High-Performance Complementary Transistors and Medium-Scale Integrated Circuits Based on Carbon Nanotube Thin Films
Solution-derived carbon nanotube (CNT) network films with high semiconducting purity are suitable materials for the wafer-scale fabrication of field-effect transistors (FETs) and integrated circuits (ICs). However, it is challenging to realize high-performance complementary metal-oxide semiconductor...
Saved in:
Published in | ACS nano Vol. 11; no. 4; pp. 4124 - 4132 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
25.04.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Solution-derived carbon nanotube (CNT) network films with high semiconducting purity are suitable materials for the wafer-scale fabrication of field-effect transistors (FETs) and integrated circuits (ICs). However, it is challenging to realize high-performance complementary metal-oxide semiconductor (CMOS) FETs with high yield and stability on such CNT network films, and this difficulty hinders the development of CNT-film-based ICs. In this work, we developed a doping-free process for the fabrication of CMOS FETs based on solution-processed CNT network films, in which the polarity of the FETs was controlled using Sc or Pd as the source/drain contacts to selectively inject carriers into the channels. The fabricated top-gated CMOS FETs showed high symmetry between the characteristics of n- and p-type devices and exhibited high-performance uniformity and excellent scalability down to a gate length of 1 μm. Many common types of CMOS ICs, including typical logic gates, sequential circuits, and arithmetic units, were constructed based on CNT films, and the fabricated ICs exhibited rail-to-rail outputs because of the high noise margin of CMOS circuits. In particular, 4-bit full adders consisting of 132 CMOS FETs were realized with 100% yield, thereby demonstrating that this CMOS technology shows the potential to advance the development of medium-scale CNT-network-film-based ICs. |
---|---|
AbstractList | Solution-derived carbon nanotube (CNT) network films with high semiconducting purity are suitable materials for the wafer-scale fabrication of field-effect transistors (FETs) and integrated circuits (ICs). However, it is challenging to realize high-performance complementary metal-oxide semiconductor (CMOS) FETs with high yield and stability on such CNT network films, and this difficulty hinders the development of CNT-film-based ICs. In this work, we developed a doping-free process for the fabrication of CMOS FETs based on solution-processed CNT network films, in which the polarity of the FETs was controlled using Sc or Pd as the source/drain contacts to selectively inject carriers into the channels. The fabricated top-gated CMOS FETs showed high symmetry between the characteristics of n- and p-type devices and exhibited high-performance uniformity and excellent scalability down to a gate length of 1 μm. Many common types of CMOS ICs, including typical logic gates, sequential circuits, and arithmetic units, were constructed based on CNT films, and the fabricated ICs exhibited rail-to-rail outputs because of the high noise margin of CMOS circuits. In particular, 4-bit full adders consisting of 132 CMOS FETs were realized with 100% yield, thereby demonstrating that this CMOS technology shows the potential to advance the development of medium-scale CNT-network-film-based ICs. Solution-derived carbon nanotube (CNT) network films with high semiconducting purity are suitable materials for the wafer-scale fabrication of field-effect transistors (FETs) and integrated circuits (ICs). However, it is challenging to realize high-performance complementary metal-oxide semiconductor (CMOS) FETs with high yield and stability on such CNT network films, and this difficulty hinders the development of CNT-film-based ICs. In this work, we developed a doping-free process for the fabrication of CMOS FETs based on solution-processed CNT network films, in which the polarity of the FETs was controlled using Sc or Pd as the source/drain contacts to selectively inject carriers into the channels. The fabricated top-gated CMOS FETs showed high symmetry between the characteristics of n- and p-type devices and exhibited high-performance uniformity and excellent scalability down to a gate length of 1 μm. Many common types of CMOS ICs, including typical logic gates, sequential circuits, and arithmetic units, were constructed based on CNT films, and the fabricated ICs exhibited rail-to-rail outputs because of the high noise margin of CMOS circuits. In particular, 4-bit full adders consisting of 132 CMOS FETs were realized with 100% yield, thereby demonstrating that this CMOS technology shows the potential to advance the development of medium-scale CNT-network-film-based ICs.Solution-derived carbon nanotube (CNT) network films with high semiconducting purity are suitable materials for the wafer-scale fabrication of field-effect transistors (FETs) and integrated circuits (ICs). However, it is challenging to realize high-performance complementary metal-oxide semiconductor (CMOS) FETs with high yield and stability on such CNT network films, and this difficulty hinders the development of CNT-film-based ICs. In this work, we developed a doping-free process for the fabrication of CMOS FETs based on solution-processed CNT network films, in which the polarity of the FETs was controlled using Sc or Pd as the source/drain contacts to selectively inject carriers into the channels. The fabricated top-gated CMOS FETs showed high symmetry between the characteristics of n- and p-type devices and exhibited high-performance uniformity and excellent scalability down to a gate length of 1 μm. Many common types of CMOS ICs, including typical logic gates, sequential circuits, and arithmetic units, were constructed based on CNT films, and the fabricated ICs exhibited rail-to-rail outputs because of the high noise margin of CMOS circuits. In particular, 4-bit full adders consisting of 132 CMOS FETs were realized with 100% yield, thereby demonstrating that this CMOS technology shows the potential to advance the development of medium-scale CNT-network-film-based ICs. |
Author | Yang, Yingjun Peng, Lian-Mao Ding, Li Han, Jie Zhang, Zhiyong |
AuthorAffiliation | Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics |
AuthorAffiliation_xml | – name: Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics |
Author_xml | – sequence: 1 givenname: Yingjun surname: Yang fullname: Yang, Yingjun – sequence: 2 givenname: Li surname: Ding fullname: Ding, Li – sequence: 3 givenname: Jie surname: Han fullname: Han, Jie – sequence: 4 givenname: Zhiyong orcidid: 0000-0003-1622-3447 surname: Zhang fullname: Zhang, Zhiyong email: zyzhang@pku.edu.cn – sequence: 5 givenname: Lian-Mao surname: Peng fullname: Peng, Lian-Mao email: lmpeng@pku.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28333433$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1P3DAQxS1EVT7aM7fKx0pVwI43tnOkUfmQoK3UReIWjZ1ZMErsxXYO_PcY7cKhEvgyY_n3RuP3DsiuDx4JOeLsmLOan4BNHnw4VoYxLfkO2eetkFXpb3ff-obvkYOUHhhrlFbyM9mrtRBiIcQ-SRfu7r76i3EV4gTeIu3CtB5xQp8hPtFlBJ9cyiEmCn6g1zi4ear-WRiRXvqMdxEyDrRz0c4uJ_oTUrkGTzuIppTfZb08G6TLe-fpmRun9IV8WsGY8Ou2HpKbs1_L7qK6-nN-2Z1eVSDaNle8UXYly7ENtrZlUikGRtWwsFppYK2sBzuAYY2RBoxo9QIlAK8tt7ZmWhyS75u56xgeZ0y5n1yyOI7gMcyp51rzWnKl24J-26KzmXDo19FN5fv9q1EFONkANoaUIq7eEM76lyj6bRT9NoqiaP5TWJchu-BzBDd-oPux0ZWH_iHM0ReP3qWfAczWnzQ |
CitedBy_id | crossref_primary_10_1016_j_apsusc_2019_144397 crossref_primary_10_1038_s41928_019_0330_2 crossref_primary_10_3390_nano14050450 crossref_primary_10_1007_s12274_021_3567_9 crossref_primary_10_1038_s41467_021_26230_x crossref_primary_10_1007_s12274_019_2436_2 crossref_primary_10_1016_j_carbon_2023_118718 crossref_primary_10_1002_smll_202204537 crossref_primary_10_1016_j_colsurfa_2023_131081 crossref_primary_10_1021_acs_nanolett_4c02518 crossref_primary_10_1007_s00034_018_0981_7 crossref_primary_10_1021_acsnano_0c06181 crossref_primary_10_1039_C7NR08676H crossref_primary_10_1063_1_5139085 crossref_primary_10_1016_j_carbon_2019_10_025 crossref_primary_10_1021_acsnano_0c06619 crossref_primary_10_1021_acs_chemrev_3c00791 crossref_primary_10_1038_s41928_018_0056_6 crossref_primary_10_1021_acsnano_8b04208 crossref_primary_10_1038_s41596_023_00870_3 crossref_primary_10_1109_JSSC_2018_2870560 crossref_primary_10_1126_sciadv_adl1636 crossref_primary_10_1021_acsami_8b21325 crossref_primary_10_1063_1_5021274 crossref_primary_10_1038_s41928_017_0003_y crossref_primary_10_1088_2399_1984_abf6b1 crossref_primary_10_1039_C9RA02855B crossref_primary_10_1021_acsnano_0c02139 crossref_primary_10_1021_acsnano_7b09145 crossref_primary_10_1109_TED_2018_2887270 crossref_primary_10_1016_j_device_2024_100509 crossref_primary_10_1021_acsaelm_0c00957 crossref_primary_10_1039_C8NR08259F crossref_primary_10_1007_s40820_021_00721_4 crossref_primary_10_1002_adfm_202109254 crossref_primary_10_1021_acsami_4c11320 crossref_primary_10_1021_acsaelm_1c00308 crossref_primary_10_1021_acsnano_8b02778 crossref_primary_10_1021_acsami_1c23134 crossref_primary_10_1021_acsnano_9b03699 crossref_primary_10_1002_aelm_201800514 crossref_primary_10_1039_D2NR01498J crossref_primary_10_1039_C8RA01447G crossref_primary_10_1002_advs_202200054 crossref_primary_10_1039_C8NR01358F crossref_primary_10_1002_aelm_201900122 crossref_primary_10_1021_acsnano_8b09488 crossref_primary_10_1002_aelm_202400660 crossref_primary_10_1002_aelm_202200528 crossref_primary_10_1063_5_0225284 crossref_primary_10_1021_acsnano_0c05554 crossref_primary_10_1007_s11432_019_9918_4 crossref_primary_10_1021_accountsmr_0c00020 crossref_primary_10_1021_acsnano_2c10007 crossref_primary_10_1021_acsnano_3c05753 crossref_primary_10_1002_adma_202403743 crossref_primary_10_1021_acsnano_3c06280 crossref_primary_10_3390_bios13030326 crossref_primary_10_1002_aisy_202100198 crossref_primary_10_1007_s12274_022_4259_9 crossref_primary_10_3390_polym12071548 crossref_primary_10_1002_adfm_201808574 crossref_primary_10_1021_acsnano_0c03523 crossref_primary_10_1021_acsnano_4c08323 crossref_primary_10_1088_1361_6528_aafbbe crossref_primary_10_1016_j_sse_2017_10_022 crossref_primary_10_1063_1_5039967 crossref_primary_10_1002_adma_201800750 crossref_primary_10_3390_electronics12244969 crossref_primary_10_1021_acsnano_3c02739 crossref_primary_10_1016_j_chip_2023_100064 crossref_primary_10_7498_aps_71_20212076 crossref_primary_10_1016_j_carbon_2025_120154 crossref_primary_10_1021_acsnano_9b09761 crossref_primary_10_1039_C9NR10690A crossref_primary_10_1126_sciadv_adt1909 crossref_primary_10_1002_adma_201707068 crossref_primary_10_1007_s41061_017_0160_5 crossref_primary_10_1126_science_aba5980 crossref_primary_10_1021_acsnano_8b02061 crossref_primary_10_1063_5_0087868 crossref_primary_10_1007_s12274_023_5678_y crossref_primary_10_1021_acs_macromol_1c01842 crossref_primary_10_1021_acs_jpcc_8b04302 crossref_primary_10_1002_aelm_202100202 crossref_primary_10_1021_acsnano_7b04292 crossref_primary_10_1002_inf2_12420 crossref_primary_10_1007_s00604_019_3393_x crossref_primary_10_1039_C8TC02280A crossref_primary_10_1088_2399_1984_ab5f20 crossref_primary_10_1021_acsami_1c07782 crossref_primary_10_1039_D0NR06231F crossref_primary_10_1063_1_4994114 crossref_primary_10_1021_acs_chemmater_8b00701 crossref_primary_10_1038_s41928_018_0038_8 crossref_primary_10_1088_1361_6528_ac9392 crossref_primary_10_1073_pnas_2111790118 crossref_primary_10_1002_advs_202102860 crossref_primary_10_1002_aelm_202200442 crossref_primary_10_1063_5_0245016 crossref_primary_10_1007_s12598_024_02976_3 crossref_primary_10_1021_acsaelm_3c00613 crossref_primary_10_1109_JPROC_2018_2882603 crossref_primary_10_1021_acsnano_1c04194 crossref_primary_10_1007_s11814_019_0244_8 crossref_primary_10_1002_aelm_202100751 crossref_primary_10_1007_s11432_021_3271_8 crossref_primary_10_1021_acsami_7b07184 crossref_primary_10_1016_j_compositesb_2023_110650 crossref_primary_10_1002_admi_201900983 crossref_primary_10_1109_TED_2024_3379152 crossref_primary_10_1016_j_mattod_2024_07_008 crossref_primary_10_1109_LED_2024_3368114 crossref_primary_10_1002_adma_201905654 crossref_primary_10_1109_TNANO_2019_2902739 crossref_primary_10_1002_adfm_202212722 crossref_primary_10_1021_acsami_2c07158 crossref_primary_10_1002_advs_202001778 crossref_primary_10_1002_aelm_201900034 crossref_primary_10_1007_s12274_018_2025_9 crossref_primary_10_1021_acsnano_4c03989 crossref_primary_10_1002_advs_201700965 crossref_primary_10_1002_aelm_201900313 crossref_primary_10_1021_acsnano_7b07665 crossref_primary_10_1021_acs_nanolett_8b03818 crossref_primary_10_3389_frcrb_2023_1288912 crossref_primary_10_1088_1361_6528_abac31 crossref_primary_10_1002_aelm_202101314 crossref_primary_10_1007_s40097_020_00378_2 crossref_primary_10_1016_j_mejo_2020_104774 crossref_primary_10_1016_j_mseb_2022_115628 |
Cites_doi | 10.1039/c3nr33560g 10.1038/nature07110 10.1021/nl5001604 10.1038/nature12502 10.1021/nl0717107 10.1021/nl902522f 10.1021/nn2004298 10.1021/nn901079p 10.1021/acs.nanolett.6b01393 10.1016/j.physe.2011.03.020 10.1021/nl402478p 10.1038/nnano.2011.1 10.1021/nn203771u 10.1073/pnas.1320045111 10.1109/3CA.2010.5533748 10.1016/j.mattod.2014.07.008 10.1002/smll.201402528 10.1039/C5NR05036G 10.1126/science.288.5465.494 10.1021/nn503627h 10.1021/nl5016014 10.1109/9780470547106 10.1021/nl5037098 10.1021/nl803066v 10.1021/acsnano.5b06726 10.1002/smll.201201237 10.1143/APEX.3.105102 10.1007/s12274-013-0330-x 10.1038/ncomms3302 10.1126/sciadv.1601240 10.1063/1.4885761 10.1038/nnano.2015.197 10.1126/science.aaj1628 10.1021/nn200270e 10.1038/ncomms5097 10.1021/acs.nanolett.6b02046 10.1038/ncomms1545 10.1021/nn300320j |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Chemical Society |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acsnano.7b00861 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 4132 |
ExternalDocumentID | 28333433 10_1021_acsnano_7b00861 a823235536 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 4.4 5VS 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 |
ID | FETCH-LOGICAL-a399t-157cf6666c5e9c906770ab72a4c878a0962dcdab05b6bab3984e6aa12c1cc2083 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Fri Jul 11 03:19:46 EDT 2025 Mon Jul 21 06:05:32 EDT 2025 Tue Jul 01 01:34:07 EDT 2025 Thu Apr 24 23:00:49 EDT 2025 Thu Aug 27 13:42:36 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | carbon nanotube complementary metal-oxide semiconductor field-effect transistors medium-scale integrated circuits network film |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a399t-157cf6666c5e9c906770ab72a4c878a0962dcdab05b6bab3984e6aa12c1cc2083 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1622-3447 |
PMID | 28333433 |
PQID | 1881261789 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1881261789 pubmed_primary_28333433 crossref_primary_10_1021_acsnano_7b00861 crossref_citationtrail_10_1021_acsnano_7b00861 acs_journals_10_1021_acsnano_7b00861 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-04-25 |
PublicationDateYYYYMMDD | 2017-04-25 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-25 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2017 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 Wakerly J. F. (ref39/cit39) 2000 ref32/cit32 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref28/cit28 ref20/cit20 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 Baker R. J. (ref17/cit17) 2008 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref3/cit3 doi: 10.1039/c3nr33560g – ident: ref12/cit12 doi: 10.1038/nature07110 – ident: ref33/cit33 doi: 10.1021/nl5001604 – ident: ref13/cit13 doi: 10.1038/nature12502 – ident: ref30/cit30 doi: 10.1021/nl0717107 – ident: ref6/cit6 doi: 10.1021/nl902522f – ident: ref22/cit22 doi: 10.1021/nn2004298 – ident: ref31/cit31 doi: 10.1021/nn901079p – ident: ref20/cit20 doi: 10.1021/acs.nanolett.6b01393 – ident: ref35/cit35 doi: 10.1016/j.physe.2011.03.020 – ident: ref19/cit19 doi: 10.1021/nl402478p – ident: ref14/cit14 doi: 10.1038/nnano.2011.1 – ident: ref7/cit7 doi: 10.1021/nn203771u – ident: ref21/cit21 doi: 10.1073/pnas.1320045111 – ident: ref36/cit36 doi: 10.1109/3CA.2010.5533748 – ident: ref2/cit2 doi: 10.1016/j.mattod.2014.07.008 – ident: ref23/cit23 doi: 10.1002/smll.201402528 – ident: ref25/cit25 doi: 10.1039/C5NR05036G – ident: ref37/cit37 doi: 10.1126/science.288.5465.494 – ident: ref1/cit1 doi: 10.1021/nn503627h – ident: ref10/cit10 doi: 10.1021/nl5016014 – volume-title: CMOS: Circuit Design, Layout, and Simulation year: 2008 ident: ref17/cit17 doi: 10.1109/9780470547106 – ident: ref24/cit24 doi: 10.1021/nl5037098 – ident: ref29/cit29 doi: 10.1021/nl803066v – ident: ref27/cit27 doi: 10.1021/acsnano.5b06726 – ident: ref26/cit26 doi: 10.1002/smll.201201237 – ident: ref28/cit28 doi: 10.1143/APEX.3.105102 – volume-title: Digital Design: Principles and Practices year: 2000 ident: ref39/cit39 – ident: ref38/cit38 doi: 10.1007/s12274-013-0330-x – ident: ref15/cit15 doi: 10.1038/ncomms3302 – ident: ref8/cit8 doi: 10.1126/sciadv.1601240 – ident: ref4/cit4 doi: 10.1063/1.4885761 – ident: ref16/cit16 doi: 10.1038/nnano.2015.197 – ident: ref34/cit34 doi: 10.1126/science.aaj1628 – ident: ref18/cit18 doi: 10.1021/nn200270e – ident: ref9/cit9 doi: 10.1038/ncomms5097 – ident: ref11/cit11 doi: 10.1021/acs.nanolett.6b02046 – ident: ref5/cit5 doi: 10.1038/ncomms1545 – ident: ref32/cit32 doi: 10.1021/nn300320j |
SSID | ssj0057876 |
Score | 2.56849 |
Snippet | Solution-derived carbon nanotube (CNT) network films with high semiconducting purity are suitable materials for the wafer-scale fabrication of field-effect... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4124 |
Title | High-Performance Complementary Transistors and Medium-Scale Integrated Circuits Based on Carbon Nanotube Thin Films |
URI | http://dx.doi.org/10.1021/acsnano.7b00861 https://www.ncbi.nlm.nih.gov/pubmed/28333433 https://www.proquest.com/docview/1881261789 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF6kXvTg-1FfrNCDl63JPpLmqMVSBUVQwVvYV6DYJtIkB_31ziZpfVH0lByyy2Z2duYbZuZbhDoJgPAI7B4JTegRnjBLIuZLkhghdGAik3iud_j2Lhg-8Ztn8fxJFv0zg0_9c6nzVKZZN1QOfkOgs0wDOMIOBfUfZkbX6V1QJ5AhQAYUMWfx-TWBc0M6_-6GFmDLyscM1uvqrLyiJnSlJS_dslBd_f6buPHv5W-gtQZp4otaNTbRkk230OoX_sFtlLsqD3L_2TuAnXloCsqnb7hyZBWPSI5larDL6pQT8gD7avH1jGjC4P5oqstRkeNL8IkGZynuy6mCB9jurCiVxe56UDwYjSf5DnoaXD32h6S5hYFIAC8F8UWoEwhyAi1spCPHOOdJFVLJdS_sSQiBqNFGKk-oQEnFoh63gZQ-1b7WFBDeLmqlWWr3EbaBYWAxbAg4i3OIlSJh4U1xBh7SJKKNOiCuuDlFeVwlyKkfNzKMGxm2UXe2d7FumMzdhRrjxQPO5gNeaxKPxZ-ezpQhhoPmsicytVkJi-kBFnINlVEb7dVaMp8MMBpjnLGD__3AIVqhDh14nFBxhFrFtLTHgG0KdVJp9QfAfPSd |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8heBg8jI2vdTDmSTzw4pLEdtI8QrWqHQWBAIm3yF-RKkqCmuSB_fWc06RsTJXGU6Iotuzz-e53Ot_PAEcpgvAY7R6NTORRnjJLY-ZLmhohdGhik3qudvjiMhze8V_34n4FvLYWBgdRYE9FncR_ZRfwT_BbJrO8GymHwjHeWUMoEjidPu3ftLbXqV84zyNjnIxgYkHm808Hzhvp4m9vtARi1q5msAnXi0HWJ0weulWpuvr3G_7G98ziE3xscCc5nSvKZ1ix2RZs_MFGuA2FO_NBr14rCYgzFs3x8tkzqd1azSpSEJkZ4nI81SO9wVW2ZNTSThjSn8x0NSkLcoYe0pA8I305U_hAS56XlbLEXRZKBpPpY7EDd4Oft_0hbe5koBKhTEl9EekUQ55QCxvr2PHPeVJFgeS6F_UkBkSB0UYqT6hQScXiHrehlH6gfa0DxHu7sJrlmf0CxIaGof2wEaIuzjFyioXFN8UZ-kuTig4cobiSZk8VSZ0uD_ykkWHSyLAD3XYJE93wmrvrNabLGxwvGjzNKT2W__qj1YkEt53LpcjM5hUOpofIyJVXxh3YmyvLojNEbIxxxr7-3wS-w4fh7cU4GY8uz_dhPXC4weM0EAewWs4q-w1RT6kOa0V_AXLk_P4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwELYQSGj3wGMfUJ5G4rAXd5PYTpojFCpgASGxlbhFfkWqgAQ1yQF-PTOpW9hdVVpOiaLYssfjmW80ns-EHOYAwlOweyyxScBEzh1LeahYbqU0sU1tHmDt8NV1fDYUF3fyzheFYS0MDKKCnqo2iY-7-snmnmEg_AnfC1WU3UQjEoeYZwmTdqjXR_3bqf1FFYwnuWSIlQFQzAh9_ukAPZKp_vRIc2Bm624Gq2Q4G2h7yuS-29S6a17-4nD86EzWyIrHn_RoojDrZMEVX8jnd6yEX0mFZz_YzVtFAUWj4Y-Zj59p695adpGKqsJSzPU0j-wWVtvR8yn9hKX90dg0o7qix-ApLS0L2ldjDQ-w6GXdaEfx0lA6GD08Vt_IcHD6u3_G_N0MTAGkqVkoE5ND6BMb6VKTIg9doHQSKWF6SU9BYBRZY5UOpI610jztCRcrFUYmNCYC3PedLBZl4TYJdbHlYEdcAuhLCIigUungTQsOftPmskMOQVyZ31tV1qbNozDzMsy8DDukO13GzHh-c7xm42F-gx-zBk8Tao_5vx5M9SKD7Yc5FVW4soHB9AAhYZll2iEbE4WZdQbIjXPB-db_TWCfLN-cDLLL8-tf2-RThPAhECySO2SxHjduF8BPrfdaXX8Fpnn_gQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Performance+Complementary+Transistors+and+Medium-Scale+Integrated+Circuits+Based+on+Carbon+Nanotube+Thin+Films&rft.jtitle=ACS+nano&rft.au=Yang%2C+Yingjun&rft.au=Ding%2C+Li&rft.au=Han%2C+Jie&rft.au=Zhang%2C+Zhiyong&rft.date=2017-04-25&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=11&rft.issue=4&rft.spage=4124&rft.epage=4132&rft_id=info:doi/10.1021%2Facsnano.7b00861&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsnano_7b00861 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |