Direct Epitaxial Synthesis of Selective Two-Dimensional Lateral Heterostructures

Two-dimensional (2D) heterostructured or alloyed monolayers composed of transition metal dichalcogenides (TMDCs) have recently emerged as promising materials with great potential for atomically thin electronic applications. However, fabrication of such artificial TMDC heterostructures with a sharp i...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 13; no. 11; pp. 13047 - 13055
Main Authors Lee, Juwon, Pak, Sangyeon, Lee, Young-Woo, Park, Youngsin, Jang, A-Rang, Hong, John, Cho, Yuljae, Hou, Bo, Lee, Sanghyo, Jeong, Hu Young, Shin, Hyeon Suk, Morris, Stephen M, Cha, SeungNam, Sohn, Jung Inn, Kim, Jong Min
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 26.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Two-dimensional (2D) heterostructured or alloyed monolayers composed of transition metal dichalcogenides (TMDCs) have recently emerged as promising materials with great potential for atomically thin electronic applications. However, fabrication of such artificial TMDC heterostructures with a sharp interface and a large crystal size still remains a challenge because of the difficulty in controlling various growth parameters simultaneously during the growth process. Here, a facile synthetic protocol designed for the production of the lateral TMDC heterostructured and alloyed monolayers is presented. A chemical vapor deposition approach combined with solution-processed precursor deposition makes it possible to accurately control the sequential introduction time and the supersaturation levels of the vaporized precursors and thus reliably and exclusively produces selective and heterogeneous epitaxial growth of TMDC monolayer crystals. In addition, TMDC core/shell heterostructured (MoS2/alloy, alloy/WS2) or alloyed (Mo1–x W x S2) monolayers are also easily obtained with precisely controlled growth parameters, such as sulfur introduction timing and growth temperature. These results represent a significant step toward the development of various 2D materials with interesting properties.
AbstractList Two-dimensional (2D) heterostructured or alloyed monolayers composed of transition metal dichalcogenides (TMDCs) have recently emerged as promising materials with great potential for atomically thin electronic applications. However, fabrication of such artificial TMDC heterostructures with a sharp interface and a large crystal size still remains a challenge because of the difficulty in controlling various growth parameters simultaneously during the growth process. Here, a facile synthetic protocol designed for the production of the lateral TMDC heterostructured and alloyed monolayers is presented. A chemical vapor deposition approach combined with solution-processed precursor deposition makes it possible to accurately control the sequential introduction time and the supersaturation levels of the vaporized precursors and thus reliably and exclusively produces selective and heterogeneous epitaxial growth of TMDC monolayer crystals. In addition, TMDC core/shell heterostructured (MoS2/alloy, alloy/WS2) or alloyed (Mo1–x W x S2) monolayers are also easily obtained with precisely controlled growth parameters, such as sulfur introduction timing and growth temperature. These results represent a significant step toward the development of various 2D materials with interesting properties.
Two-dimensional (2D) heterostructured or alloyed monolayers composed of transition metal dichalcogenides (TMDCs) have recently emerged as promising materials with great potential for atomically thin electronic applications. However, fabrication of such artificial TMDC heterostructures with a sharp interface and a large crystal size still remains a challenge because of the difficulty in controlling various growth parameters simultaneously during the growth process. Here, a facile synthetic protocol designed for the production of the lateral TMDC heterostructured and alloyed monolayers is presented. A chemical vapor deposition approach combined with solution-processed precursor deposition makes it possible to accurately control the sequential introduction time and the supersaturation levels of the vaporized precursors and thus reliably and exclusively produces selective and heterogeneous epitaxial growth of TMDC monolayer crystals. In addition, TMDC core/shell heterostructured (MoS2/alloy, alloy/WS2) or alloyed (Mo1-xWxS2) monolayers are also easily obtained with precisely controlled growth parameters, such as sulfur introduction timing and growth temperature. These results represent a significant step toward the development of various 2D materials with interesting properties.Two-dimensional (2D) heterostructured or alloyed monolayers composed of transition metal dichalcogenides (TMDCs) have recently emerged as promising materials with great potential for atomically thin electronic applications. However, fabrication of such artificial TMDC heterostructures with a sharp interface and a large crystal size still remains a challenge because of the difficulty in controlling various growth parameters simultaneously during the growth process. Here, a facile synthetic protocol designed for the production of the lateral TMDC heterostructured and alloyed monolayers is presented. A chemical vapor deposition approach combined with solution-processed precursor deposition makes it possible to accurately control the sequential introduction time and the supersaturation levels of the vaporized precursors and thus reliably and exclusively produces selective and heterogeneous epitaxial growth of TMDC monolayer crystals. In addition, TMDC core/shell heterostructured (MoS2/alloy, alloy/WS2) or alloyed (Mo1-xWxS2) monolayers are also easily obtained with precisely controlled growth parameters, such as sulfur introduction timing and growth temperature. These results represent a significant step toward the development of various 2D materials with interesting properties.
Two-dimensional (2D) heterostructured or alloyed monolayers composed of transition metal dichalcogenides (TMDCs) have recently emerged as promising materials with great potential for atomically thin electronic applications. However, fabrication of such artificial TMDC heterostructures with a sharp interface and a large crystal size still remains a challenge because of the difficulty in controlling various growth parameters simultaneously during the growth process. Here, a facile synthetic protocol designed for the production of the lateral TMDC heterostructured and alloyed monolayers is presented. A chemical vapor deposition approach combined with solution-processed precursor deposition makes it possible to accurately control the sequential introduction time and the supersaturation levels of the vaporized precursors and thus reliably and exclusively produces selective and heterogeneous epitaxial growth of TMDC monolayer crystals. In addition, TMDC core/shell heterostructured (MoS /alloy, alloy/WS ) or alloyed (Mo W S ) monolayers are also easily obtained with precisely controlled growth parameters, such as sulfur introduction timing and growth temperature. These results represent a significant step toward the development of various 2D materials with interesting properties.
Author Hou, Bo
Jeong, Hu Young
Cho, Yuljae
Jang, A-Rang
Park, Youngsin
Cha, SeungNam
Hong, John
Lee, Juwon
Lee, Sanghyo
Sohn, Jung Inn
Shin, Hyeon Suk
Lee, Young-Woo
Kim, Jong Min
Pak, Sangyeon
Morris, Stephen M
AuthorAffiliation Advanced Materials Division
Electrical Engineering Division, Engineering Department
Department of Chemistry
Department of Engineering Science
Division of Physics and Semiconductor Science
UNIST Central Research Facilities (UCRF)
School of Natural Science
Ulsan National Institute of Science and Technology (UNIST)
Soonchunhyang University
Department of Energy Systems
Department of Physics
AuthorAffiliation_xml – name: Department of Chemistry
– name: Division of Physics and Semiconductor Science
– name: School of Natural Science
– name: Ulsan National Institute of Science and Technology (UNIST)
– name: Department of Energy Systems
– name: UNIST Central Research Facilities (UCRF)
– name: Department of Physics
– name: Soonchunhyang University
– name: Advanced Materials Division
– name: Department of Engineering Science
– name: Electrical Engineering Division, Engineering Department
Author_xml – sequence: 1
  givenname: Juwon
  surname: Lee
  fullname: Lee, Juwon
  organization: Department of Engineering Science
– sequence: 2
  givenname: Sangyeon
  orcidid: 0000-0003-1765-3043
  surname: Pak
  fullname: Pak, Sangyeon
  organization: Department of Physics
– sequence: 3
  givenname: Young-Woo
  orcidid: 0000-0003-0777-8221
  surname: Lee
  fullname: Lee, Young-Woo
  organization: Soonchunhyang University
– sequence: 4
  givenname: Youngsin
  orcidid: 0000-0002-1789-750X
  surname: Park
  fullname: Park, Youngsin
  organization: School of Natural Science
– sequence: 5
  givenname: A-Rang
  orcidid: 0000-0002-0758-9757
  surname: Jang
  fullname: Jang, A-Rang
  organization: Advanced Materials Division
– sequence: 6
  givenname: John
  orcidid: 0000-0002-1513-8622
  surname: Hong
  fullname: Hong, John
  organization: Department of Engineering Science
– sequence: 7
  givenname: Yuljae
  orcidid: 0000-0003-2976-0604
  surname: Cho
  fullname: Cho, Yuljae
  organization: Electrical Engineering Division, Engineering Department
– sequence: 8
  givenname: Bo
  surname: Hou
  fullname: Hou, Bo
  organization: Electrical Engineering Division, Engineering Department
– sequence: 9
  givenname: Sanghyo
  surname: Lee
  fullname: Lee, Sanghyo
  organization: Electrical Engineering Division, Engineering Department
– sequence: 10
  givenname: Hu Young
  orcidid: 0000-0002-5550-5298
  surname: Jeong
  fullname: Jeong, Hu Young
  organization: Ulsan National Institute of Science and Technology (UNIST)
– sequence: 11
  givenname: Hyeon Suk
  orcidid: 0000-0003-0495-7443
  surname: Shin
  fullname: Shin, Hyeon Suk
  organization: Ulsan National Institute of Science and Technology (UNIST)
– sequence: 12
  givenname: Stephen M
  surname: Morris
  fullname: Morris, Stephen M
  organization: Department of Engineering Science
– sequence: 13
  givenname: SeungNam
  orcidid: 0000-0001-6284-8312
  surname: Cha
  fullname: Cha, SeungNam
  email: chasn@skku.edu
  organization: Department of Physics
– sequence: 14
  givenname: Jung Inn
  orcidid: 0000-0002-3155-4327
  surname: Sohn
  fullname: Sohn, Jung Inn
  email: junginn.sohn@dongguk.edu
  organization: Division of Physics and Semiconductor Science
– sequence: 15
  givenname: Jong Min
  surname: Kim
  fullname: Kim, Jong Min
  organization: Electrical Engineering Division, Engineering Department
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31618016$$D View this record in MEDLINE/PubMed
BookMark eNp1kM9LwzAUx4NM3A89e5MeBemWNG3aHGWbThgobIK3kGWvmNE1M0nV_fdG1nkQdvo-eJ_vg_fpo05takDomuAhwQkZSeVqWZshX-EsT5Iz1COcshgX7K3zN2eki_rObXBgipxdoC4ljBSYsB56mWgLykfTnfbyW8sqWuxr_w5Ou8iU0QKqsNWfEC2_TDzRW6idNnXA5tKDDTmDkMZ52yjfWHCX6LyUlYOrNgfo9WG6HM_i-fPj0_h-HkvKuY-TcpWkGWVYcalKhjnNE1yUtMxAJirlYaQyL8JuTbjitChzUBnLFUCaYqLoAN0e7u6s-WjAebHVTkFVyRpM40RCMUt5TjkO6E2LNqstrMXO6q20e3G0EIDsAKjwibNQChVs-PCot1JXgmDxa1u0tkVrO_RG_3rH06cbd4dGWIiNaWxQ6U7SP_O5kzU
CitedBy_id crossref_primary_10_1002_adma_202102091
crossref_primary_10_1021_acsnano_1c02038
crossref_primary_10_1021_acsnano_1c08979
crossref_primary_10_1039_D2TA06105H
crossref_primary_10_1002_smll_202312120
crossref_primary_10_1039_D1NR00455G
crossref_primary_10_1021_acs_jpclett_3c02407
crossref_primary_10_1007_s11432_021_3432_6
crossref_primary_10_1002_admi_202100515
crossref_primary_10_1007_s12274_020_3160_7
crossref_primary_10_1002_advs_202205638
crossref_primary_10_1021_prechem_3c00115
crossref_primary_10_1039_D1CS01016F
crossref_primary_10_1002_advs_202307196
crossref_primary_10_1016_j_susc_2024_122633
crossref_primary_10_3390_nano12172893
crossref_primary_10_1002_adfm_202101086
crossref_primary_10_1039_D2MH01207C
crossref_primary_10_1007_s12274_021_3347_6
crossref_primary_10_1021_acsami_0c11456
crossref_primary_10_1063_5_0190442
crossref_primary_10_1002_adma_202304171
crossref_primary_10_1002_smll_202106600
crossref_primary_10_1007_s40820_023_01315_y
crossref_primary_10_1016_j_nantod_2020_101059
crossref_primary_10_1021_acsnano_3c02411
crossref_primary_10_1016_j_jcis_2023_07_200
crossref_primary_10_1021_acs_jpcc_2c07542
crossref_primary_10_1016_j_nantod_2024_102540
crossref_primary_10_1021_acsaelm_3c01665
crossref_primary_10_1021_acsanm_1c03409
crossref_primary_10_1021_acsanm_3c00358
crossref_primary_10_1038_s43586_022_00139_1
crossref_primary_10_1007_s12274_020_2958_7
crossref_primary_10_1007_s42247_021_00219_0
crossref_primary_10_1021_acsami_1c09176
crossref_primary_10_3390_nano12091393
crossref_primary_10_1039_D4CE00462K
crossref_primary_10_1021_acsomega_2c05151
crossref_primary_10_1088_1361_6528_ac952f
crossref_primary_10_1021_acsnano_1c02985
crossref_primary_10_1021_acsaem_4c00189
crossref_primary_10_1021_acs_chemrev_3c00851
crossref_primary_10_1021_jacs_0c05691
crossref_primary_10_1039_D4TA03197K
crossref_primary_10_1002_adma_202201630
crossref_primary_10_1002_smll_202402272
crossref_primary_10_1016_j_isci_2022_103942
crossref_primary_10_1007_s11433_021_1745_6
crossref_primary_10_1021_acsnano_2c05076
crossref_primary_10_1002_adfm_202002023
crossref_primary_10_1103_PhysRevB_103_174431
crossref_primary_10_1021_jacs_4c11363
crossref_primary_10_1002_smll_202306819
crossref_primary_10_1021_acs_jpclett_2c00618
crossref_primary_10_1002_smll_202308635
crossref_primary_10_1002_aelm_202300735
crossref_primary_10_1039_D3RA01867A
crossref_primary_10_1021_acsanm_1c00890
Cites_doi 10.1038/nmat3687
10.1021/acsnano.5b03188
10.1038/nmat4064
10.1002/adma.201603174
10.1126/science.aan6814
10.1021/nl5038177
10.1038/nmat3505
10.1038/ncomms7128
10.1002/anie.201502461
10.1038/nnano.2010.279
10.1021/nl903868w
10.1038/nature25155
10.1021/nl301335q
10.1021/acsnano.5b05596
10.1021/jacs.5b06643
10.1021/acs.nanolett.5b02423
10.1002/adma.201702206
10.1002/smll.201370112
10.1021/acsami.8b14408
10.1021/nl502075n
10.1039/C4CS00282B
10.1002/adma.201500846
10.1038/ncomms12512
10.1038/nnano.2014.222
10.1002/adma.201900861
10.1039/C8NR07655C
10.1021/acsnano.7b00640
10.1021/acsnano.5b06126
10.1038/nnano.2013.277
10.1002/adma.201502375
10.1021/jacs.5b03141
10.1021/nn501779y
10.1103/PhysRevB.90.115438
10.1002/adma.201505070
10.1021/acs.nanolett.7b02513
10.1038/nnano.2014.150
10.1021/nl503744f
10.1021/nn401420h
10.1063/1.122164
10.1021/nl501962c
10.1038/srep25456
10.1038/nmat4091
10.1021/acs.nanolett.6b02057
10.1103/PhysRevLett.105.136805
10.1126/science.aab4097
10.1039/c3cp55270e
10.1016/0031-8914(67)90062-6
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acsnano.9b05722
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 13055
ExternalDocumentID 31618016
10_1021_acsnano_9b05722
a789353935
Genre Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
F5P
GNL
IH9
IHE
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
4.4
5VS
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
ID FETCH-LOGICAL-a399t-2fb245360c9acf60937208f3f5ea2c498f33a78acfd19c938f7ec567cee4401c3
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 05:21:08 EDT 2025
Thu Jan 02 22:59:21 EST 2025
Thu Apr 24 22:59:59 EDT 2025
Tue Jul 01 01:34:30 EDT 2025
Thu Aug 27 13:44:03 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords one-pot CVD synthesis
growth parameters
2D heterostructure
Mo1−x W x S2 alloy
supersaturation level
core−shell structure
Mo1−xWxS2 alloy
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a399t-2fb245360c9acf60937208f3f5ea2c498f33a78acfd19c938f7ec567cee4401c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1765-3043
0000-0001-6284-8312
0000-0002-0758-9757
0000-0003-2976-0604
0000-0003-0777-8221
0000-0002-5550-5298
0000-0002-1789-750X
0000-0002-1513-8622
0000-0003-0495-7443
0000-0002-3155-4327
PMID 31618016
PQID 2306497390
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2306497390
pubmed_primary_31618016
crossref_citationtrail_10_1021_acsnano_9b05722
crossref_primary_10_1021_acsnano_9b05722
acs_journals_10_1021_acsnano_9b05722
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-26
PublicationDateYYYYMMDD 2019-11-26
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-26
  day: 26
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref46/cit46
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref2/cit2
  doi: 10.1038/nmat3687
– ident: ref33/cit33
  doi: 10.1021/acsnano.5b03188
– ident: ref39/cit39
  doi: 10.1038/nmat4064
– ident: ref13/cit13
  doi: 10.1002/adma.201603174
– ident: ref31/cit31
  doi: 10.1126/science.aan6814
– ident: ref22/cit22
  doi: 10.1021/nl5038177
– ident: ref4/cit4
  doi: 10.1038/nmat3505
– ident: ref42/cit42
  doi: 10.1038/ncomms7128
– ident: ref23/cit23
  doi: 10.1002/anie.201502461
– ident: ref1/cit1
  doi: 10.1038/nnano.2010.279
– ident: ref5/cit5
  doi: 10.1021/nl903868w
– ident: ref30/cit30
  doi: 10.1038/nature25155
– ident: ref8/cit8
  doi: 10.1021/nl301335q
– ident: ref20/cit20
  doi: 10.1021/acsnano.5b05596
– ident: ref34/cit34
  doi: 10.1021/jacs.5b06643
– ident: ref37/cit37
  doi: 10.1021/acs.nanolett.5b02423
– ident: ref41/cit41
  doi: 10.1002/adma.201702206
– ident: ref7/cit7
  doi: 10.1002/smll.201370112
– ident: ref10/cit10
  doi: 10.1021/acsami.8b14408
– ident: ref16/cit16
  doi: 10.1021/nl502075n
– ident: ref44/cit44
  doi: 10.1039/C4CS00282B
– ident: ref12/cit12
  doi: 10.1002/adma.201500846
– ident: ref14/cit14
  doi: 10.1038/ncomms12512
– ident: ref40/cit40
  doi: 10.1038/nnano.2014.222
– ident: ref32/cit32
  doi: 10.1002/adma.201900861
– ident: ref11/cit11
  doi: 10.1039/C8NR07655C
– ident: ref25/cit25
  doi: 10.1021/acsnano.7b00640
– ident: ref21/cit21
  doi: 10.1021/acsnano.5b06126
– ident: ref6/cit6
  doi: 10.1038/nnano.2013.277
– ident: ref29/cit29
  doi: 10.1002/adma.201502375
– ident: ref26/cit26
  doi: 10.1021/jacs.5b03141
– ident: ref27/cit27
  doi: 10.1021/nn501779y
– ident: ref43/cit43
  doi: 10.1103/PhysRevB.90.115438
– ident: ref35/cit35
  doi: 10.1002/adma.201505070
– ident: ref15/cit15
  doi: 10.1021/acs.nanolett.7b02513
– ident: ref17/cit17
  doi: 10.1038/nnano.2014.150
– ident: ref28/cit28
  doi: 10.1021/nl503744f
– ident: ref45/cit45
  doi: 10.1021/nn401420h
– ident: ref47/cit47
  doi: 10.1063/1.122164
– ident: ref18/cit18
  doi: 10.1021/nl501962c
– ident: ref19/cit19
  doi: 10.1038/srep25456
– ident: ref24/cit24
  doi: 10.1038/nmat4091
– ident: ref36/cit36
  doi: 10.1021/acs.nanolett.6b02057
– ident: ref3/cit3
  doi: 10.1103/PhysRevLett.105.136805
– ident: ref38/cit38
  doi: 10.1126/science.aab4097
– ident: ref9/cit9
  doi: 10.1039/c3cp55270e
– ident: ref46/cit46
  doi: 10.1016/0031-8914(67)90062-6
SSID ssj0057876
Score 2.5424168
Snippet Two-dimensional (2D) heterostructured or alloyed monolayers composed of transition metal dichalcogenides (TMDCs) have recently emerged as promising materials...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 13047
Title Direct Epitaxial Synthesis of Selective Two-Dimensional Lateral Heterostructures
URI http://dx.doi.org/10.1021/acsnano.9b05722
https://www.ncbi.nlm.nih.gov/pubmed/31618016
https://www.proquest.com/docview/2306497390
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La8MwDDaju2yHvR_dCw962CVd6jiOfSxdSxnbGLSF3oLjJDBWkkFa9vj1k-K0e5Sy3QKOTWLJ0ifL_kRII8LdGm58R2kIUbjmytHgZh3JJYgcSaci3Bq4fxD9Eb8d--MvsujfGXzWutamyHSWN1UE0IKBtV1nQgYYZ7U7g7nRRb0TNoEMATKgiAWLz9IA6IZM8dMNrcCWpY_pbdvTWUVJTYhHS56bs2nUNB_LxI1_f_4O2aqQJm1b1dgla0m2Rza_8Q_uk0dr8GgXS4e8gSbSwXsGiLB4Kmie0kFZIwfMIR2-5s4N1gGwHB70TuPF5Qnt42Ga3HLQziBwPyCjXnfY6TtViQVHAzKZOiyNGPc94RqlTSpchUVrZOqlfqKZ4QoePRAitMUtZZQn0yAxvgjAtXKIzIx3SGpZniXHhCqmjQxMHMe-5q7U2peujIWKPMFjQHV10oC5CKslUoRl9pu1wmqCwmqC6qQ5F0xoKppyrJYxWd3hatHhxTJ0rH71ci7pEFYRpkZ0luSzIiwDMRV4yq2TI6sCi8E8rCkAyPjkfz9wSjYAVCm8r8jEGamBCJJzAC7T6KJU2U_w8-hY
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1V5QAc2JeyGqkHLglp4iw-VqVVgLYCtZV6ixwnkRBVgpRWLF_POBubKsEtSmLL9ow9bzz2G4CmL3drqDAVxtFFoZwyhaOZVRzqoMgl6ZQvtwYGQ8ud0NupOa2BVt6FwUakWFOaBfE_2QVaV_gu5nGiMh8Rho6L7gpCEV26W-3OqFx7pfpZeRwZ_WQEExWZz68KpDUS6XdrtARiZqamtwkPVSOzEyZP6mLuq-L9B3_jf3qxBRsF7iTtXFG2oRbGO7D-hY1wF-7z5Y90ZSKRV9RLMnqLER-mjylJIjLKMubg4kjGL4lyLbMC5IwepM_lNeYZceXRmiRnpF2gG78Hk1533HGVIuGCwhGnzBU98nVqGpYmGBeRpTGZwsaJjMgMuS4ow0cDRYrfghYTzHAiOxSmZaOhpeinCWMf6nESh4dAmM6FY4sgCExONYdz09GcwGK-YdEAMV4DmjgWXjFhUi-LhestrxggrxigBqilfDxRkJbL3Bmz5QUuqwLPOV_H8l8vSoF7OKdkoITHYbJIvcwtY7bBtAYc5JpQVWbIDAOIk4_-1oFzWHXHg77XvxneHcMawi0mbzLq1gnUURzhKUKauX-WafEHQKTwuQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JasMwEBWlhdIeui_pqkIOvTh1bNmWjiELaZuGQBLIzciyDaXBDjihy9d3xlZMFwLtzdiWkDQjzRuN9IaQaoC7NUw5hpDgojDJhCHBzBqccRA5kk4FuDXw1He7Y_YwcSb6UhjehYFGZFBTlgfxcVbPwlgzDNTv4H0ik7QmAkAZFiy8Gxi0Q5er0Rwu119UQbeIJYOvDICiJPT5VQFaJJV9t0grYGZubjq7ZFw2ND9l8lJbzIOa-vjB4fjfnuyRHY0_aaNQmH2yFiUHZPsLK-EhGRTLIG1jQpE30E86fE8AJ2bPGU1jOswz58AiSUevqdHC7AAFswftSbzOPKVdPGKTFsy0C3Dnj8i40x41u4ZOvGBIwCtzw4oDizm2ayohVeyaAlPZ8NiOnUhaigl4tEG08C2sCyVsHnuRclwPDC4Df03Zx2Q9SZPolFBhScU9FYahI5nJpXS4yUNXBLbLQsB6FVKFsfD1xMn8PCZu1X09QL4eoAqpLWXkK01ejjk0pqsL3JYFZgVvx-pfb5ZC92FuYcBEJlG6yPzcPROeLcwKOSm0oazMxkwDgJfP_taBa7I5aHX83n3_8ZxsAeoSeKHRci_IOkgjugRkMw-uckX-BBLO8zw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+Epitaxial+Synthesis+of+Selective+Two-Dimensional+Lateral+Heterostructures&rft.jtitle=ACS+nano&rft.au=Lee%2C+Juwon&rft.au=Pak%2C+Sangyeon&rft.au=Lee%2C+Young-Woo&rft.au=Park%2C+Youngsin&rft.date=2019-11-26&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=13&rft.issue=11&rft.spage=13047&rft.epage=13055&rft_id=info:doi/10.1021%2Facsnano.9b05722&rft.externalDocID=a789353935
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon