Axisymmetric dynamic response of the multi-layered transversely isotropic medium

By virtue of the precise integration method (PIM) and the technique of mixed variable formulations, solutions for the dynamic response of the multi-layered transversely isotropic medium subjected to the axisymmetric time-harmonic forces are presented. The planes of cross anisotropy are assumed to be...

Full description

Saved in:
Bibliographic Details
Published inSoil dynamics and earthquake engineering (1984) Vol. 78; pp. 1 - 18
Main Authors Zhang, Pengchong, Liu, Jun, Lin, Gao, Wang, Wenyuan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract By virtue of the precise integration method (PIM) and the technique of mixed variable formulations, solutions for the dynamic response of the multi-layered transversely isotropic medium subjected to the axisymmetric time-harmonic forces are presented. The planes of cross anisotropy are assumed to be parallel to the horizontal surface of the stratified media. Four kinds of vertically acting axisymmetric loads are prescribed either at the external surface or in the interior of the soil system. Thicknesses and number of the medium strata are not limited. Employing the Hankel integral transform in cylindrical coordinate, the axisymmetric governing equations in terms of displacements of the multi-layered media are uncoupled. Applying mixed variable formulations, more concise first-order ordinary differential matrix equations from the uncoupled motion equations can be obtained. Solutions of the ordinary differential matrix equations in the transformed domain are acquired by utilizing the approach of PIM. Since PIM is highly accurate to solve the sets of first-order ordinary differential equations, any desired accuracy of the solutions can be achieved. All calculations are based on the corresponding algebraic operations and computational efforts can be reduced to a great extent. Comparisons with the existing numerical solutions are made to confirm the accuracy of the present solutions proposed by this procedure. Several examples are illustrated to explore the influences of the type and degree of material anisotropy, the frequency of excitation and loading positions on the dynamic response of the stratified medium. •Axisymmetric dynamic response of isotropic multi-layered soil is firstly obtained by PIM.•Solutions of axisymmetric dynamic response by PIM and mixed variable formulation are derived.•Four kinds of axisymmetric loads acting at different positions are investigated in details.•The solution has higher accuracy and efficient compared to the other methods.•The influences of material parameters and forces on the dynamic response are discussed in details.
AbstractList By virtue of the precise integration method (PIM) and the technique of mixed variable formulations, solutions for the dynamic response of the multi-layered transversely isotropic medium subjected to the axisymmetric time-harmonic forces are presented. The planes of cross anisotropy are assumed to be parallel to the horizontal surface of the stratified media. Four kinds of vertically acting axisymmetric loads are prescribed either at the external surface or in the interior of the soil system. Thicknesses and number of the medium strata are not limited. Employing the Hankel integral transform in cylindrical coordinate, the axisymmetric governing equations in terms of displacements of the multi-layered media are uncoupled. Applying mixed variable formulations, more concise first-order ordinary differential matrix equations from the uncoupled motion equations can be obtained. Solutions of the ordinary differential matrix equations in the transformed domain are acquired by utilizing the approach of PIM. Since PIM is highly accurate to solve the sets of first-order ordinary differential equations, any desired accuracy of the solutions can be achieved. All calculations are based on the corresponding algebraic operations and computational efforts can be reduced to a great extent. Comparisons with the existing numerical solutions are made to confirm the accuracy of the present solutions proposed by this procedure. Several examples are illustrated to explore the influences of the type and degree of material anisotropy, the frequency of excitation and loading positions on the dynamic response of the stratified medium. •Axisymmetric dynamic response of isotropic multi-layered soil is firstly obtained by PIM.•Solutions of axisymmetric dynamic response by PIM and mixed variable formulation are derived.•Four kinds of axisymmetric loads acting at different positions are investigated in details.•The solution has higher accuracy and efficient compared to the other methods.•The influences of material parameters and forces on the dynamic response are discussed in details.
By virtue of the precise integration method (PIM) and the technique of mixed variable formulations, solutions for the dynamic response of the multi-layered transversely isotropic medium subjected to the axisymmetric time-harmonic forces are presented. The planes of cross anisotropy are assumed to be parallel to the horizontal surface of the stratified media. Four kinds of vertically acting axisymmetric loads are prescribed either at the external surface or in the interior of the soil system. Thicknesses and number of the medium strata are not limited. Employing the Hankel integral transform in cylindrical coordinate, the axisymmetric governing equations in terms of displacements of the multi-layered media are uncoupled. Applying mixed variable formulations, more concise first-order ordinary differential matrix equations from the uncoupled motion equations can be obtained. Solutions of the ordinary differential matrix equations in the transformed domain are acquired by utilizing the approach of PIM. Since PIM is highly accurate to solve the sets of first-order ordinary differential equations, any desired accuracy of the solutions can be achieved. All calculations are based on the corresponding algebraic operations and computational efforts can be reduced to a great extent. Comparisons with the existing numerical solutions are made to confirm the accuracy of the present solutions proposed by this procedure. Several examples are illustrated to explore the influences of the type and degree of material anisotropy, the frequency of excitation and loading positions on the dynamic response of the stratified medium.
Author Zhang, Pengchong
Lin, Gao
Liu, Jun
Wang, Wenyuan
Author_xml – sequence: 1
  givenname: Pengchong
  surname: Zhang
  fullname: Zhang, Pengchong
  organization: School of Hydraulic Engineering, Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China
– sequence: 2
  givenname: Jun
  surname: Liu
  fullname: Liu, Jun
  email: liujun8128@126.com
  organization: School of Hydraulic Engineering, Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China
– sequence: 3
  givenname: Gao
  surname: Lin
  fullname: Lin, Gao
  organization: School of Hydraulic Engineering, Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China
– sequence: 4
  givenname: Wenyuan
  surname: Wang
  fullname: Wang, Wenyuan
  organization: School of Hydraulic Engineering, Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China
BookMark eNqNkE1LxDAURYOM4MzoTxC6dNP60s4kKS5EBr9A0IWCu_BMXzFD24xJZrD_3si4cqOru3j3XHhnxiaDG4ixUw4FBy7O10VwtmvGoSiBLwuQBYA8YFOuZJ1XC_46YVMohcxlKfgRm4WwBuCSKzFlT1efNox9T9Fbk6UN7FN6Chs3BMpcm8V3yvptF23e4Uiemix6HMKOfKBuzGxw0btNgnpq7LY_ZoctdoFOfnLOXm6un1d3-cPj7f3q6iHHqlYxVy0i1JVRqkJllFCCamixbLCihVku3niJvFQIEhdlLbASQEiVeUtH4omcs7P97sa7jy2FqHsbDHUdDuS2QXMpFaQXa_mPqlBLKUqoUvViXzXeheCp1cZGjNYN6WnbaQ76W7le6x_l-lu5BqmT8kQvf9Ebb3v045_c5Z6jJGxnyetgLA0mCfVkom6c_WPhCz1Hopo
CitedBy_id crossref_primary_10_1016_j_conbuildmat_2022_128612
crossref_primary_10_1007_s00419_021_02042_9
crossref_primary_10_1016_j_jmbbm_2017_09_034
crossref_primary_10_1016_j_wavemoti_2019_02_002
crossref_primary_10_1007_s11709_020_0617_4
crossref_primary_10_1016_j_compstruct_2016_07_001
crossref_primary_10_1016_j_apm_2020_08_009
crossref_primary_10_1007_s00707_016_1694_2
crossref_primary_10_1007_s00419_023_02386_4
crossref_primary_10_1016_j_amc_2016_06_013
crossref_primary_10_1080_14680629_2021_2007164
crossref_primary_10_1080_19648189_2016_1229233
crossref_primary_10_1016_j_conbuildmat_2023_134283
crossref_primary_10_1007_s11803_018_0442_0
crossref_primary_10_1007_s10483_022_2885_7
crossref_primary_10_1016_j_enganabound_2019_04_003
crossref_primary_10_1080_10298436_2022_2144306
Cites_doi 10.1093/qjmam/14.3.293
10.1016/S0020-7683(99)00216-4
10.1016/j.ijsolstr.2011.01.020
10.1016/j.soildyn.2013.01.008
10.1098/rsta.1904.0013
10.1115/1.3130866
10.1016/S0045-7825(97)00021-2
10.1007/s10659-005-9000-x
10.1016/0020-7683(94)00114-C
10.1061/(ASCE)0733-9399(2002)128:4(449)
10.1016/j.ijengsci.2008.01.007
10.1016/j.ijsolstr.2008.10.026
10.1016/j.wavemoti.2003.09.002
10.1061/(ASCE)0733-9399(1993)119:9(1724)
10.1016/j.enganabound.2004.03.004
10.1016/j.ijsolstr.2008.04.024
10.1115/1.1546243
10.1002/nme.3251
10.1016/j.compgeo.2014.08.008
10.1002/nme.952
10.1016/j.soildyn.2013.01.009
10.1061/(ASCE)0733-9399(2007)133:10(1134)
10.1016/S0045-7825(00)00293-0
10.1016/j.ijengsci.2006.11.001
10.1115/1.2889728
10.1016/j.soildyn.2007.10.019
10.1061/(ASCE)0733-9399(1991)117:3(588)
10.1061/(ASCE)0733-9399(2008)134:9(777)
10.1115/1.3172945
10.1785/BSSA0430010017
10.1016/j.apm.2012.07.009
10.1115/1.1532570
10.1002/nme.1212
10.1016/S0307-904X(82)80034-6
10.1063/1.1699629
ContentType Journal Article
Copyright 2015
Copyright_xml – notice: 2015
DBID AAYXX
CITATION
7UA
C1K
F1W
H96
L.G
7SM
7SU
8FD
FR3
KR7
DOI 10.1016/j.soildyn.2015.07.007
DatabaseName CrossRef
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Earthquake Engineering Abstracts
Environmental Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earthquake Engineering Abstracts
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environmental Engineering Abstracts
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Earthquake Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-341X
EndPage 18
ExternalDocumentID 10_1016_j_soildyn_2015_07_007
S0267726115001803
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACNNM
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IMUCA
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSE
SST
SSZ
T5K
TN5
WUQ
Y6R
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7UA
C1K
F1W
H96
L.G
7SM
7SU
8FD
FR3
KR7
ID FETCH-LOGICAL-a398t-8faa093c883a8c8686e90fa2da3e4c54b12a128a07a4296a360eae3cb4c5e1093
IEDL.DBID .~1
ISSN 0267-7261
IngestDate Fri Jul 11 13:24:29 EDT 2025
Fri Jul 11 06:42:57 EDT 2025
Tue Jul 01 03:37:45 EDT 2025
Thu Apr 24 22:52:24 EDT 2025
Fri Feb 23 02:34:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Precise integration method
Hankel integral transform
Mixed variable formulation
Axisymmetric dynamic response
Multi-layered transverse isotropy
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a398t-8faa093c883a8c8686e90fa2da3e4c54b12a128a07a4296a360eae3cb4c5e1093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1768576203
PQPubID 23462
PageCount 18
ParticipantIDs proquest_miscellaneous_1778018697
proquest_miscellaneous_1768576203
crossref_citationtrail_10_1016_j_soildyn_2015_07_007
crossref_primary_10_1016_j_soildyn_2015_07_007
elsevier_sciencedirect_doi_10_1016_j_soildyn_2015_07_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2015
2015-11-00
20151101
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: November 2015
PublicationDecade 2010
PublicationTitle Soil dynamics and earthquake engineering (1984)
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Khojasteh, Rahimian, Eskandari, Pak (bib21) 2008; 46
Buchwald (bib4) 1961; 14
Liew, Liang, Ding, Lu (bib12) 2001; 190
Eskandari-Ghadi M. Surface axisymmetric wave in transversely isotropic medium, In: Proceedings of the 7th international congress on civil engineering, Teheran, Iran, 2006, 1-8.
Eskandari-Ghadi (bib18) 2005; 81
Shodja, Eskandari (bib20) 2007; 45
Kausel (bib30) 2006
Eskandari-Ghadi, Pak, Ardeshir-Behrestaghi (bib43) 2008; 28
Gerrard (bib6) 1982; 6
Chen, Birk, Song (bib35) 2015; 63
Haskell (bib29) 1953; 43
Pak, Guzina (bib13) 2002; 128
Eskandari-Ghadi, Sture, Pak, Ardeshir-Behrestaghi (bib24) 2009; 46
Lin, Han, Zhong, Li (bib37) 2013; 49
Synge (bib3) 1957; 35
Zhong, Lin, Gao (bib36) 2004; 60
Khojasteh, Rahimian, Eskandari, Pak (bib26) 2011; 48
Stoneley (bib2) 1949; 5
Khojasteh, Rahimian, Eskandari (bib27) 2013; 37
Sneddon (bib39) 1995
Pan (bib14) 2003; 70
Yang, Pan, Tewary (bib16) 2004; 28
Qiang, Wanxie, Howson (bib42) 2004; 40
Eskandari-Ghadi, Pak (bib25) 2009; 76
Wolf (bib31) 2003
Lin, Han, Li (bib38) 2013; 49
Khojasteh, Rahimian, Pak (bib22) 2008; 45
Khojasteh, Rahimian, Pak, Eskandari (bib23) 2008; 134
Pan (bib15) 2003; 70
Birk, Behnke (bib34) 2012; 89
Genes, Kocak (bib33) 2005; 62
Wang, Wang (bib10) 1995; 32
Pak (bib7) 1987; 54
Song, Wolf (bib32) 1997; 147
Thomson (bib28) 1950; 21
Payton (bib5) 2012
Rajapakse, Wang (bib8) 1991; 117
Lamb (bib1) 1904
Pan, Yuan (bib11) 2000; 37
Sneddon (bib40) 1972
Wanxie, Williams, Bennett (bib41) 1997; 119
Rajapakse, Wang (bib9) 1993; 119
Rahimian, Eskandari-Ghadi, Pak, Khojasteh (bib19) 2007; 133
Song (10.1016/j.soildyn.2015.07.007_bib32) 1997; 147
Eskandari-Ghadi (10.1016/j.soildyn.2015.07.007_bib25) 2009; 76
Khojasteh (10.1016/j.soildyn.2015.07.007_bib22) 2008; 45
Qiang (10.1016/j.soildyn.2015.07.007_bib42) 2004; 40
Khojasteh (10.1016/j.soildyn.2015.07.007_bib26) 2011; 48
Eskandari-Ghadi (10.1016/j.soildyn.2015.07.007_bib18) 2005; 81
Eskandari-Ghadi (10.1016/j.soildyn.2015.07.007_bib24) 2009; 46
Kausel (10.1016/j.soildyn.2015.07.007_bib30) 2006
Lin (10.1016/j.soildyn.2015.07.007_bib38) 2013; 49
Pan (10.1016/j.soildyn.2015.07.007_bib11) 2000; 37
Haskell (10.1016/j.soildyn.2015.07.007_bib29) 1953; 43
Wolf (10.1016/j.soildyn.2015.07.007_bib31) 2003
Genes (10.1016/j.soildyn.2015.07.007_bib33) 2005; 62
Khojasteh (10.1016/j.soildyn.2015.07.007_bib23) 2008; 134
Synge (10.1016/j.soildyn.2015.07.007_bib3) 1957; 35
Sneddon (10.1016/j.soildyn.2015.07.007_bib39) 1995
10.1016/j.soildyn.2015.07.007_bib17
Pan (10.1016/j.soildyn.2015.07.007_bib15) 2003; 70
Rajapakse (10.1016/j.soildyn.2015.07.007_bib9) 1993; 119
Rajapakse (10.1016/j.soildyn.2015.07.007_bib8) 1991; 117
Pak (10.1016/j.soildyn.2015.07.007_bib13) 2002; 128
Thomson (10.1016/j.soildyn.2015.07.007_bib28) 1950; 21
Liew (10.1016/j.soildyn.2015.07.007_bib12) 2001; 190
Wanxie (10.1016/j.soildyn.2015.07.007_bib41) 1997; 119
Khojasteh (10.1016/j.soildyn.2015.07.007_bib27) 2013; 37
Lamb (10.1016/j.soildyn.2015.07.007_bib1) 1904
Rahimian (10.1016/j.soildyn.2015.07.007_bib19) 2007; 133
Lin (10.1016/j.soildyn.2015.07.007_bib37) 2013; 49
Buchwald (10.1016/j.soildyn.2015.07.007_bib4) 1961; 14
Pak (10.1016/j.soildyn.2015.07.007_bib7) 1987; 54
Payton (10.1016/j.soildyn.2015.07.007_bib5) 2012
Yang (10.1016/j.soildyn.2015.07.007_bib16) 2004; 28
Pan (10.1016/j.soildyn.2015.07.007_bib14) 2003; 70
Zhong (10.1016/j.soildyn.2015.07.007_bib36) 2004; 60
Chen (10.1016/j.soildyn.2015.07.007_bib35) 2015; 63
Stoneley (10.1016/j.soildyn.2015.07.007_bib2) 1949; 5
Wang (10.1016/j.soildyn.2015.07.007_bib10) 1995; 32
Eskandari-Ghadi (10.1016/j.soildyn.2015.07.007_bib43) 2008; 28
Sneddon (10.1016/j.soildyn.2015.07.007_bib40) 1972
Birk (10.1016/j.soildyn.2015.07.007_bib34) 2012; 89
Gerrard (10.1016/j.soildyn.2015.07.007_bib6) 1982; 6
Shodja (10.1016/j.soildyn.2015.07.007_bib20) 2007; 45
Khojasteh (10.1016/j.soildyn.2015.07.007_bib21) 2008; 46
References_xml – volume: 62
  start-page: 798
  year: 2005
  end-page: 823
  ident: bib33
  article-title: Dynamic soil–structure interaction analysis of layered unbounded media via a coupled finite element/boundary element/scaled boundary finite element model
  publication-title: Int J Numer Methods Eng
– volume: 49
  start-page: 96
  year: 2013
  end-page: 108
  ident: bib37
  article-title: A precise integration approach for dynamic impedance of rigid strip footing on arbitrary anisotropic layered half-space
  publication-title: Soil Dyn Earthq Eng
– volume: 28
  start-page: 986
  year: 2008
  end-page: 1003
  ident: bib43
  article-title: Transversely isotropic elastodynamic solution of a finite layer on an infinite subgrade under surface loads
  publication-title: Soil Dyn Earthq Eng
– volume: 70
  start-page: 180
  year: 2003
  end-page: 190
  ident: bib15
  article-title: Three-dimensional Green׳s functions in anisotropic elastic bimaterials with imperfect interfaces
  publication-title: J Appl Mech
– start-page: 1
  year: 1904
  end-page: 42
  ident: bib1
  article-title: On the propagation of tremors over the surface of an elastic solid
  publication-title: Philos Trans R Soc Lond Ser A Contain. Pap Math Phys Charact
– volume: 35
  start-page: 323
  year: 1957
  end-page: 334
  ident: bib3
  article-title: Elastic waves in anisotropic media
  publication-title: J Math Phys
– volume: 70
  start-page: 101
  year: 2003
  end-page: 110
  ident: bib14
  article-title: Three-dimensional Green׳s functions in an anisotropic half-space with general boundary conditions
  publication-title: J Appl Mech
– volume: 63
  start-page: 1
  year: 2015
  end-page: 12
  ident: bib35
  article-title: Transient analysis of wave propagation in layered soil by using the scaled boundary finite element method
  publication-title: Comput Geotech
– volume: 147
  start-page: 329
  year: 1997
  end-page: 355
  ident: bib32
  article-title: The scaled boundary finite-element method – alias consistent infinitesimal finite-element cell method – for elastodynamics
  publication-title: Comput Methods Appl Mech Eng
– volume: 48
  start-page: 1349
  year: 2011
  end-page: 1361
  ident: bib26
  article-title: Three-dimensional dynamic Green׳s functions for a multilayered transversely isotropic half-space
  publication-title: Int J Solids Struct
– volume: 46
  start-page: 690
  year: 2008
  end-page: 710
  ident: bib21
  article-title: Asymmetric wave propagation in a transversely isotropic half-space in displacement potentials
  publication-title: Int J Eng Sci
– reference: Eskandari-Ghadi M. Surface axisymmetric wave in transversely isotropic medium, In: Proceedings of the 7th international congress on civil engineering, Teheran, Iran, 2006, 1-8.
– volume: 119
  start-page: 334
  year: 1997
  end-page: 340
  ident: bib41
  article-title: Extension of the Wittrick–Williams algorithm to mixed variable systems
  publication-title: J Vib Acoust
– volume: 37
  start-page: 3164
  year: 2013
  end-page: 3180
  ident: bib27
  article-title: Three-dimensional dynamic Green׳s functions in transversely isotropic tri-materials
  publication-title: Appl Math Model
– volume: 28
  start-page: 1069
  year: 2004
  end-page: 1082
  ident: bib16
  article-title: Three-dimensional Green׳s functions of steady-state motion in anisotropic half-spaces and bimaterials
  publication-title: Eng Anal Bound Elem
– volume: 119
  start-page: 1724
  year: 1993
  end-page: 1746
  ident: bib9
  article-title: Green׳s functions for transversely isotropic elastic half space
  publication-title: J Eng Mech
– volume: 14
  start-page: 293
  year: 1961
  end-page: 318
  ident: bib4
  article-title: Rayleigh waves in transversely isotropic media
  publication-title: Q J Mech Appl Math
– volume: 54
  start-page: 121
  year: 1987
  end-page: 126
  ident: bib7
  article-title: Asymmetric wave propagation in an elastic half-space by a method of potentials
  publication-title: J Appl Mech
– year: 2012
  ident: bib5
  article-title: Elastic wave propagation in transversely isotropic media
– volume: 81
  start-page: 1
  year: 2005
  end-page: 19
  ident: bib18
  article-title: A complete solution of the wave equations for transversely isotropic media
  publication-title: J Elast
– year: 1995
  ident: bib39
  article-title: Fourier transforms
– volume: 190
  start-page: 3749
  year: 2001
  end-page: 3769
  ident: bib12
  article-title: Elastic fields in two-joined half-spaces subject to point force and uniform ring loads
  publication-title: Comput Methods Appl Mech Eng
– volume: 134
  start-page: 777
  year: 2008
  end-page: 787
  ident: bib23
  article-title: Asymmetric dynamic Green׳s functions in a two-layered transversely isotropic half-space
  publication-title: J Eng Mech
– volume: 133
  start-page: 1134
  year: 2007
  end-page: 1145
  ident: bib19
  article-title: Elastodynamic potential method for transversely isotropic solid
  publication-title: J Eng Mech
– volume: 45
  start-page: 4952
  year: 2008
  end-page: 4972
  ident: bib22
  article-title: Three-dimensional dynamic Green׳s functions in transversely isotropic bi-materials
  publication-title: Int J Solids Struct
– volume: 89
  start-page: 371
  year: 2012
  end-page: 402
  ident: bib34
  article-title: A modified scaled boundary finite element method for three-dimensional dynamic soil‐structure interaction in layered soil
  publication-title: Int J Numer Methods Eng
– year: 1972
  ident: bib40
  article-title: The use of integral transforms
– volume: 76
  start-page: 061016
  year: 2009
  ident: bib25
  article-title: Axisymmetric body-force fields in elastodynamics of transversely isotropic media
  publication-title: J Appl Mech
– volume: 40
  start-page: 191
  year: 2004
  end-page: 207
  ident: bib42
  article-title: A precise method for solving wave propagation problems in layered anisotropic media
  publication-title: Wave Motion
– year: 2006
  ident: bib30
  article-title: Fundamental solutions in elastodynamics: a compendium
– volume: 46
  start-page: 1121
  year: 2009
  end-page: 1133
  ident: bib24
  article-title: A tri-material elastodynamic solution for a transversely isotropic full-space
  publication-title: Int J Solids Struct
– volume: 43
  start-page: 17
  year: 1953
  end-page: 34
  ident: bib29
  article-title: The dispersion of surface waves on multilayered media
  publication-title: Bull. Seismol. Soc. Am.
– volume: 37
  start-page: 5329
  year: 2000
  end-page: 5351
  ident: bib11
  article-title: Three-dimensional Green׳s functions in anisotropic bimaterials
  publication-title: Int J Solids Struct
– volume: 5
  start-page: 343
  year: 1949
  end-page: 353
  ident: bib2
  article-title: The seismological implications of aeolotropy in continental structure
  publication-title: Geophys Suppl Mon Not R Astron Soc
– volume: 32
  start-page: 501
  year: 1995
  end-page: 513
  ident: bib10
  article-title: Completeness and nonuniqueness of general solutions of transversely isotropic elasticity
  publication-title: Int J Solids Struct
– volume: 117
  start-page: 588
  year: 1991
  end-page: 604
  ident: bib8
  article-title: Elastodynamic Green׳s functions of orthotropic half plane
  publication-title: J Eng Mech
– year: 2003
  ident: bib31
  article-title: The scaled boundary finite element method
– volume: 21
  start-page: 89
  year: 1950
  end-page: 93
  ident: bib28
  article-title: Transmission of elastic waves through a stratified solid medium
  publication-title: J Appl Phys
– volume: 6
  start-page: 262
  year: 1982
  end-page: 272
  ident: bib6
  article-title: Point and circular loads applied within a cross anisotropic elastic half space
  publication-title: Appl Math Model
– volume: 128
  start-page: 449
  year: 2002
  end-page: 461
  ident: bib13
  article-title: Three-dimensional Green׳s functions for a multilayered half-space in displacement potentials
  publication-title: J Eng Mech
– volume: 45
  start-page: 272
  year: 2007
  end-page: 287
  ident: bib20
  article-title: Axisymmetric time-harmonic response of a transversely isotropic substrate–coating system
  publication-title: Int J Eng Sci
– volume: 60
  start-page: 11
  year: 2004
  end-page: 25
  ident: bib36
  article-title: The precise computation for wave propagation in stratified materials
  publication-title: Int J Numer Methods Eng
– volume: 49
  start-page: 39
  year: 2013
  end-page: 51
  ident: bib38
  article-title: An efficient approach for dynamic impedance of surface footing on layered half-space
  publication-title: Soil Dyn Earthq Eng
– volume: 14
  start-page: 293
  issue: 3
  year: 1961
  ident: 10.1016/j.soildyn.2015.07.007_bib4
  article-title: Rayleigh waves in transversely isotropic media
  publication-title: Q J Mech Appl Math
  doi: 10.1093/qjmam/14.3.293
– volume: 37
  start-page: 5329
  issue: 38
  year: 2000
  ident: 10.1016/j.soildyn.2015.07.007_bib11
  article-title: Three-dimensional Green׳s functions in anisotropic bimaterials
  publication-title: Int J Solids Struct
  doi: 10.1016/S0020-7683(99)00216-4
– volume: 48
  start-page: 1349
  issue: 9
  year: 2011
  ident: 10.1016/j.soildyn.2015.07.007_bib26
  article-title: Three-dimensional dynamic Green׳s functions for a multilayered transversely isotropic half-space
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2011.01.020
– volume: 49
  start-page: 39
  year: 2013
  ident: 10.1016/j.soildyn.2015.07.007_bib38
  article-title: An efficient approach for dynamic impedance of surface footing on layered half-space
  publication-title: Soil Dyn Earthq Eng
  doi: 10.1016/j.soildyn.2013.01.008
– start-page: 1
  year: 1904
  ident: 10.1016/j.soildyn.2015.07.007_bib1
  article-title: On the propagation of tremors over the surface of an elastic solid
  publication-title: Philos Trans R Soc Lond Ser A Contain. Pap Math Phys Charact
  doi: 10.1098/rsta.1904.0013
– volume: 76
  start-page: 061016
  issue: 6
  year: 2009
  ident: 10.1016/j.soildyn.2015.07.007_bib25
  article-title: Axisymmetric body-force fields in elastodynamics of transversely isotropic media
  publication-title: J Appl Mech
  doi: 10.1115/1.3130866
– volume: 147
  start-page: 329
  year: 1997
  ident: 10.1016/j.soildyn.2015.07.007_bib32
  article-title: The scaled boundary finite-element method – alias consistent infinitesimal finite-element cell method – for elastodynamics
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(97)00021-2
– volume: 81
  start-page: 1
  issue: 1
  year: 2005
  ident: 10.1016/j.soildyn.2015.07.007_bib18
  article-title: A complete solution of the wave equations for transversely isotropic media
  publication-title: J Elast
  doi: 10.1007/s10659-005-9000-x
– volume: 32
  start-page: 501
  issue: 3
  year: 1995
  ident: 10.1016/j.soildyn.2015.07.007_bib10
  article-title: Completeness and nonuniqueness of general solutions of transversely isotropic elasticity
  publication-title: Int J Solids Struct
  doi: 10.1016/0020-7683(94)00114-C
– volume: 128
  start-page: 449
  issue: 4
  year: 2002
  ident: 10.1016/j.soildyn.2015.07.007_bib13
  article-title: Three-dimensional Green׳s functions for a multilayered half-space in displacement potentials
  publication-title: J Eng Mech
  doi: 10.1061/(ASCE)0733-9399(2002)128:4(449)
– volume: 46
  start-page: 690
  issue: 7
  year: 2008
  ident: 10.1016/j.soildyn.2015.07.007_bib21
  article-title: Asymmetric wave propagation in a transversely isotropic half-space in displacement potentials
  publication-title: Int J Eng Sci
  doi: 10.1016/j.ijengsci.2008.01.007
– volume: 46
  start-page: 1121
  issue: 5
  year: 2009
  ident: 10.1016/j.soildyn.2015.07.007_bib24
  article-title: A tri-material elastodynamic solution for a transversely isotropic full-space
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2008.10.026
– volume: 40
  start-page: 191
  issue: 3
  year: 2004
  ident: 10.1016/j.soildyn.2015.07.007_bib42
  article-title: A precise method for solving wave propagation problems in layered anisotropic media
  publication-title: Wave Motion
  doi: 10.1016/j.wavemoti.2003.09.002
– volume: 119
  start-page: 1724
  issue: 9
  year: 1993
  ident: 10.1016/j.soildyn.2015.07.007_bib9
  article-title: Green׳s functions for transversely isotropic elastic half space
  publication-title: J Eng Mech
  doi: 10.1061/(ASCE)0733-9399(1993)119:9(1724)
– volume: 28
  start-page: 1069
  issue: 9
  year: 2004
  ident: 10.1016/j.soildyn.2015.07.007_bib16
  article-title: Three-dimensional Green׳s functions of steady-state motion in anisotropic half-spaces and bimaterials
  publication-title: Eng Anal Bound Elem
  doi: 10.1016/j.enganabound.2004.03.004
– volume: 45
  start-page: 4952
  issue: 18
  year: 2008
  ident: 10.1016/j.soildyn.2015.07.007_bib22
  article-title: Three-dimensional dynamic Green׳s functions in transversely isotropic bi-materials
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2008.04.024
– volume: 70
  start-page: 180
  issue: 2
  year: 2003
  ident: 10.1016/j.soildyn.2015.07.007_bib15
  article-title: Three-dimensional Green׳s functions in anisotropic elastic bimaterials with imperfect interfaces
  publication-title: J Appl Mech
  doi: 10.1115/1.1546243
– volume: 89
  start-page: 371
  issue: 3
  year: 2012
  ident: 10.1016/j.soildyn.2015.07.007_bib34
  article-title: A modified scaled boundary finite element method for three-dimensional dynamic soil‐structure interaction in layered soil
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.3251
– volume: 63
  start-page: 1
  year: 2015
  ident: 10.1016/j.soildyn.2015.07.007_bib35
  article-title: Transient analysis of wave propagation in layered soil by using the scaled boundary finite element method
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2014.08.008
– volume: 5
  start-page: 343
  issue: 8
  year: 1949
  ident: 10.1016/j.soildyn.2015.07.007_bib2
  article-title: The seismological implications of aeolotropy in continental structure
  publication-title: Geophys Suppl Mon Not R Astron Soc
– year: 2006
  ident: 10.1016/j.soildyn.2015.07.007_bib30
– volume: 60
  start-page: 11
  issue: 1
  year: 2004
  ident: 10.1016/j.soildyn.2015.07.007_bib36
  article-title: The precise computation for wave propagation in stratified materials
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.952
– year: 1995
  ident: 10.1016/j.soildyn.2015.07.007_bib39
– volume: 49
  start-page: 96
  year: 2013
  ident: 10.1016/j.soildyn.2015.07.007_bib37
  article-title: A precise integration approach for dynamic impedance of rigid strip footing on arbitrary anisotropic layered half-space
  publication-title: Soil Dyn Earthq Eng
  doi: 10.1016/j.soildyn.2013.01.009
– volume: 133
  start-page: 1134
  issue: 10
  year: 2007
  ident: 10.1016/j.soildyn.2015.07.007_bib19
  article-title: Elastodynamic potential method for transversely isotropic solid
  publication-title: J Eng Mech
  doi: 10.1061/(ASCE)0733-9399(2007)133:10(1134)
– volume: 190
  start-page: 3749
  issue: 29
  year: 2001
  ident: 10.1016/j.soildyn.2015.07.007_bib12
  article-title: Elastic fields in two-joined half-spaces subject to point force and uniform ring loads
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(00)00293-0
– volume: 45
  start-page: 272
  issue: 2
  year: 2007
  ident: 10.1016/j.soildyn.2015.07.007_bib20
  article-title: Axisymmetric time-harmonic response of a transversely isotropic substrate–coating system
  publication-title: Int J Eng Sci
  doi: 10.1016/j.ijengsci.2006.11.001
– volume: 119
  start-page: 334
  issue: 3
  year: 1997
  ident: 10.1016/j.soildyn.2015.07.007_bib41
  article-title: Extension of the Wittrick–Williams algorithm to mixed variable systems
  publication-title: J Vib Acoust
  doi: 10.1115/1.2889728
– volume: 28
  start-page: 986
  issue: 12
  year: 2008
  ident: 10.1016/j.soildyn.2015.07.007_bib43
  article-title: Transversely isotropic elastodynamic solution of a finite layer on an infinite subgrade under surface loads
  publication-title: Soil Dyn Earthq Eng
  doi: 10.1016/j.soildyn.2007.10.019
– year: 2003
  ident: 10.1016/j.soildyn.2015.07.007_bib31
– year: 2012
  ident: 10.1016/j.soildyn.2015.07.007_bib5
– volume: 117
  start-page: 588
  issue: 3
  year: 1991
  ident: 10.1016/j.soildyn.2015.07.007_bib8
  article-title: Elastodynamic Green׳s functions of orthotropic half plane
  publication-title: J Eng Mech
  doi: 10.1061/(ASCE)0733-9399(1991)117:3(588)
– volume: 134
  start-page: 777
  issue: 9
  year: 2008
  ident: 10.1016/j.soildyn.2015.07.007_bib23
  article-title: Asymmetric dynamic Green׳s functions in a two-layered transversely isotropic half-space
  publication-title: J Eng Mech
  doi: 10.1061/(ASCE)0733-9399(2008)134:9(777)
– volume: 54
  start-page: 121
  issue: 1
  year: 1987
  ident: 10.1016/j.soildyn.2015.07.007_bib7
  article-title: Asymmetric wave propagation in an elastic half-space by a method of potentials
  publication-title: J Appl Mech
  doi: 10.1115/1.3172945
– volume: 43
  start-page: 17
  issue: 1
  year: 1953
  ident: 10.1016/j.soildyn.2015.07.007_bib29
  article-title: The dispersion of surface waves on multilayered media
  publication-title: Bull. Seismol. Soc. Am.
  doi: 10.1785/BSSA0430010017
– volume: 37
  start-page: 3164
  issue: 5
  year: 2013
  ident: 10.1016/j.soildyn.2015.07.007_bib27
  article-title: Three-dimensional dynamic Green׳s functions in transversely isotropic tri-materials
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2012.07.009
– volume: 70
  start-page: 101
  issue: 1
  year: 2003
  ident: 10.1016/j.soildyn.2015.07.007_bib14
  article-title: Three-dimensional Green׳s functions in an anisotropic half-space with general boundary conditions
  publication-title: J Appl Mech
  doi: 10.1115/1.1532570
– volume: 62
  start-page: 798
  issue: 6
  year: 2005
  ident: 10.1016/j.soildyn.2015.07.007_bib33
  article-title: Dynamic soil–structure interaction analysis of layered unbounded media via a coupled finite element/boundary element/scaled boundary finite element model
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.1212
– volume: 6
  start-page: 262
  issue: 4
  year: 1982
  ident: 10.1016/j.soildyn.2015.07.007_bib6
  article-title: Point and circular loads applied within a cross anisotropic elastic half space
  publication-title: Appl Math Model
  doi: 10.1016/S0307-904X(82)80034-6
– volume: 35
  start-page: 323
  issue: 35
  year: 1957
  ident: 10.1016/j.soildyn.2015.07.007_bib3
  article-title: Elastic waves in anisotropic media
  publication-title: J Math Phys
– volume: 21
  start-page: 89
  issue: 2
  year: 1950
  ident: 10.1016/j.soildyn.2015.07.007_bib28
  article-title: Transmission of elastic waves through a stratified solid medium
  publication-title: J Appl Phys
  doi: 10.1063/1.1699629
– ident: 10.1016/j.soildyn.2015.07.007_bib17
– year: 1972
  ident: 10.1016/j.soildyn.2015.07.007_bib40
SSID ssj0017186
Score 2.196768
Snippet By virtue of the precise integration method (PIM) and the technique of mixed variable formulations, solutions for the dynamic response of the multi-layered...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Anisotropy
Axisymmetric
Axisymmetric dynamic response
Differential equations
Dynamic response
Hankel integral transform
Mathematical analysis
Mathematical models
Media
Mixed variable formulation
Multi-layered transverse isotropy
Powder injection molding
Precise integration method
Title Axisymmetric dynamic response of the multi-layered transversely isotropic medium
URI https://dx.doi.org/10.1016/j.soildyn.2015.07.007
https://www.proquest.com/docview/1768576203
https://www.proquest.com/docview/1778018697
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EL3oQn_hmBa-xmybd3RyLKFVRBBW8LbObDVTaprQp2Iu_3Zk8fCEKHpPsQJjZzDeTnfmGsRPlhfQIc4ELAROULEkCSGU7sBZjU6sya8tG4Ztb2XuMr546TwvsrOmFobLK2vdXPr301vWdVq3N1rjfb93T7CSFCQCGNMRCRYyfcaxol5--vpd5hOh7ZfWfRQW0-qOLp_VMfLmDdE40qGGn5PCkqbI_49M3T13Cz8UaW63jRt6tXm2dLfjRBlv5xCa4ye66L_3pfDikGVmOp9WoeT6pimA9zzOOwR4vKwiDAcxpSCcvCKqoMsMP5rw_zYtJPkYhOnGfDbfY48X5w1kvqAcmBBAlugh0BiCSyGkdgXZaajSDyKCdQuRj14lt2AbEIxAKEIYkRFJ48JGz-NATr9Q2WxzlI7_DuACNVkIDCpnFznUAcdxKgBAjilQKu8viRk3G1WziNNRiYJqysWdTa9eQdo2gc261y07fxcYVncZfArqxgfmyLwy6_L9EjxubGfxm6CAERj6fTU2IORbmWW0R_bZGIXhrmai9_7_CPlumq6p38YAtFpOZP8QgprBH5S49Ykvdy-ve7RuXSfS3
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA4-DupBfOLbCF7XZrvbbPYootQnggrewiSbhZa2W9ot2Iu_3Zl9-EIUvG4yEDLJfDObmfkYO46ckA5hzrM-YICSxrEHiWx6xqBvaqLUmKJQ-PZOtp_Cq-fW8ww7q2thKK2ysv2lTS-sdfWlUe1mY9jpNB6IOynCAABdGupCFcyy-RCvL9EYnLy-53n4aHxl-aMl8mj6RxlPo0sNc3vJlPqg-q2iiSfRyv4MUN9MdYE_FytsuXIc-Wm5tlU24wZrbOlTO8F1dn_60hlP-30iybI8Kbnm-ajMgnU8Szl6e7xIIfR6MCWWTp4TVlFqhutNeWec5aNsiEL05D7pb7Cni_PHs7ZXMSZ4EMQq91QKIOLAKhWAskoq1INIoZlA4ELbCo3fBAQkEBEgDkkIpHDgAmtw0FFjqU02N8gGbotxAQrVhBoUMg2tbQECuZEAProUiRRmm4X1NmlbtRMnVouervPGurraXU27qwU9dEfb7ORdbFj20_hLQNU60F8Ohkab_5foUa0zjZeGXkJg4LLJWPsYZGGg1RTBb3MiRG8l42jn_0s4ZAvtx9sbfXN5d73LFmmkLGTcY3P5aOL20aPJzUFxYt8ALIr2RQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Axisymmetric+dynamic+response+of+the+multi-layered+transversely+isotropic+medium&rft.jtitle=Soil+dynamics+and+earthquake+engineering+%281984%29&rft.au=Zhang%2C+Pengchong&rft.au=Liu%2C+Jun&rft.au=Lin%2C+Gao&rft.au=Wang%2C+Wenyuan&rft.date=2015-11-01&rft.pub=Elsevier+Ltd&rft.issn=0267-7261&rft.eissn=1879-341X&rft.volume=78&rft.spage=1&rft.epage=18&rft_id=info:doi/10.1016%2Fj.soildyn.2015.07.007&rft.externalDocID=S0267726115001803
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0267-7261&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0267-7261&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0267-7261&client=summon