Water-Stable Pillared Three-Dimensional Zn–V Bimetal–Organic Framework for Promoted Electrocatalytic Urea Oxidation

Urea oxidation reaction (UOR) is one of the potential routes in which urea-rich wastewater is used as a source of energy for hydrogen production. Metal–organic frameworks (MOFs) have promising applications in electrocatalytic processes, although there are still challenges in identifying the MOFs’ mo...

Full description

Saved in:
Bibliographic Details
Published inInorganic chemistry Vol. 63; no. 12; pp. 5642 - 5651
Main Authors Abazari, Reza, Sanati, Soheila, Stelmachowski, Pawel, Wang, Qiyou, Krawczuk, Anna, Goscianska, Joanna, Liu, Min
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 25.03.2024
Online AccessGet full text

Cover

Loading…
Abstract Urea oxidation reaction (UOR) is one of the potential routes in which urea-rich wastewater is used as a source of energy for hydrogen production. Metal–organic frameworks (MOFs) have promising applications in electrocatalytic processes, although there are still challenges in identifying the MOFs’ molecular regulation and obtaining practical catalytic systems. The current study sought to synthesize [Zn6(IDC)4(OH)2(Hprz)2] n (Zn-MOF) with three symmetrically independent Zn­(II) cations connected via linear N-donor piperazine (Hprz), rigid planar imidazole-4,5-dicarboxylate (IDC3–), and −OH ligands, revealing the 3,4T1 topology. The optimized noble-metal-free Zn0.33V0.66-MOF/NF electrocatalysts show higher robustness and performance compared to those of the parent Zn monometallic MOF/NF electrode and other bimetallic MOFs with different Zn–V molar ratios. The low potential of 1.42 V (vs RHE) at 50 mA cm–2 in 1.0 M KOH with 0.33 M urea required by the developed Zn0.33V0.66-MOF electrode makes its application in the UOR more feasible. The availability of more exposed active sites, ion diffusion path, and higher conductivity result from the distinctive configuration of the synthesized electrocatalyst, which is highly stable and capable of synergistic effects, consequently enhancing the desired reaction. The current research contributes to introducing a practical, cost-effective, and sustainable solution to decompose urea-rich wastewater and produce hydrogen.
AbstractList Urea oxidation reaction (UOR) is one of the potential routes in which urea-rich wastewater is used as a source of energy for hydrogen production. Metal–organic frameworks (MOFs) have promising applications in electrocatalytic processes, although there are still challenges in identifying the MOFs’ molecular regulation and obtaining practical catalytic systems. The current study sought to synthesize [Zn6(IDC)4(OH)2(Hprz)2] n (Zn-MOF) with three symmetrically independent Zn­(II) cations connected via linear N-donor piperazine (Hprz), rigid planar imidazole-4,5-dicarboxylate (IDC3–), and −OH ligands, revealing the 3,4T1 topology. The optimized noble-metal-free Zn0.33V0.66-MOF/NF electrocatalysts show higher robustness and performance compared to those of the parent Zn monometallic MOF/NF electrode and other bimetallic MOFs with different Zn–V molar ratios. The low potential of 1.42 V (vs RHE) at 50 mA cm–2 in 1.0 M KOH with 0.33 M urea required by the developed Zn0.33V0.66-MOF electrode makes its application in the UOR more feasible. The availability of more exposed active sites, ion diffusion path, and higher conductivity result from the distinctive configuration of the synthesized electrocatalyst, which is highly stable and capable of synergistic effects, consequently enhancing the desired reaction. The current research contributes to introducing a practical, cost-effective, and sustainable solution to decompose urea-rich wastewater and produce hydrogen.
Urea oxidation reaction (UOR) is one of the potential routes in which urea-rich wastewater is used as a source of energy for hydrogen production. Metal-organic frameworks (MOFs) have promising applications in electrocatalytic processes, although there are still challenges in identifying the MOFs' molecular regulation and obtaining practical catalytic systems. The current study sought to synthesize [Zn (IDC) (OH) (Hprz) ] (Zn-MOF) with three symmetrically independent Zn(II) cations connected via linear N-donor piperazine (Hprz), rigid planar imidazole-4,5-dicarboxylate (IDC ), and -OH ligands, revealing the topology. The optimized noble-metal-free Zn V -MOF/NF electrocatalysts show higher robustness and performance compared to those of the parent Zn monometallic MOF/NF electrode and other bimetallic MOFs with different Zn-V molar ratios. The low potential of 1.42 V (vs RHE) at 50 mA cm in 1.0 M KOH with 0.33 M urea required by the developed Zn V -MOF electrode makes its application in the UOR more feasible. The availability of more exposed active sites, ion diffusion path, and higher conductivity result from the distinctive configuration of the synthesized electrocatalyst, which is highly stable and capable of synergistic effects, consequently enhancing the desired reaction. The current research contributes to introducing a practical, cost-effective, and sustainable solution to decompose urea-rich wastewater and produce hydrogen.
Urea oxidation reaction (UOR) is one of the potential routes in which urea-rich wastewater is used as a source of energy for hydrogen production. Metal-organic frameworks (MOFs) have promising applications in electrocatalytic processes, although there are still challenges in identifying the MOFs' molecular regulation and obtaining practical catalytic systems. The current study sought to synthesize [Zn6(IDC)4(OH)2(Hprz)2]n (Zn-MOF) with three symmetrically independent Zn(II) cations connected via linear N-donor piperazine (Hprz), rigid planar imidazole-4,5-dicarboxylate (IDC3-), and -OH ligands, revealing the 3,4T1 topology. The optimized noble-metal-free Zn0.33V0.66-MOF/NF electrocatalysts show higher robustness and performance compared to those of the parent Zn monometallic MOF/NF electrode and other bimetallic MOFs with different Zn-V molar ratios. The low potential of 1.42 V (vs RHE) at 50 mA cm-2 in 1.0 M KOH with 0.33 M urea required by the developed Zn0.33V0.66-MOF electrode makes its application in the UOR more feasible. The availability of more exposed active sites, ion diffusion path, and higher conductivity result from the distinctive configuration of the synthesized electrocatalyst, which is highly stable and capable of synergistic effects, consequently enhancing the desired reaction. The current research contributes to introducing a practical, cost-effective, and sustainable solution to decompose urea-rich wastewater and produce hydrogen.Urea oxidation reaction (UOR) is one of the potential routes in which urea-rich wastewater is used as a source of energy for hydrogen production. Metal-organic frameworks (MOFs) have promising applications in electrocatalytic processes, although there are still challenges in identifying the MOFs' molecular regulation and obtaining practical catalytic systems. The current study sought to synthesize [Zn6(IDC)4(OH)2(Hprz)2]n (Zn-MOF) with three symmetrically independent Zn(II) cations connected via linear N-donor piperazine (Hprz), rigid planar imidazole-4,5-dicarboxylate (IDC3-), and -OH ligands, revealing the 3,4T1 topology. The optimized noble-metal-free Zn0.33V0.66-MOF/NF electrocatalysts show higher robustness and performance compared to those of the parent Zn monometallic MOF/NF electrode and other bimetallic MOFs with different Zn-V molar ratios. The low potential of 1.42 V (vs RHE) at 50 mA cm-2 in 1.0 M KOH with 0.33 M urea required by the developed Zn0.33V0.66-MOF electrode makes its application in the UOR more feasible. The availability of more exposed active sites, ion diffusion path, and higher conductivity result from the distinctive configuration of the synthesized electrocatalyst, which is highly stable and capable of synergistic effects, consequently enhancing the desired reaction. The current research contributes to introducing a practical, cost-effective, and sustainable solution to decompose urea-rich wastewater and produce hydrogen.
Author Sanati, Soheila
Wang, Qiyou
Abazari, Reza
Goscianska, Joanna
Liu, Min
Stelmachowski, Pawel
Krawczuk, Anna
AuthorAffiliation Department of Chemistry, Faculty of Science
Faculty of Chemistry, Department of Chemical Technology
Institute of Inorganic Chemistry
Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics
Faculty of Chemistry
AuthorAffiliation_xml – name: Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics
– name: Faculty of Chemistry
– name: Department of Chemistry, Faculty of Science
– name: Institute of Inorganic Chemistry
– name: Faculty of Chemistry, Department of Chemical Technology
Author_xml – sequence: 1
  givenname: Reza
  orcidid: 0000-0002-3725-2557
  surname: Abazari
  fullname: Abazari, Reza
  email: reza.abazari@maragheh.ac.ir
  organization: Department of Chemistry, Faculty of Science
– sequence: 2
  givenname: Soheila
  surname: Sanati
  fullname: Sanati, Soheila
  organization: Department of Chemistry, Faculty of Science
– sequence: 3
  givenname: Pawel
  orcidid: 0000-0003-1126-8101
  surname: Stelmachowski
  fullname: Stelmachowski, Pawel
  organization: Faculty of Chemistry
– sequence: 4
  givenname: Qiyou
  orcidid: 0009-0001-2947-6737
  surname: Wang
  fullname: Wang, Qiyou
  organization: Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics
– sequence: 5
  givenname: Anna
  orcidid: 0000-0001-7172-7264
  surname: Krawczuk
  fullname: Krawczuk, Anna
  organization: Institute of Inorganic Chemistry
– sequence: 6
  givenname: Joanna
  surname: Goscianska
  fullname: Goscianska, Joanna
  email: joanna.goscianska@amu.edu.pl
  organization: Faculty of Chemistry, Department of Chemical Technology
– sequence: 7
  givenname: Min
  orcidid: 0000-0002-9007-4817
  surname: Liu
  fullname: Liu, Min
  email: minliu@csu.edu.cn
  organization: Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38469751$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9OFTEUxhsDkQv6CJpZuplr_0w707hSBDEhuSSCGjdN2zkXijNTOO0NsvMdeEOfxMK9uHDDqift7_tOvn67ZGuKExDyitE5o5y9tT7NwxTx3F_AOG88pVSKZ2TGJKe1ZPT7FplRWmamlN4huyldFkSLRj0nO6JrlG4lm5GbbzYD1l-ydQNUJ2EYLEJfnV4gQP0xjDClECc7VD-mP7_vvlYfylW2Q5kXeG6n4KtDtCPcRPxZLSNWJxjHmIvDwQA-Y_S20Le5cGcItlr8Cr3NxfEF2V7aIcHLzblHzg4PTveP6uPFp8_7749rK3SXa84F146z3nPdMtc2umm7Ep9x5nrPdMeEdKrRTFGx9E5pqkQrqWsE7TvbOrFH3qx9rzBeryBlM4bkocScIK6S4VoqJjsuaEFfb9CVG6E3VxhGi7fm8bMK8G4NeIwpISyND_khTUYbBsOoua_GlGrMv2rMppqilv-pHxc8pWNr3f3zZVxhaSM9ofkLkZaqWg
CitedBy_id crossref_primary_10_1016_j_mtsust_2024_100894
crossref_primary_10_1016_j_ijhydene_2025_02_022
crossref_primary_10_1021_acs_inorgchem_4c01850
crossref_primary_10_1021_acs_inorgchem_4c02036
crossref_primary_10_1016_j_ccr_2024_216231
crossref_primary_10_1021_acsami_4c22681
crossref_primary_10_1021_acsanm_4c06084
crossref_primary_10_1016_j_ijhydene_2024_11_451
crossref_primary_10_1016_j_ccr_2024_216256
crossref_primary_10_1021_acs_inorgchem_4c05162
crossref_primary_10_1016_j_jcis_2024_07_239
crossref_primary_10_1021_acs_inorgchem_4c04683
crossref_primary_10_1021_acs_inorgchem_4c05056
crossref_primary_10_1021_acsanm_4c03907
crossref_primary_10_1002_chem_202401759
crossref_primary_10_1021_acs_inorgchem_4c03046
crossref_primary_10_1016_j_ijhydene_2025_03_100
crossref_primary_10_1016_j_apsadv_2025_100708
crossref_primary_10_1016_j_mtcomm_2025_111932
crossref_primary_10_1039_D4CC02729A
crossref_primary_10_1016_j_cej_2024_154814
crossref_primary_10_1016_j_inoche_2024_113315
crossref_primary_10_1039_D4TA00736K
Cites_doi 10.1002/adfm.202210656
10.1039/D2IM00063F
10.1021/acssuschemeng.0c04049
10.1021/acs.inorgchem.2c03327
10.1021/acsami.3c04506
10.1016/j.ijhydene.2021.12.099
10.1021/acsami.3c06502
10.1021/acs.inorgchem.3c03052
10.1039/D0TA07716J
10.1016/j.cej.2021.130773
10.1021/acsenergylett.1c01350
10.1021/acsami.2c11238
10.1021/acsaem.2c03938
10.1016/j.checat.2023.100840
10.1002/smll.202305585
10.34133/2022/9837109
10.1038/s41467-022-31561-4
10.1073/pnas.0603395103
10.1002/aenm.202003759
10.1021/acsaem.3c00151
10.1039/D3TA01962D
10.1021/acsnano.8b04363
10.1039/D0SC01432J
10.1039/C4RA06958G
10.1016/j.jelechem.2022.116825
10.1002/smll.201906133
10.1016/j.mtphys.2023.101252
10.1021/acs.inorgchem.2c02709
10.1021/acsami.7b18650
10.1021/acscatal.3c00113
10.1038/nature01650
10.1002/er.7651
10.1016/j.electacta.2022.140877
10.1002/anie.202217449
10.1016/j.cej.2021.133515
10.1080/10298436.2023.2273318
10.1021/acs.inorgchem.2c00542
10.1021/acs.inorgchem.3c00074
10.1039/D3CC06073J
10.1021/acscatal.2c05962
10.1039/D1CC07242K
10.1038/nchem.141
10.1002/adma.202209338
10.1016/S1872-2067(23)64532-2
10.1016/j.nanoen.2020.105605
10.1016/j.jhazmat.2018.12.030
10.1016/j.ccr.2023.215538
10.1021/acs.chemrev.9b00766
10.1021/acs.inorgchem.3c01102
10.1021/acs.inorgchem.2c03132
10.1002/ange.201711376
10.1039/D1NJ06107K
10.1021/cg500498k
10.1002/smll.202306353
10.1039/C7CC06378D
10.1039/D0CC03177A
10.1021/acsami.3c12374
10.1016/j.jelechem.2018.10.007
10.1002/cey2.459
10.1021/acsomega.3c07326
10.1021/acscatal.2c02586
10.1016/j.cej.2024.149243
10.1021/acssuschemeng.0c06883
10.1002/smll.202300673
10.1016/j.jechem.2023.08.042
10.1002/anie.201711376
10.1021/acssuschemeng.2c06368
10.1080/23311916.2016.1167990
ContentType Journal Article
Copyright 2024 American Chemical Society
Copyright_xml – notice: 2024 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acs.inorgchem.4c00053
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-510X
EndPage 5651
ExternalDocumentID 38469751
10_1021_acs_inorgchem_4c00053
b73106273
Genre Journal Article
GroupedDBID ---
-DZ
-~X
.K2
4.4
55A
5GY
5VS
7~N
85S
AABXI
ABFRP
ABJNI
ABMVS
ABPPZ
ABQRX
ABUCX
ACGFS
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
EBS
ED~
F5P
GGK
GNL
IH2
IH9
IHE
JG~
LG6
ROL
RXW
TAE
TN5
TWZ
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
XSW
YZZ
~02
53G
AAYXX
ABBLG
ABLBI
AGXLV
CITATION
CUPRZ
NPM
YIN
7X8
ID FETCH-LOGICAL-a398t-22329b21dc2971b749478021121bdc198135b6491603fcb69063750b430d8a7b3
IEDL.DBID ACS
ISSN 0020-1669
1520-510X
IngestDate Fri Jul 11 10:57:04 EDT 2025
Wed Feb 19 02:08:27 EST 2025
Tue Jul 01 02:49:05 EDT 2025
Thu Apr 24 22:51:19 EDT 2025
Tue Mar 26 03:28:36 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a398t-22329b21dc2971b749478021121bdc198135b6491603fcb69063750b430d8a7b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9007-4817
0000-0003-1126-8101
0000-0001-7172-7264
0000-0002-3725-2557
0009-0001-2947-6737
OpenAccessLink https://resolver.sub.uni-goettingen.de/purl?gro-2/142500
PMID 38469751
PQID 2956158230
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2956158230
pubmed_primary_38469751
crossref_citationtrail_10_1021_acs_inorgchem_4c00053
crossref_primary_10_1021_acs_inorgchem_4c00053
acs_journals_10_1021_acs_inorgchem_4c00053
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-25
PublicationDateYYYYMMDD 2024-03-25
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-25
  day: 25
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Inorganic chemistry
PublicationTitleAlternate Inorg. Chem
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
Gao J. (ref43/cit43) 2023
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref29/cit29
  doi: 10.1002/adfm.202210656
– ident: ref8/cit8
  doi: 10.1039/D2IM00063F
– ident: ref24/cit24
  doi: 10.1021/acssuschemeng.0c04049
– ident: ref37/cit37
  doi: 10.1021/acs.inorgchem.2c03327
– ident: ref35/cit35
  doi: 10.1021/acsami.3c04506
– ident: ref20/cit20
  doi: 10.1016/j.ijhydene.2021.12.099
– ident: ref6/cit6
  doi: 10.1021/acsami.3c06502
– ident: ref15/cit15
  doi: 10.1021/acs.inorgchem.3c03052
– ident: ref40/cit40
  doi: 10.1039/D0TA07716J
– ident: ref19/cit19
  doi: 10.1016/j.cej.2021.130773
– ident: ref41/cit41
  doi: 10.1021/acsenergylett.1c01350
– ident: ref28/cit28
  doi: 10.1021/acsami.2c11238
– ident: ref54/cit54
  doi: 10.1021/acsaem.2c03938
– ident: ref23/cit23
  doi: 10.1016/j.checat.2023.100840
– ident: ref25/cit25
  doi: 10.1002/smll.202305585
– ident: ref56/cit56
  doi: 10.34133/2022/9837109
– ident: ref10/cit10
  doi: 10.1038/s41467-022-31561-4
– ident: ref1/cit1
  doi: 10.1073/pnas.0603395103
– ident: ref46/cit46
  doi: 10.1002/aenm.202003759
– ident: ref32/cit32
  doi: 10.1021/acsaem.3c00151
– ident: ref57/cit57
  doi: 10.1039/D3TA01962D
– ident: ref13/cit13
  doi: 10.1021/acsnano.8b04363
– ident: ref48/cit48
  doi: 10.1039/D0SC01432J
– ident: ref63/cit63
  doi: 10.1039/C4RA06958G
– ident: ref58/cit58
  doi: 10.1016/j.jelechem.2022.116825
– ident: ref26/cit26
  doi: 10.1002/smll.201906133
– ident: ref39/cit39
  doi: 10.1016/j.mtphys.2023.101252
– ident: ref62/cit62
  doi: 10.1021/acs.inorgchem.2c02709
– ident: ref60/cit60
  doi: 10.1021/acsami.7b18650
– ident: ref21/cit21
  doi: 10.1021/acscatal.3c00113
– ident: ref33/cit33
  doi: 10.1038/nature01650
– ident: ref9/cit9
  doi: 10.1002/er.7651
– ident: ref51/cit51
  doi: 10.1016/j.electacta.2022.140877
– ident: ref27/cit27
  doi: 10.1002/anie.202217449
– ident: ref49/cit49
  doi: 10.1016/j.cej.2021.133515
– ident: ref7/cit7
  doi: 10.1080/10298436.2023.2273318
– ident: ref44/cit44
  doi: 10.1021/acs.inorgchem.2c00542
– ident: ref36/cit36
  doi: 10.1021/acs.inorgchem.3c00074
– ident: ref4/cit4
  doi: 10.1039/D3CC06073J
– ident: ref11/cit11
  doi: 10.1021/acscatal.2c05962
– ident: ref68/cit68
  doi: 10.1039/D1CC07242K
– ident: ref2/cit2
  doi: 10.1038/nchem.141
– ident: ref67/cit67
  doi: 10.1002/adma.202209338
– ident: ref12/cit12
  doi: 10.1016/S1872-2067(23)64532-2
– ident: ref17/cit17
  doi: 10.1016/j.nanoen.2020.105605
– ident: ref59/cit59
  doi: 10.1016/j.jhazmat.2018.12.030
– ident: ref3/cit3
  doi: 10.1016/j.ccr.2023.215538
– ident: ref47/cit47
  doi: 10.1021/acs.chemrev.9b00766
– ident: ref22/cit22
  doi: 10.1021/acs.inorgchem.3c01102
– ident: ref18/cit18
  doi: 10.1021/acs.inorgchem.2c03132
– ident: ref52/cit52
  doi: 10.1002/ange.201711376
– ident: ref64/cit64
  doi: 10.1039/D1NJ06107K
– ident: ref61/cit61
  doi: 10.1021/cg500498k
– ident: ref55/cit55
  doi: 10.1002/smll.202306353
– ident: ref31/cit31
  doi: 10.1039/C7CC06378D
– volume-title: Advanced Catalysts Based on Metal-Organic Frameworks
  year: 2023
  ident: ref43/cit43
– ident: ref69/cit69
  doi: 10.1039/D0CC03177A
– ident: ref65/cit65
  doi: 10.1021/acsami.3c12374
– ident: ref30/cit30
  doi: 10.1016/j.jelechem.2018.10.007
– ident: ref42/cit42
  doi: 10.1002/cey2.459
– ident: ref66/cit66
  doi: 10.1021/acsomega.3c07326
– ident: ref16/cit16
  doi: 10.1021/acscatal.2c02586
– ident: ref38/cit38
  doi: 10.1016/j.cej.2024.149243
– ident: ref53/cit53
  doi: 10.1021/acssuschemeng.0c06883
– ident: ref34/cit34
  doi: 10.1002/smll.202300673
– ident: ref45/cit45
  doi: 10.1016/j.jechem.2023.08.042
– ident: ref50/cit50
  doi: 10.1002/anie.201711376
– ident: ref14/cit14
  doi: 10.1021/acssuschemeng.2c06368
– ident: ref5/cit5
  doi: 10.1080/23311916.2016.1167990
SSID ssj0009346
Score 2.5781372
Snippet Urea oxidation reaction (UOR) is one of the potential routes in which urea-rich wastewater is used as a source of energy for hydrogen production. Metal–organic...
Urea oxidation reaction (UOR) is one of the potential routes in which urea-rich wastewater is used as a source of energy for hydrogen production. Metal-organic...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5642
Title Water-Stable Pillared Three-Dimensional Zn–V Bimetal–Organic Framework for Promoted Electrocatalytic Urea Oxidation
URI http://dx.doi.org/10.1021/acs.inorgchem.4c00053
https://www.ncbi.nlm.nih.gov/pubmed/38469751
https://www.proquest.com/docview/2956158230
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1bS-QwFIAP7vjgvnhfHW9E2KeFjk2atM3jODqIoA7o7IovpUkzIGqVueDlyf_gP_SXeNK0IyKD61sbSMpJTpsvPTeA336ofGMo94RJpcdNxj2p8ZZxrSLkca6FDU4-Og4PuvzwXJxPwc4ECz6jO6keIINiCwpx0-C6CB_9AdMsjCN72mq2Tt-z7AYuMseeiWgYyipkZ9IwdkvSg49b0gTOLPab9hx0qqgd52Zy1RgNVUM_fU7i-L-izMNsyZ6k6ZRlAaZMvggzrark2xLc_0Py7HsIoOrakI4tSNQ3GTnD9Tbenq0D4HJ4kIv89fnlL9nFJoR3vHYhnZq0K18vgjBMOoWvH46w74rtFP-KHvHppIusSk4eLl1Fp2XotvfPWgdeWZnBSwMZDz1kCiYVo5lmMqIq4pJHMUpIGVWZpjKmgVAhl7aGdU8rmww5QDRRPPCzOI1U8Atq-W1uVoGEeCbKlC-yqIcfbYN8krIAsUWEqUQ88-vwB6ctKd-sQVIYzRlNbON4LpNyLuvAq5VMdJnj3JbauP6qW2Pc7c4l-fiqw3alJgkukbWxpLm5HQ0SZgOFhbVe1mHF6c94yABZT0aCrn1HpHX4yZCjrNsbExtQG_ZHZhM5aKi2Ct1_AwhQBdI
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcigX3o_laSS4IGWJHTtZHziUbVdb-qASu1BxCbHjShUlRZtdlXLiP_Af-Cv9H_0lfM5jK5CqikMlbslInsSeceabeB5Ez8LYhM5xGSiX6UC6XAba4lZIaxLgcWmVT07e3IqHY_lmR-0s0K82FwYvUYJTWR3in1YX4C89ba8AFXP50pW2yiJtginX3dEhXLXy1doK5PpciMHqqD8Mmm4CQRbp3jSAHRTaCJ5boRNuEqll0gNnLrjJLXxvHikTS-37Lu9a4wv4RjCnRkZh3ssSE4HvJboMACS8k7fcf3da3DeqE4K8K8bjWLeZQme9treEtvzTEp4BbyszN7hGx_MFqqJbPndnU9O13_-qHfn_r-B1utogbbZcb40btOCKm7TUbxvc3aLDD8DZkwBw2-w7tu3bL01czkbQbhes-K4HdcUS9rE4-fHzPXsNElwVXNcJrJYN2sg2BujPtqvIRnBYrVsLVX_GjvB0NgYyZ2-_7dX9q27T-ELmfYcWi4PC3SMWwwPMTajyZBcmygGNZSICSFNxpgFGww69gJjS5jtSplWIgOCpJ85llzay65BsFSi1TUV331hk_7xh3fmwr3VJk_MGPG21M4WI_IlSVriDWZkKnxat_Flth-7WajtnGQHZ6kTx-_8ypSe0NBxtbqQba1vrD-iKAIL0AX9CPaTF6WTmHgEBTs3javsx-nTR2vob_r5i3Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VRQIu_FMWSjESvSBliR07WR84tLtd9QfalejCiksaO16pomSrza5KOfEOfQtehbfokzCTn62oVFUceuCWOPLE9owz38TzA_DaD43vHJeecon2pEulpy3eCmlNhHhcWkXByR92wo2B3Bqq4QL8qmNhcBA5UsqLQ3za1UfpqMowwN9S-0GGT3A-31rSFpGklUPltjs5RnMtf7fZRd6uCNFb3-tseFVFAS8JdHvqoS4U2gieWqEjbiKpZdRGylxwk1q0v3mgTCg11V4eWUNJfANUqUYGftpOIhMg3Rtwk44KydBb7Xw8T_AblEFBZI7xMNR1tNBlwyZtaPO_teElELdQdb178Hu-SIWHy9fWbGpa9seF_JH_xyreh7sV4mar5RZ5AAsuewi3O3Whu0dw_Bnx9sRD2G0OHetTGaaJS9keSrnzulT9oMxcwr5kZz9PP7E1bEKTBa_LQFbLerWHG0MTgPULD0eksF6WGCr-kJ3g29kAETrb_X5Q1rF6DINrmfcTaGTjzD0FFqIlmBpfpdEIVZVDVJaIAMGaChONoNRvwhtkU1x9T_K4cBUQPKbGOe_iindNkLUQxbbK7E4FRg6v6taadzsqU5tc1eFVLaExsohOlpLMjWd5LCg8WtGZbRMWS9GdkwwQ4epI8Wf_MqWXcKvf7cXvN3e2n8MdgUCS_P6EWoLGdDJzLxAITs1ysQMZ7F-3sP4BucVlYA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Water-Stable+Pillared+Three-Dimensional+Zn%E2%80%93V+Bimetal%E2%80%93Organic+Framework+for+Promoted+Electrocatalytic+Urea+Oxidation&rft.jtitle=Inorganic+chemistry&rft.au=Abazari%2C+Reza&rft.au=Sanati%2C+Soheila&rft.au=Stelmachowski%2C+Pawel&rft.au=Wang%2C+Qiyou&rft.date=2024-03-25&rft.issn=0020-1669&rft.eissn=1520-510X&rft.volume=63&rft.issue=12&rft.spage=5642&rft.epage=5651&rft_id=info:doi/10.1021%2Facs.inorgchem.4c00053&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_inorgchem_4c00053
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-1669&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-1669&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-1669&client=summon