A flow resistance model for assessing the impact of vegetation on flood routing mechanics

The specification of a flow resistance factor to account for vegetative effects in the Saint‐Venant equation (SVE) remains uncertain and is a subject of active research in flood routing mechanics. Here, an analytical model for the flow resistance factor is proposed for submerged vegetation, where th...

Full description

Saved in:
Bibliographic Details
Published inWater resources research Vol. 47; no. 8
Main Authors Katul, Gabriel G., Poggi, Davide, Ridolfi, Luca
Format Journal Article
LanguageEnglish
Published Washington Blackwell Publishing Ltd 01.08.2011
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN0043-1397
1944-7973
DOI10.1029/2010WR010278

Cover

Loading…
Abstract The specification of a flow resistance factor to account for vegetative effects in the Saint‐Venant equation (SVE) remains uncertain and is a subject of active research in flood routing mechanics. Here, an analytical model for the flow resistance factor is proposed for submerged vegetation, where the water depth is commensurate with the canopy height and the roughness Reynolds number is sufficiently large so as to ignore viscous effects. The analytical model predicts that the resistance factor varies with three canonical length scales: the adjustment length scale that depends on the foliage drag and leaf area density, the canopy height, and the water level. These length scales can reasonably be inferred from a range of remote sensing products making the proposed flow resistance model eminently suitable for operational flood routing. Despite the numerous simplifications, agreement between measured and modeled resistance factors and bulk velocities is reasonable across a range of experimental and field studies. The proposed model asymptotically recovers the flow resistance formulation when the water depth greatly exceeds the canopy height. This analytical treatment provides a unifying framework that links the resistance factor to a number of concepts and length scales already in use to describe canopy turbulence. The implications of the coupling between the resistance factor and the water depth on solutions to the SVE are explored via a case study, which shows a reasonable match between empirical design standard and theoretical predictions. Key Points An analytical model for the resistance factor formulation for vegetated canopies A unifying framework that links resistance factors to canopy turbulence Parameters of resistance factors can be predicted from remote sensing platforms
AbstractList The specification of a flow resistance factor to account for vegetative effects in the Saint‐Venant equation (SVE) remains uncertain and is a subject of active research in flood routing mechanics. Here, an analytical model for the flow resistance factor is proposed for submerged vegetation, where the water depth is commensurate with the canopy height and the roughness Reynolds number is sufficiently large so as to ignore viscous effects. The analytical model predicts that the resistance factor varies with three canonical length scales: the adjustment length scale that depends on the foliage drag and leaf area density, the canopy height, and the water level. These length scales can reasonably be inferred from a range of remote sensing products making the proposed flow resistance model eminently suitable for operational flood routing. Despite the numerous simplifications, agreement between measured and modeled resistance factors and bulk velocities is reasonable across a range of experimental and field studies. The proposed model asymptotically recovers the flow resistance formulation when the water depth greatly exceeds the canopy height. This analytical treatment provides a unifying framework that links the resistance factor to a number of concepts and length scales already in use to describe canopy turbulence. The implications of the coupling between the resistance factor and the water depth on solutions to the SVE are explored via a case study, which shows a reasonable match between empirical design standard and theoretical predictions. Key Points An analytical model for the resistance factor formulation for vegetated canopies A unifying framework that links resistance factors to canopy turbulence Parameters of resistance factors can be predicted from remote sensing platforms
The specification of a flow resistance factor to account for vegetative effects in the Saint-Venant equation (SVE) remains uncertain and is a subject of active research in flood routing mechanics. Here, an analytical model for the flow resistance factor is proposed for submerged vegetation, where the water depth is commensurate with the canopy height and the roughness Reynolds number is sufficiently large so as to ignore viscous effects. The analytical model predicts that the resistance factor varies with three canonical length scales: the adjustment length scale that depends on the foliage drag and leaf area density, the canopy height, and the water level. These length scales can reasonably be inferred from a range of remote sensing products making the proposed flow resistance model eminently suitable for operational flood routing. Despite the numerous simplifications, agreement between measured and modeled resistance factors and bulk velocities is reasonable across a range of experimental and field studies. The proposed model asymptotically recovers the flow resistance formulation when the water depth greatly exceeds the canopy height. This analytical treatment provides a unifying framework that links the resistance factor to a number of concepts and length scales already in use to describe canopy turbulence. The implications of the coupling between the resistance factor and the water depth on solutions to the SVE are explored via a case study, which shows a reasonable match between empirical design standard and theoretical predictions.
The specification of a flow resistance factor to account for vegetative effects in the Saint‐Venant equation (SVE) remains uncertain and is a subject of active research in flood routing mechanics. Here, an analytical model for the flow resistance factor is proposed for submerged vegetation, where the water depth is commensurate with the canopy height and the roughness Reynolds number is sufficiently large so as to ignore viscous effects. The analytical model predicts that the resistance factor varies with three canonical length scales: the adjustment length scale that depends on the foliage drag and leaf area density, the canopy height, and the water level. These length scales can reasonably be inferred from a range of remote sensing products making the proposed flow resistance model eminently suitable for operational flood routing. Despite the numerous simplifications, agreement between measured and modeled resistance factors and bulk velocities is reasonable across a range of experimental and field studies. The proposed model asymptotically recovers the flow resistance formulation when the water depth greatly exceeds the canopy height. This analytical treatment provides a unifying framework that links the resistance factor to a number of concepts and length scales already in use to describe canopy turbulence. The implications of the coupling between the resistance factor and the water depth on solutions to the SVE are explored via a case study, which shows a reasonable match between empirical design standard and theoretical predictions. An analytical model for the resistance factor formulation for vegetated canopies A unifying framework that links resistance factors to canopy turbulence Parameters of resistance factors can be predicted from remote sensing platforms
Author Ridolfi, Luca
Katul, Gabriel G.
Poggi, Davide
Author_xml – sequence: 1
  givenname: Gabriel G.
  surname: Katul
  fullname: Katul, Gabriel G.
  email: gaby@duke.edu
  organization: Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
– sequence: 2
  givenname: Davide
  surname: Poggi
  fullname: Poggi, Davide
  organization: Dipartimento di Idraulica, Trasporti ed Infrastrutture Civili, Politecnico di Turin, Turin, Italy
– sequence: 3
  givenname: Luca
  surname: Ridolfi
  fullname: Ridolfi, Luca
  organization: Dipartimento di Idraulica, Trasporti ed Infrastrutture Civili, Politecnico di Turin, Turin, Italy
BookMark eNp9kd9LHDEQx4NY8LS-9Q8IvvjStfmxl0ke5ahWKgqHcvgUcrmJRnc3Z7JX63_fPbaUIiiEycvnMzN8Z5_sdqlDQr5wdsKZMN8E42wxH4oAvUMm3NR1BQbkLpkwVsuKSwN7ZL-UR8Z4PVUwIXenNDTphWYssfSu80jbtMKGhpSpKwVLid097R-QxnbtfE9ToL_wHnvXx9TR4Q1-WtGcNv2WbNE_uC768pl8Cq4pePj3PyC3Z99vZj-qy-vzi9npZeWkMaJSQXLF9VKDloZxZNoHp6ZMLGum0GhdgzduVSvluPaeG1iiDs5pAFhCYPKAHI991zk9b7D0to3FY9O4DtOmWG0MB2HYljx6Qz6mTe6G5axhIPhUgBmgryPkcyolY7DrHFuXXy1ndpuy_T_lARdvcB_HaPrsYvOeJEfpJTb4-uEAu5jP5lwyIQarGq3hUPj7n-Xyk1UgYWoXV-f26ueNrKXiFuQfPX-eCQ
CitedBy_id crossref_primary_10_1016_j_advwatres_2020_103527
crossref_primary_10_1029_2020JF005856
crossref_primary_10_3390_w15234121
crossref_primary_10_1029_2020WR027194
crossref_primary_10_1016_j_advwatres_2014_11_010
crossref_primary_10_1016_j_jhydrol_2023_129376
crossref_primary_10_1007_s10652_018_09656_8
crossref_primary_10_1007_s40710_017_0235_x
crossref_primary_10_3390_w10121782
crossref_primary_10_3390_w11102154
crossref_primary_10_1016_j_jhydrol_2020_124921
crossref_primary_10_3390_w9090637
crossref_primary_10_1016_j_jhydrol_2022_127761
crossref_primary_10_1016_j_jhydrol_2024_132518
crossref_primary_10_1038_s41467_024_50347_4
crossref_primary_10_1061__ASCE_HY_1943_7900_0000779
crossref_primary_10_1007_s42241_024_0060_4
crossref_primary_10_1016_j_jhydrol_2021_127102
crossref_primary_10_1007_s10652_024_09987_9
crossref_primary_10_1061_JHEND8_HYENG_13214
crossref_primary_10_1186_2051_3933_2_7
crossref_primary_10_1063_5_0060601
crossref_primary_10_3390_w7020420
crossref_primary_10_1007_s10652_019_09720_x
crossref_primary_10_12677_AMS_2018_54018
crossref_primary_10_1061__ASCE_HY_1943_7900_0000700
crossref_primary_10_1002_2013WR015065
crossref_primary_10_1002_2016WR018907
crossref_primary_10_1051_kmae_2016032
crossref_primary_10_4236_gep_2019_74004
crossref_primary_10_1002_wat2_1125
crossref_primary_10_1029_2018WR023889
crossref_primary_10_1016_j_jhydrol_2019_124088
crossref_primary_10_1002_grl_50759
crossref_primary_10_1061__ASCE_HY_1943_7900_0001561
crossref_primary_10_1061_JHEND8_HYENG_13209
crossref_primary_10_1007_s10652_015_9417_0
crossref_primary_10_1103_PhysRevFluids_4_124602
crossref_primary_10_1590_s1413_415220220212
crossref_primary_10_1016_j_jhydrol_2023_129839
crossref_primary_10_1016_j_jhydrol_2023_130140
crossref_primary_10_1038_s41598_019_41477_7
crossref_primary_10_1007_s42241_021_0043_7
crossref_primary_10_1080_00221686_2019_1671511
crossref_primary_10_1007_s42241_020_0040_2
crossref_primary_10_1002_2015WR017658
crossref_primary_10_1002_hyp_9993
crossref_primary_10_1002_2015WR017780
crossref_primary_10_1002_2017WR021109
crossref_primary_10_1088_1748_9326_abaa0a
crossref_primary_10_1016_j_advwatres_2014_04_001
crossref_primary_10_1007_s10546_024_00876_8
Cites_doi 10.1002/hyp.1270
10.1029/2008WR007373
10.1007/BF00709229
10.1002/(SICI)1099-1085(199708)11:10<1427::AID-HYP473>3.0.CO;2-S
10.1061/(ASCE)0733-9429(2001)127:2(123)
10.1029/2005GL023836
10.2478/s11600-008-0029-7
10.5194/hessd-7-2261-2010
10.1061/(ASCE)0733-9429(2001)127:5(392)
10.1029/WR003i003p00753
10.1029/2006WR005229
10.2478/s11600-008-0017-y
10.1061/JRCEA4.0000652
10.1029/2003WR002776
10.1029/2006RG000197
10.1061/(ASCE)0733-9429(2002)128:7(664)
10.1061/(ASCE)1084-0699(2006)11:4(347)
10.1080/00221686.2007.9521778
10.1016/j.jhydrol.2004.10.013
10.1023/A:1016060103448
10.1080/00221686.2010.491649
10.1061/(ASCE)0733-9437(1986)112:1(39)
10.1023/B:BOUN.0000016576.05621.73
10.4319/lo.1995.40.8.1474
10.1029/2004WR003475
10.1061/(ASCE)0733-9429(2005)131:1(65)
10.1175/1520-0450(1999)038<1631:PLSISO>2.0.CO;2
10.1029/93WR03098
10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2
10.1061/(ASCE)0733-9429(1993)119:1(51)
10.1007/978-94-017-1497-6
10.1175/1520-0450(1977)016<0514:SWSMIP>2.0.CO;2
10.1016/0022-1694(76)90126-8
10.1029/2005GL024412
10.1007/978-1-4020-5385-6_6
10.1023/B:BOUN.0000016563.76874.47
10.1029/2006WR005625
10.1175/1520-0450(1977)016<1197:AHOCMF>2.0.CO;2
10.1038/35004560
10.1029/JB084iB06p02995
10.1002/qj.276
10.1061/(ASCE)0733-9399(2003)129:5(558)
10.1103/PhysRevLett.88.014501
10.1016/j.jhydrol.2009.06.006
10.1017/S0022112003005019
10.1046/j.1466-822x.2002.00303.x
10.56021/9780801858567
10.5194/hess-4-251-2000
10.1061/(ASCE)0733-9429(2002)128:1(20)
10.1006/ecss.2000.0548
10.1007/s10546-008-9328-4
10.3354/meps184063
10.1029/1998WR900069
10.1023/A:1000234813011
10.1002/hyp.1010
10.1146/annurev.fluid.32.1.519
10.1016/S0022-1694(02)00192-0
10.1016/0022-1694(81)90104-9
10.1086/648603
10.1029/WR007i004p00899
10.1029/2001GL012962
10.1029/2007GL029447
10.1016/0925-8574(94)00007-7
10.1007/BF00128057
10.1029/2001WR000817
10.1002/hyp.1049
10.1061/(ASCE)0733-9429(1991)117:3(371)
10.1007/s00442-003-1388-z
10.1256/qj.02.177
10.1002/hyp.6665
10.1017/CBO9780511814921
10.1175/1520-0450(1998)037<1533:ATASTN>2.0.CO;2
10.1023/B:BOUN.0000037333.48760.e5
10.1029/2000JC900145
10.1023/A:1001810204560
10.1002/hyp.5564
10.1023/A:1001509106381
10.1007/s00348-008-0467-7
ContentType Journal Article
Copyright Copyright 2011 by the American Geophysical Union.
Copyright 2011 by American Geophysical Union
Copyright_xml – notice: Copyright 2011 by the American Geophysical Union.
– notice: Copyright 2011 by American Geophysical Union
DBID BSCLL
AAYXX
CITATION
3V.
7QH
7QL
7T7
7TG
7U9
7UA
7WY
7WZ
7XB
87Z
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BEZIV
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
FRNLG
F~G
GNUQQ
GUQSH
H94
H96
HCIFZ
K60
K6~
KL.
KR7
L.-
L.G
L6V
M0C
M2O
M7N
M7S
MBDVC
P64
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
DOI 10.1029/2010WR010278
DatabaseName Istex
CrossRef
ProQuest Central (Corporate)
Aqualine
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts
Virology and AIDS Abstracts
Water Resources Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
ABI/INFORM Global
ProQuest Research Library
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
Engineering Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
Virology and AIDS Abstracts
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest Business Collection
Aqualine
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
ProQuest Research Library
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest SciTech Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Economics
EISSN 1944-7973
EndPage n/a
ExternalDocumentID 2525003721
10_1029_2010WR010278
WRCR13022
ark_67375_WNG_NKT34361_7
Genre article
Feature
GroupedDBID -~X
..I
.DC
05W
0R~
123
1OB
1OC
24P
31~
33P
3V.
50Y
5VS
6TJ
7WY
7XC
8-1
8CJ
8FE
8FG
8FH
8FL
8G5
8R4
8R5
8WZ
A00
A6W
AAESR
AAHBH
AAHHS
AAIHA
AAIKC
AAMNW
AANLZ
AASGY
AAXRX
AAYJJ
AAYOK
AAZKR
ABCUV
ABJCF
ABJNI
ABPPZ
ABTAH
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AIDBO
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ASPBG
ATCPS
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BEZIV
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
BSCLL
CCPQU
CS3
D0L
D1J
DCZOG
DDYGU
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F5P
FEDTE
FRNLG
G-S
GNUQQ
GODZA
GROUPED_ABI_INFORM_COMPLETE
GUQSH
HCIFZ
HVGLF
HZ~
K60
K6~
L6V
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M0C
M2O
M7R
M7S
MEWTI
MSFUL
MSSTM
MVM
MW2
MXFUL
MXSTM
MY~
O9-
OHT
OK1
P-X
P2P
P2W
PALCI
PATMY
PCBAR
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
R.K
RIWAO
RJQFR
ROL
SAMSI
SUPJJ
TAE
TN5
TWZ
UQL
VJK
VOH
WBKPD
WXSBR
WYJ
XOL
XSW
YHZ
YV5
ZCG
ZY4
ZZTAW
~02
~KM
~OA
~~A
AANHP
AAYCA
ACCMX
ACRPL
ACYXJ
ADNMO
AEUYN
AFWVQ
AAYXX
ADXHL
AETEA
AGQPQ
CITATION
GROUPED_DOAJ
PHGZM
PHGZT
7QH
7QL
7T7
7TG
7U9
7UA
7XB
8FD
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H94
H96
KL.
KR7
L.-
L.G
M7N
MBDVC
P64
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
WIN
ID FETCH-LOGICAL-a3992-6f31618b8783901e08cfa6502b406e98847c9ad466a18cc197be8faa8777b7f03
IEDL.DBID 8FG
ISSN 0043-1397
IngestDate Fri Jul 11 07:35:47 EDT 2025
Wed Aug 13 09:49:38 EDT 2025
Thu Apr 24 23:02:31 EDT 2025
Tue Jul 01 01:34:08 EDT 2025
Wed Jan 22 16:58:27 EST 2025
Wed Oct 30 09:50:45 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a3992-6f31618b8783901e08cfa6502b406e98847c9ad466a18cc197be8faa8777b7f03
Notes istex:388B9E6EDD56E3F6F38FD024B4960897418BCABA
ark:/67375/WNG-NKT34361-7
Tab-delimited Table 1.
ArticleID:2010WR010278
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 907215279
PQPubID 105507
PageCount 15
ParticipantIDs proquest_miscellaneous_899172900
proquest_journals_907215279
crossref_primary_10_1029_2010WR010278
crossref_citationtrail_10_1029_2010WR010278
wiley_primary_10_1029_2010WR010278_WRCR13022
istex_primary_ark_67375_WNG_NKT34361_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2011
PublicationDateYYYYMMDD 2011-08-01
PublicationDate_xml – month: 08
  year: 2011
  text: August 2011
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Water resources research
PublicationTitleAlternate Water Resour. Res
PublicationYear 2011
Publisher Blackwell Publishing Ltd
John Wiley & Sons, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons, Inc
References Alsdorf, D., C. Birkett, T. Dunne, J. Melack, and L. Hess (2001), Water level changes in a large Amazon lake measured with spaceborne radar interferometry and altimetry, Geophys. Res. Lett., 28(14), 2671-2674, doi:10.1029/2001GL012962.
Alsdorf, D., et al. (2007a), Spatial and temporal complexity of the Amazon flood measured from space, Geophys. Res. Lett., 34, L08402, doi:10.1029/2007GL029447.
Massman, W. J. (1997), An analytical one-dimensional model of momentum transfer by vegetation of arbitrary structure, Boundary Layer Meteorol., 83(3), 407-421.
Lefsky, M. A., et al. (2002a), Lidar remote sensing of above-ground biomass in three biomes, Global Ecol. Biogeogr., 11(5), 393-399.
Wilson, N. R., and R. H. Shaw (1977), Higher-order closure model for canopy flow, J. Appl. Meteorol., 16(11), 1197-1205.
Carr, M. H. (1979), Formation of Martian flood features by release of water from confined aquifers, J. Geophys. Res., 84(B6), 2995-3007, doi:10.1029/JB084iB06p02995.
Huthoff, F., D. C. M. Augustijn, and S. J. M. H. Hulscher (2007), Analytical solution of the depth-averaged flow velocity in case of submerged rigid cylindrical vegetation, Water Resour. Res., 43, W06413, doi:10.1029/2006WR005625.
French, R. H. (1985), Open-Channel Hydraulics, 705 pp., McGraw Hill, New York.
Yen, B. C. (2002), Open channel flow resistance, J. Hydraul. Eng., 128(1), 20-39.
Green, J. C. (2005), Modelling flow resistance in vegetated streams: Review and development of new theory, Hydrol. Processes, 19(6), 1245-1259.
Hauser, B. A. (1996), Practical Hydraulics Handbook, 368 pp., Lewis Publ., Los Angeles, Calif.
Smith, L. C. (1997), Satellite remote sensing of river inundation area, stage, and discharge: A review, Hydrol. Processes, 11(10), 1427-1439.
Yang, W., and S. Choi (2010), A two-layer approach for depth-limited open-channel flows with submerged vegetation, J. Hydraul. Res., 48, 466-475.
Massman, W. J., and J. C. Weil (1999), An analytical one-dimensional second-order closure model of turbulence statistics and the Lagrangian time scale within and above plant canopies of arbitrary structure, Boundary Layer Meteorol., 91(1), 81-107.
Christiansen, T., et al. (2000), Flow and sediment transport on a tidal salt marsh surface, Estuarine Coastal Shelf Sci., 50(3), 315-331.
Finnigan, J. J., and S. E. Belcher (2004), Flow over a hill covered with a plant canopy, Q. J. R. Meteorol. Soc., 130(596), 1-29.
Brutsaert, W. (Ed.) (1982), Evaporation into the Atmosphere: Theory, History, and Applications, 299 pp., Kluwer Acad. Publ., New York.
Thompson, S. E., and K. E. Daniels (2010), A porous convection model for grass patterns, Am. Nat., 175(1), E10-E15.
Poggi, D., et al. (2004a), A note on the contribution of dispersive fluxes to momentum transfer within canopies: Research note, Boundary Layer Meteorol., 111(3), 615-621.
Moussa, R., and C. Bocquillon (2009), On the use of the diffusive wave for modelling extreme flood events with overbank flow in the floodplain, J. Hydrol., 374(1-2), 116-135.
Tayfur, G., et al. (1993), Applicability of the St-Venant equations for 2-dimensional overland flows over rough infiltrating surfaces, J. Hydraul. Eng., 119(1), 51-63.
Baptist, M. J., et al. (2007), On inducing equations for vegetation resistance, J. Hydraul. Res., 45(4), 435-450.
Katul, G. G., and W. H. Chang (1999), Principal length scales in second-order closure models for canopy turbulence, J. Appl. Meteorol., 38(11), 1631-1643.
Neary, V. S. (2003), Numerical solution of fully developed flow with vegetative resistance, J. Eng. Mech., 129(5), 558-563.
Stephan, U., and D. Gutknecht (2002), Hydraulic resistance of submerged flexible vegetation, J. Hydrol., 269(1-2), 27-43.
Barenblatt, G. I. (2003), Scaling, 171 pp., Cambridge Univ. Press, New York.
Raupach, M. R. (1994), Simplified expressions for vegetation roughness length and zero-plane displacement as functions of canopy height and area index, Boundary Layer Meteorol., 71(1-2), 211-216.
Richardson, J. R., and P. Y. Julien (1994), Suitability of simplified overland flow equations, Water Resour. Res., 30(3), 665-671, doi:10.1029/93WR03098.
Shaw, R. H. (1977), Secondary wind speed maxima inside plant canopies, J. Appl. Meteorol., 16(5), 514-521.
Nepf, H. M., and E. R. Vivoni (2000), Flow structure in depth-limited, vegetated flow, J. Geophys. Res., 105(C12), 28547-28557, doi:10.1029/2000JC900145.
Murphy, E., et al. (2007), Model and laboratory study of dispersion in flows with submerged vegetation, Water Resour. Res., 43, W05438, doi:10.1029/2006WR005229.
Izakson, A. (1937), Formula for the velocity distribution near a wall, Zh. Eksp. Teor. Fiz., 7, 919-924.
LeFavour, G., and D. Alsdorf (2005), Water slope and discharge in the Amazon River estimated using the shuttle radar topography mission digital elevation model, Geophys. Res. Lett., 32, L17404, doi:10.1029/2005GL023836.
Harman, I. N., and J. J. Finnigan (2007), A unified theory for flow in the canopy and roughness sub-layer, Boundary Layer Meteorol., 129(3), 323-351.
Novick, K. A., et al. (2004), Carbon dioxide and water vapor exchange in a warm temperate grassland, Oecologia, 138(2), 259-274.
Shimizu, Y., and T. Tsuiumoto (1994), Numerical analysis of turbulent open-channel flow over a vegetation layer using a k-epsilon turbulence model, J. Hydrosci. Hydraul. Eng., 11, 57-67.
Wang, G. T., et al. (2002), Modelling overland flow based on Saint-Venant equations for a discretized hillslope system, Hydrol. Processes, 16(12), 2409-2421.
Ajayi, A. E., et al. (2008), A numerical model for simulating Hortonian overland flow on tropical hillslopes with vegetation elements, Hydrol. Processes, 22(8), 1107-1118.
Engman, E. T. (1986), Roughness coefficients for routing surface runoff, J. Irrig. Drain. Eng., 112(1), 39-53.
Kouwen, N., and T. E. Unny (1969), Flow retardance in vegetated channels, J. Irrig. Drain. Div., 95(IR2), 329-342.
Shi, Z., et al. (1995), Flow Structure in and above the various heights of a salt-marsh canopy: A laboratory flume study, J. Coastal Res., 11(4), 1204-1209.
Poggi, D., and G. G. Katul (2008a), The effect of canopy roughness density on the constitutive components of the dispersive stresses, Exp. Fluids, 45(1), 111-121.
Katul, G., P. Wiberg, J. Albertson, and G. Hornberger (2002), A mixing layer theory for flow resistance in shallow streams, Water Resour. Res., 38(11), 1250, doi:10.1029/2001WR000817.
Casas, A., et al. (2010), A method for parameterising roughness and topographic sub-grid scale effects in hydraulic modelling from LiDAR data, Hydrol. Earth Syst. Sci. Discuss., 7, 2261-2299.
Alsdorf, D., et al. (2005), Diffusion modeling of recessional flow on central Amazonian floodplains, Geophys. Res. Lett., 32, L21405, doi:10.1029/2005GL024412.
Leonard, L. A., and M. E. Luther (1995), Flow hydrodynamics in tidal marsh canopies, Limnol. Oceanogr., 40(8), 1474-1484.
Smith, R. E., and D. A. Woolhiser (1971), Overland flow on an infiltrating surface, Water Resour. Res., 7, 899-913, doi:10.1029/WR007i004p00899.
Gioia, G., and F. A. Bombardelli (2002), Scaling and similarity in rough channel flows, Phys. Rev. Lett., 88(1), 14,501-14,504.
Katul, G. G., and J. D. Albertson (1998), An investigation of higher-order closure models for a forested canopy, Boundary Layer Meteorol., 89(1), 47-74.
Kadlec, R. H. (1994), Detention and mixing in free-water weltands, Ecol. Eng., 3(4), 345-380.
Katul, G. G., et al. (1998), Active turbulence and scalar transport near the forest-atmosphere interface, J. Appl. Meteorol., 37(12), 1533-1546.
Alsdorf, D. E., E. Rodríguez, and D. P. Lettenmaier (2007b), Measuring surface water from space, Rev. Geophys., 45, RG2002, doi:10.1029/2006RG000197.
Poggi, D., and G. G. Katul (2008b), Micro- and macro-dispersive fluxes in canopy flows, Acta Geophys., 56(3), 778-799.
HEC-RAS (2002), HEC-RAS Reference Manual, U.S. Army Corps of Eng., Washington, D.C.
Kirby, J. T., et al. (2005), Hydraulic resistance in grass swales designed for small flow conveyance, J. Hydraul. Eng., 131(1), 65-68.
Nepf, H. M. (1999), Drag, turbulence, and diffusion in flow through emergent vegetation, Water Resour. Res., 35(2), 479-489, doi:10.1029/1998WR900069.
Woolhiser, D. A. (1975), Simulation of unsteady one-dimensional flow over plane: The rising hydrograph, Water Resour. Res., 3, 753-771.
Cheng, H., and I. P. Castro (2002), Near wall flow over urban-like roughness, Bound. Layer Meteorol., 104(2), 229-259.
Lefsky, M. A., et al. (2002b), Lidar remote sensing for ecosystem studies, Bioscience, 52(1), 19-30.
Parlange, J. Y., et al. (1981), Kinematic flow approximation of runoff on a plane: An exact analytical solution, J. Hydrol., 52(1-2), 171-176.
Nepf, H., and M. Ghisalberti (2008), Flow and transport in channels with submerged vegetation, Acta Geophys., 56(3), 753-777.
Poggi, D., et al. (2004b), The effect of vegetation density on canopy sub-layer turbulence, Boundary Layer Meteorol., 111(3), 565-587.
Poggi, D., C. Krug, and G. G. Katul (2009), Hydraulic resistance of submerged rigid vegetation derived from first-order closure models, Water Resour. Res., 45, W10442, doi:10.1029/2008WR007373.
Woolhiser, D. A., and J. A. Liggett (1967), Unsteady, one-dimensional flow over a plane: The rising hydrograph, Water Resour. Res., 3(3), 753-771, doi:10.1029/WR003i003p00753.
Hornberger, G. M., et al. (1998), Elements of Physical Hydrology, 302 pp., Johns Hopkins Univ. Press, Baltimore, Md.
Belcher, S. E., et al. (2003), Adjustment of a turbulent boundary layer to a canopy of roughness elements, J. Fluid. Mech., 488, 369-398.
Finnigan, J. (2000), Turbulence in plant canopies, Annu. Rev. Fluid Mech., 32, 519-571.
Katul, G. G., et al. (2004), One- and two-equation models for canopy turbulence, Boundary Layer Meteorol., 113(1), 81-109.
Wilson, C., and M. S. Horritt (2002), Measuring the flow resistance of submerged grass, Hydrol. Processes, 16(13), 2589-2598.
Carollo, F. G., et al. (2002), Flow velocity measurements in vegetated channels, J. Hydraul. Eng., 128(7), 664-673.
Wang, F. C., et al. (1993), Intertidal Marsh suspended sedime
2009; 45
2002; 16
1993; 9
1997; 83
2005; 131
2002; 52
2000; 4
2002; 11
2000; 50
2003; 17
1991; 117
2007; 34
1998; 89
1976; 31
1971; 7
2004; 138
2003; 129
1997; 11
2004; 130
2000; 404
2002; 88
1982; 22
2002; 104
1985
2005; 307
2002; 269
2005; 32
2008; 22
1982
1937; 7
2003; 488
1999; 91
1994; 71
2010; 7
1994; 30
1975; 3
2002; 38
2007; 129
2004; 40
1986; 112
2006; 11
1969; 95
1995; 11
1998
2009; 374
2005; 41
2008
2007
1996
1999; 184
2008; 56
2001; 28
2003
1992
2002
1959
2001; 127
1999
1998; 37
2004; 111
1995; 40
2005; 19
2010; 48
2004; 113
1993; 119
2000; 105
1977; 16
2000; 32
1999; 38
1967; 3
2002; 128
1999; 35
1994; 11
2008; 45
2010; 175
2008; 134
2007; 43
1994; 3
1981; 52
2007; 45
1979; 84
e_1_2_9_75_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_90_1
e_1_2_9_92_1
e_1_2_9_71_1
Yen B. C. (e_1_2_9_93_1) 1992
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
(e_1_2_9_35_1) 2008
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_62_1
e_1_2_9_89_1
Baptist M. J. (e_1_2_9_8_1) 2003
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_6_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_60_1
Shimizu Y. (e_1_2_9_79_1) 1994; 11
e_1_2_9_2_1
Shi Z. (e_1_2_9_78_1) 1995; 11
Kouwen N. (e_1_2_9_46_1) 1969; 95
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
Izakson A. (e_1_2_9_36_1) 1937; 7
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
Dooge J. C. (e_1_2_9_22_1) 1992
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_70_1
Ciraolo G. (e_1_2_9_20_1) 2007
Hauser B. A. (e_1_2_9_31_1) 1996
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_59_1
Chow V. T. (e_1_2_9_18_1) 1959
e_1_2_9_19_1
e_1_2_9_42_1
Meijer D. G. (e_1_2_9_55_1) 1999
e_1_2_9_63_1
e_1_2_9_88_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_82_1
e_1_2_9_3_1
French R. H. (e_1_2_9_26_1) 1985
Wang F. C. (e_1_2_9_86_1) 1993; 9
(e_1_2_9_32_1) 2002
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – reference: Shaw, R. H. (1977), Secondary wind speed maxima inside plant canopies, J. Appl. Meteorol., 16(5), 514-521.
– reference: Jarvela, J. (2005), Effect of submerged flexible vegetation on flow structure and resistance, J. Hydrol., 307(1-4), 233-241.
– reference: Richardson, J. R., and P. Y. Julien (1994), Suitability of simplified overland flow equations, Water Resour. Res., 30(3), 665-671, doi:10.1029/93WR03098.
– reference: Alsdorf, D., C. Birkett, T. Dunne, J. Melack, and L. Hess (2001), Water level changes in a large Amazon lake measured with spaceborne radar interferometry and altimetry, Geophys. Res. Lett., 28(14), 2671-2674, doi:10.1029/2001GL012962.
– reference: Tayfur, G., et al. (1993), Applicability of the St-Venant equations for 2-dimensional overland flows over rough infiltrating surfaces, J. Hydraul. Eng., 119(1), 51-63.
– reference: Casas, A., et al. (2010), A method for parameterising roughness and topographic sub-grid scale effects in hydraulic modelling from LiDAR data, Hydrol. Earth Syst. Sci. Discuss., 7, 2261-2299.
– reference: Kirby, J. T., et al. (2005), Hydraulic resistance in grass swales designed for small flow conveyance, J. Hydraul. Eng., 131(1), 65-68.
– reference: Nikora, V., et al. (2001), Spatially averaged open-channel flow over rough bed, J. Hydraul. Eng., 127(2), 123-133.
– reference: Yang, W., and S. Choi (2010), A two-layer approach for depth-limited open-channel flows with submerged vegetation, J. Hydraul. Res., 48, 466-475.
– reference: Carr, M. H. (1979), Formation of Martian flood features by release of water from confined aquifers, J. Geophys. Res., 84(B6), 2995-3007, doi:10.1029/JB084iB06p02995.
– reference: Leonard, L. A., and M. E. Luther (1995), Flow hydrodynamics in tidal marsh canopies, Limnol. Oceanogr., 40(8), 1474-1484.
– reference: Nepf, H. M. (1999), Drag, turbulence, and diffusion in flow through emergent vegetation, Water Resour. Res., 35(2), 479-489, doi:10.1029/1998WR900069.
– reference: Serrano, S. E. (2006), Development and verification of an analytical solution for forecasting nonlinear kinematic flood waves, J. Hydrol. Eng., 11(4), 347-353.
– reference: French, R. H. (1985), Open-Channel Hydraulics, 705 pp., McGraw Hill, New York.
– reference: Poggi, D., et al. (2004b), The effect of vegetation density on canopy sub-layer turbulence, Boundary Layer Meteorol., 111(3), 565-587.
– reference: Poggi, D., C. Krug, and G. G. Katul (2009), Hydraulic resistance of submerged rigid vegetation derived from first-order closure models, Water Resour. Res., 45, W10442, doi:10.1029/2008WR007373.
– reference: Poggi, D., and G. G. Katul (2008a), The effect of canopy roughness density on the constitutive components of the dispersive stresses, Exp. Fluids, 45(1), 111-121.
– reference: Wang, F. C., et al. (1993), Intertidal Marsh suspended sediment transport processes, Terrebonne Bay, Louisiana, USA, J. Coastal Res., 9(1), 209-220.
– reference: Kadlec, R. H. (1994), Detention and mixing in free-water weltands, Ecol. Eng., 3(4), 345-380.
– reference: Wang, G. T., et al. (2002), Modelling overland flow based on Saint-Venant equations for a discretized hillslope system, Hydrol. Processes, 16(12), 2409-2421.
– reference: HEC-RAS (2002), HEC-RAS Reference Manual, U.S. Army Corps of Eng., Washington, D.C.
– reference: Baptist, M. J., et al. (2007), On inducing equations for vegetation resistance, J. Hydraul. Res., 45(4), 435-450.
– reference: Novick, K. A., et al. (2004), Carbon dioxide and water vapor exchange in a warm temperate grassland, Oecologia, 138(2), 259-274.
– reference: Massman, W. J., and J. C. Weil (1999), An analytical one-dimensional second-order closure model of turbulence statistics and the Lagrangian time scale within and above plant canopies of arbitrary structure, Boundary Layer Meteorol., 91(1), 81-107.
– reference: Hauser, B. A. (1996), Practical Hydraulics Handbook, 368 pp., Lewis Publ., Los Angeles, Calif.
– reference: Woolhiser, D. A., and J. A. Liggett (1967), Unsteady, one-dimensional flow over a plane: The rising hydrograph, Water Resour. Res., 3(3), 753-771, doi:10.1029/WR003i003p00753.
– reference: Shimizu, Y., and T. Tsuiumoto (1994), Numerical analysis of turbulent open-channel flow over a vegetation layer using a k-epsilon turbulence model, J. Hydrosci. Hydraul. Eng., 11, 57-67.
– reference: Nepf, H., and M. Ghisalberti (2008), Flow and transport in channels with submerged vegetation, Acta Geophys., 56(3), 753-777.
– reference: Alsdorf, D. E., et al. (2000), Interferometric radar measurements of water level changes on the Amazon flood plain, Nature, 404(6774), 174-177.
– reference: Moussa, R., and C. Bocquillon (2009), On the use of the diffusive wave for modelling extreme flood events with overbank flow in the floodplain, J. Hydrol., 374(1-2), 116-135.
– reference: Katul, G. G., et al. (2004), One- and two-equation models for canopy turbulence, Boundary Layer Meteorol., 113(1), 81-109.
– reference: Katul, G. G., and W. H. Chang (1999), Principal length scales in second-order closure models for canopy turbulence, J. Appl. Meteorol., 38(11), 1631-1643.
– reference: Woolhiser, D. A. (1975), Simulation of unsteady one-dimensional flow over plane: The rising hydrograph, Water Resour. Res., 3, 753-771.
– reference: Wilson, C., and M. S. Horritt (2002), Measuring the flow resistance of submerged grass, Hydrol. Processes, 16(13), 2589-2598.
– reference: Lefsky, M. A., et al. (2002a), Lidar remote sensing of above-ground biomass in three biomes, Global Ecol. Biogeogr., 11(5), 393-399.
– reference: Nepf, H. M., and E. R. Vivoni (2000), Flow structure in depth-limited, vegetated flow, J. Geophys. Res., 105(C12), 28547-28557, doi:10.1029/2000JC900145.
– reference: Parlange, J. Y., et al. (1981), Kinematic flow approximation of runoff on a plane: An exact analytical solution, J. Hydrol., 52(1-2), 171-176.
– reference: Green, J. C. (2005), Modelling flow resistance in vegetated streams: Review and development of new theory, Hydrol. Processes, 19(6), 1245-1259.
– reference: Harman, I. N., and J. J. Finnigan (2007), A unified theory for flow in the canopy and roughness sub-layer, Boundary Layer Meteorol., 129(3), 323-351.
– reference: Christiansen, T., et al. (2000), Flow and sediment transport on a tidal salt marsh surface, Estuarine Coastal Shelf Sci., 50(3), 315-331.
– reference: Brutsaert, W. (Ed.) (1982), Evaporation into the Atmosphere: Theory, History, and Applications, 299 pp., Kluwer Acad. Publ., New York.
– reference: Ghisalberti, M., and H. M. Nepf (2004), The limited growth of vegetated shear layers, Water Resour. Res., 40, W07502, doi:10.1029/2003WR002776.
– reference: Massman, W. J. (1997), An analytical one-dimensional model of momentum transfer by vegetation of arbitrary structure, Boundary Layer Meteorol., 83(3), 407-421.
– reference: Alsdorf, D., et al. (2007a), Spatial and temporal complexity of the Amazon flood measured from space, Geophys. Res. Lett., 34, L08402, doi:10.1029/2007GL029447.
– reference: Barenblatt, G. I. (2003), Scaling, 171 pp., Cambridge Univ. Press, New York.
– reference: Cheng, H., and I. P. Castro (2002), Near wall flow over urban-like roughness, Bound. Layer Meteorol., 104(2), 229-259.
– reference: Raupach, M. R. (1994), Simplified expressions for vegetation roughness length and zero-plane displacement as functions of canopy height and area index, Boundary Layer Meteorol., 71(1-2), 211-216.
– reference: Hornberger, G. M., et al. (1998), Elements of Physical Hydrology, 302 pp., Johns Hopkins Univ. Press, Baltimore, Md.
– reference: Huthoff, F., D. C. M. Augustijn, and S. J. M. H. Hulscher (2007), Analytical solution of the depth-averaged flow velocity in case of submerged rigid cylindrical vegetation, Water Resour. Res., 43, W06413, doi:10.1029/2006WR005625.
– reference: Singh, V. P., and D. A. Woolhiser (1976), A nonlinear kinematic wave model for watershed surface runoff, J. Hydrol., 31, 221-243.
– reference: Moussa, R., and C. Bocquillon (2000), Approximation zones of the Saint-Venant equations for flood routing with overbank flow, Hydrol. Earth Syst. Sci., 4(2), 251-261.
– reference: Thompson, S. E., and K. E. Daniels (2010), A porous convection model for grass patterns, Am. Nat., 175(1), E10-E15.
– reference: LeFavour, G., and D. Alsdorf (2005), Water slope and discharge in the Amazon River estimated using the shuttle radar topography mission digital elevation model, Geophys. Res. Lett., 32, L17404, doi:10.1029/2005GL023836.
– reference: Raupach, M. R., and R. H. Shaw (1982), Averaging procedures for flow within vegetation canopies, Boundary Layer Meteorol., 22(1), 79-90.
– reference: Gioia, G., and F. A. Bombardelli (2002), Scaling and similarity in rough channel flows, Phys. Rev. Lett., 88(1), 14,501-14,504.
– reference: Koch, E. W., and G. Gust (1999), Water flow in tide- and wave-dominated beds of the seagrass Thalassia testudinum, Marine Ecol. Prog. Ser., 184, 63-72.
– reference: Katul, G., P. Wiberg, J. Albertson, and G. Hornberger (2002), A mixing layer theory for flow resistance in shallow streams, Water Resour. Res., 38(11), 1250, doi:10.1029/2001WR000817.
– reference: Belcher, S. E., et al. (2003), Adjustment of a turbulent boundary layer to a canopy of roughness elements, J. Fluid. Mech., 488, 369-398.
– reference: Alsdorf, D., et al. (2005), Diffusion modeling of recessional flow on central Amazonian floodplains, Geophys. Res. Lett., 32, L21405, doi:10.1029/2005GL024412.
– reference: Poggi, D., and G. G. Katul (2008b), Micro- and macro-dispersive fluxes in canopy flows, Acta Geophys., 56(3), 778-799.
– reference: Stephan, U., and D. Gutknecht (2002), Hydraulic resistance of submerged flexible vegetation, J. Hydrol., 269(1-2), 27-43.
– reference: Finnigan, J. J., and S. E. Belcher (2004), Flow over a hill covered with a plant canopy, Q. J. R. Meteorol. Soc., 130(596), 1-29.
– reference: Neary, V. S. (2003), Numerical solution of fully developed flow with vegetative resistance, J. Eng. Mech., 129(5), 558-563.
– reference: Ajayi, A. E., et al. (2008), A numerical model for simulating Hortonian overland flow on tropical hillslopes with vegetation elements, Hydrol. Processes, 22(8), 1107-1118.
– reference: Alsdorf, D. E., E. Rodríguez, and D. P. Lettenmaier (2007b), Measuring surface water from space, Rev. Geophys., 45, RG2002, doi:10.1029/2006RG000197.
– reference: Katul, G. G., and J. D. Albertson (1998), An investigation of higher-order closure models for a forested canopy, Boundary Layer Meteorol., 89(1), 47-74.
– reference: Carollo, F. G., et al. (2002), Flow velocity measurements in vegetated channels, J. Hydraul. Eng., 128(7), 664-673.
– reference: Engman, E. T. (1986), Roughness coefficients for routing surface runoff, J. Irrig. Drain. Eng., 112(1), 39-53.
– reference: Lefsky, M. A., et al. (2002b), Lidar remote sensing for ecosystem studies, Bioscience, 52(1), 19-30.
– reference: Murphy, E., et al. (2007), Model and laboratory study of dispersion in flows with submerged vegetation, Water Resour. Res., 43, W05438, doi:10.1029/2006WR005229.
– reference: Izakson, A. (1937), Formula for the velocity distribution near a wall, Zh. Eksp. Teor. Fiz., 7, 919-924.
– reference: Finnigan, J. (2000), Turbulence in plant canopies, Annu. Rev. Fluid Mech., 32, 519-571.
– reference: Shi, Z., et al. (1995), Flow Structure in and above the various heights of a salt-marsh canopy: A laboratory flume study, J. Coastal Res., 11(4), 1204-1209.
– reference: Lopez, F., and M. H. Garcia (2001), Mean flow and turbulence structure of open-channel flow through non-emergent vegetation, J. Hydraul. Eng., 127(5), 392-402.
– reference: Defina, A., and A. C. Bixio (2005), Mean flow and turbulence in vegetated open channel flow, Water Resour. Res., 41, W07006, doi:10.1029/2004WR003475.
– reference: Chen, C. L. (1991), Unified theory on power-laws for flow resistance, J. Hydraul. Eng., 117, 371-389.
– reference: Smith, R. E., and D. A. Woolhiser (1971), Overland flow on an infiltrating surface, Water Resour. Res., 7, 899-913, doi:10.1029/WR007i004p00899.
– reference: Chow, V. T. (1959), Open-Channel Hydraulics, 680 pp., McGraw-Hill, New York.
– reference: Poggi, D., et al. (2004a), A note on the contribution of dispersive fluxes to momentum transfer within canopies: Research note, Boundary Layer Meteorol., 111(3), 615-621.
– reference: Wilson, N. R., and R. H. Shaw (1977), Higher-order closure model for canopy flow, J. Appl. Meteorol., 16(11), 1197-1205.
– reference: Katul, G. G., et al. (1998), Active turbulence and scalar transport near the forest-atmosphere interface, J. Appl. Meteorol., 37(12), 1533-1546.
– reference: Kouwen, N., and T. E. Unny (1969), Flow retardance in vegetated channels, J. Irrig. Drain. Div., 95(IR2), 329-342.
– reference: Yen, B. C. (2002), Open channel flow resistance, J. Hydraul. Eng., 128(1), 20-39.
– reference: Mason, D. C., et al. (2003), Floodplain friction parameterization in two-dimensional river flood models using vegetation heights derived from airborne scanning laser altimetry, Hydrol. Processes, 17(9), 1711-1732.
– reference: Poggi, D., et al. (2008), Analytical models for the mean flow inside dense canopies on gentle hilly terrain, Q. J. R. Meteorol. Soc., 134(634), 1095-1112.
– reference: Smith, L. C. (1997), Satellite remote sensing of river inundation area, stage, and discharge: A review, Hydrol. Processes, 11(10), 1427-1439.
– year: 1985
– volume: 45
  year: 2007
  article-title: Measuring surface water from space
  publication-title: Rev. Geophys.
– volume: 127
  start-page: 392
  issue: 5
  year: 2001
  end-page: 402
  article-title: Mean flow and turbulence structure of open‐channel flow through non‐emergent vegetation
  publication-title: J. Hydraul. Eng.
– volume: 50
  start-page: 315
  issue: 3
  year: 2000
  end-page: 331
  article-title: Flow and sediment transport on a tidal salt marsh surface
  publication-title: Estuarine Coastal Shelf Sci.
– volume: 134
  start-page: 1095
  issue: 634
  year: 2008
  end-page: 1112
  article-title: Analytical models for the mean flow inside dense canopies on gentle hilly terrain
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 35
  start-page: 479
  issue: 2
  year: 1999
  end-page: 489
  article-title: Drag, turbulence, and diffusion in flow through emergent vegetation
  publication-title: Water Resour. Res.
– volume: 7
  start-page: 2261
  year: 2010
  end-page: 2299
  article-title: A method for parameterising roughness and topographic sub‐grid scale effects in hydraulic modelling from LiDAR data
  publication-title: Hydrol. Earth Syst. Sci. Discuss.
– volume: 374
  start-page: 116
  issue: 1–2
  year: 2009
  end-page: 135
  article-title: On the use of the diffusive wave for modelling extreme flood events with overbank flow in the floodplain
  publication-title: J. Hydrol.
– volume: 45
  year: 2009
  article-title: Hydraulic resistance of submerged rigid vegetation derived from first‐order closure models
  publication-title: Water Resour. Res.
– volume: 32
  year: 2005
  article-title: Water slope and discharge in the Amazon River estimated using the shuttle radar topography mission digital elevation model
  publication-title: Geophys. Res. Lett.
– volume: 175
  start-page: E10
  issue: 1
  year: 2010
  end-page: E15
  article-title: A porous convection model for grass patterns
  publication-title: Am. Nat.
– volume: 9
  start-page: 209
  issue: 1
  year: 1993
  end-page: 220
  article-title: Intertidal Marsh suspended sediment transport processes, Terrebonne Bay, Louisiana, USA
  publication-title: J. Coastal Res.
– volume: 22
  start-page: 1107
  issue: 8
  year: 2008
  end-page: 1118
  article-title: A numerical model for simulating Hortonian overland flow on tropical hillslopes with vegetation elements
  publication-title: Hydrol. Processes
– volume: 52
  start-page: 19
  issue: 1
  year: 2002
  end-page: 30
  article-title: Lidar remote sensing for ecosystem studies
  publication-title: Bioscience
– volume: 91
  start-page: 81
  issue: 1
  year: 1999
  end-page: 107
  article-title: An analytical one‐dimensional second‐order closure model of turbulence statistics and the Lagrangian time scale within and above plant canopies of arbitrary structure
  publication-title: Boundary Layer Meteorol.
– volume: 4
  start-page: 251
  issue: 2
  year: 2000
  end-page: 261
  article-title: Approximation zones of the Saint‐Venant equations for flood routing with overbank flow
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 105
  start-page: 28547
  issue: C12
  year: 2000
  end-page: 28557
  article-title: Flow structure in depth‐limited, vegetated flow
  publication-title: J. Geophys. Res.
– volume: 28
  start-page: 2671
  issue: 14
  year: 2001
  end-page: 2674
  article-title: Water level changes in a large Amazon lake measured with spaceborne radar interferometry and altimetry
  publication-title: Geophys. Res. Lett.
– volume: 11
  start-page: 57
  year: 1994
  end-page: 67
  article-title: Numerical analysis of turbulent open‐channel flow over a vegetation layer using a k‐epsilon turbulence model
  publication-title: J. Hydrosci. Hydraul. Eng.
– volume: 184
  start-page: 63
  year: 1999
  end-page: 72
  article-title: Water flow in tide‐ and wave‐dominated beds of the seagrass Thalassia testudinum
  publication-title: Marine Ecol. Prog. Ser.
– volume: 48
  start-page: 466
  year: 2010
  end-page: 475
  article-title: A two‐layer approach for depth‐limited open‐channel flows with submerged vegetation
  publication-title: J. Hydraul. Res.
– volume: 89
  start-page: 47
  issue: 1
  year: 1998
  end-page: 74
  article-title: An investigation of higher‐order closure models for a forested canopy
  publication-title: Boundary Layer Meteorol.
– volume: 43
  year: 2007
  article-title: Model and laboratory study of dispersion in flows with submerged vegetation
  publication-title: Water Resour. Res.
– volume: 84
  start-page: 2995
  issue: B6
  year: 1979
  end-page: 3007
  article-title: Formation of Martian flood features by release of water from confined aquifers
  publication-title: J. Geophys. Res.
– volume: 3
  start-page: 753
  issue: 3
  year: 1967
  end-page: 771
  article-title: Unsteady, one‐dimensional flow over a plane: The rising hydrograph
  publication-title: Water Resour. Res.
– volume: 130
  start-page: 1
  issue: 596
  year: 2004
  end-page: 29
  article-title: Flow over a hill covered with a plant canopy
  publication-title: Q. J. R. Meteorol. Soc.
– year: 1998
– volume: 17
  start-page: 1711
  issue: 9
  year: 2003
  end-page: 1732
  article-title: Floodplain friction parameterization in two‐dimensional river flood models using vegetation heights derived from airborne scanning laser altimetry
  publication-title: Hydrol. Processes
– volume: 11
  start-page: 1204
  issue: 4
  year: 1995
  end-page: 1209
  article-title: Flow Structure in and above the various heights of a salt‐marsh canopy: A laboratory flume study
  publication-title: J. Coastal Res.
– volume: 7
  start-page: 919
  year: 1937
  end-page: 924
  article-title: Formula for the velocity distribution near a wall
  publication-title: Zh. Eksp. Teor. Fiz.
– year: 1959
– year: 1982
– volume: 138
  start-page: 259
  issue: 2
  year: 2004
  end-page: 274
  article-title: Carbon dioxide and water vapor exchange in a warm temperate grassland
  publication-title: Oecologia
– volume: 128
  start-page: 664
  issue: 7
  year: 2002
  end-page: 673
  article-title: Flow velocity measurements in vegetated channels
  publication-title: J. Hydraul. Eng.
– volume: 38
  issue: 11
  year: 2002
  article-title: A mixing layer theory for flow resistance in shallow streams
  publication-title: Water Resour. Res.
– year: 2008
– volume: 117
  start-page: 371
  year: 1991
  end-page: 389
  article-title: Unified theory on power‐laws for flow resistance
  publication-title: J. Hydraul. Eng.
– volume: 129
  start-page: 323
  issue: 3
  year: 2007
  end-page: 351
  article-title: A unified theory for flow in the canopy and roughness sub‐layer
  publication-title: Boundary Layer Meteorol.
– volume: 113
  start-page: 81
  issue: 1
  year: 2004
  end-page: 109
  article-title: One‐ and two‐equation models for canopy turbulence
  publication-title: Boundary Layer Meteorol.
– volume: 95
  start-page: 329
  issue: IR2
  year: 1969
  end-page: 342
  article-title: Flow retardance in vegetated channels
  publication-title: J. Irrig. Drain. Div.
– volume: 45
  start-page: 435
  issue: 4
  year: 2007
  end-page: 450
  article-title: On inducing equations for vegetation resistance
  publication-title: J. Hydraul. Res.
– volume: 7
  start-page: 899
  year: 1971
  end-page: 913
  article-title: Overland flow on an infiltrating surface
  publication-title: Water Resour. Res.
– volume: 31
  start-page: 221
  year: 1976
  end-page: 243
  article-title: A nonlinear kinematic wave model for watershed surface runoff
  publication-title: J. Hydrol.
– volume: 83
  start-page: 407
  issue: 3
  year: 1997
  end-page: 421
  article-title: An analytical one‐dimensional model of momentum transfer by vegetation of arbitrary structure
  publication-title: Boundary Layer Meteorol.
– volume: 16
  start-page: 1197
  issue: 11
  year: 1977
  end-page: 1205
  article-title: Higher‐order closure model for canopy flow
  publication-title: J. Appl. Meteorol.
– volume: 32
  year: 2005
  article-title: Diffusion modeling of recessional flow on central Amazonian floodplains
  publication-title: Geophys. Res. Lett.
– volume: 88
  start-page: 14,501
  issue: 1
  year: 2002
  end-page: 14,504
  article-title: Scaling and similarity in rough channel flows
  publication-title: Phys. Rev. Lett.
– volume: 11
  start-page: 393
  issue: 5
  year: 2002
  end-page: 399
  article-title: Lidar remote sensing of above‐ground biomass in three biomes
  publication-title: Global Ecol. Biogeogr.
– volume: 56
  start-page: 778
  issue: 3
  year: 2008
  end-page: 799
  article-title: Micro‐ and macro‐dispersive fluxes in canopy flows
  publication-title: Acta Geophys.
– volume: 16
  start-page: 514
  issue: 5
  year: 1977
  end-page: 521
  article-title: Secondary wind speed maxima inside plant canopies
  publication-title: J. Appl. Meteorol.
– volume: 37
  start-page: 1533
  issue: 12
  year: 1998
  end-page: 1546
  article-title: Active turbulence and scalar transport near the forest‐atmosphere interface
  publication-title: J. Appl. Meteorol.
– volume: 71
  start-page: 211
  issue: 1–2
  year: 1994
  end-page: 216
  article-title: Simplified expressions for vegetation roughness length and zero‐plane displacement as functions of canopy height and area index
  publication-title: Boundary Layer Meteorol.
– volume: 104
  start-page: 229
  issue: 2
  year: 2002
  end-page: 259
  article-title: Near wall flow over urban‐like roughness
  publication-title: Bound. Layer Meteorol.
– volume: 112
  start-page: 39
  issue: 1
  year: 1986
  end-page: 53
  article-title: Roughness coefficients for routing surface runoff
  publication-title: J. Irrig. Drain. Eng.
– volume: 19
  start-page: 1245
  issue: 6
  year: 2005
  end-page: 1259
  article-title: Modelling flow resistance in vegetated streams: Review and development of new theory
  publication-title: Hydrol. Processes
– volume: 119
  start-page: 51
  issue: 1
  year: 1993
  end-page: 63
  article-title: Applicability of the St‐Venant equations for 2‐dimensional overland flows over rough infiltrating surfaces
  publication-title: J. Hydraul. Eng.
– volume: 3
  start-page: 345
  issue: 4
  year: 1994
  end-page: 380
  article-title: Detention and mixing in free‐water weltands
  publication-title: Ecol. Eng.
– volume: 22
  start-page: 79
  issue: 1
  year: 1982
  end-page: 90
  article-title: Averaging procedures for flow within vegetation canopies
  publication-title: Boundary Layer Meteorol.
– volume: 38
  start-page: 1631
  issue: 11
  year: 1999
  end-page: 1643
  article-title: Principal length scales in second‐order closure models for canopy turbulence
  publication-title: J. Appl. Meteorol.
– volume: 56
  start-page: 753
  issue: 3
  year: 2008
  end-page: 777
  article-title: Flow and transport in channels with submerged vegetation
  publication-title: Acta Geophys.
– volume: 128
  start-page: 20
  issue: 1
  year: 2002
  end-page: 39
  article-title: Open channel flow resistance
  publication-title: J. Hydraul. Eng.
– volume: 131
  start-page: 65
  issue: 1
  year: 2005
  end-page: 68
  article-title: Hydraulic resistance in grass swales designed for small flow conveyance
  publication-title: J. Hydraul. Eng.
– year: 2007
– start-page: 221
  year: 2007
  end-page: 250
– volume: 11
  start-page: 1427
  issue: 10
  year: 1997
  end-page: 1439
  article-title: Satellite remote sensing of river inundation area, stage, and discharge: A review
  publication-title: Hydrol. Processes
– year: 2003
– year: 1996
– volume: 111
  start-page: 565
  issue: 3
  year: 2004
  end-page: 587
  article-title: The effect of vegetation density on canopy sub‐layer turbulence
  publication-title: Boundary Layer Meteorol.
– volume: 488
  start-page: 369
  year: 2003
  end-page: 398
  article-title: Adjustment of a turbulent boundary layer to a canopy of roughness elements
  publication-title: J. Fluid. Mech.
– year: 1992
– volume: 41
  year: 2005
  article-title: Mean flow and turbulence in vegetated open channel flow
  publication-title: Water Resour. Res.
– volume: 307
  start-page: 233
  issue: 1–4
  year: 2005
  end-page: 241
  article-title: Effect of submerged flexible vegetation on flow structure and resistance
  publication-title: J. Hydrol.
– volume: 11
  start-page: 347
  issue: 4
  year: 2006
  end-page: 353
  article-title: Development and verification of an analytical solution for forecasting nonlinear kinematic flood waves
  publication-title: J. Hydrol. Eng.
– volume: 129
  start-page: 558
  issue: 5
  year: 2003
  end-page: 563
  article-title: Numerical solution of fully developed flow with vegetative resistance
  publication-title: J. Eng. Mech.
– volume: 40
  start-page: 1474
  issue: 8
  year: 1995
  end-page: 1484
  article-title: Flow hydrodynamics in tidal marsh canopies
  publication-title: Limnol. Oceanogr.
– volume: 52
  start-page: 171
  issue: 1–2
  year: 1981
  end-page: 176
  article-title: Kinematic flow approximation of runoff on a plane: An exact analytical solution
  publication-title: J. Hydrol.
– volume: 34
  year: 2007
  article-title: Spatial and temporal complexity of the Amazon flood measured from space
  publication-title: Geophys. Res. Lett.
– volume: 16
  start-page: 2409
  issue: 12
  year: 2002
  end-page: 2421
  article-title: Modelling overland flow based on Saint‐Venant equations for a discretized hillslope system
  publication-title: Hydrol. Processes
– year: 2002
– volume: 45
  start-page: 111
  issue: 1
  year: 2008
  end-page: 121
  article-title: The effect of canopy roughness density on the constitutive components of the dispersive stresses
  publication-title: Exp. Fluids
– volume: 127
  start-page: 123
  issue: 2
  year: 2001
  end-page: 133
  article-title: Spatially averaged open–channel flow over rough bed
  publication-title: J. Hydraul. Eng.
– volume: 404
  start-page: 174
  issue: 6774
  year: 2000
  end-page: 177
  article-title: Interferometric radar measurements of water level changes on the Amazon flood plain
  publication-title: Nature
– volume: 43
  year: 2007
  article-title: Analytical solution of the depth‐averaged flow velocity in case of submerged rigid cylindrical vegetation
  publication-title: Water Resour. Res.
– volume: 269
  start-page: 27
  issue: 1–2
  year: 2002
  end-page: 43
  article-title: Hydraulic resistance of submerged flexible vegetation
  publication-title: J. Hydrol.
– volume: 32
  start-page: 519
  year: 2000
  end-page: 571
  article-title: Turbulence in plant canopies
  publication-title: Annu. Rev. Fluid Mech.
– volume: 40
  year: 2004
  article-title: The limited growth of vegetated shear layers
  publication-title: Water Resour. Res.
– volume: 111
  start-page: 615
  issue: 3
  year: 2004
  end-page: 621
  article-title: A note on the contribution of dispersive fluxes to momentum transfer within canopies: Research note
  publication-title: Boundary Layer Meteorol.
– volume: 30
  start-page: 665
  issue: 3
  year: 1994
  end-page: 671
  article-title: Suitability of simplified overland flow equations
  publication-title: Water Resour. Res.
– volume: 16
  start-page: 2589
  issue: 13
  year: 2002
  end-page: 2598
  article-title: Measuring the flow resistance of submerged grass
  publication-title: Hydrol. Processes
– volume: 3
  start-page: 753
  year: 1975
  end-page: 771
  article-title: Simulation of unsteady one‐dimensional flow over plane: The rising hydrograph
  publication-title: Water Resour. Res.
– year: 1999
– ident: e_1_2_9_52_1
  doi: 10.1002/hyp.1270
– ident: e_1_2_9_72_1
  doi: 10.1029/2008WR007373
– ident: e_1_2_9_73_1
  doi: 10.1007/BF00709229
– ident: e_1_2_9_81_1
  doi: 10.1002/(SICI)1099-1085(199708)11:10<1427::AID-HYP473>3.0.CO;2-S
– ident: e_1_2_9_64_1
  doi: 10.1061/(ASCE)0733-9429(2001)127:2(123)
– ident: e_1_2_9_47_1
  doi: 10.1029/2005GL023836
– ident: e_1_2_9_68_1
  doi: 10.2478/s11600-008-0029-7
– ident: e_1_2_9_15_1
  doi: 10.5194/hessd-7-2261-2010
– ident: e_1_2_9_51_1
  doi: 10.1061/(ASCE)0733-9429(2001)127:5(392)
– ident: e_1_2_9_90_1
  doi: 10.1029/WR003i003p00753
– ident: e_1_2_9_58_1
  doi: 10.1029/2006WR005229
– ident: e_1_2_9_61_1
  doi: 10.2478/s11600-008-0017-y
– volume: 95
  start-page: 329
  issue: 2
  year: 1969
  ident: e_1_2_9_46_1
  article-title: Flow retardance in vegetated channels
  publication-title: J. Irrig. Drain. Div.
  doi: 10.1061/JRCEA4.0000652
– ident: e_1_2_9_27_1
  doi: 10.1029/2003WR002776
– ident: e_1_2_9_7_1
  doi: 10.1029/2006RG000197
– ident: e_1_2_9_13_1
  doi: 10.1061/(ASCE)0733-9429(2002)128:7(664)
– ident: e_1_2_9_76_1
  doi: 10.1061/(ASCE)1084-0699(2006)11:4(347)
– ident: e_1_2_9_9_1
  doi: 10.1080/00221686.2007.9521778
– ident: e_1_2_9_37_1
  doi: 10.1016/j.jhydrol.2004.10.013
– volume: 11
  start-page: 1204
  issue: 4
  year: 1995
  ident: e_1_2_9_78_1
  article-title: Flow Structure in and above the various heights of a salt‐marsh canopy: A laboratory flume study
  publication-title: J. Coastal Res.
– ident: e_1_2_9_17_1
  doi: 10.1023/A:1016060103448
– ident: e_1_2_9_92_1
  doi: 10.1080/00221686.2010.491649
– ident: e_1_2_9_23_1
  doi: 10.1061/(ASCE)0733-9437(1986)112:1(39)
– ident: e_1_2_9_70_1
  doi: 10.1023/B:BOUN.0000016576.05621.73
– ident: e_1_2_9_50_1
  doi: 10.4319/lo.1995.40.8.1474
– ident: e_1_2_9_21_1
  doi: 10.1029/2004WR003475
– ident: e_1_2_9_44_1
  doi: 10.1061/(ASCE)0733-9429(2005)131:1(65)
– volume-title: Iowa Stormwater Management Manual
  year: 2008
  ident: e_1_2_9_35_1
– volume: 11
  start-page: 57
  year: 1994
  ident: e_1_2_9_79_1
  article-title: Numerical analysis of turbulent open‐channel flow over a vegetation layer using a k‐epsilon turbulence model
  publication-title: J. Hydrosci. Hydraul. Eng.
– ident: e_1_2_9_40_1
  doi: 10.1175/1520-0450(1999)038<1631:PLSISO>2.0.CO;2
– ident: e_1_2_9_75_1
  doi: 10.1029/93WR03098
– ident: e_1_2_9_49_1
  doi: 10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2
– ident: e_1_2_9_84_1
  doi: 10.1061/(ASCE)0733-9429(1993)119:1(51)
– volume-title: HEC‐RAS Reference Manual
  year: 2002
  ident: e_1_2_9_32_1
– ident: e_1_2_9_12_1
  doi: 10.1007/978-94-017-1497-6
– ident: e_1_2_9_77_1
  doi: 10.1175/1520-0450(1977)016<0514:SWSMIP>2.0.CO;2
– ident: e_1_2_9_80_1
  doi: 10.1016/0022-1694(76)90126-8
– ident: e_1_2_9_5_1
  doi: 10.1029/2005GL024412
– ident: e_1_2_9_63_1
  doi: 10.1007/978-1-4020-5385-6_6
– volume-title: Open‐Channel Hydraulics
  year: 1985
  ident: e_1_2_9_26_1
– ident: e_1_2_9_69_1
  doi: 10.1023/B:BOUN.0000016563.76874.47
– ident: e_1_2_9_34_1
  doi: 10.1029/2006WR005625
– ident: e_1_2_9_89_1
  doi: 10.1175/1520-0450(1977)016<1197:AHOCMF>2.0.CO;2
– ident: e_1_2_9_3_1
  doi: 10.1038/35004560
– ident: e_1_2_9_14_1
  doi: 10.1029/JB084iB06p02995
– ident: e_1_2_9_71_1
  doi: 10.1002/qj.276
– volume-title: Channel Flow Resistance: Centennial of Manning's Formula
  year: 1992
  ident: e_1_2_9_93_1
– volume-title: Proceedings of 32nd Congress of IAHR—Harmonizing the Demands of Art and Nature in Hydraulics
  year: 2007
  ident: e_1_2_9_20_1
– ident: e_1_2_9_59_1
  doi: 10.1061/(ASCE)0733-9399(2003)129:5(558)
– ident: e_1_2_9_28_1
  doi: 10.1103/PhysRevLett.88.014501
– ident: e_1_2_9_57_1
  doi: 10.1016/j.jhydrol.2009.06.006
– ident: e_1_2_9_11_1
  doi: 10.1017/S0022112003005019
– ident: e_1_2_9_48_1
  doi: 10.1046/j.1466-822x.2002.00303.x
– ident: e_1_2_9_33_1
  doi: 10.56021/9780801858567
– ident: e_1_2_9_56_1
  doi: 10.5194/hess-4-251-2000
– ident: e_1_2_9_94_1
  doi: 10.1061/(ASCE)0733-9429(2002)128:1(20)
– ident: e_1_2_9_19_1
  doi: 10.1006/ecss.2000.0548
– ident: e_1_2_9_30_1
  doi: 10.1007/s10546-008-9328-4
– ident: e_1_2_9_45_1
  doi: 10.3354/meps184063
– volume: 7
  start-page: 919
  year: 1937
  ident: e_1_2_9_36_1
  article-title: Formula for the velocity distribution near a wall
  publication-title: Zh. Eksp. Teor. Fiz.
– ident: e_1_2_9_60_1
  doi: 10.1029/1998WR900069
– ident: e_1_2_9_53_1
  doi: 10.1023/A:1000234813011
– ident: e_1_2_9_87_1
  doi: 10.1002/hyp.1010
– volume-title: Channel Flow Resistance: Centennial of Manning's Formula
  year: 1992
  ident: e_1_2_9_22_1
– ident: e_1_2_9_24_1
  doi: 10.1146/annurev.fluid.32.1.519
– ident: e_1_2_9_83_1
  doi: 10.1016/S0022-1694(02)00192-0
– ident: e_1_2_9_66_1
  doi: 10.1016/0022-1694(81)90104-9
– volume-title: Open‐Channel Hydraulics
  year: 1959
  ident: e_1_2_9_18_1
– ident: e_1_2_9_85_1
  doi: 10.1086/648603
– ident: e_1_2_9_82_1
  doi: 10.1029/WR007i004p00899
– ident: e_1_2_9_4_1
  doi: 10.1029/2001GL012962
– ident: e_1_2_9_6_1
  doi: 10.1029/2007GL029447
– ident: e_1_2_9_38_1
  doi: 10.1016/0925-8574(94)00007-7
– ident: e_1_2_9_74_1
  doi: 10.1007/BF00128057
– ident: e_1_2_9_91_1
  doi: 10.1029/WR003i003p00753
– ident: e_1_2_9_42_1
  doi: 10.1029/2001WR000817
– ident: e_1_2_9_88_1
  doi: 10.1002/hyp.1049
– ident: e_1_2_9_16_1
  doi: 10.1061/(ASCE)0733-9429(1991)117:3(371)
– ident: e_1_2_9_65_1
  doi: 10.1007/s00442-003-1388-z
– ident: e_1_2_9_25_1
  doi: 10.1256/qj.02.177
– ident: e_1_2_9_2_1
  doi: 10.1002/hyp.6665
– ident: e_1_2_9_10_1
  doi: 10.1017/CBO9780511814921
– volume-title: 28th International IAHR Conference
  year: 1999
  ident: e_1_2_9_55_1
– volume-title: International Workshop on Riparian Forest Vegetated Channels: Hydraulic, Morphological and Ecological Aspects
  year: 2003
  ident: e_1_2_9_8_1
– ident: e_1_2_9_41_1
  doi: 10.1175/1520-0450(1998)037<1533:ATASTN>2.0.CO;2
– ident: e_1_2_9_43_1
  doi: 10.1023/B:BOUN.0000037333.48760.e5
– ident: e_1_2_9_62_1
  doi: 10.1029/2000JC900145
– ident: e_1_2_9_54_1
  doi: 10.1023/A:1001810204560
– volume-title: Practical Hydraulics Handbook
  year: 1996
  ident: e_1_2_9_31_1
– ident: e_1_2_9_29_1
  doi: 10.1002/hyp.5564
– ident: e_1_2_9_39_1
  doi: 10.1023/A:1001509106381
– ident: e_1_2_9_67_1
  doi: 10.1007/s00348-008-0467-7
– volume: 9
  start-page: 209
  issue: 1
  year: 1993
  ident: e_1_2_9_86_1
  article-title: Intertidal Marsh suspended sediment transport processes, Terrebonne Bay, Louisiana, USA
  publication-title: J. Coastal Res.
SSID ssj0014567
Score 2.2633348
Snippet The specification of a flow resistance factor to account for vegetative effects in the Saint‐Venant equation (SVE) remains uncertain and is a subject of active...
The specification of a flow resistance factor to account for vegetative effects in the Saint-Venant equation (SVE) remains uncertain and is a subject of active...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms adjustment length
Atmospheric boundary layer
Atmospheric sciences
Canopies
canopy flows
Experiments
Flood routing
Floods
Flow resistance
Flow velocity
Foliage
Friction
Hydrology
Manning's coefficient
Mechanics
Remote sensing
Reynolds number
Saint Venant equation
Stream flow
Submerged plants
Turbulence
Vegetation
Water depth
Water levels
Title A flow resistance model for assessing the impact of vegetation on flood routing mechanics
URI https://api.istex.fr/ark:/67375/WNG-NKT34361-7/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2010WR010278
https://www.proquest.com/docview/907215279
https://www.proquest.com/docview/899172900
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5B9wAXxFOEQuUDcIGoTuL144RK1W0FYoVWrbacLMexi0TZlN0uj3_PTNaJlgOVcogUS448tuezv5n5AF6WjQiVi1UufOS5CNLk2nCRG2mE8BoxqaJ8509TeXImPpyPz1NsziqFVfZ7YrdRN62nO_J9Q4W8xqUy765-5CQaReRqUtC4DaMCHQ1NcD05HkgExAaqJ5gJ6KS4d16afeKA5zOqp0b6alseaUSD-_sfuLkNWjuvM7kP9xJcZAcb-z6AW2HxEO702cQrfE8q5l__PIIvByxetr8YnqAJFaI5WSd0wxCYMtexu-ioGEI-tkmOZG1kP8NFijhk-ESKY2fLdk3R0Ox7oLxg7OcxnE2OTg9P8iSdkDuqNJvLWFEl_ForTZcagWsfHYKxskYHHoxGn-SNa4SUrtDeF0bVQUfnqDpgrSKvnsDOol2Ep8CcayQpVHtTa6GlrnmFRvRF0ygETzFk8KYfPutTXXGSt7i0Hb9dGrs92Bm8Glpfbepp_Kfd684SQyO3_EYxaGps59NjO_14WolKFlZlsNubyqblt7LDZMmADV9x3RAZ4hahXa8snjMRuxnOM3jbGfjG37Hz2eGMON7y2Y397cLd_tKZF89h53q5Di8QtVzXe93c3IPR-6Pp59lfYhPm0Q
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RONBLVfpQU1rqQ-mljUhib2IfKoRol6ULe1gtWnpyHcemUmEDu2wpP4r_2JlsEm0P5YaUQ6RYSeQZe77xPD6A90khHDeeh8L6KBQuVaFUkQhVqoSwEjFpRvXOx4O0dyK-nXZOV-CuqYWhtMpmT6w26qK0dEa-o6iRVyfJ1O7lVUikURRcbRg0FlrRd7c36LHNPh9-QfFuJ0n362i_F9akAqGhHqxh6jn1iM9lJsndd5G03iBMSXI0bU5J3K2tMoVIUxNLa2OV5U56Y6hvXp75iON7H8Ga4FxRBqHsHrRBC8QiWRPQJmBV59lHidqhmPN4SP3biM9tyQKukTD__ANvl0FyZeW6T-FJDU_Z3kKfNmDFTZ7BelO9PMP7mjX95-1z-L7H_Hl5w9BjJxSK6sMqYh2GQJiZKpqMhpEhxGSLYkxWevbbndUZjgwvT3nzbFrOKfuaXTiqQ8bvvICTB5nVl7A6KSfuFTBjipQYsa3KpZCpzCOOSmPjosgQrHkXwMdm-rSt-5gTnca5ruLpidLLkx3Adjv6ctG_4z_jPlSSaAeZ6S_Kecs6ejw40IP-iAuexjoLYLMRla6X-0y3yhkAa5_iOqXgi5m4cj7T6NciVlRRFMCnSsD3_o4eD_eHFFNOXt_7vXew3hsdH-mjw0F_Ex43B95R_AZWr6dz9xYR03W-Vekpgx8PvTD-AuSvIJg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVgIuiKcI5eED5QLROok3tg8IVS3bloUVWrXacnIdxwaJsim7XUp_Gv-OmWwSLQd6q5RDpFhJ5JnxfPY8PoCXaSl8ZkMWCxd4LHyuY6W5iHWuhXAKMamkeudPo3z_SHw47h-vwZ-2FobSKts1sV6oy8rRGXlPUyOvfip1LzRZEZ93B-_OfsZEIEWB1pZNY6khQ395gbu3-duDXRT1VpoO3h_u7McNwUBsqR9rnIeM-sUXSira-nuuXLAIWdIC3ZzXCldup20p8twmyrlEy8KrYC310Ctk4Bm-9wZsyExxIk9Qg70ugIG4RLbBbQJZTc49T3WP4s-TMfVyI263FW-4QYL9_Q_UXQXMtccb3IU7DVRl20vdugdrfnofbrWVzHO8bxjUv10-gC_bLJxWFwx374RIUZVYTbLDEBQzW0eW0UkyhJtsWZjJqsB--a9NtiPDK1AOPZtVC8rEZj881STjdx7C0bXM6iNYn1ZT_xiYtWVO7NhOF0qoXBU8QwVySVlKBG7BR_C6nT7jmp7mRK1xaurYeqrN6mRHsNWNPlv28vjPuFe1JLpBdvad8t9k30xGe2Y0PMxElidGRrDZiso0pj83naJGwLqnaLMUiLFTXy3mBve4iBs15xG8qQV85e-YyXhnTPHl9MmV33sBN9EkzMeD0XATbrdn3zx5Cuvns4V_huDpvHheqymDk-u2i793TiTF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+flow+resistance+model+for+assessing+the+impact+of+vegetation+on+flood+routing+mechanics&rft.jtitle=Water+resources+research&rft.au=Katul%2C+Gabriel+G&rft.au=Poggi%2C+Davide&rft.au=Ridolfi%2C+Luca&rft.date=2011-08-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=47&rft.issue=8&rft_id=info:doi/10.1029%2F2010WR010278&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2525003721
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon