14408 – ident: ref16/cit16 doi: 10.1021/nl502075n – ident: ref44/cit44 doi: 10.1039/C4CS00282B – ident: ref12/cit12 doi: 10.1002/adma.201500846 – ident: ref14/cit14 doi: 10.1038/ncomms12512 – ident: ref40/cit40 doi: 10.1038/nnano.2014.222 – ident: ref32/cit32 doi: 10.1002/adma.201900861 – ident: ref11/cit11 doi: 10.1039/C8NR07655C – ident: ref25/cit25 doi: 10.1021/acsnano.7b00640 – ident: ref21/cit21 doi: 10.1021/acsnano.5b06126 – ident: ref6/cit6 doi: 10.1038/nnano.2013.277 – ident: ref29/cit29 doi: 10.1002/adma.201502375 – ident: ref26/cit26 doi: 10.1021/jacs.5b03141 – ident: ref27/cit27 doi: 10.1021/nn501779y – ident: ref43/cit43 doi: 10.1103/PhysRevB.90.115438 – ident: ref35/cit35 doi: 10.1002/adma.201505070 – ident: ref15/cit15 doi: 10.1021/acs.nanolett.7b02513 – ident: ref17/cit17 doi: 10.1038/nnano.2014.150 – ident: ref28/cit28 doi: 10.1021/nl503744f – ident: ref45/cit45 doi: 10.1021/nn401420h – ident: ref47/cit47 doi: 10.1063/1.122164 – ident: ref18/cit18 doi: 10.1021/nl501962c – ident: ref19/cit19 doi: 10.1038/srep25456 – ident: ref24/cit24 doi: 10.1038/nmat4091 – ident: ref36/cit36 doi: 10.1021/acs.nanolett.6b02057 – ident: ref3/cit3 doi: 10.1103/PhysRevLett.105.136805 – ident: ref38/cit38 doi: 10.1126/science.aab4097 – ident: ref9/cit9 doi: 10.1039/c3cp55270e – ident: ref46/cit46 doi: 10.1016/0031-8914(67)90062-6 |
SSID | ssj0057876 |
Score | 2.5424168 |
Snippet | Two-dimensional (2D) heterostructured or alloyed monolayers composed of transition metal dichalcogenides (TMDCs) have recently emerged as promising materials... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 13047 |
Title | Direct Epitaxial Synthesis of Selective Two-Dimensional Lateral Heterostructures |
URI | http://dx.doi.org/10.1021/acsnano.9b05722 https://www.ncbi.nlm.nih.gov/pubmed/31618016 https://www.proquest.com/docview/2306497390 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La8MwDDaju2yHvR_dCw962CVd6jiOfSxdSxnbGLSF3oLjJDBWkkFa9vj1k-K0e5Sy3QKOTWLJ0ifL_kRII8LdGm58R2kIUbjmytHgZh3JJYgcSaci3Bq4fxD9Eb8d--MvsujfGXzWutamyHSWN1UE0IKBtV1nQgYYZ7U7g7nRRb0TNoEMATKgiAWLz9IA6IZM8dMNrcCWpY_pbdvTWUVJTYhHS56bs2nUNB_LxI1_f_4O2aqQJm1b1dgla0m2Rza_8Q_uk0dr8GgXS4e8gSbSwXsGiLB4Kmie0kFZIwfMIR2-5s4N1gGwHB70TuPF5Qnt42Ga3HLQziBwPyCjXnfY6TtViQVHAzKZOiyNGPc94RqlTSpchUVrZOqlfqKZ4QoePRAitMUtZZQn0yAxvgjAtXKIzIx3SGpZniXHhCqmjQxMHMe-5q7U2peujIWKPMFjQHV10oC5CKslUoRl9pu1wmqCwmqC6qQ5F0xoKppyrJYxWd3hatHhxTJ0rH71ci7pEFYRpkZ0luSzIiwDMRV4yq2TI6sCi8E8rCkAyPjkfz9wSjYAVCm8r8jEGamBCJJzAC7T6KJU2U_w8-hY |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1V5QAc2JeyGqkHLglp4iw-VqVVgLYCtZV6ixwnkRBVgpRWLF_POBubKsEtSmLL9ow9bzz2G4CmL3drqDAVxtFFoZwyhaOZVRzqoMgl6ZQvtwYGQ8ud0NupOa2BVt6FwUakWFOaBfE_2QVaV_gu5nGiMh8Rho6L7gpCEV26W-3OqFx7pfpZeRwZ_WQEExWZz68KpDUS6XdrtARiZqamtwkPVSOzEyZP6mLuq-L9B3_jf3qxBRsF7iTtXFG2oRbGO7D-hY1wF-7z5Y90ZSKRV9RLMnqLER-mjylJIjLKMubg4kjGL4lyLbMC5IwepM_lNeYZceXRmiRnpF2gG78Hk1533HGVIuGCwhGnzBU98nVqGpYmGBeRpTGZwsaJjMgMuS4ow0cDRYrfghYTzHAiOxSmZaOhpeinCWMf6nESh4dAmM6FY4sgCExONYdz09GcwGK-YdEAMV4DmjgWXjFhUi-LhestrxggrxigBqilfDxRkJbL3Bmz5QUuqwLPOV_H8l8vSoF7OKdkoITHYbJIvcwtY7bBtAYc5JpQVWbIDAOIk4_-1oFzWHXHg77XvxneHcMawi0mbzLq1gnUURzhKUKauX-WafEHQKTwuQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JasMwEBWlhdIeui_pqkIOvTh1bNmWjiELaZuGQBLIzciyDaXBDjihy9d3xlZMFwLtzdiWkDQjzRuN9IaQaoC7NUw5hpDgojDJhCHBzBqccRA5kk4FuDXw1He7Y_YwcSb6UhjehYFGZFBTlgfxcVbPwlgzDNTv4H0ik7QmAkAZFiy8Gxi0Q5er0Rwu119UQbeIJYOvDICiJPT5VQFaJJV9t0grYGZubjq7ZFw2ND9l8lJbzIOa-vjB4fjfnuyRHY0_aaNQmH2yFiUHZPsLK-EhGRTLIG1jQpE30E86fE8AJ2bPGU1jOswz58AiSUevqdHC7AAFswftSbzOPKVdPGKTFsy0C3Dnj8i40x41u4ZOvGBIwCtzw4oDizm2ayohVeyaAlPZ8NiOnUhaigl4tEG08C2sCyVsHnuRclwPDC4Df03Zx2Q9SZPolFBhScU9FYahI5nJpXS4yUNXBLbLQsB6FVKFsfD1xMn8PCZu1X09QL4eoAqpLWXkK01ejjk0pqsL3JYFZgVvx-pfb5ZC92FuYcBEJlG6yPzcPROeLcwKOSm0oazMxkwDgJfP_taBa7I5aHX83n3_8ZxsAeoSeKHRci_IOkgjugRkMw-uckX-BBLO8zw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+Epitaxial+Synthesis+of+Selective+Two-Dimensional+Lateral+Heterostructures&rft.jtitle=ACS+nano&rft.au=Lee%2C+Juwon&rft.au=Pak%2C+Sangyeon&rft.au=Lee%2C+Young-Woo&rft.au=Park%2C+Youngsin&rft.date=2019-11-26&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=13&rft.issue=11&rft.spage=13047&rft.epage=13055&rft_id=info:doi/10.1021%2Facsnano.9b05722&rft.externalDocID=a789353935 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |