A flow resistance model for assessing the impact of vegetation on flood routing mechanics
The specification of a flow resistance factor to account for vegetative effects in the Saint‐Venant equation (SVE) remains uncertain and is a subject of active research in flood routing mechanics. Here, an analytical model for the flow resistance factor is proposed for submerged vegetation, where th...
Saved in:
Published in | Water resources research Vol. 47; no. 8 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Washington
Blackwell Publishing Ltd
01.08.2011
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0043-1397 1944-7973 |
DOI | 10.1029/2010WR010278 |
Cover
Loading…
Abstract | The specification of a flow resistance factor to account for vegetative effects in the Saint‐Venant equation (SVE) remains uncertain and is a subject of active research in flood routing mechanics. Here, an analytical model for the flow resistance factor is proposed for submerged vegetation, where the water depth is commensurate with the canopy height and the roughness Reynolds number is sufficiently large so as to ignore viscous effects. The analytical model predicts that the resistance factor varies with three canonical length scales: the adjustment length scale that depends on the foliage drag and leaf area density, the canopy height, and the water level. These length scales can reasonably be inferred from a range of remote sensing products making the proposed flow resistance model eminently suitable for operational flood routing. Despite the numerous simplifications, agreement between measured and modeled resistance factors and bulk velocities is reasonable across a range of experimental and field studies. The proposed model asymptotically recovers the flow resistance formulation when the water depth greatly exceeds the canopy height. This analytical treatment provides a unifying framework that links the resistance factor to a number of concepts and length scales already in use to describe canopy turbulence. The implications of the coupling between the resistance factor and the water depth on solutions to the SVE are explored via a case study, which shows a reasonable match between empirical design standard and theoretical predictions.
Key Points
An analytical model for the resistance factor formulation for vegetated canopies
A unifying framework that links resistance factors to canopy turbulence
Parameters of resistance factors can be predicted from remote sensing platforms |
---|---|
AbstractList | The specification of a flow resistance factor to account for vegetative effects in the Saint‐Venant equation (SVE) remains uncertain and is a subject of active research in flood routing mechanics. Here, an analytical model for the flow resistance factor is proposed for submerged vegetation, where the water depth is commensurate with the canopy height and the roughness Reynolds number is sufficiently large so as to ignore viscous effects. The analytical model predicts that the resistance factor varies with three canonical length scales: the adjustment length scale that depends on the foliage drag and leaf area density, the canopy height, and the water level. These length scales can reasonably be inferred from a range of remote sensing products making the proposed flow resistance model eminently suitable for operational flood routing. Despite the numerous simplifications, agreement between measured and modeled resistance factors and bulk velocities is reasonable across a range of experimental and field studies. The proposed model asymptotically recovers the flow resistance formulation when the water depth greatly exceeds the canopy height. This analytical treatment provides a unifying framework that links the resistance factor to a number of concepts and length scales already in use to describe canopy turbulence. The implications of the coupling between the resistance factor and the water depth on solutions to the SVE are explored via a case study, which shows a reasonable match between empirical design standard and theoretical predictions.
Key Points
An analytical model for the resistance factor formulation for vegetated canopies
A unifying framework that links resistance factors to canopy turbulence
Parameters of resistance factors can be predicted from remote sensing platforms The specification of a flow resistance factor to account for vegetative effects in the Saint-Venant equation (SVE) remains uncertain and is a subject of active research in flood routing mechanics. Here, an analytical model for the flow resistance factor is proposed for submerged vegetation, where the water depth is commensurate with the canopy height and the roughness Reynolds number is sufficiently large so as to ignore viscous effects. The analytical model predicts that the resistance factor varies with three canonical length scales: the adjustment length scale that depends on the foliage drag and leaf area density, the canopy height, and the water level. These length scales can reasonably be inferred from a range of remote sensing products making the proposed flow resistance model eminently suitable for operational flood routing. Despite the numerous simplifications, agreement between measured and modeled resistance factors and bulk velocities is reasonable across a range of experimental and field studies. The proposed model asymptotically recovers the flow resistance formulation when the water depth greatly exceeds the canopy height. This analytical treatment provides a unifying framework that links the resistance factor to a number of concepts and length scales already in use to describe canopy turbulence. The implications of the coupling between the resistance factor and the water depth on solutions to the SVE are explored via a case study, which shows a reasonable match between empirical design standard and theoretical predictions. The specification of a flow resistance factor to account for vegetative effects in the Saint‐Venant equation (SVE) remains uncertain and is a subject of active research in flood routing mechanics. Here, an analytical model for the flow resistance factor is proposed for submerged vegetation, where the water depth is commensurate with the canopy height and the roughness Reynolds number is sufficiently large so as to ignore viscous effects. The analytical model predicts that the resistance factor varies with three canonical length scales: the adjustment length scale that depends on the foliage drag and leaf area density, the canopy height, and the water level. These length scales can reasonably be inferred from a range of remote sensing products making the proposed flow resistance model eminently suitable for operational flood routing. Despite the numerous simplifications, agreement between measured and modeled resistance factors and bulk velocities is reasonable across a range of experimental and field studies. The proposed model asymptotically recovers the flow resistance formulation when the water depth greatly exceeds the canopy height. This analytical treatment provides a unifying framework that links the resistance factor to a number of concepts and length scales already in use to describe canopy turbulence. The implications of the coupling between the resistance factor and the water depth on solutions to the SVE are explored via a case study, which shows a reasonable match between empirical design standard and theoretical predictions. An analytical model for the resistance factor formulation for vegetated canopies A unifying framework that links resistance factors to canopy turbulence Parameters of resistance factors can be predicted from remote sensing platforms |
Author | Ridolfi, Luca Katul, Gabriel G. Poggi, Davide |
Author_xml | – sequence: 1 givenname: Gabriel G. surname: Katul fullname: Katul, Gabriel G. email: gaby@duke.edu organization: Nicholas School of the Environment, Duke University, Durham, North Carolina, USA – sequence: 2 givenname: Davide surname: Poggi fullname: Poggi, Davide organization: Dipartimento di Idraulica, Trasporti ed Infrastrutture Civili, Politecnico di Turin, Turin, Italy – sequence: 3 givenname: Luca surname: Ridolfi fullname: Ridolfi, Luca organization: Dipartimento di Idraulica, Trasporti ed Infrastrutture Civili, Politecnico di Turin, Turin, Italy |
BookMark | eNp9kd9LHDEQx4NY8LS-9Q8IvvjStfmxl0ke5ahWKgqHcvgUcrmJRnc3Z7JX63_fPbaUIiiEycvnMzN8Z5_sdqlDQr5wdsKZMN8E42wxH4oAvUMm3NR1BQbkLpkwVsuKSwN7ZL-UR8Z4PVUwIXenNDTphWYssfSu80jbtMKGhpSpKwVLid097R-QxnbtfE9ToL_wHnvXx9TR4Q1-WtGcNv2WbNE_uC768pl8Cq4pePj3PyC3Z99vZj-qy-vzi9npZeWkMaJSQXLF9VKDloZxZNoHp6ZMLGum0GhdgzduVSvluPaeG1iiDs5pAFhCYPKAHI991zk9b7D0to3FY9O4DtOmWG0MB2HYljx6Qz6mTe6G5axhIPhUgBmgryPkcyolY7DrHFuXXy1ndpuy_T_lARdvcB_HaPrsYvOeJEfpJTb4-uEAu5jP5lwyIQarGq3hUPj7n-Xyk1UgYWoXV-f26ueNrKXiFuQfPX-eCQ |
CitedBy_id | crossref_primary_10_1016_j_advwatres_2020_103527 crossref_primary_10_1029_2020JF005856 crossref_primary_10_3390_w15234121 crossref_primary_10_1029_2020WR027194 crossref_primary_10_1016_j_advwatres_2014_11_010 crossref_primary_10_1016_j_jhydrol_2023_129376 crossref_primary_10_1007_s10652_018_09656_8 crossref_primary_10_1007_s40710_017_0235_x crossref_primary_10_3390_w10121782 crossref_primary_10_3390_w11102154 crossref_primary_10_1016_j_jhydrol_2020_124921 crossref_primary_10_3390_w9090637 crossref_primary_10_1016_j_jhydrol_2022_127761 crossref_primary_10_1016_j_jhydrol_2024_132518 crossref_primary_10_1038_s41467_024_50347_4 crossref_primary_10_1061__ASCE_HY_1943_7900_0000779 crossref_primary_10_1007_s42241_024_0060_4 crossref_primary_10_1016_j_jhydrol_2021_127102 crossref_primary_10_1007_s10652_024_09987_9 crossref_primary_10_1061_JHEND8_HYENG_13214 crossref_primary_10_1186_2051_3933_2_7 crossref_primary_10_1063_5_0060601 crossref_primary_10_3390_w7020420 crossref_primary_10_1007_s10652_019_09720_x crossref_primary_10_12677_AMS_2018_54018 crossref_primary_10_1061__ASCE_HY_1943_7900_0000700 crossref_primary_10_1002_2013WR015065 crossref_primary_10_1002_2016WR018907 crossref_primary_10_1051_kmae_2016032 crossref_primary_10_4236_gep_2019_74004 crossref_primary_10_1002_wat2_1125 crossref_primary_10_1029_2018WR023889 crossref_primary_10_1016_j_jhydrol_2019_124088 crossref_primary_10_1002_grl_50759 crossref_primary_10_1061__ASCE_HY_1943_7900_0001561 crossref_primary_10_1061_JHEND8_HYENG_13209 crossref_primary_10_1007_s10652_015_9417_0 crossref_primary_10_1103_PhysRevFluids_4_124602 crossref_primary_10_1590_s1413_415220220212 crossref_primary_10_1016_j_jhydrol_2023_129839 crossref_primary_10_1016_j_jhydrol_2023_130140 crossref_primary_10_1038_s41598_019_41477_7 crossref_primary_10_1007_s42241_021_0043_7 crossref_primary_10_1080_00221686_2019_1671511 crossref_primary_10_1007_s42241_020_0040_2 crossref_primary_10_1002_2015WR017658 crossref_primary_10_1002_hyp_9993 crossref_primary_10_1002_2015WR017780 crossref_primary_10_1002_2017WR021109 crossref_primary_10_1088_1748_9326_abaa0a crossref_primary_10_1016_j_advwatres_2014_04_001 crossref_primary_10_1007_s10546_024_00876_8 |
Cites_doi | 10.1002/hyp.1270 10.1029/2008WR007373 10.1007/BF00709229 10.1002/(SICI)1099-1085(199708)11:10<1427::AID-HYP473>3.0.CO;2-S 10.1061/(ASCE)0733-9429(2001)127:2(123) 10.1029/2005GL023836 10.2478/s11600-008-0029-7 10.5194/hessd-7-2261-2010 10.1061/(ASCE)0733-9429(2001)127:5(392) 10.1029/WR003i003p00753 10.1029/2006WR005229 10.2478/s11600-008-0017-y 10.1061/JRCEA4.0000652 10.1029/2003WR002776 10.1029/2006RG000197 10.1061/(ASCE)0733-9429(2002)128:7(664) 10.1061/(ASCE)1084-0699(2006)11:4(347) 10.1080/00221686.2007.9521778 10.1016/j.jhydrol.2004.10.013 10.1023/A:1016060103448 10.1080/00221686.2010.491649 10.1061/(ASCE)0733-9437(1986)112:1(39) 10.1023/B:BOUN.0000016576.05621.73 10.4319/lo.1995.40.8.1474 10.1029/2004WR003475 10.1061/(ASCE)0733-9429(2005)131:1(65) 10.1175/1520-0450(1999)038<1631:PLSISO>2.0.CO;2 10.1029/93WR03098 10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2 10.1061/(ASCE)0733-9429(1993)119:1(51) 10.1007/978-94-017-1497-6 10.1175/1520-0450(1977)016<0514:SWSMIP>2.0.CO;2 10.1016/0022-1694(76)90126-8 10.1029/2005GL024412 10.1007/978-1-4020-5385-6_6 10.1023/B:BOUN.0000016563.76874.47 10.1029/2006WR005625 10.1175/1520-0450(1977)016<1197:AHOCMF>2.0.CO;2 10.1038/35004560 10.1029/JB084iB06p02995 10.1002/qj.276 10.1061/(ASCE)0733-9399(2003)129:5(558) 10.1103/PhysRevLett.88.014501 10.1016/j.jhydrol.2009.06.006 10.1017/S0022112003005019 10.1046/j.1466-822x.2002.00303.x 10.56021/9780801858567 10.5194/hess-4-251-2000 10.1061/(ASCE)0733-9429(2002)128:1(20) 10.1006/ecss.2000.0548 10.1007/s10546-008-9328-4 10.3354/meps184063 10.1029/1998WR900069 10.1023/A:1000234813011 10.1002/hyp.1010 10.1146/annurev.fluid.32.1.519 10.1016/S0022-1694(02)00192-0 10.1016/0022-1694(81)90104-9 10.1086/648603 10.1029/WR007i004p00899 10.1029/2001GL012962 10.1029/2007GL029447 10.1016/0925-8574(94)00007-7 10.1007/BF00128057 10.1029/2001WR000817 10.1002/hyp.1049 10.1061/(ASCE)0733-9429(1991)117:3(371) 10.1007/s00442-003-1388-z 10.1256/qj.02.177 10.1002/hyp.6665 10.1017/CBO9780511814921 10.1175/1520-0450(1998)037<1533:ATASTN>2.0.CO;2 10.1023/B:BOUN.0000037333.48760.e5 10.1029/2000JC900145 10.1023/A:1001810204560 10.1002/hyp.5564 10.1023/A:1001509106381 10.1007/s00348-008-0467-7 |
ContentType | Journal Article |
Copyright | Copyright 2011 by the American Geophysical Union. Copyright 2011 by American Geophysical Union |
Copyright_xml | – notice: Copyright 2011 by the American Geophysical Union. – notice: Copyright 2011 by American Geophysical Union |
DBID | BSCLL AAYXX CITATION 3V. 7QH 7QL 7T7 7TG 7U9 7UA 7WY 7WZ 7XB 87Z 8FD 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BEZIV BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 FRNLG F~G GNUQQ GUQSH H94 H96 HCIFZ K60 K6~ KL. KR7 L.- L.G L6V M0C M2O M7N M7S MBDVC P64 PATMY PCBAR PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U |
DOI | 10.1029/2010WR010278 |
DatabaseName | Istex CrossRef ProQuest Central (Corporate) Aqualine Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts Virology and AIDS Abstracts Water Resources Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts ABI/INFORM Professional Advanced Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection ABI/INFORM Global ProQuest Research Library Algology Mycology and Protozoology Abstracts (Microbiology C) Engineering Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ABI/INFORM Complete Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) Engineering Collection Business Premium Collection ABI/INFORM Global Engineering Database Virology and AIDS Abstracts ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest Business Collection Aqualine Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts ProQuest Research Library ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest SciTech Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Economics |
EISSN | 1944-7973 |
EndPage | n/a |
ExternalDocumentID | 2525003721 10_1029_2010WR010278 WRCR13022 ark_67375_WNG_NKT34361_7 |
Genre | article Feature |
GroupedDBID | -~X ..I .DC 05W 0R~ 123 1OB 1OC 24P 31~ 33P 3V. 50Y 5VS 6TJ 7WY 7XC 8-1 8CJ 8FE 8FG 8FH 8FL 8G5 8R4 8R5 8WZ A00 A6W AAESR AAHBH AAHHS AAIHA AAIKC AAMNW AANLZ AASGY AAXRX AAYJJ AAYOK AAZKR ABCUV ABJCF ABJNI ABPPZ ABTAH ABUWG ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACKIV ACNCT ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AIDBO AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB ASPBG ATCPS AVWKF AZFZN AZQEC AZVAB BDRZF BENPR BEZIV BFHJK BGLVJ BHPHI BKSAR BMXJE BPHCQ BRXPI BSCLL CCPQU CS3 D0L D1J DCZOG DDYGU DPXWK DRFUL DRSTM DU5 DWQXO EBS EJD F5P FEDTE FRNLG G-S GNUQQ GODZA GROUPED_ABI_INFORM_COMPLETE GUQSH HCIFZ HVGLF HZ~ K60 K6~ L6V LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M0C M2O M7R M7S MEWTI MSFUL MSSTM MVM MW2 MXFUL MXSTM MY~ O9- OHT OK1 P-X P2P P2W PALCI PATMY PCBAR PQBIZ PQBZA PQQKQ PROAC PTHSS PYCSY Q2X R.K RIWAO RJQFR ROL SAMSI SUPJJ TAE TN5 TWZ UQL VJK VOH WBKPD WXSBR WYJ XOL XSW YHZ YV5 ZCG ZY4 ZZTAW ~02 ~KM ~OA ~~A AANHP AAYCA ACCMX ACRPL ACYXJ ADNMO AEUYN AFWVQ AAYXX ADXHL AETEA AGQPQ CITATION GROUPED_DOAJ PHGZM PHGZT 7QH 7QL 7T7 7TG 7U9 7UA 7XB 8FD 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H94 H96 KL. KR7 L.- L.G M7N MBDVC P64 PKEHL PQEST PQGLB PQUKI PRINS Q9U WIN |
ID | FETCH-LOGICAL-a3992-6f31618b8783901e08cfa6502b406e98847c9ad466a18cc197be8faa8777b7f03 |
IEDL.DBID | 8FG |
ISSN | 0043-1397 |
IngestDate | Fri Jul 11 07:35:47 EDT 2025 Wed Aug 13 09:49:38 EDT 2025 Thu Apr 24 23:02:31 EDT 2025 Tue Jul 01 01:34:08 EDT 2025 Wed Jan 22 16:58:27 EST 2025 Wed Oct 30 09:50:45 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a3992-6f31618b8783901e08cfa6502b406e98847c9ad466a18cc197be8faa8777b7f03 |
Notes | istex:388B9E6EDD56E3F6F38FD024B4960897418BCABA ark:/67375/WNG-NKT34361-7 Tab-delimited Table 1. ArticleID:2010WR010278 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 907215279 |
PQPubID | 105507 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_899172900 proquest_journals_907215279 crossref_primary_10_1029_2010WR010278 crossref_citationtrail_10_1029_2010WR010278 wiley_primary_10_1029_2010WR010278_WRCR13022 istex_primary_ark_67375_WNG_NKT34361_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2011 |
PublicationDateYYYYMMDD | 2011-08-01 |
PublicationDate_xml | – month: 08 year: 2011 text: August 2011 |
PublicationDecade | 2010 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Water resources research |
PublicationTitleAlternate | Water Resour. Res |
PublicationYear | 2011 |
Publisher | Blackwell Publishing Ltd John Wiley & Sons, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons, Inc |
References | Alsdorf, D., C. Birkett, T. Dunne, J. Melack, and L. Hess (2001), Water level changes in a large Amazon lake measured with spaceborne radar interferometry and altimetry, Geophys. Res. Lett., 28(14), 2671-2674, doi:10.1029/2001GL012962. Alsdorf, D., et al. (2007a), Spatial and temporal complexity of the Amazon flood measured from space, Geophys. Res. Lett., 34, L08402, doi:10.1029/2007GL029447. Massman, W. J. (1997), An analytical one-dimensional model of momentum transfer by vegetation of arbitrary structure, Boundary Layer Meteorol., 83(3), 407-421. Lefsky, M. A., et al. (2002a), Lidar remote sensing of above-ground biomass in three biomes, Global Ecol. Biogeogr., 11(5), 393-399. Wilson, N. R., and R. H. Shaw (1977), Higher-order closure model for canopy flow, J. Appl. Meteorol., 16(11), 1197-1205. Carr, M. H. (1979), Formation of Martian flood features by release of water from confined aquifers, J. Geophys. Res., 84(B6), 2995-3007, doi:10.1029/JB084iB06p02995. Huthoff, F., D. C. M. Augustijn, and S. J. M. H. Hulscher (2007), Analytical solution of the depth-averaged flow velocity in case of submerged rigid cylindrical vegetation, Water Resour. Res., 43, W06413, doi:10.1029/2006WR005625. French, R. H. (1985), Open-Channel Hydraulics, 705 pp., McGraw Hill, New York. Yen, B. C. (2002), Open channel flow resistance, J. Hydraul. Eng., 128(1), 20-39. Green, J. C. (2005), Modelling flow resistance in vegetated streams: Review and development of new theory, Hydrol. Processes, 19(6), 1245-1259. Hauser, B. A. (1996), Practical Hydraulics Handbook, 368 pp., Lewis Publ., Los Angeles, Calif. Smith, L. C. (1997), Satellite remote sensing of river inundation area, stage, and discharge: A review, Hydrol. Processes, 11(10), 1427-1439. Yang, W., and S. Choi (2010), A two-layer approach for depth-limited open-channel flows with submerged vegetation, J. Hydraul. Res., 48, 466-475. Massman, W. J., and J. C. Weil (1999), An analytical one-dimensional second-order closure model of turbulence statistics and the Lagrangian time scale within and above plant canopies of arbitrary structure, Boundary Layer Meteorol., 91(1), 81-107. Christiansen, T., et al. (2000), Flow and sediment transport on a tidal salt marsh surface, Estuarine Coastal Shelf Sci., 50(3), 315-331. Finnigan, J. J., and S. E. Belcher (2004), Flow over a hill covered with a plant canopy, Q. J. R. Meteorol. Soc., 130(596), 1-29. Brutsaert, W. (Ed.) (1982), Evaporation into the Atmosphere: Theory, History, and Applications, 299 pp., Kluwer Acad. Publ., New York. Thompson, S. E., and K. E. Daniels (2010), A porous convection model for grass patterns, Am. Nat., 175(1), E10-E15. Poggi, D., et al. (2004a), A note on the contribution of dispersive fluxes to momentum transfer within canopies: Research note, Boundary Layer Meteorol., 111(3), 615-621. Moussa, R., and C. Bocquillon (2009), On the use of the diffusive wave for modelling extreme flood events with overbank flow in the floodplain, J. Hydrol., 374(1-2), 116-135. Tayfur, G., et al. (1993), Applicability of the St-Venant equations for 2-dimensional overland flows over rough infiltrating surfaces, J. Hydraul. Eng., 119(1), 51-63. Baptist, M. J., et al. (2007), On inducing equations for vegetation resistance, J. Hydraul. Res., 45(4), 435-450. Katul, G. G., and W. H. Chang (1999), Principal length scales in second-order closure models for canopy turbulence, J. Appl. Meteorol., 38(11), 1631-1643. Neary, V. S. (2003), Numerical solution of fully developed flow with vegetative resistance, J. Eng. Mech., 129(5), 558-563. Stephan, U., and D. Gutknecht (2002), Hydraulic resistance of submerged flexible vegetation, J. Hydrol., 269(1-2), 27-43. Barenblatt, G. I. (2003), Scaling, 171 pp., Cambridge Univ. Press, New York. Raupach, M. R. (1994), Simplified expressions for vegetation roughness length and zero-plane displacement as functions of canopy height and area index, Boundary Layer Meteorol., 71(1-2), 211-216. Richardson, J. R., and P. Y. Julien (1994), Suitability of simplified overland flow equations, Water Resour. Res., 30(3), 665-671, doi:10.1029/93WR03098. Shaw, R. H. (1977), Secondary wind speed maxima inside plant canopies, J. Appl. Meteorol., 16(5), 514-521. Nepf, H. M., and E. R. Vivoni (2000), Flow structure in depth-limited, vegetated flow, J. Geophys. Res., 105(C12), 28547-28557, doi:10.1029/2000JC900145. Murphy, E., et al. (2007), Model and laboratory study of dispersion in flows with submerged vegetation, Water Resour. Res., 43, W05438, doi:10.1029/2006WR005229. Izakson, A. (1937), Formula for the velocity distribution near a wall, Zh. Eksp. Teor. Fiz., 7, 919-924. LeFavour, G., and D. Alsdorf (2005), Water slope and discharge in the Amazon River estimated using the shuttle radar topography mission digital elevation model, Geophys. Res. Lett., 32, L17404, doi:10.1029/2005GL023836. Harman, I. N., and J. J. Finnigan (2007), A unified theory for flow in the canopy and roughness sub-layer, Boundary Layer Meteorol., 129(3), 323-351. Novick, K. A., et al. (2004), Carbon dioxide and water vapor exchange in a warm temperate grassland, Oecologia, 138(2), 259-274. Shimizu, Y., and T. Tsuiumoto (1994), Numerical analysis of turbulent open-channel flow over a vegetation layer using a k-epsilon turbulence model, J. Hydrosci. Hydraul. Eng., 11, 57-67. Wang, G. T., et al. (2002), Modelling overland flow based on Saint-Venant equations for a discretized hillslope system, Hydrol. Processes, 16(12), 2409-2421. Ajayi, A. E., et al. (2008), A numerical model for simulating Hortonian overland flow on tropical hillslopes with vegetation elements, Hydrol. Processes, 22(8), 1107-1118. Engman, E. T. (1986), Roughness coefficients for routing surface runoff, J. Irrig. Drain. Eng., 112(1), 39-53. Kouwen, N., and T. E. Unny (1969), Flow retardance in vegetated channels, J. Irrig. Drain. Div., 95(IR2), 329-342. Shi, Z., et al. (1995), Flow Structure in and above the various heights of a salt-marsh canopy: A laboratory flume study, J. Coastal Res., 11(4), 1204-1209. Poggi, D., and G. G. Katul (2008a), The effect of canopy roughness density on the constitutive components of the dispersive stresses, Exp. Fluids, 45(1), 111-121. Katul, G., P. Wiberg, J. Albertson, and G. Hornberger (2002), A mixing layer theory for flow resistance in shallow streams, Water Resour. Res., 38(11), 1250, doi:10.1029/2001WR000817. Casas, A., et al. (2010), A method for parameterising roughness and topographic sub-grid scale effects in hydraulic modelling from LiDAR data, Hydrol. Earth Syst. Sci. Discuss., 7, 2261-2299. Alsdorf, D., et al. (2005), Diffusion modeling of recessional flow on central Amazonian floodplains, Geophys. Res. Lett., 32, L21405, doi:10.1029/2005GL024412. Leonard, L. A., and M. E. Luther (1995), Flow hydrodynamics in tidal marsh canopies, Limnol. Oceanogr., 40(8), 1474-1484. Smith, R. E., and D. A. Woolhiser (1971), Overland flow on an infiltrating surface, Water Resour. Res., 7, 899-913, doi:10.1029/WR007i004p00899. Gioia, G., and F. A. Bombardelli (2002), Scaling and similarity in rough channel flows, Phys. Rev. Lett., 88(1), 14,501-14,504. Katul, G. G., and J. D. Albertson (1998), An investigation of higher-order closure models for a forested canopy, Boundary Layer Meteorol., 89(1), 47-74. Kadlec, R. H. (1994), Detention and mixing in free-water weltands, Ecol. Eng., 3(4), 345-380. Katul, G. G., et al. (1998), Active turbulence and scalar transport near the forest-atmosphere interface, J. Appl. Meteorol., 37(12), 1533-1546. Alsdorf, D. E., E. Rodríguez, and D. P. Lettenmaier (2007b), Measuring surface water from space, Rev. Geophys., 45, RG2002, doi:10.1029/2006RG000197. Poggi, D., and G. G. Katul (2008b), Micro- and macro-dispersive fluxes in canopy flows, Acta Geophys., 56(3), 778-799. HEC-RAS (2002), HEC-RAS Reference Manual, U.S. Army Corps of Eng., Washington, D.C. Kirby, J. T., et al. (2005), Hydraulic resistance in grass swales designed for small flow conveyance, J. Hydraul. Eng., 131(1), 65-68. Nepf, H. M. (1999), Drag, turbulence, and diffusion in flow through emergent vegetation, Water Resour. Res., 35(2), 479-489, doi:10.1029/1998WR900069. Woolhiser, D. A. (1975), Simulation of unsteady one-dimensional flow over plane: The rising hydrograph, Water Resour. Res., 3, 753-771. Cheng, H., and I. P. Castro (2002), Near wall flow over urban-like roughness, Bound. Layer Meteorol., 104(2), 229-259. Lefsky, M. A., et al. (2002b), Lidar remote sensing for ecosystem studies, Bioscience, 52(1), 19-30. Parlange, J. Y., et al. (1981), Kinematic flow approximation of runoff on a plane: An exact analytical solution, J. Hydrol., 52(1-2), 171-176. Nepf, H., and M. Ghisalberti (2008), Flow and transport in channels with submerged vegetation, Acta Geophys., 56(3), 753-777. Poggi, D., et al. (2004b), The effect of vegetation density on canopy sub-layer turbulence, Boundary Layer Meteorol., 111(3), 565-587. Poggi, D., C. Krug, and G. G. Katul (2009), Hydraulic resistance of submerged rigid vegetation derived from first-order closure models, Water Resour. Res., 45, W10442, doi:10.1029/2008WR007373. Woolhiser, D. A., and J. A. Liggett (1967), Unsteady, one-dimensional flow over a plane: The rising hydrograph, Water Resour. Res., 3(3), 753-771, doi:10.1029/WR003i003p00753. Hornberger, G. M., et al. (1998), Elements of Physical Hydrology, 302 pp., Johns Hopkins Univ. Press, Baltimore, Md. Belcher, S. E., et al. (2003), Adjustment of a turbulent boundary layer to a canopy of roughness elements, J. Fluid. Mech., 488, 369-398. Finnigan, J. (2000), Turbulence in plant canopies, Annu. Rev. Fluid Mech., 32, 519-571. Katul, G. G., et al. (2004), One- and two-equation models for canopy turbulence, Boundary Layer Meteorol., 113(1), 81-109. Wilson, C., and M. S. Horritt (2002), Measuring the flow resistance of submerged grass, Hydrol. Processes, 16(13), 2589-2598. Carollo, F. G., et al. (2002), Flow velocity measurements in vegetated channels, J. Hydraul. Eng., 128(7), 664-673. Wang, F. C., et al. (1993), Intertidal Marsh suspended sedime 2009; 45 2002; 16 1993; 9 1997; 83 2005; 131 2002; 52 2000; 4 2002; 11 2000; 50 2003; 17 1991; 117 2007; 34 1998; 89 1976; 31 1971; 7 2004; 138 2003; 129 1997; 11 2004; 130 2000; 404 2002; 88 1982; 22 2002; 104 1985 2005; 307 2002; 269 2005; 32 2008; 22 1982 1937; 7 2003; 488 1999; 91 1994; 71 2010; 7 1994; 30 1975; 3 2002; 38 2007; 129 2004; 40 1986; 112 2006; 11 1969; 95 1995; 11 1998 2009; 374 2005; 41 2008 2007 1996 1999; 184 2008; 56 2001; 28 2003 1992 2002 1959 2001; 127 1999 1998; 37 2004; 111 1995; 40 2005; 19 2010; 48 2004; 113 1993; 119 2000; 105 1977; 16 2000; 32 1999; 38 1967; 3 2002; 128 1999; 35 1994; 11 2008; 45 2010; 175 2008; 134 2007; 43 1994; 3 1981; 52 2007; 45 1979; 84 e_1_2_9_75_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_90_1 e_1_2_9_92_1 e_1_2_9_71_1 Yen B. C. (e_1_2_9_93_1) 1992 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 (e_1_2_9_35_1) 2008 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_62_1 e_1_2_9_89_1 Baptist M. J. (e_1_2_9_8_1) 2003 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_6_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_60_1 Shimizu Y. (e_1_2_9_79_1) 1994; 11 e_1_2_9_2_1 Shi Z. (e_1_2_9_78_1) 1995; 11 Kouwen N. (e_1_2_9_46_1) 1969; 95 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 Izakson A. (e_1_2_9_36_1) 1937; 7 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 Dooge J. C. (e_1_2_9_22_1) 1992 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_70_1 Ciraolo G. (e_1_2_9_20_1) 2007 Hauser B. A. (e_1_2_9_31_1) 1996 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_59_1 Chow V. T. (e_1_2_9_18_1) 1959 e_1_2_9_19_1 e_1_2_9_42_1 Meijer D. G. (e_1_2_9_55_1) 1999 e_1_2_9_63_1 e_1_2_9_88_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_82_1 e_1_2_9_3_1 French R. H. (e_1_2_9_26_1) 1985 Wang F. C. (e_1_2_9_86_1) 1993; 9 (e_1_2_9_32_1) 2002 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – reference: Shaw, R. H. (1977), Secondary wind speed maxima inside plant canopies, J. Appl. Meteorol., 16(5), 514-521. – reference: Jarvela, J. (2005), Effect of submerged flexible vegetation on flow structure and resistance, J. Hydrol., 307(1-4), 233-241. – reference: Richardson, J. R., and P. Y. Julien (1994), Suitability of simplified overland flow equations, Water Resour. Res., 30(3), 665-671, doi:10.1029/93WR03098. – reference: Alsdorf, D., C. Birkett, T. Dunne, J. Melack, and L. Hess (2001), Water level changes in a large Amazon lake measured with spaceborne radar interferometry and altimetry, Geophys. Res. Lett., 28(14), 2671-2674, doi:10.1029/2001GL012962. – reference: Tayfur, G., et al. (1993), Applicability of the St-Venant equations for 2-dimensional overland flows over rough infiltrating surfaces, J. Hydraul. Eng., 119(1), 51-63. – reference: Casas, A., et al. (2010), A method for parameterising roughness and topographic sub-grid scale effects in hydraulic modelling from LiDAR data, Hydrol. Earth Syst. Sci. Discuss., 7, 2261-2299. – reference: Kirby, J. T., et al. (2005), Hydraulic resistance in grass swales designed for small flow conveyance, J. Hydraul. Eng., 131(1), 65-68. – reference: Nikora, V., et al. (2001), Spatially averaged open-channel flow over rough bed, J. Hydraul. Eng., 127(2), 123-133. – reference: Yang, W., and S. Choi (2010), A two-layer approach for depth-limited open-channel flows with submerged vegetation, J. Hydraul. Res., 48, 466-475. – reference: Carr, M. H. (1979), Formation of Martian flood features by release of water from confined aquifers, J. Geophys. Res., 84(B6), 2995-3007, doi:10.1029/JB084iB06p02995. – reference: Leonard, L. A., and M. E. Luther (1995), Flow hydrodynamics in tidal marsh canopies, Limnol. Oceanogr., 40(8), 1474-1484. – reference: Nepf, H. M. (1999), Drag, turbulence, and diffusion in flow through emergent vegetation, Water Resour. Res., 35(2), 479-489, doi:10.1029/1998WR900069. – reference: Serrano, S. E. (2006), Development and verification of an analytical solution for forecasting nonlinear kinematic flood waves, J. Hydrol. Eng., 11(4), 347-353. – reference: French, R. H. (1985), Open-Channel Hydraulics, 705 pp., McGraw Hill, New York. – reference: Poggi, D., et al. (2004b), The effect of vegetation density on canopy sub-layer turbulence, Boundary Layer Meteorol., 111(3), 565-587. – reference: Poggi, D., C. Krug, and G. G. Katul (2009), Hydraulic resistance of submerged rigid vegetation derived from first-order closure models, Water Resour. Res., 45, W10442, doi:10.1029/2008WR007373. – reference: Poggi, D., and G. G. Katul (2008a), The effect of canopy roughness density on the constitutive components of the dispersive stresses, Exp. Fluids, 45(1), 111-121. – reference: Wang, F. C., et al. (1993), Intertidal Marsh suspended sediment transport processes, Terrebonne Bay, Louisiana, USA, J. Coastal Res., 9(1), 209-220. – reference: Kadlec, R. H. (1994), Detention and mixing in free-water weltands, Ecol. Eng., 3(4), 345-380. – reference: Wang, G. T., et al. (2002), Modelling overland flow based on Saint-Venant equations for a discretized hillslope system, Hydrol. Processes, 16(12), 2409-2421. – reference: HEC-RAS (2002), HEC-RAS Reference Manual, U.S. Army Corps of Eng., Washington, D.C. – reference: Baptist, M. J., et al. (2007), On inducing equations for vegetation resistance, J. Hydraul. Res., 45(4), 435-450. – reference: Novick, K. A., et al. (2004), Carbon dioxide and water vapor exchange in a warm temperate grassland, Oecologia, 138(2), 259-274. – reference: Massman, W. J., and J. C. Weil (1999), An analytical one-dimensional second-order closure model of turbulence statistics and the Lagrangian time scale within and above plant canopies of arbitrary structure, Boundary Layer Meteorol., 91(1), 81-107. – reference: Hauser, B. A. (1996), Practical Hydraulics Handbook, 368 pp., Lewis Publ., Los Angeles, Calif. – reference: Woolhiser, D. A., and J. A. Liggett (1967), Unsteady, one-dimensional flow over a plane: The rising hydrograph, Water Resour. Res., 3(3), 753-771, doi:10.1029/WR003i003p00753. – reference: Shimizu, Y., and T. Tsuiumoto (1994), Numerical analysis of turbulent open-channel flow over a vegetation layer using a k-epsilon turbulence model, J. Hydrosci. Hydraul. Eng., 11, 57-67. – reference: Nepf, H., and M. Ghisalberti (2008), Flow and transport in channels with submerged vegetation, Acta Geophys., 56(3), 753-777. – reference: Alsdorf, D. E., et al. (2000), Interferometric radar measurements of water level changes on the Amazon flood plain, Nature, 404(6774), 174-177. – reference: Moussa, R., and C. Bocquillon (2009), On the use of the diffusive wave for modelling extreme flood events with overbank flow in the floodplain, J. Hydrol., 374(1-2), 116-135. – reference: Katul, G. G., et al. (2004), One- and two-equation models for canopy turbulence, Boundary Layer Meteorol., 113(1), 81-109. – reference: Katul, G. G., and W. H. Chang (1999), Principal length scales in second-order closure models for canopy turbulence, J. Appl. Meteorol., 38(11), 1631-1643. – reference: Woolhiser, D. A. (1975), Simulation of unsteady one-dimensional flow over plane: The rising hydrograph, Water Resour. Res., 3, 753-771. – reference: Wilson, C., and M. S. Horritt (2002), Measuring the flow resistance of submerged grass, Hydrol. Processes, 16(13), 2589-2598. – reference: Lefsky, M. A., et al. (2002a), Lidar remote sensing of above-ground biomass in three biomes, Global Ecol. Biogeogr., 11(5), 393-399. – reference: Nepf, H. M., and E. R. Vivoni (2000), Flow structure in depth-limited, vegetated flow, J. Geophys. Res., 105(C12), 28547-28557, doi:10.1029/2000JC900145. – reference: Parlange, J. Y., et al. (1981), Kinematic flow approximation of runoff on a plane: An exact analytical solution, J. Hydrol., 52(1-2), 171-176. – reference: Green, J. C. (2005), Modelling flow resistance in vegetated streams: Review and development of new theory, Hydrol. Processes, 19(6), 1245-1259. – reference: Harman, I. N., and J. J. Finnigan (2007), A unified theory for flow in the canopy and roughness sub-layer, Boundary Layer Meteorol., 129(3), 323-351. – reference: Christiansen, T., et al. (2000), Flow and sediment transport on a tidal salt marsh surface, Estuarine Coastal Shelf Sci., 50(3), 315-331. – reference: Brutsaert, W. (Ed.) (1982), Evaporation into the Atmosphere: Theory, History, and Applications, 299 pp., Kluwer Acad. Publ., New York. – reference: Ghisalberti, M., and H. M. Nepf (2004), The limited growth of vegetated shear layers, Water Resour. Res., 40, W07502, doi:10.1029/2003WR002776. – reference: Massman, W. J. (1997), An analytical one-dimensional model of momentum transfer by vegetation of arbitrary structure, Boundary Layer Meteorol., 83(3), 407-421. – reference: Alsdorf, D., et al. (2007a), Spatial and temporal complexity of the Amazon flood measured from space, Geophys. Res. Lett., 34, L08402, doi:10.1029/2007GL029447. – reference: Barenblatt, G. I. (2003), Scaling, 171 pp., Cambridge Univ. Press, New York. – reference: Cheng, H., and I. P. Castro (2002), Near wall flow over urban-like roughness, Bound. Layer Meteorol., 104(2), 229-259. – reference: Raupach, M. R. (1994), Simplified expressions for vegetation roughness length and zero-plane displacement as functions of canopy height and area index, Boundary Layer Meteorol., 71(1-2), 211-216. – reference: Hornberger, G. M., et al. (1998), Elements of Physical Hydrology, 302 pp., Johns Hopkins Univ. Press, Baltimore, Md. – reference: Huthoff, F., D. C. M. Augustijn, and S. J. M. H. Hulscher (2007), Analytical solution of the depth-averaged flow velocity in case of submerged rigid cylindrical vegetation, Water Resour. Res., 43, W06413, doi:10.1029/2006WR005625. – reference: Singh, V. P., and D. A. Woolhiser (1976), A nonlinear kinematic wave model for watershed surface runoff, J. Hydrol., 31, 221-243. – reference: Moussa, R., and C. Bocquillon (2000), Approximation zones of the Saint-Venant equations for flood routing with overbank flow, Hydrol. Earth Syst. Sci., 4(2), 251-261. – reference: Thompson, S. E., and K. E. Daniels (2010), A porous convection model for grass patterns, Am. Nat., 175(1), E10-E15. – reference: LeFavour, G., and D. Alsdorf (2005), Water slope and discharge in the Amazon River estimated using the shuttle radar topography mission digital elevation model, Geophys. Res. Lett., 32, L17404, doi:10.1029/2005GL023836. – reference: Raupach, M. R., and R. H. Shaw (1982), Averaging procedures for flow within vegetation canopies, Boundary Layer Meteorol., 22(1), 79-90. – reference: Gioia, G., and F. A. Bombardelli (2002), Scaling and similarity in rough channel flows, Phys. Rev. Lett., 88(1), 14,501-14,504. – reference: Koch, E. W., and G. Gust (1999), Water flow in tide- and wave-dominated beds of the seagrass Thalassia testudinum, Marine Ecol. Prog. Ser., 184, 63-72. – reference: Katul, G., P. Wiberg, J. Albertson, and G. Hornberger (2002), A mixing layer theory for flow resistance in shallow streams, Water Resour. Res., 38(11), 1250, doi:10.1029/2001WR000817. – reference: Belcher, S. E., et al. (2003), Adjustment of a turbulent boundary layer to a canopy of roughness elements, J. Fluid. Mech., 488, 369-398. – reference: Alsdorf, D., et al. (2005), Diffusion modeling of recessional flow on central Amazonian floodplains, Geophys. Res. Lett., 32, L21405, doi:10.1029/2005GL024412. – reference: Poggi, D., and G. G. Katul (2008b), Micro- and macro-dispersive fluxes in canopy flows, Acta Geophys., 56(3), 778-799. – reference: Stephan, U., and D. Gutknecht (2002), Hydraulic resistance of submerged flexible vegetation, J. Hydrol., 269(1-2), 27-43. – reference: Finnigan, J. J., and S. E. Belcher (2004), Flow over a hill covered with a plant canopy, Q. J. R. Meteorol. Soc., 130(596), 1-29. – reference: Neary, V. S. (2003), Numerical solution of fully developed flow with vegetative resistance, J. Eng. Mech., 129(5), 558-563. – reference: Ajayi, A. E., et al. (2008), A numerical model for simulating Hortonian overland flow on tropical hillslopes with vegetation elements, Hydrol. Processes, 22(8), 1107-1118. – reference: Alsdorf, D. E., E. Rodríguez, and D. P. Lettenmaier (2007b), Measuring surface water from space, Rev. Geophys., 45, RG2002, doi:10.1029/2006RG000197. – reference: Katul, G. G., and J. D. Albertson (1998), An investigation of higher-order closure models for a forested canopy, Boundary Layer Meteorol., 89(1), 47-74. – reference: Carollo, F. G., et al. (2002), Flow velocity measurements in vegetated channels, J. Hydraul. Eng., 128(7), 664-673. – reference: Engman, E. T. (1986), Roughness coefficients for routing surface runoff, J. Irrig. Drain. Eng., 112(1), 39-53. – reference: Lefsky, M. A., et al. (2002b), Lidar remote sensing for ecosystem studies, Bioscience, 52(1), 19-30. – reference: Murphy, E., et al. (2007), Model and laboratory study of dispersion in flows with submerged vegetation, Water Resour. Res., 43, W05438, doi:10.1029/2006WR005229. – reference: Izakson, A. (1937), Formula for the velocity distribution near a wall, Zh. Eksp. Teor. Fiz., 7, 919-924. – reference: Finnigan, J. (2000), Turbulence in plant canopies, Annu. Rev. Fluid Mech., 32, 519-571. – reference: Shi, Z., et al. (1995), Flow Structure in and above the various heights of a salt-marsh canopy: A laboratory flume study, J. Coastal Res., 11(4), 1204-1209. – reference: Lopez, F., and M. H. Garcia (2001), Mean flow and turbulence structure of open-channel flow through non-emergent vegetation, J. Hydraul. Eng., 127(5), 392-402. – reference: Defina, A., and A. C. Bixio (2005), Mean flow and turbulence in vegetated open channel flow, Water Resour. Res., 41, W07006, doi:10.1029/2004WR003475. – reference: Chen, C. L. (1991), Unified theory on power-laws for flow resistance, J. Hydraul. Eng., 117, 371-389. – reference: Smith, R. E., and D. A. Woolhiser (1971), Overland flow on an infiltrating surface, Water Resour. Res., 7, 899-913, doi:10.1029/WR007i004p00899. – reference: Chow, V. T. (1959), Open-Channel Hydraulics, 680 pp., McGraw-Hill, New York. – reference: Poggi, D., et al. (2004a), A note on the contribution of dispersive fluxes to momentum transfer within canopies: Research note, Boundary Layer Meteorol., 111(3), 615-621. – reference: Wilson, N. R., and R. H. Shaw (1977), Higher-order closure model for canopy flow, J. Appl. Meteorol., 16(11), 1197-1205. – reference: Katul, G. G., et al. (1998), Active turbulence and scalar transport near the forest-atmosphere interface, J. Appl. Meteorol., 37(12), 1533-1546. – reference: Kouwen, N., and T. E. Unny (1969), Flow retardance in vegetated channels, J. Irrig. Drain. Div., 95(IR2), 329-342. – reference: Yen, B. C. (2002), Open channel flow resistance, J. Hydraul. Eng., 128(1), 20-39. – reference: Mason, D. C., et al. (2003), Floodplain friction parameterization in two-dimensional river flood models using vegetation heights derived from airborne scanning laser altimetry, Hydrol. Processes, 17(9), 1711-1732. – reference: Poggi, D., et al. (2008), Analytical models for the mean flow inside dense canopies on gentle hilly terrain, Q. J. R. Meteorol. Soc., 134(634), 1095-1112. – reference: Smith, L. C. (1997), Satellite remote sensing of river inundation area, stage, and discharge: A review, Hydrol. Processes, 11(10), 1427-1439. – year: 1985 – volume: 45 year: 2007 article-title: Measuring surface water from space publication-title: Rev. Geophys. – volume: 127 start-page: 392 issue: 5 year: 2001 end-page: 402 article-title: Mean flow and turbulence structure of open‐channel flow through non‐emergent vegetation publication-title: J. Hydraul. Eng. – volume: 50 start-page: 315 issue: 3 year: 2000 end-page: 331 article-title: Flow and sediment transport on a tidal salt marsh surface publication-title: Estuarine Coastal Shelf Sci. – volume: 134 start-page: 1095 issue: 634 year: 2008 end-page: 1112 article-title: Analytical models for the mean flow inside dense canopies on gentle hilly terrain publication-title: Q. J. R. Meteorol. Soc. – volume: 35 start-page: 479 issue: 2 year: 1999 end-page: 489 article-title: Drag, turbulence, and diffusion in flow through emergent vegetation publication-title: Water Resour. Res. – volume: 7 start-page: 2261 year: 2010 end-page: 2299 article-title: A method for parameterising roughness and topographic sub‐grid scale effects in hydraulic modelling from LiDAR data publication-title: Hydrol. Earth Syst. Sci. Discuss. – volume: 374 start-page: 116 issue: 1–2 year: 2009 end-page: 135 article-title: On the use of the diffusive wave for modelling extreme flood events with overbank flow in the floodplain publication-title: J. Hydrol. – volume: 45 year: 2009 article-title: Hydraulic resistance of submerged rigid vegetation derived from first‐order closure models publication-title: Water Resour. Res. – volume: 32 year: 2005 article-title: Water slope and discharge in the Amazon River estimated using the shuttle radar topography mission digital elevation model publication-title: Geophys. Res. Lett. – volume: 175 start-page: E10 issue: 1 year: 2010 end-page: E15 article-title: A porous convection model for grass patterns publication-title: Am. Nat. – volume: 9 start-page: 209 issue: 1 year: 1993 end-page: 220 article-title: Intertidal Marsh suspended sediment transport processes, Terrebonne Bay, Louisiana, USA publication-title: J. Coastal Res. – volume: 22 start-page: 1107 issue: 8 year: 2008 end-page: 1118 article-title: A numerical model for simulating Hortonian overland flow on tropical hillslopes with vegetation elements publication-title: Hydrol. Processes – volume: 52 start-page: 19 issue: 1 year: 2002 end-page: 30 article-title: Lidar remote sensing for ecosystem studies publication-title: Bioscience – volume: 91 start-page: 81 issue: 1 year: 1999 end-page: 107 article-title: An analytical one‐dimensional second‐order closure model of turbulence statistics and the Lagrangian time scale within and above plant canopies of arbitrary structure publication-title: Boundary Layer Meteorol. – volume: 4 start-page: 251 issue: 2 year: 2000 end-page: 261 article-title: Approximation zones of the Saint‐Venant equations for flood routing with overbank flow publication-title: Hydrol. Earth Syst. Sci. – volume: 105 start-page: 28547 issue: C12 year: 2000 end-page: 28557 article-title: Flow structure in depth‐limited, vegetated flow publication-title: J. Geophys. Res. – volume: 28 start-page: 2671 issue: 14 year: 2001 end-page: 2674 article-title: Water level changes in a large Amazon lake measured with spaceborne radar interferometry and altimetry publication-title: Geophys. Res. Lett. – volume: 11 start-page: 57 year: 1994 end-page: 67 article-title: Numerical analysis of turbulent open‐channel flow over a vegetation layer using a k‐epsilon turbulence model publication-title: J. Hydrosci. Hydraul. Eng. – volume: 184 start-page: 63 year: 1999 end-page: 72 article-title: Water flow in tide‐ and wave‐dominated beds of the seagrass Thalassia testudinum publication-title: Marine Ecol. Prog. Ser. – volume: 48 start-page: 466 year: 2010 end-page: 475 article-title: A two‐layer approach for depth‐limited open‐channel flows with submerged vegetation publication-title: J. Hydraul. Res. – volume: 89 start-page: 47 issue: 1 year: 1998 end-page: 74 article-title: An investigation of higher‐order closure models for a forested canopy publication-title: Boundary Layer Meteorol. – volume: 43 year: 2007 article-title: Model and laboratory study of dispersion in flows with submerged vegetation publication-title: Water Resour. Res. – volume: 84 start-page: 2995 issue: B6 year: 1979 end-page: 3007 article-title: Formation of Martian flood features by release of water from confined aquifers publication-title: J. Geophys. Res. – volume: 3 start-page: 753 issue: 3 year: 1967 end-page: 771 article-title: Unsteady, one‐dimensional flow over a plane: The rising hydrograph publication-title: Water Resour. Res. – volume: 130 start-page: 1 issue: 596 year: 2004 end-page: 29 article-title: Flow over a hill covered with a plant canopy publication-title: Q. J. R. Meteorol. Soc. – year: 1998 – volume: 17 start-page: 1711 issue: 9 year: 2003 end-page: 1732 article-title: Floodplain friction parameterization in two‐dimensional river flood models using vegetation heights derived from airborne scanning laser altimetry publication-title: Hydrol. Processes – volume: 11 start-page: 1204 issue: 4 year: 1995 end-page: 1209 article-title: Flow Structure in and above the various heights of a salt‐marsh canopy: A laboratory flume study publication-title: J. Coastal Res. – volume: 7 start-page: 919 year: 1937 end-page: 924 article-title: Formula for the velocity distribution near a wall publication-title: Zh. Eksp. Teor. Fiz. – year: 1959 – year: 1982 – volume: 138 start-page: 259 issue: 2 year: 2004 end-page: 274 article-title: Carbon dioxide and water vapor exchange in a warm temperate grassland publication-title: Oecologia – volume: 128 start-page: 664 issue: 7 year: 2002 end-page: 673 article-title: Flow velocity measurements in vegetated channels publication-title: J. Hydraul. Eng. – volume: 38 issue: 11 year: 2002 article-title: A mixing layer theory for flow resistance in shallow streams publication-title: Water Resour. Res. – year: 2008 – volume: 117 start-page: 371 year: 1991 end-page: 389 article-title: Unified theory on power‐laws for flow resistance publication-title: J. Hydraul. Eng. – volume: 129 start-page: 323 issue: 3 year: 2007 end-page: 351 article-title: A unified theory for flow in the canopy and roughness sub‐layer publication-title: Boundary Layer Meteorol. – volume: 113 start-page: 81 issue: 1 year: 2004 end-page: 109 article-title: One‐ and two‐equation models for canopy turbulence publication-title: Boundary Layer Meteorol. – volume: 95 start-page: 329 issue: IR2 year: 1969 end-page: 342 article-title: Flow retardance in vegetated channels publication-title: J. Irrig. Drain. Div. – volume: 45 start-page: 435 issue: 4 year: 2007 end-page: 450 article-title: On inducing equations for vegetation resistance publication-title: J. Hydraul. Res. – volume: 7 start-page: 899 year: 1971 end-page: 913 article-title: Overland flow on an infiltrating surface publication-title: Water Resour. Res. – volume: 31 start-page: 221 year: 1976 end-page: 243 article-title: A nonlinear kinematic wave model for watershed surface runoff publication-title: J. Hydrol. – volume: 83 start-page: 407 issue: 3 year: 1997 end-page: 421 article-title: An analytical one‐dimensional model of momentum transfer by vegetation of arbitrary structure publication-title: Boundary Layer Meteorol. – volume: 16 start-page: 1197 issue: 11 year: 1977 end-page: 1205 article-title: Higher‐order closure model for canopy flow publication-title: J. Appl. Meteorol. – volume: 32 year: 2005 article-title: Diffusion modeling of recessional flow on central Amazonian floodplains publication-title: Geophys. Res. Lett. – volume: 88 start-page: 14,501 issue: 1 year: 2002 end-page: 14,504 article-title: Scaling and similarity in rough channel flows publication-title: Phys. Rev. Lett. – volume: 11 start-page: 393 issue: 5 year: 2002 end-page: 399 article-title: Lidar remote sensing of above‐ground biomass in three biomes publication-title: Global Ecol. Biogeogr. – volume: 56 start-page: 778 issue: 3 year: 2008 end-page: 799 article-title: Micro‐ and macro‐dispersive fluxes in canopy flows publication-title: Acta Geophys. – volume: 16 start-page: 514 issue: 5 year: 1977 end-page: 521 article-title: Secondary wind speed maxima inside plant canopies publication-title: J. Appl. Meteorol. – volume: 37 start-page: 1533 issue: 12 year: 1998 end-page: 1546 article-title: Active turbulence and scalar transport near the forest‐atmosphere interface publication-title: J. Appl. Meteorol. – volume: 71 start-page: 211 issue: 1–2 year: 1994 end-page: 216 article-title: Simplified expressions for vegetation roughness length and zero‐plane displacement as functions of canopy height and area index publication-title: Boundary Layer Meteorol. – volume: 104 start-page: 229 issue: 2 year: 2002 end-page: 259 article-title: Near wall flow over urban‐like roughness publication-title: Bound. Layer Meteorol. – volume: 112 start-page: 39 issue: 1 year: 1986 end-page: 53 article-title: Roughness coefficients for routing surface runoff publication-title: J. Irrig. Drain. Eng. – volume: 19 start-page: 1245 issue: 6 year: 2005 end-page: 1259 article-title: Modelling flow resistance in vegetated streams: Review and development of new theory publication-title: Hydrol. Processes – volume: 119 start-page: 51 issue: 1 year: 1993 end-page: 63 article-title: Applicability of the St‐Venant equations for 2‐dimensional overland flows over rough infiltrating surfaces publication-title: J. Hydraul. Eng. – volume: 3 start-page: 345 issue: 4 year: 1994 end-page: 380 article-title: Detention and mixing in free‐water weltands publication-title: Ecol. Eng. – volume: 22 start-page: 79 issue: 1 year: 1982 end-page: 90 article-title: Averaging procedures for flow within vegetation canopies publication-title: Boundary Layer Meteorol. – volume: 38 start-page: 1631 issue: 11 year: 1999 end-page: 1643 article-title: Principal length scales in second‐order closure models for canopy turbulence publication-title: J. Appl. Meteorol. – volume: 56 start-page: 753 issue: 3 year: 2008 end-page: 777 article-title: Flow and transport in channels with submerged vegetation publication-title: Acta Geophys. – volume: 128 start-page: 20 issue: 1 year: 2002 end-page: 39 article-title: Open channel flow resistance publication-title: J. Hydraul. Eng. – volume: 131 start-page: 65 issue: 1 year: 2005 end-page: 68 article-title: Hydraulic resistance in grass swales designed for small flow conveyance publication-title: J. Hydraul. Eng. – year: 2007 – start-page: 221 year: 2007 end-page: 250 – volume: 11 start-page: 1427 issue: 10 year: 1997 end-page: 1439 article-title: Satellite remote sensing of river inundation area, stage, and discharge: A review publication-title: Hydrol. Processes – year: 2003 – year: 1996 – volume: 111 start-page: 565 issue: 3 year: 2004 end-page: 587 article-title: The effect of vegetation density on canopy sub‐layer turbulence publication-title: Boundary Layer Meteorol. – volume: 488 start-page: 369 year: 2003 end-page: 398 article-title: Adjustment of a turbulent boundary layer to a canopy of roughness elements publication-title: J. Fluid. Mech. – year: 1992 – volume: 41 year: 2005 article-title: Mean flow and turbulence in vegetated open channel flow publication-title: Water Resour. Res. – volume: 307 start-page: 233 issue: 1–4 year: 2005 end-page: 241 article-title: Effect of submerged flexible vegetation on flow structure and resistance publication-title: J. Hydrol. – volume: 11 start-page: 347 issue: 4 year: 2006 end-page: 353 article-title: Development and verification of an analytical solution for forecasting nonlinear kinematic flood waves publication-title: J. Hydrol. Eng. – volume: 129 start-page: 558 issue: 5 year: 2003 end-page: 563 article-title: Numerical solution of fully developed flow with vegetative resistance publication-title: J. Eng. Mech. – volume: 40 start-page: 1474 issue: 8 year: 1995 end-page: 1484 article-title: Flow hydrodynamics in tidal marsh canopies publication-title: Limnol. Oceanogr. – volume: 52 start-page: 171 issue: 1–2 year: 1981 end-page: 176 article-title: Kinematic flow approximation of runoff on a plane: An exact analytical solution publication-title: J. Hydrol. – volume: 34 year: 2007 article-title: Spatial and temporal complexity of the Amazon flood measured from space publication-title: Geophys. Res. Lett. – volume: 16 start-page: 2409 issue: 12 year: 2002 end-page: 2421 article-title: Modelling overland flow based on Saint‐Venant equations for a discretized hillslope system publication-title: Hydrol. Processes – year: 2002 – volume: 45 start-page: 111 issue: 1 year: 2008 end-page: 121 article-title: The effect of canopy roughness density on the constitutive components of the dispersive stresses publication-title: Exp. Fluids – volume: 127 start-page: 123 issue: 2 year: 2001 end-page: 133 article-title: Spatially averaged open–channel flow over rough bed publication-title: J. Hydraul. Eng. – volume: 404 start-page: 174 issue: 6774 year: 2000 end-page: 177 article-title: Interferometric radar measurements of water level changes on the Amazon flood plain publication-title: Nature – volume: 43 year: 2007 article-title: Analytical solution of the depth‐averaged flow velocity in case of submerged rigid cylindrical vegetation publication-title: Water Resour. Res. – volume: 269 start-page: 27 issue: 1–2 year: 2002 end-page: 43 article-title: Hydraulic resistance of submerged flexible vegetation publication-title: J. Hydrol. – volume: 32 start-page: 519 year: 2000 end-page: 571 article-title: Turbulence in plant canopies publication-title: Annu. Rev. Fluid Mech. – volume: 40 year: 2004 article-title: The limited growth of vegetated shear layers publication-title: Water Resour. Res. – volume: 111 start-page: 615 issue: 3 year: 2004 end-page: 621 article-title: A note on the contribution of dispersive fluxes to momentum transfer within canopies: Research note publication-title: Boundary Layer Meteorol. – volume: 30 start-page: 665 issue: 3 year: 1994 end-page: 671 article-title: Suitability of simplified overland flow equations publication-title: Water Resour. Res. – volume: 16 start-page: 2589 issue: 13 year: 2002 end-page: 2598 article-title: Measuring the flow resistance of submerged grass publication-title: Hydrol. Processes – volume: 3 start-page: 753 year: 1975 end-page: 771 article-title: Simulation of unsteady one‐dimensional flow over plane: The rising hydrograph publication-title: Water Resour. Res. – year: 1999 – ident: e_1_2_9_52_1 doi: 10.1002/hyp.1270 – ident: e_1_2_9_72_1 doi: 10.1029/2008WR007373 – ident: e_1_2_9_73_1 doi: 10.1007/BF00709229 – ident: e_1_2_9_81_1 doi: 10.1002/(SICI)1099-1085(199708)11:10<1427::AID-HYP473>3.0.CO;2-S – ident: e_1_2_9_64_1 doi: 10.1061/(ASCE)0733-9429(2001)127:2(123) – ident: e_1_2_9_47_1 doi: 10.1029/2005GL023836 – ident: e_1_2_9_68_1 doi: 10.2478/s11600-008-0029-7 – ident: e_1_2_9_15_1 doi: 10.5194/hessd-7-2261-2010 – ident: e_1_2_9_51_1 doi: 10.1061/(ASCE)0733-9429(2001)127:5(392) – ident: e_1_2_9_90_1 doi: 10.1029/WR003i003p00753 – ident: e_1_2_9_58_1 doi: 10.1029/2006WR005229 – ident: e_1_2_9_61_1 doi: 10.2478/s11600-008-0017-y – volume: 95 start-page: 329 issue: 2 year: 1969 ident: e_1_2_9_46_1 article-title: Flow retardance in vegetated channels publication-title: J. Irrig. Drain. Div. doi: 10.1061/JRCEA4.0000652 – ident: e_1_2_9_27_1 doi: 10.1029/2003WR002776 – ident: e_1_2_9_7_1 doi: 10.1029/2006RG000197 – ident: e_1_2_9_13_1 doi: 10.1061/(ASCE)0733-9429(2002)128:7(664) – ident: e_1_2_9_76_1 doi: 10.1061/(ASCE)1084-0699(2006)11:4(347) – ident: e_1_2_9_9_1 doi: 10.1080/00221686.2007.9521778 – ident: e_1_2_9_37_1 doi: 10.1016/j.jhydrol.2004.10.013 – volume: 11 start-page: 1204 issue: 4 year: 1995 ident: e_1_2_9_78_1 article-title: Flow Structure in and above the various heights of a salt‐marsh canopy: A laboratory flume study publication-title: J. Coastal Res. – ident: e_1_2_9_17_1 doi: 10.1023/A:1016060103448 – ident: e_1_2_9_92_1 doi: 10.1080/00221686.2010.491649 – ident: e_1_2_9_23_1 doi: 10.1061/(ASCE)0733-9437(1986)112:1(39) – ident: e_1_2_9_70_1 doi: 10.1023/B:BOUN.0000016576.05621.73 – ident: e_1_2_9_50_1 doi: 10.4319/lo.1995.40.8.1474 – ident: e_1_2_9_21_1 doi: 10.1029/2004WR003475 – ident: e_1_2_9_44_1 doi: 10.1061/(ASCE)0733-9429(2005)131:1(65) – volume-title: Iowa Stormwater Management Manual year: 2008 ident: e_1_2_9_35_1 – volume: 11 start-page: 57 year: 1994 ident: e_1_2_9_79_1 article-title: Numerical analysis of turbulent open‐channel flow over a vegetation layer using a k‐epsilon turbulence model publication-title: J. Hydrosci. Hydraul. Eng. – ident: e_1_2_9_40_1 doi: 10.1175/1520-0450(1999)038<1631:PLSISO>2.0.CO;2 – ident: e_1_2_9_75_1 doi: 10.1029/93WR03098 – ident: e_1_2_9_49_1 doi: 10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2 – ident: e_1_2_9_84_1 doi: 10.1061/(ASCE)0733-9429(1993)119:1(51) – volume-title: HEC‐RAS Reference Manual year: 2002 ident: e_1_2_9_32_1 – ident: e_1_2_9_12_1 doi: 10.1007/978-94-017-1497-6 – ident: e_1_2_9_77_1 doi: 10.1175/1520-0450(1977)016<0514:SWSMIP>2.0.CO;2 – ident: e_1_2_9_80_1 doi: 10.1016/0022-1694(76)90126-8 – ident: e_1_2_9_5_1 doi: 10.1029/2005GL024412 – ident: e_1_2_9_63_1 doi: 10.1007/978-1-4020-5385-6_6 – volume-title: Open‐Channel Hydraulics year: 1985 ident: e_1_2_9_26_1 – ident: e_1_2_9_69_1 doi: 10.1023/B:BOUN.0000016563.76874.47 – ident: e_1_2_9_34_1 doi: 10.1029/2006WR005625 – ident: e_1_2_9_89_1 doi: 10.1175/1520-0450(1977)016<1197:AHOCMF>2.0.CO;2 – ident: e_1_2_9_3_1 doi: 10.1038/35004560 – ident: e_1_2_9_14_1 doi: 10.1029/JB084iB06p02995 – ident: e_1_2_9_71_1 doi: 10.1002/qj.276 – volume-title: Channel Flow Resistance: Centennial of Manning's Formula year: 1992 ident: e_1_2_9_93_1 – volume-title: Proceedings of 32nd Congress of IAHR—Harmonizing the Demands of Art and Nature in Hydraulics year: 2007 ident: e_1_2_9_20_1 – ident: e_1_2_9_59_1 doi: 10.1061/(ASCE)0733-9399(2003)129:5(558) – ident: e_1_2_9_28_1 doi: 10.1103/PhysRevLett.88.014501 – ident: e_1_2_9_57_1 doi: 10.1016/j.jhydrol.2009.06.006 – ident: e_1_2_9_11_1 doi: 10.1017/S0022112003005019 – ident: e_1_2_9_48_1 doi: 10.1046/j.1466-822x.2002.00303.x – ident: e_1_2_9_33_1 doi: 10.56021/9780801858567 – ident: e_1_2_9_56_1 doi: 10.5194/hess-4-251-2000 – ident: e_1_2_9_94_1 doi: 10.1061/(ASCE)0733-9429(2002)128:1(20) – ident: e_1_2_9_19_1 doi: 10.1006/ecss.2000.0548 – ident: e_1_2_9_30_1 doi: 10.1007/s10546-008-9328-4 – ident: e_1_2_9_45_1 doi: 10.3354/meps184063 – volume: 7 start-page: 919 year: 1937 ident: e_1_2_9_36_1 article-title: Formula for the velocity distribution near a wall publication-title: Zh. Eksp. Teor. Fiz. – ident: e_1_2_9_60_1 doi: 10.1029/1998WR900069 – ident: e_1_2_9_53_1 doi: 10.1023/A:1000234813011 – ident: e_1_2_9_87_1 doi: 10.1002/hyp.1010 – volume-title: Channel Flow Resistance: Centennial of Manning's Formula year: 1992 ident: e_1_2_9_22_1 – ident: e_1_2_9_24_1 doi: 10.1146/annurev.fluid.32.1.519 – ident: e_1_2_9_83_1 doi: 10.1016/S0022-1694(02)00192-0 – ident: e_1_2_9_66_1 doi: 10.1016/0022-1694(81)90104-9 – volume-title: Open‐Channel Hydraulics year: 1959 ident: e_1_2_9_18_1 – ident: e_1_2_9_85_1 doi: 10.1086/648603 – ident: e_1_2_9_82_1 doi: 10.1029/WR007i004p00899 – ident: e_1_2_9_4_1 doi: 10.1029/2001GL012962 – ident: e_1_2_9_6_1 doi: 10.1029/2007GL029447 – ident: e_1_2_9_38_1 doi: 10.1016/0925-8574(94)00007-7 – ident: e_1_2_9_74_1 doi: 10.1007/BF00128057 – ident: e_1_2_9_91_1 doi: 10.1029/WR003i003p00753 – ident: e_1_2_9_42_1 doi: 10.1029/2001WR000817 – ident: e_1_2_9_88_1 doi: 10.1002/hyp.1049 – ident: e_1_2_9_16_1 doi: 10.1061/(ASCE)0733-9429(1991)117:3(371) – ident: e_1_2_9_65_1 doi: 10.1007/s00442-003-1388-z – ident: e_1_2_9_25_1 doi: 10.1256/qj.02.177 – ident: e_1_2_9_2_1 doi: 10.1002/hyp.6665 – ident: e_1_2_9_10_1 doi: 10.1017/CBO9780511814921 – volume-title: 28th International IAHR Conference year: 1999 ident: e_1_2_9_55_1 – volume-title: International Workshop on Riparian Forest Vegetated Channels: Hydraulic, Morphological and Ecological Aspects year: 2003 ident: e_1_2_9_8_1 – ident: e_1_2_9_41_1 doi: 10.1175/1520-0450(1998)037<1533:ATASTN>2.0.CO;2 – ident: e_1_2_9_43_1 doi: 10.1023/B:BOUN.0000037333.48760.e5 – ident: e_1_2_9_62_1 doi: 10.1029/2000JC900145 – ident: e_1_2_9_54_1 doi: 10.1023/A:1001810204560 – volume-title: Practical Hydraulics Handbook year: 1996 ident: e_1_2_9_31_1 – ident: e_1_2_9_29_1 doi: 10.1002/hyp.5564 – ident: e_1_2_9_39_1 doi: 10.1023/A:1001509106381 – ident: e_1_2_9_67_1 doi: 10.1007/s00348-008-0467-7 – volume: 9 start-page: 209 issue: 1 year: 1993 ident: e_1_2_9_86_1 article-title: Intertidal Marsh suspended sediment transport processes, Terrebonne Bay, Louisiana, USA publication-title: J. Coastal Res. |
SSID | ssj0014567 |
Score | 2.2633348 |
Snippet | The specification of a flow resistance factor to account for vegetative effects in the Saint‐Venant equation (SVE) remains uncertain and is a subject of active... The specification of a flow resistance factor to account for vegetative effects in the Saint-Venant equation (SVE) remains uncertain and is a subject of active... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | adjustment length Atmospheric boundary layer Atmospheric sciences Canopies canopy flows Experiments Flood routing Floods Flow resistance Flow velocity Foliage Friction Hydrology Manning's coefficient Mechanics Remote sensing Reynolds number Saint Venant equation Stream flow Submerged plants Turbulence Vegetation Water depth Water levels |
Title | A flow resistance model for assessing the impact of vegetation on flood routing mechanics |
URI | https://api.istex.fr/ark:/67375/WNG-NKT34361-7/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2010WR010278 https://www.proquest.com/docview/907215279 https://www.proquest.com/docview/899172900 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5B9wAXxFOEQuUDcIGoTuL144RK1W0FYoVWrbacLMexi0TZlN0uj3_PTNaJlgOVcogUS448tuezv5n5AF6WjQiVi1UufOS5CNLk2nCRG2mE8BoxqaJ8509TeXImPpyPz1NsziqFVfZ7YrdRN62nO_J9Q4W8xqUy765-5CQaReRqUtC4DaMCHQ1NcD05HkgExAaqJ5gJ6KS4d16afeKA5zOqp0b6alseaUSD-_sfuLkNWjuvM7kP9xJcZAcb-z6AW2HxEO702cQrfE8q5l__PIIvByxetr8YnqAJFaI5WSd0wxCYMtexu-ioGEI-tkmOZG1kP8NFijhk-ESKY2fLdk3R0Ox7oLxg7OcxnE2OTg9P8iSdkDuqNJvLWFEl_ForTZcagWsfHYKxskYHHoxGn-SNa4SUrtDeF0bVQUfnqDpgrSKvnsDOol2Ep8CcayQpVHtTa6GlrnmFRvRF0ygETzFk8KYfPutTXXGSt7i0Hb9dGrs92Bm8Glpfbepp_Kfd684SQyO3_EYxaGps59NjO_14WolKFlZlsNubyqblt7LDZMmADV9x3RAZ4hahXa8snjMRuxnOM3jbGfjG37Hz2eGMON7y2Y397cLd_tKZF89h53q5Di8QtVzXe93c3IPR-6Pp59lfYhPm0Q |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RONBLVfpQU1rqQ-mljUhib2IfKoRol6ULe1gtWnpyHcemUmEDu2wpP4r_2JlsEm0P5YaUQ6RYSeQZe77xPD6A90khHDeeh8L6KBQuVaFUkQhVqoSwEjFpRvXOx4O0dyK-nXZOV-CuqYWhtMpmT6w26qK0dEa-o6iRVyfJ1O7lVUikURRcbRg0FlrRd7c36LHNPh9-QfFuJ0n362i_F9akAqGhHqxh6jn1iM9lJsndd5G03iBMSXI0bU5J3K2tMoVIUxNLa2OV5U56Y6hvXp75iON7H8Ga4FxRBqHsHrRBC8QiWRPQJmBV59lHidqhmPN4SP3biM9tyQKukTD__ANvl0FyZeW6T-FJDU_Z3kKfNmDFTZ7BelO9PMP7mjX95-1z-L7H_Hl5w9BjJxSK6sMqYh2GQJiZKpqMhpEhxGSLYkxWevbbndUZjgwvT3nzbFrOKfuaXTiqQ8bvvICTB5nVl7A6KSfuFTBjipQYsa3KpZCpzCOOSmPjosgQrHkXwMdm-rSt-5gTnca5ruLpidLLkx3Adjv6ctG_4z_jPlSSaAeZ6S_Kecs6ejw40IP-iAuexjoLYLMRla6X-0y3yhkAa5_iOqXgi5m4cj7T6NciVlRRFMCnSsD3_o4eD_eHFFNOXt_7vXew3hsdH-mjw0F_Ex43B95R_AZWr6dz9xYR03W-Vekpgx8PvTD-AuSvIJg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVgIuiKcI5eED5QLROok3tg8IVS3bloUVWrXacnIdxwaJsim7XUp_Gv-OmWwSLQd6q5RDpFhJ5JnxfPY8PoCXaSl8ZkMWCxd4LHyuY6W5iHWuhXAKMamkeudPo3z_SHw47h-vwZ-2FobSKts1sV6oy8rRGXlPUyOvfip1LzRZEZ93B-_OfsZEIEWB1pZNY6khQ395gbu3-duDXRT1VpoO3h_u7McNwUBsqR9rnIeM-sUXSira-nuuXLAIWdIC3ZzXCldup20p8twmyrlEy8KrYC310Ctk4Bm-9wZsyExxIk9Qg70ugIG4RLbBbQJZTc49T3WP4s-TMfVyI263FW-4QYL9_Q_UXQXMtccb3IU7DVRl20vdugdrfnofbrWVzHO8bxjUv10-gC_bLJxWFwx374RIUZVYTbLDEBQzW0eW0UkyhJtsWZjJqsB--a9NtiPDK1AOPZtVC8rEZj881STjdx7C0bXM6iNYn1ZT_xiYtWVO7NhOF0qoXBU8QwVySVlKBG7BR_C6nT7jmp7mRK1xaurYeqrN6mRHsNWNPlv28vjPuFe1JLpBdvad8t9k30xGe2Y0PMxElidGRrDZiso0pj83naJGwLqnaLMUiLFTXy3mBve4iBs15xG8qQV85e-YyXhnTPHl9MmV33sBN9EkzMeD0XATbrdn3zx5Cuvns4V_huDpvHheqymDk-u2i793TiTF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+flow+resistance+model+for+assessing+the+impact+of+vegetation+on+flood+routing+mechanics&rft.jtitle=Water+resources+research&rft.au=Katul%2C+Gabriel+G&rft.au=Poggi%2C+Davide&rft.au=Ridolfi%2C+Luca&rft.date=2011-08-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=47&rft.issue=8&rft_id=info:doi/10.1029%2F2010WR010278&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2525003721 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon |