Water-Stable Pillared Three-Dimensional Zn–V Bimetal–Organic Framework for Promoted Electrocatalytic Urea Oxidation
Urea oxidation reaction (UOR) is one of the potential routes in which urea-rich wastewater is used as a source of energy for hydrogen production. Metal–organic frameworks (MOFs) have promising applications in electrocatalytic processes, although there are still challenges in identifying the MOFs’ mo...
Saved in:
Published in | Inorganic chemistry Vol. 63; no. 12; pp. 5642 - 5651 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
25.03.2024
|
Online Access | Get full text |
Cover
Loading…
Abstract | Urea oxidation reaction (UOR) is one of the potential routes in which urea-rich wastewater is used as a source of energy for hydrogen production. Metal–organic frameworks (MOFs) have promising applications in electrocatalytic processes, although there are still challenges in identifying the MOFs’ molecular regulation and obtaining practical catalytic systems. The current study sought to synthesize [Zn6(IDC)4(OH)2(Hprz)2] n (Zn-MOF) with three symmetrically independent Zn(II) cations connected via linear N-donor piperazine (Hprz), rigid planar imidazole-4,5-dicarboxylate (IDC3–), and −OH ligands, revealing the 3,4T1 topology. The optimized noble-metal-free Zn0.33V0.66-MOF/NF electrocatalysts show higher robustness and performance compared to those of the parent Zn monometallic MOF/NF electrode and other bimetallic MOFs with different Zn–V molar ratios. The low potential of 1.42 V (vs RHE) at 50 mA cm–2 in 1.0 M KOH with 0.33 M urea required by the developed Zn0.33V0.66-MOF electrode makes its application in the UOR more feasible. The availability of more exposed active sites, ion diffusion path, and higher conductivity result from the distinctive configuration of the synthesized electrocatalyst, which is highly stable and capable of synergistic effects, consequently enhancing the desired reaction. The current research contributes to introducing a practical, cost-effective, and sustainable solution to decompose urea-rich wastewater and produce hydrogen. |
---|---|
AbstractList | Urea oxidation reaction (UOR) is one of the potential routes in which urea-rich wastewater is used as a source of energy for hydrogen production. Metal–organic frameworks (MOFs) have promising applications in electrocatalytic processes, although there are still challenges in identifying the MOFs’ molecular regulation and obtaining practical catalytic systems. The current study sought to synthesize [Zn6(IDC)4(OH)2(Hprz)2] n (Zn-MOF) with three symmetrically independent Zn(II) cations connected via linear N-donor piperazine (Hprz), rigid planar imidazole-4,5-dicarboxylate (IDC3–), and −OH ligands, revealing the 3,4T1 topology. The optimized noble-metal-free Zn0.33V0.66-MOF/NF electrocatalysts show higher robustness and performance compared to those of the parent Zn monometallic MOF/NF electrode and other bimetallic MOFs with different Zn–V molar ratios. The low potential of 1.42 V (vs RHE) at 50 mA cm–2 in 1.0 M KOH with 0.33 M urea required by the developed Zn0.33V0.66-MOF electrode makes its application in the UOR more feasible. The availability of more exposed active sites, ion diffusion path, and higher conductivity result from the distinctive configuration of the synthesized electrocatalyst, which is highly stable and capable of synergistic effects, consequently enhancing the desired reaction. The current research contributes to introducing a practical, cost-effective, and sustainable solution to decompose urea-rich wastewater and produce hydrogen. Urea oxidation reaction (UOR) is one of the potential routes in which urea-rich wastewater is used as a source of energy for hydrogen production. Metal-organic frameworks (MOFs) have promising applications in electrocatalytic processes, although there are still challenges in identifying the MOFs' molecular regulation and obtaining practical catalytic systems. The current study sought to synthesize [Zn (IDC) (OH) (Hprz) ] (Zn-MOF) with three symmetrically independent Zn(II) cations connected via linear N-donor piperazine (Hprz), rigid planar imidazole-4,5-dicarboxylate (IDC ), and -OH ligands, revealing the topology. The optimized noble-metal-free Zn V -MOF/NF electrocatalysts show higher robustness and performance compared to those of the parent Zn monometallic MOF/NF electrode and other bimetallic MOFs with different Zn-V molar ratios. The low potential of 1.42 V (vs RHE) at 50 mA cm in 1.0 M KOH with 0.33 M urea required by the developed Zn V -MOF electrode makes its application in the UOR more feasible. The availability of more exposed active sites, ion diffusion path, and higher conductivity result from the distinctive configuration of the synthesized electrocatalyst, which is highly stable and capable of synergistic effects, consequently enhancing the desired reaction. The current research contributes to introducing a practical, cost-effective, and sustainable solution to decompose urea-rich wastewater and produce hydrogen. Urea oxidation reaction (UOR) is one of the potential routes in which urea-rich wastewater is used as a source of energy for hydrogen production. Metal-organic frameworks (MOFs) have promising applications in electrocatalytic processes, although there are still challenges in identifying the MOFs' molecular regulation and obtaining practical catalytic systems. The current study sought to synthesize [Zn6(IDC)4(OH)2(Hprz)2]n (Zn-MOF) with three symmetrically independent Zn(II) cations connected via linear N-donor piperazine (Hprz), rigid planar imidazole-4,5-dicarboxylate (IDC3-), and -OH ligands, revealing the 3,4T1 topology. The optimized noble-metal-free Zn0.33V0.66-MOF/NF electrocatalysts show higher robustness and performance compared to those of the parent Zn monometallic MOF/NF electrode and other bimetallic MOFs with different Zn-V molar ratios. The low potential of 1.42 V (vs RHE) at 50 mA cm-2 in 1.0 M KOH with 0.33 M urea required by the developed Zn0.33V0.66-MOF electrode makes its application in the UOR more feasible. The availability of more exposed active sites, ion diffusion path, and higher conductivity result from the distinctive configuration of the synthesized electrocatalyst, which is highly stable and capable of synergistic effects, consequently enhancing the desired reaction. The current research contributes to introducing a practical, cost-effective, and sustainable solution to decompose urea-rich wastewater and produce hydrogen.Urea oxidation reaction (UOR) is one of the potential routes in which urea-rich wastewater is used as a source of energy for hydrogen production. Metal-organic frameworks (MOFs) have promising applications in electrocatalytic processes, although there are still challenges in identifying the MOFs' molecular regulation and obtaining practical catalytic systems. The current study sought to synthesize [Zn6(IDC)4(OH)2(Hprz)2]n (Zn-MOF) with three symmetrically independent Zn(II) cations connected via linear N-donor piperazine (Hprz), rigid planar imidazole-4,5-dicarboxylate (IDC3-), and -OH ligands, revealing the 3,4T1 topology. The optimized noble-metal-free Zn0.33V0.66-MOF/NF electrocatalysts show higher robustness and performance compared to those of the parent Zn monometallic MOF/NF electrode and other bimetallic MOFs with different Zn-V molar ratios. The low potential of 1.42 V (vs RHE) at 50 mA cm-2 in 1.0 M KOH with 0.33 M urea required by the developed Zn0.33V0.66-MOF electrode makes its application in the UOR more feasible. The availability of more exposed active sites, ion diffusion path, and higher conductivity result from the distinctive configuration of the synthesized electrocatalyst, which is highly stable and capable of synergistic effects, consequently enhancing the desired reaction. The current research contributes to introducing a practical, cost-effective, and sustainable solution to decompose urea-rich wastewater and produce hydrogen. |
Author | Sanati, Soheila Wang, Qiyou Abazari, Reza Goscianska, Joanna Liu, Min Stelmachowski, Pawel Krawczuk, Anna |
AuthorAffiliation | Department of Chemistry, Faculty of Science Faculty of Chemistry, Department of Chemical Technology Institute of Inorganic Chemistry Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics Faculty of Chemistry |
AuthorAffiliation_xml | – name: Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics – name: Faculty of Chemistry – name: Department of Chemistry, Faculty of Science – name: Institute of Inorganic Chemistry – name: Faculty of Chemistry, Department of Chemical Technology |
Author_xml | – sequence: 1 givenname: Reza orcidid: 0000-0002-3725-2557 surname: Abazari fullname: Abazari, Reza email: reza.abazari@maragheh.ac.ir organization: Department of Chemistry, Faculty of Science – sequence: 2 givenname: Soheila surname: Sanati fullname: Sanati, Soheila organization: Department of Chemistry, Faculty of Science – sequence: 3 givenname: Pawel orcidid: 0000-0003-1126-8101 surname: Stelmachowski fullname: Stelmachowski, Pawel organization: Faculty of Chemistry – sequence: 4 givenname: Qiyou orcidid: 0009-0001-2947-6737 surname: Wang fullname: Wang, Qiyou organization: Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics – sequence: 5 givenname: Anna orcidid: 0000-0001-7172-7264 surname: Krawczuk fullname: Krawczuk, Anna organization: Institute of Inorganic Chemistry – sequence: 6 givenname: Joanna surname: Goscianska fullname: Goscianska, Joanna email: joanna.goscianska@amu.edu.pl organization: Faculty of Chemistry, Department of Chemical Technology – sequence: 7 givenname: Min orcidid: 0000-0002-9007-4817 surname: Liu fullname: Liu, Min email: minliu@csu.edu.cn organization: Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38469751$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9OFTEUxhsDkQv6CJpZuplr_0w707hSBDEhuSSCGjdN2zkXijNTOO0NsvMdeEOfxMK9uHDDqift7_tOvn67ZGuKExDyitE5o5y9tT7NwxTx3F_AOG88pVSKZ2TGJKe1ZPT7FplRWmamlN4huyldFkSLRj0nO6JrlG4lm5GbbzYD1l-ydQNUJ2EYLEJfnV4gQP0xjDClECc7VD-mP7_vvlYfylW2Q5kXeG6n4KtDtCPcRPxZLSNWJxjHmIvDwQA-Y_S20Le5cGcItlr8Cr3NxfEF2V7aIcHLzblHzg4PTveP6uPFp8_7749rK3SXa84F146z3nPdMtc2umm7Ep9x5nrPdMeEdKrRTFGx9E5pqkQrqWsE7TvbOrFH3qx9rzBeryBlM4bkocScIK6S4VoqJjsuaEFfb9CVG6E3VxhGi7fm8bMK8G4NeIwpISyND_khTUYbBsOoua_GlGrMv2rMppqilv-pHxc8pWNr3f3zZVxhaSM9ofkLkZaqWg |
CitedBy_id | crossref_primary_10_1016_j_mtsust_2024_100894 crossref_primary_10_1016_j_ijhydene_2025_02_022 crossref_primary_10_1021_acs_inorgchem_4c01850 crossref_primary_10_1021_acs_inorgchem_4c02036 crossref_primary_10_1016_j_ccr_2024_216231 crossref_primary_10_1021_acsami_4c22681 crossref_primary_10_1021_acsanm_4c06084 crossref_primary_10_1016_j_ijhydene_2024_11_451 crossref_primary_10_1016_j_ccr_2024_216256 crossref_primary_10_1021_acs_inorgchem_4c05162 crossref_primary_10_1016_j_jcis_2024_07_239 crossref_primary_10_1021_acs_inorgchem_4c04683 crossref_primary_10_1021_acs_inorgchem_4c05056 crossref_primary_10_1021_acsanm_4c03907 crossref_primary_10_1002_chem_202401759 crossref_primary_10_1021_acs_inorgchem_4c03046 crossref_primary_10_1016_j_ijhydene_2025_03_100 crossref_primary_10_1016_j_apsadv_2025_100708 crossref_primary_10_1016_j_mtcomm_2025_111932 crossref_primary_10_1039_D4CC02729A crossref_primary_10_1016_j_cej_2024_154814 crossref_primary_10_1016_j_inoche_2024_113315 crossref_primary_10_1039_D4TA00736K |
Cites_doi | 10.1002/adfm.202210656 10.1039/D2IM00063F 10.1021/acssuschemeng.0c04049 10.1021/acs.inorgchem.2c03327 10.1021/acsami.3c04506 10.1016/j.ijhydene.2021.12.099 10.1021/acsami.3c06502 10.1021/acs.inorgchem.3c03052 10.1039/D0TA07716J 10.1016/j.cej.2021.130773 10.1021/acsenergylett.1c01350 10.1021/acsami.2c11238 10.1021/acsaem.2c03938 10.1016/j.checat.2023.100840 10.1002/smll.202305585 10.34133/2022/9837109 10.1038/s41467-022-31561-4 10.1073/pnas.0603395103 10.1002/aenm.202003759 10.1021/acsaem.3c00151 10.1039/D3TA01962D 10.1021/acsnano.8b04363 10.1039/D0SC01432J 10.1039/C4RA06958G 10.1016/j.jelechem.2022.116825 10.1002/smll.201906133 10.1016/j.mtphys.2023.101252 10.1021/acs.inorgchem.2c02709 10.1021/acsami.7b18650 10.1021/acscatal.3c00113 10.1038/nature01650 10.1002/er.7651 10.1016/j.electacta.2022.140877 10.1002/anie.202217449 10.1016/j.cej.2021.133515 10.1080/10298436.2023.2273318 10.1021/acs.inorgchem.2c00542 10.1021/acs.inorgchem.3c00074 10.1039/D3CC06073J 10.1021/acscatal.2c05962 10.1039/D1CC07242K 10.1038/nchem.141 10.1002/adma.202209338 10.1016/S1872-2067(23)64532-2 10.1016/j.nanoen.2020.105605 10.1016/j.jhazmat.2018.12.030 10.1016/j.ccr.2023.215538 10.1021/acs.chemrev.9b00766 10.1021/acs.inorgchem.3c01102 10.1021/acs.inorgchem.2c03132 10.1002/ange.201711376 10.1039/D1NJ06107K 10.1021/cg500498k 10.1002/smll.202306353 10.1039/C7CC06378D 10.1039/D0CC03177A 10.1021/acsami.3c12374 10.1016/j.jelechem.2018.10.007 10.1002/cey2.459 10.1021/acsomega.3c07326 10.1021/acscatal.2c02586 10.1016/j.cej.2024.149243 10.1021/acssuschemeng.0c06883 10.1002/smll.202300673 10.1016/j.jechem.2023.08.042 10.1002/anie.201711376 10.1021/acssuschemeng.2c06368 10.1080/23311916.2016.1167990 |
ContentType | Journal Article |
Copyright | 2024 American Chemical Society |
Copyright_xml | – notice: 2024 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acs.inorgchem.4c00053 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-510X |
EndPage | 5651 |
ExternalDocumentID | 38469751 10_1021_acs_inorgchem_4c00053 b73106273 |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X .K2 4.4 55A 5GY 5VS 7~N 85S AABXI ABFRP ABJNI ABMVS ABPPZ ABQRX ABUCX ACGFS ACJ ACNCT ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 EBS ED~ F5P GGK GNL IH2 IH9 IHE JG~ LG6 ROL RXW TAE TN5 TWZ UI2 UKR UPT VF5 VG9 VQA W1F WH7 XSW YZZ ~02 53G AAYXX ABBLG ABLBI AGXLV CITATION CUPRZ NPM YIN 7X8 |
ID | FETCH-LOGICAL-a398t-22329b21dc2971b749478021121bdc198135b6491603fcb69063750b430d8a7b3 |
IEDL.DBID | ACS |
ISSN | 0020-1669 1520-510X |
IngestDate | Fri Jul 11 10:57:04 EDT 2025 Wed Feb 19 02:08:27 EST 2025 Tue Jul 01 02:49:05 EDT 2025 Thu Apr 24 22:51:19 EDT 2025 Tue Mar 26 03:28:36 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a398t-22329b21dc2971b749478021121bdc198135b6491603fcb69063750b430d8a7b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9007-4817 0000-0003-1126-8101 0000-0001-7172-7264 0000-0002-3725-2557 0009-0001-2947-6737 |
OpenAccessLink | https://resolver.sub.uni-goettingen.de/purl?gro-2/142500 |
PMID | 38469751 |
PQID | 2956158230 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2956158230 pubmed_primary_38469751 crossref_citationtrail_10_1021_acs_inorgchem_4c00053 crossref_primary_10_1021_acs_inorgchem_4c00053 acs_journals_10_1021_acs_inorgchem_4c00053 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-25 |
PublicationDateYYYYMMDD | 2024-03-25 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Inorganic chemistry |
PublicationTitleAlternate | Inorg. Chem |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 Gao J. (ref43/cit43) 2023 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref29/cit29 doi: 10.1002/adfm.202210656 – ident: ref8/cit8 doi: 10.1039/D2IM00063F – ident: ref24/cit24 doi: 10.1021/acssuschemeng.0c04049 – ident: ref37/cit37 doi: 10.1021/acs.inorgchem.2c03327 – ident: ref35/cit35 doi: 10.1021/acsami.3c04506 – ident: ref20/cit20 doi: 10.1016/j.ijhydene.2021.12.099 – ident: ref6/cit6 doi: 10.1021/acsami.3c06502 – ident: ref15/cit15 doi: 10.1021/acs.inorgchem.3c03052 – ident: ref40/cit40 doi: 10.1039/D0TA07716J – ident: ref19/cit19 doi: 10.1016/j.cej.2021.130773 – ident: ref41/cit41 doi: 10.1021/acsenergylett.1c01350 – ident: ref28/cit28 doi: 10.1021/acsami.2c11238 – ident: ref54/cit54 doi: 10.1021/acsaem.2c03938 – ident: ref23/cit23 doi: 10.1016/j.checat.2023.100840 – ident: ref25/cit25 doi: 10.1002/smll.202305585 – ident: ref56/cit56 doi: 10.34133/2022/9837109 – ident: ref10/cit10 doi: 10.1038/s41467-022-31561-4 – ident: ref1/cit1 doi: 10.1073/pnas.0603395103 – ident: ref46/cit46 doi: 10.1002/aenm.202003759 – ident: ref32/cit32 doi: 10.1021/acsaem.3c00151 – ident: ref57/cit57 doi: 10.1039/D3TA01962D – ident: ref13/cit13 doi: 10.1021/acsnano.8b04363 – ident: ref48/cit48 doi: 10.1039/D0SC01432J – ident: ref63/cit63 doi: 10.1039/C4RA06958G – ident: ref58/cit58 doi: 10.1016/j.jelechem.2022.116825 – ident: ref26/cit26 doi: 10.1002/smll.201906133 – ident: ref39/cit39 doi: 10.1016/j.mtphys.2023.101252 – ident: ref62/cit62 doi: 10.1021/acs.inorgchem.2c02709 – ident: ref60/cit60 doi: 10.1021/acsami.7b18650 – ident: ref21/cit21 doi: 10.1021/acscatal.3c00113 – ident: ref33/cit33 doi: 10.1038/nature01650 – ident: ref9/cit9 doi: 10.1002/er.7651 – ident: ref51/cit51 doi: 10.1016/j.electacta.2022.140877 – ident: ref27/cit27 doi: 10.1002/anie.202217449 – ident: ref49/cit49 doi: 10.1016/j.cej.2021.133515 – ident: ref7/cit7 doi: 10.1080/10298436.2023.2273318 – ident: ref44/cit44 doi: 10.1021/acs.inorgchem.2c00542 – ident: ref36/cit36 doi: 10.1021/acs.inorgchem.3c00074 – ident: ref4/cit4 doi: 10.1039/D3CC06073J – ident: ref11/cit11 doi: 10.1021/acscatal.2c05962 – ident: ref68/cit68 doi: 10.1039/D1CC07242K – ident: ref2/cit2 doi: 10.1038/nchem.141 – ident: ref67/cit67 doi: 10.1002/adma.202209338 – ident: ref12/cit12 doi: 10.1016/S1872-2067(23)64532-2 – ident: ref17/cit17 doi: 10.1016/j.nanoen.2020.105605 – ident: ref59/cit59 doi: 10.1016/j.jhazmat.2018.12.030 – ident: ref3/cit3 doi: 10.1016/j.ccr.2023.215538 – ident: ref47/cit47 doi: 10.1021/acs.chemrev.9b00766 – ident: ref22/cit22 doi: 10.1021/acs.inorgchem.3c01102 – ident: ref18/cit18 doi: 10.1021/acs.inorgchem.2c03132 – ident: ref52/cit52 doi: 10.1002/ange.201711376 – ident: ref64/cit64 doi: 10.1039/D1NJ06107K – ident: ref61/cit61 doi: 10.1021/cg500498k – ident: ref55/cit55 doi: 10.1002/smll.202306353 – ident: ref31/cit31 doi: 10.1039/C7CC06378D – volume-title: Advanced Catalysts Based on Metal-Organic Frameworks year: 2023 ident: ref43/cit43 – ident: ref69/cit69 doi: 10.1039/D0CC03177A – ident: ref65/cit65 doi: 10.1021/acsami.3c12374 – ident: ref30/cit30 doi: 10.1016/j.jelechem.2018.10.007 – ident: ref42/cit42 doi: 10.1002/cey2.459 – ident: ref66/cit66 doi: 10.1021/acsomega.3c07326 – ident: ref16/cit16 doi: 10.1021/acscatal.2c02586 – ident: ref38/cit38 doi: 10.1016/j.cej.2024.149243 – ident: ref53/cit53 doi: 10.1021/acssuschemeng.0c06883 – ident: ref34/cit34 doi: 10.1002/smll.202300673 – ident: ref45/cit45 doi: 10.1016/j.jechem.2023.08.042 – ident: ref50/cit50 doi: 10.1002/anie.201711376 – ident: ref14/cit14 doi: 10.1021/acssuschemeng.2c06368 – ident: ref5/cit5 doi: 10.1080/23311916.2016.1167990 |
SSID | ssj0009346 |
Score | 2.5781372 |
Snippet | Urea oxidation reaction (UOR) is one of the potential routes in which urea-rich wastewater is used as a source of energy for hydrogen production. Metal–organic... Urea oxidation reaction (UOR) is one of the potential routes in which urea-rich wastewater is used as a source of energy for hydrogen production. Metal-organic... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5642 |
Title | Water-Stable Pillared Three-Dimensional Zn–V Bimetal–Organic Framework for Promoted Electrocatalytic Urea Oxidation |
URI | http://dx.doi.org/10.1021/acs.inorgchem.4c00053 https://www.ncbi.nlm.nih.gov/pubmed/38469751 https://www.proquest.com/docview/2956158230 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1bS-QwFIAP7vjgvnhfHW9E2KeFjk2atM3jODqIoA7o7IovpUkzIGqVueDlyf_gP_SXeNK0IyKD61sbSMpJTpsvPTeA336ofGMo94RJpcdNxj2p8ZZxrSLkca6FDU4-Og4PuvzwXJxPwc4ECz6jO6keIINiCwpx0-C6CB_9AdMsjCN72mq2Tt-z7AYuMseeiWgYyipkZ9IwdkvSg49b0gTOLPab9hx0qqgd52Zy1RgNVUM_fU7i-L-izMNsyZ6k6ZRlAaZMvggzrark2xLc_0Py7HsIoOrakI4tSNQ3GTnD9Tbenq0D4HJ4kIv89fnlL9nFJoR3vHYhnZq0K18vgjBMOoWvH46w74rtFP-KHvHppIusSk4eLl1Fp2XotvfPWgdeWZnBSwMZDz1kCiYVo5lmMqIq4pJHMUpIGVWZpjKmgVAhl7aGdU8rmww5QDRRPPCzOI1U8Atq-W1uVoGEeCbKlC-yqIcfbYN8krIAsUWEqUQ88-vwB6ctKd-sQVIYzRlNbON4LpNyLuvAq5VMdJnj3JbauP6qW2Pc7c4l-fiqw3alJgkukbWxpLm5HQ0SZgOFhbVe1mHF6c94yABZT0aCrn1HpHX4yZCjrNsbExtQG_ZHZhM5aKi2Ct1_AwhQBdI |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcigX3o_laSS4IGWJHTtZHziUbVdb-qASu1BxCbHjShUlRZtdlXLiP_Af-Cv9H_0lfM5jK5CqikMlbslInsSeceabeB5Ez8LYhM5xGSiX6UC6XAba4lZIaxLgcWmVT07e3IqHY_lmR-0s0K82FwYvUYJTWR3in1YX4C89ba8AFXP50pW2yiJtginX3dEhXLXy1doK5PpciMHqqD8Mmm4CQRbp3jSAHRTaCJ5boRNuEqll0gNnLrjJLXxvHikTS-37Lu9a4wv4RjCnRkZh3ssSE4HvJboMACS8k7fcf3da3DeqE4K8K8bjWLeZQme9treEtvzTEp4BbyszN7hGx_MFqqJbPndnU9O13_-qHfn_r-B1utogbbZcb40btOCKm7TUbxvc3aLDD8DZkwBw2-w7tu3bL01czkbQbhes-K4HdcUS9rE4-fHzPXsNElwVXNcJrJYN2sg2BujPtqvIRnBYrVsLVX_GjvB0NgYyZ2-_7dX9q27T-ELmfYcWi4PC3SMWwwPMTajyZBcmygGNZSICSFNxpgFGww69gJjS5jtSplWIgOCpJ85llzay65BsFSi1TUV331hk_7xh3fmwr3VJk_MGPG21M4WI_IlSVriDWZkKnxat_Flth-7WajtnGQHZ6kTx-_8ypSe0NBxtbqQba1vrD-iKAIL0AX9CPaTF6WTmHgEBTs3javsx-nTR2vob_r5i3Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VRQIu_FMWSjESvSBliR07WR84tLtd9QfalejCiksaO16pomSrza5KOfEOfQtehbfokzCTn62oVFUceuCWOPLE9owz38TzA_DaD43vHJeecon2pEulpy3eCmlNhHhcWkXByR92wo2B3Bqq4QL8qmNhcBA5UsqLQ3za1UfpqMowwN9S-0GGT3A-31rSFpGklUPltjs5RnMtf7fZRd6uCNFb3-tseFVFAS8JdHvqoS4U2gieWqEjbiKpZdRGylxwk1q0v3mgTCg11V4eWUNJfANUqUYGftpOIhMg3Rtwk44KydBb7Xw8T_AblEFBZI7xMNR1tNBlwyZtaPO_teElELdQdb178Hu-SIWHy9fWbGpa9seF_JH_xyreh7sV4mar5RZ5AAsuewi3O3Whu0dw_Bnx9sRD2G0OHetTGaaJS9keSrnzulT9oMxcwr5kZz9PP7E1bEKTBa_LQFbLerWHG0MTgPULD0eksF6WGCr-kJ3g29kAETrb_X5Q1rF6DINrmfcTaGTjzD0FFqIlmBpfpdEIVZVDVJaIAMGaChONoNRvwhtkU1x9T_K4cBUQPKbGOe_iindNkLUQxbbK7E4FRg6v6taadzsqU5tc1eFVLaExsohOlpLMjWd5LCg8WtGZbRMWS9GdkwwQ4epI8Wf_MqWXcKvf7cXvN3e2n8MdgUCS_P6EWoLGdDJzLxAITs1ysQMZ7F-3sP4BucVlYA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Water-Stable+Pillared+Three-Dimensional+Zn%E2%80%93V+Bimetal%E2%80%93Organic+Framework+for+Promoted+Electrocatalytic+Urea+Oxidation&rft.jtitle=Inorganic+chemistry&rft.au=Abazari%2C+Reza&rft.au=Sanati%2C+Soheila&rft.au=Stelmachowski%2C+Pawel&rft.au=Wang%2C+Qiyou&rft.date=2024-03-25&rft.issn=0020-1669&rft.eissn=1520-510X&rft.volume=63&rft.issue=12&rft.spage=5642&rft.epage=5651&rft_id=info:doi/10.1021%2Facs.inorgchem.4c00053&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_inorgchem_4c00053 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-1669&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-1669&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-1669&client=summon |