High-Performance Complementary Transistors and Medium-Scale Integrated Circuits Based on Carbon Nanotube Thin Films

Solution-derived carbon nanotube (CNT) network films with high semiconducting purity are suitable materials for the wafer-scale fabrication of field-effect transistors (FETs) and integrated circuits (ICs). However, it is challenging to realize high-performance complementary metal-oxide semiconductor...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 11; no. 4; pp. 4124 - 4132
Main Authors Yang, Yingjun, Ding, Li, Han, Jie, Zhang, Zhiyong, Peng, Lian-Mao
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 25.04.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Solution-derived carbon nanotube (CNT) network films with high semiconducting purity are suitable materials for the wafer-scale fabrication of field-effect transistors (FETs) and integrated circuits (ICs). However, it is challenging to realize high-performance complementary metal-oxide semiconductor (CMOS) FETs with high yield and stability on such CNT network films, and this difficulty hinders the development of CNT-film-based ICs. In this work, we developed a doping-free process for the fabrication of CMOS FETs based on solution-processed CNT network films, in which the polarity of the FETs was controlled using Sc or Pd as the source/drain contacts to selectively inject carriers into the channels. The fabricated top-gated CMOS FETs showed high symmetry between the characteristics of n- and p-type devices and exhibited high-performance uniformity and excellent scalability down to a gate length of 1 μm. Many common types of CMOS ICs, including typical logic gates, sequential circuits, and arithmetic units, were constructed based on CNT films, and the fabricated ICs exhibited rail-to-rail outputs because of the high noise margin of CMOS circuits. In particular, 4-bit full adders consisting of 132 CMOS FETs were realized with 100% yield, thereby demonstrating that this CMOS technology shows the potential to advance the development of medium-scale CNT-network-film-based ICs.
AbstractList Solution-derived carbon nanotube (CNT) network films with high semiconducting purity are suitable materials for the wafer-scale fabrication of field-effect transistors (FETs) and integrated circuits (ICs). However, it is challenging to realize high-performance complementary metal-oxide semiconductor (CMOS) FETs with high yield and stability on such CNT network films, and this difficulty hinders the development of CNT-film-based ICs. In this work, we developed a doping-free process for the fabrication of CMOS FETs based on solution-processed CNT network films, in which the polarity of the FETs was controlled using Sc or Pd as the source/drain contacts to selectively inject carriers into the channels. The fabricated top-gated CMOS FETs showed high symmetry between the characteristics of n- and p-type devices and exhibited high-performance uniformity and excellent scalability down to a gate length of 1 μm. Many common types of CMOS ICs, including typical logic gates, sequential circuits, and arithmetic units, were constructed based on CNT films, and the fabricated ICs exhibited rail-to-rail outputs because of the high noise margin of CMOS circuits. In particular, 4-bit full adders consisting of 132 CMOS FETs were realized with 100% yield, thereby demonstrating that this CMOS technology shows the potential to advance the development of medium-scale CNT-network-film-based ICs.
Solution-derived carbon nanotube (CNT) network films with high semiconducting purity are suitable materials for the wafer-scale fabrication of field-effect transistors (FETs) and integrated circuits (ICs). However, it is challenging to realize high-performance complementary metal-oxide semiconductor (CMOS) FETs with high yield and stability on such CNT network films, and this difficulty hinders the development of CNT-film-based ICs. In this work, we developed a doping-free process for the fabrication of CMOS FETs based on solution-processed CNT network films, in which the polarity of the FETs was controlled using Sc or Pd as the source/drain contacts to selectively inject carriers into the channels. The fabricated top-gated CMOS FETs showed high symmetry between the characteristics of n- and p-type devices and exhibited high-performance uniformity and excellent scalability down to a gate length of 1 μm. Many common types of CMOS ICs, including typical logic gates, sequential circuits, and arithmetic units, were constructed based on CNT films, and the fabricated ICs exhibited rail-to-rail outputs because of the high noise margin of CMOS circuits. In particular, 4-bit full adders consisting of 132 CMOS FETs were realized with 100% yield, thereby demonstrating that this CMOS technology shows the potential to advance the development of medium-scale CNT-network-film-based ICs.Solution-derived carbon nanotube (CNT) network films with high semiconducting purity are suitable materials for the wafer-scale fabrication of field-effect transistors (FETs) and integrated circuits (ICs). However, it is challenging to realize high-performance complementary metal-oxide semiconductor (CMOS) FETs with high yield and stability on such CNT network films, and this difficulty hinders the development of CNT-film-based ICs. In this work, we developed a doping-free process for the fabrication of CMOS FETs based on solution-processed CNT network films, in which the polarity of the FETs was controlled using Sc or Pd as the source/drain contacts to selectively inject carriers into the channels. The fabricated top-gated CMOS FETs showed high symmetry between the characteristics of n- and p-type devices and exhibited high-performance uniformity and excellent scalability down to a gate length of 1 μm. Many common types of CMOS ICs, including typical logic gates, sequential circuits, and arithmetic units, were constructed based on CNT films, and the fabricated ICs exhibited rail-to-rail outputs because of the high noise margin of CMOS circuits. In particular, 4-bit full adders consisting of 132 CMOS FETs were realized with 100% yield, thereby demonstrating that this CMOS technology shows the potential to advance the development of medium-scale CNT-network-film-based ICs.
Author Yang, Yingjun
Peng, Lian-Mao
Ding, Li
Han, Jie
Zhang, Zhiyong
AuthorAffiliation Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics
AuthorAffiliation_xml – name: Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics
Author_xml – sequence: 1
  givenname: Yingjun
  surname: Yang
  fullname: Yang, Yingjun
– sequence: 2
  givenname: Li
  surname: Ding
  fullname: Ding, Li
– sequence: 3
  givenname: Jie
  surname: Han
  fullname: Han, Jie
– sequence: 4
  givenname: Zhiyong
  orcidid: 0000-0003-1622-3447
  surname: Zhang
  fullname: Zhang, Zhiyong
  email: zyzhang@pku.edu.cn
– sequence: 5
  givenname: Lian-Mao
  surname: Peng
  fullname: Peng, Lian-Mao
  email: lmpeng@pku.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28333433$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1P3DAQxS1EVT7aM7fKx0pVwI43tnOkUfmQoK3UReIWjZ1ZMErsxXYO_PcY7cKhEvgyY_n3RuP3DsiuDx4JOeLsmLOan4BNHnw4VoYxLfkO2eetkFXpb3ff-obvkYOUHhhrlFbyM9mrtRBiIcQ-SRfu7r76i3EV4gTeIu3CtB5xQp8hPtFlBJ9cyiEmCn6g1zi4ear-WRiRXvqMdxEyDrRz0c4uJ_oTUrkGTzuIppTfZb08G6TLe-fpmRun9IV8WsGY8Ou2HpKbs1_L7qK6-nN-2Z1eVSDaNle8UXYly7ENtrZlUikGRtWwsFppYK2sBzuAYY2RBoxo9QIlAK8tt7ZmWhyS75u56xgeZ0y5n1yyOI7gMcyp51rzWnKl24J-26KzmXDo19FN5fv9q1EFONkANoaUIq7eEM76lyj6bRT9NoqiaP5TWJchu-BzBDd-oPux0ZWH_iHM0ReP3qWfAczWnzQ
CitedBy_id crossref_primary_10_1016_j_apsusc_2019_144397
crossref_primary_10_1038_s41928_019_0330_2
crossref_primary_10_3390_nano14050450
crossref_primary_10_1007_s12274_021_3567_9
crossref_primary_10_1038_s41467_021_26230_x
crossref_primary_10_1007_s12274_019_2436_2
crossref_primary_10_1016_j_carbon_2023_118718
crossref_primary_10_1002_smll_202204537
crossref_primary_10_1016_j_colsurfa_2023_131081
crossref_primary_10_1021_acs_nanolett_4c02518
crossref_primary_10_1007_s00034_018_0981_7
crossref_primary_10_1021_acsnano_0c06181
crossref_primary_10_1039_C7NR08676H
crossref_primary_10_1063_1_5139085
crossref_primary_10_1016_j_carbon_2019_10_025
crossref_primary_10_1021_acsnano_0c06619
crossref_primary_10_1021_acs_chemrev_3c00791
crossref_primary_10_1038_s41928_018_0056_6
crossref_primary_10_1021_acsnano_8b04208
crossref_primary_10_1038_s41596_023_00870_3
crossref_primary_10_1109_JSSC_2018_2870560
crossref_primary_10_1126_sciadv_adl1636
crossref_primary_10_1021_acsami_8b21325
crossref_primary_10_1063_1_5021274
crossref_primary_10_1038_s41928_017_0003_y
crossref_primary_10_1088_2399_1984_abf6b1
crossref_primary_10_1039_C9RA02855B
crossref_primary_10_1021_acsnano_0c02139
crossref_primary_10_1021_acsnano_7b09145
crossref_primary_10_1109_TED_2018_2887270
crossref_primary_10_1016_j_device_2024_100509
crossref_primary_10_1021_acsaelm_0c00957
crossref_primary_10_1039_C8NR08259F
crossref_primary_10_1007_s40820_021_00721_4
crossref_primary_10_1002_adfm_202109254
crossref_primary_10_1021_acsami_4c11320
crossref_primary_10_1021_acsaelm_1c00308
crossref_primary_10_1021_acsnano_8b02778
crossref_primary_10_1021_acsami_1c23134
crossref_primary_10_1021_acsnano_9b03699
crossref_primary_10_1002_aelm_201800514
crossref_primary_10_1039_D2NR01498J
crossref_primary_10_1039_C8RA01447G
crossref_primary_10_1002_advs_202200054
crossref_primary_10_1039_C8NR01358F
crossref_primary_10_1002_aelm_201900122
crossref_primary_10_1021_acsnano_8b09488
crossref_primary_10_1002_aelm_202400660
crossref_primary_10_1002_aelm_202200528
crossref_primary_10_1063_5_0225284
crossref_primary_10_1021_acsnano_0c05554
crossref_primary_10_1007_s11432_019_9918_4
crossref_primary_10_1021_accountsmr_0c00020
crossref_primary_10_1021_acsnano_2c10007
crossref_primary_10_1021_acsnano_3c05753
crossref_primary_10_1002_adma_202403743
crossref_primary_10_1021_acsnano_3c06280
crossref_primary_10_3390_bios13030326
crossref_primary_10_1002_aisy_202100198
crossref_primary_10_1007_s12274_022_4259_9
crossref_primary_10_3390_polym12071548
crossref_primary_10_1002_adfm_201808574
crossref_primary_10_1021_acsnano_0c03523
crossref_primary_10_1021_acsnano_4c08323
crossref_primary_10_1088_1361_6528_aafbbe
crossref_primary_10_1016_j_sse_2017_10_022
crossref_primary_10_1063_1_5039967
crossref_primary_10_1002_adma_201800750
crossref_primary_10_3390_electronics12244969
crossref_primary_10_1021_acsnano_3c02739
crossref_primary_10_1016_j_chip_2023_100064
crossref_primary_10_7498_aps_71_20212076
crossref_primary_10_1016_j_carbon_2025_120154
crossref_primary_10_1021_acsnano_9b09761
crossref_primary_10_1039_C9NR10690A
crossref_primary_10_1126_sciadv_adt1909
crossref_primary_10_1002_adma_201707068
crossref_primary_10_1007_s41061_017_0160_5
crossref_primary_10_1126_science_aba5980
crossref_primary_10_1021_acsnano_8b02061
crossref_primary_10_1063_5_0087868
crossref_primary_10_1007_s12274_023_5678_y
crossref_primary_10_1021_acs_macromol_1c01842
crossref_primary_10_1021_acs_jpcc_8b04302
crossref_primary_10_1002_aelm_202100202
crossref_primary_10_1021_acsnano_7b04292
crossref_primary_10_1002_inf2_12420
crossref_primary_10_1007_s00604_019_3393_x
crossref_primary_10_1039_C8TC02280A
crossref_primary_10_1088_2399_1984_ab5f20
crossref_primary_10_1021_acsami_1c07782
crossref_primary_10_1039_D0NR06231F
crossref_primary_10_1063_1_4994114
crossref_primary_10_1021_acs_chemmater_8b00701
crossref_primary_10_1038_s41928_018_0038_8
crossref_primary_10_1088_1361_6528_ac9392
crossref_primary_10_1073_pnas_2111790118
crossref_primary_10_1002_advs_202102860
crossref_primary_10_1002_aelm_202200442
crossref_primary_10_1063_5_0245016
crossref_primary_10_1007_s12598_024_02976_3
crossref_primary_10_1021_acsaelm_3c00613
crossref_primary_10_1109_JPROC_2018_2882603
crossref_primary_10_1021_acsnano_1c04194
crossref_primary_10_1007_s11814_019_0244_8
crossref_primary_10_1002_aelm_202100751
crossref_primary_10_1007_s11432_021_3271_8
crossref_primary_10_1021_acsami_7b07184
crossref_primary_10_1016_j_compositesb_2023_110650
crossref_primary_10_1002_admi_201900983
crossref_primary_10_1109_TED_2024_3379152
crossref_primary_10_1016_j_mattod_2024_07_008
crossref_primary_10_1109_LED_2024_3368114
crossref_primary_10_1002_adma_201905654
crossref_primary_10_1109_TNANO_2019_2902739
crossref_primary_10_1002_adfm_202212722
crossref_primary_10_1021_acsami_2c07158
crossref_primary_10_1002_advs_202001778
crossref_primary_10_1002_aelm_201900034
crossref_primary_10_1007_s12274_018_2025_9
crossref_primary_10_1021_acsnano_4c03989
crossref_primary_10_1002_advs_201700965
crossref_primary_10_1002_aelm_201900313
crossref_primary_10_1021_acsnano_7b07665
crossref_primary_10_1021_acs_nanolett_8b03818
crossref_primary_10_3389_frcrb_2023_1288912
crossref_primary_10_1088_1361_6528_abac31
crossref_primary_10_1002_aelm_202101314
crossref_primary_10_1007_s40097_020_00378_2
crossref_primary_10_1016_j_mejo_2020_104774
crossref_primary_10_1016_j_mseb_2022_115628
Cites_doi 10.1039/c3nr33560g
10.1038/nature07110
10.1021/nl5001604
10.1038/nature12502
10.1021/nl0717107
10.1021/nl902522f
10.1021/nn2004298
10.1021/nn901079p
10.1021/acs.nanolett.6b01393
10.1016/j.physe.2011.03.020
10.1021/nl402478p
10.1038/nnano.2011.1
10.1021/nn203771u
10.1073/pnas.1320045111
10.1109/3CA.2010.5533748
10.1016/j.mattod.2014.07.008
10.1002/smll.201402528
10.1039/C5NR05036G
10.1126/science.288.5465.494
10.1021/nn503627h
10.1021/nl5016014
10.1109/9780470547106
10.1021/nl5037098
10.1021/nl803066v
10.1021/acsnano.5b06726
10.1002/smll.201201237
10.1143/APEX.3.105102
10.1007/s12274-013-0330-x
10.1038/ncomms3302
10.1126/sciadv.1601240
10.1063/1.4885761
10.1038/nnano.2015.197
10.1126/science.aaj1628
10.1021/nn200270e
10.1038/ncomms5097
10.1021/acs.nanolett.6b02046
10.1038/ncomms1545
10.1021/nn300320j
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acsnano.7b00861
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 4132
ExternalDocumentID 28333433
10_1021_acsnano_7b00861
a823235536
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
4.4
5VS
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
ID FETCH-LOGICAL-a399t-157cf6666c5e9c906770ab72a4c878a0962dcdab05b6bab3984e6aa12c1cc2083
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 03:19:46 EDT 2025
Mon Jul 21 06:05:32 EDT 2025
Tue Jul 01 01:34:07 EDT 2025
Thu Apr 24 23:00:49 EDT 2025
Thu Aug 27 13:42:36 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords carbon nanotube
complementary metal-oxide semiconductor
field-effect transistors
medium-scale integrated circuits
network film
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a399t-157cf6666c5e9c906770ab72a4c878a0962dcdab05b6bab3984e6aa12c1cc2083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1622-3447
PMID 28333433
PQID 1881261789
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1881261789
pubmed_primary_28333433
crossref_primary_10_1021_acsnano_7b00861
crossref_citationtrail_10_1021_acsnano_7b00861
acs_journals_10_1021_acsnano_7b00861
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-04-25
PublicationDateYYYYMMDD 2017-04-25
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-25
  day: 25
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
Wakerly J. F. (ref39/cit39) 2000
ref32/cit32
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref20/cit20
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
Baker R. J. (ref17/cit17) 2008
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref3/cit3
  doi: 10.1039/c3nr33560g
– ident: ref12/cit12
  doi: 10.1038/nature07110
– ident: ref33/cit33
  doi: 10.1021/nl5001604
– ident: ref13/cit13
  doi: 10.1038/nature12502
– ident: ref30/cit30
  doi: 10.1021/nl0717107
– ident: ref6/cit6
  doi: 10.1021/nl902522f
– ident: ref22/cit22
  doi: 10.1021/nn2004298
– ident: ref31/cit31
  doi: 10.1021/nn901079p
– ident: ref20/cit20
  doi: 10.1021/acs.nanolett.6b01393
– ident: ref35/cit35
  doi: 10.1016/j.physe.2011.03.020
– ident: ref19/cit19
  doi: 10.1021/nl402478p
– ident: ref14/cit14
  doi: 10.1038/nnano.2011.1
– ident: ref7/cit7
  doi: 10.1021/nn203771u
– ident: ref21/cit21
  doi: 10.1073/pnas.1320045111
– ident: ref36/cit36
  doi: 10.1109/3CA.2010.5533748
– ident: ref2/cit2
  doi: 10.1016/j.mattod.2014.07.008
– ident: ref23/cit23
  doi: 10.1002/smll.201402528
– ident: ref25/cit25
  doi: 10.1039/C5NR05036G
– ident: ref37/cit37
  doi: 10.1126/science.288.5465.494
– ident: ref1/cit1
  doi: 10.1021/nn503627h
– ident: ref10/cit10
  doi: 10.1021/nl5016014
– volume-title: CMOS: Circuit Design, Layout, and Simulation
  year: 2008
  ident: ref17/cit17
  doi: 10.1109/9780470547106
– ident: ref24/cit24
  doi: 10.1021/nl5037098
– ident: ref29/cit29
  doi: 10.1021/nl803066v
– ident: ref27/cit27
  doi: 10.1021/acsnano.5b06726
– ident: ref26/cit26
  doi: 10.1002/smll.201201237
– ident: ref28/cit28
  doi: 10.1143/APEX.3.105102
– volume-title: Digital Design: Principles and Practices
  year: 2000
  ident: ref39/cit39
– ident: ref38/cit38
  doi: 10.1007/s12274-013-0330-x
– ident: ref15/cit15
  doi: 10.1038/ncomms3302
– ident: ref8/cit8
  doi: 10.1126/sciadv.1601240
– ident: ref4/cit4
  doi: 10.1063/1.4885761
– ident: ref16/cit16
  doi: 10.1038/nnano.2015.197
– ident: ref34/cit34
  doi: 10.1126/science.aaj1628
– ident: ref18/cit18
  doi: 10.1021/nn200270e
– ident: ref9/cit9
  doi: 10.1038/ncomms5097
– ident: ref11/cit11
  doi: 10.1021/acs.nanolett.6b02046
– ident: ref5/cit5
  doi: 10.1038/ncomms1545
– ident: ref32/cit32
  doi: 10.1021/nn300320j
SSID ssj0057876
Score 2.56849
Snippet Solution-derived carbon nanotube (CNT) network films with high semiconducting purity are suitable materials for the wafer-scale fabrication of field-effect...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4124
Title High-Performance Complementary Transistors and Medium-Scale Integrated Circuits Based on Carbon Nanotube Thin Films
URI http://dx.doi.org/10.1021/acsnano.7b00861
https://www.ncbi.nlm.nih.gov/pubmed/28333433
https://www.proquest.com/docview/1881261789
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF6kXvTg-1FfrNCDl63JPpLmqMVSBUVQwVvYV6DYJtIkB_31ziZpfVH0lByyy2Z2duYbZuZbhDoJgPAI7B4JTegRnjBLIuZLkhghdGAik3iud_j2Lhg-8Ztn8fxJFv0zg0_9c6nzVKZZN1QOfkOgs0wDOMIOBfUfZkbX6V1QJ5AhQAYUMWfx-TWBc0M6_-6GFmDLyscM1uvqrLyiJnSlJS_dslBd_f6buPHv5W-gtQZp4otaNTbRkk230OoX_sFtlLsqD3L_2TuAnXloCsqnb7hyZBWPSI5larDL6pQT8gD7avH1jGjC4P5oqstRkeNL8IkGZynuy6mCB9jurCiVxe56UDwYjSf5DnoaXD32h6S5hYFIAC8F8UWoEwhyAi1spCPHOOdJFVLJdS_sSQiBqNFGKk-oQEnFoh63gZQ-1b7WFBDeLmqlWWr3EbaBYWAxbAg4i3OIlSJh4U1xBh7SJKKNOiCuuDlFeVwlyKkfNzKMGxm2UXe2d7FumMzdhRrjxQPO5gNeaxKPxZ-ezpQhhoPmsicytVkJi-kBFnINlVEb7dVaMp8MMBpjnLGD__3AIVqhDh14nFBxhFrFtLTHgG0KdVJp9QfAfPSd
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8heBg8jI2vdTDmSTzw4pLEdtI8QrWqHQWBAIm3yF-RKkqCmuSB_fWc06RsTJXGU6Iotuzz-e53Ot_PAEcpgvAY7R6NTORRnjJLY-ZLmhohdGhik3qudvjiMhze8V_34n4FvLYWBgdRYE9FncR_ZRfwT_BbJrO8GymHwjHeWUMoEjidPu3ftLbXqV84zyNjnIxgYkHm808Hzhvp4m9vtARi1q5msAnXi0HWJ0weulWpuvr3G_7G98ziE3xscCc5nSvKZ1ix2RZs_MFGuA2FO_NBr14rCYgzFs3x8tkzqd1azSpSEJkZ4nI81SO9wVW2ZNTSThjSn8x0NSkLcoYe0pA8I305U_hAS56XlbLEXRZKBpPpY7EDd4Oft_0hbe5koBKhTEl9EekUQ55QCxvr2PHPeVJFgeS6F_UkBkSB0UYqT6hQScXiHrehlH6gfa0DxHu7sJrlmf0CxIaGof2wEaIuzjFyioXFN8UZ-kuTig4cobiSZk8VSZ0uD_ykkWHSyLAD3XYJE93wmrvrNabLGxwvGjzNKT2W__qj1YkEt53LpcjM5hUOpofIyJVXxh3YmyvLojNEbIxxxr7-3wS-w4fh7cU4GY8uz_dhPXC4weM0EAewWs4q-w1RT6kOa0V_AXLk_P4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwELYQSGj3wGMfUJ5G4rAXd5PYTpojFCpgASGxlbhFfkWqgAQ1yQF-PTOpW9hdVVpOiaLYssfjmW80ns-EHOYAwlOweyyxScBEzh1LeahYbqU0sU1tHmDt8NV1fDYUF3fyzheFYS0MDKKCnqo2iY-7-snmnmEg_AnfC1WU3UQjEoeYZwmTdqjXR_3bqf1FFYwnuWSIlQFQzAh9_ukAPZKp_vRIc2Bm624Gq2Q4G2h7yuS-29S6a17-4nD86EzWyIrHn_RoojDrZMEVX8jnd6yEX0mFZz_YzVtFAUWj4Y-Zj59p695adpGKqsJSzPU0j-wWVtvR8yn9hKX90dg0o7qix-ApLS0L2ldjDQ-w6GXdaEfx0lA6GD08Vt_IcHD6u3_G_N0MTAGkqVkoE5ND6BMb6VKTIg9doHQSKWF6SU9BYBRZY5UOpI610jztCRcrFUYmNCYC3PedLBZl4TYJdbHlYEdcAuhLCIigUungTQsOftPmskMOQVyZ31tV1qbNozDzMsy8DDukO13GzHh-c7xm42F-gx-zBk8Tao_5vx5M9SKD7Yc5FVW4soHB9AAhYZll2iEbE4WZdQbIjXPB-db_TWCfLN-cDLLL8-tf2-RThPAhECySO2SxHjduF8BPrfdaXX8Fpnn_gQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Performance+Complementary+Transistors+and+Medium-Scale+Integrated+Circuits+Based+on+Carbon+Nanotube+Thin+Films&rft.jtitle=ACS+nano&rft.au=Yang%2C+Yingjun&rft.au=Ding%2C+Li&rft.au=Han%2C+Jie&rft.au=Zhang%2C+Zhiyong&rft.date=2017-04-25&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=11&rft.issue=4&rft.spage=4124&rft.epage=4132&rft_id=info:doi/10.1021%2Facsnano.7b00861&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsnano_7b00861
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon