In situ measurements of post-fire debris flows in southern California: Comparisons of the timing and magnitude of 24 debris-flow events with rainfall and soil moisture conditions

Debris flows often occur in burned steeplands of southern California, sometimes causing property damage and loss of life. In an effort to better understand the hydrologic controls on post‐fire debris‐flow initiation, timing and magnitude, we measured the flow stage, rainfall, channel bed pore fluid...

Full description

Saved in:
Bibliographic Details
Published inJournal of Geophysical Research Vol. 116; no. F4
Main Authors Kean, Jason W., Staley, Dennis M., Cannon, Susan H.
Format Journal Article
LanguageEnglish
Published Washington Blackwell Publishing Ltd 01.12.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Debris flows often occur in burned steeplands of southern California, sometimes causing property damage and loss of life. In an effort to better understand the hydrologic controls on post‐fire debris‐flow initiation, timing and magnitude, we measured the flow stage, rainfall, channel bed pore fluid pressure and hillslope soil‐moisture accompanying 24 debris flows recorded in five different watersheds burned in the 2009 Station and Jesusita Fires (San Gabriel and Santa Ynez Mountains). The measurements show substantial differences in debris‐flow dynamics between sites and between sequential events at the same site. Despite these differences, the timing and magnitude of all events were consistently associated with local peaks in short duration (< = 30 min) rainfall intensity. Overall, debris‐flow stage was best cross‐correlated with time series of 5‐min rainfall intensity, and lagged the rainfall by an average of just 5 min. An index of debris‐flow volume was also best correlated with short‐duration rainfall intensity, but found to be poorly correlated with storm cumulative rainfall and hillslope soil water content. Post‐event observations of erosion and slope stability modeling suggest that the debris flows initiated primarily by processes related to surface water runoff, rather than shallow landslides. By identifying the storm characteristics most closely associated with post‐fire debris flows, these measurements provide valuable guidance for warning operations and important constraints for developing and testing models of post‐fire debris flows. Key Points We present the first known in situ measurements of post‐fire debris flow Debris‐flow timing tightly correlated with short duration rainfall intensity Debris‐flow magnitude not correlated with cum. rainfall or soil water content
AbstractList We present the first known in situ measurements of post-fire debris flow Debris-flow timing tightly correlated with short duration rainfall intensity Debris-flow magnitude not correlated with cum. rainfall or soil water content Debris flows often occur in burned steeplands of southern California, sometimes causing property damage and loss of life. In an effort to better understand the hydrologic controls on post-fire debris-flow initiation, timing and magnitude, we measured the flow stage, rainfall, channel bed pore fluid pressure and hillslope soil-moisture accompanying 24 debris flows recorded in five different watersheds burned in the 2009 Station and Jesusita Fires (San Gabriel and Santa Ynez Mountains). The measurements show substantial differences in debris-flow dynamics between sites and between sequential events at the same site. Despite these differences, the timing and magnitude of all events were consistently associated with local peaks in short duration (< = 30 min) rainfall intensity. Overall, debris-flow stage was best cross-correlated with time series of 5-min rainfall intensity, and lagged the rainfall by an average of just 5 min. An index of debris-flow volume was also best correlated with short-duration rainfall intensity, but found to be poorly correlated with storm cumulative rainfall and hillslope soil water content. Post-event observations of erosion and slope stability modeling suggest that the debris flows initiated primarily by processes related to surface water runoff, rather than shallow landslides. By identifying the storm characteristics most closely associated with post-fire debris flows, these measurements provide valuable guidance for warning operations and important constraints for developing and testing models of post-fire debris flows.
Debris flows often occur in burned steeplands of southern California, sometimes causing property damage and loss of life. In an effort to better understand the hydrologic controls on post‐fire debris‐flow initiation, timing and magnitude, we measured the flow stage, rainfall, channel bed pore fluid pressure and hillslope soil‐moisture accompanying 24 debris flows recorded in five different watersheds burned in the 2009 Station and Jesusita Fires (San Gabriel and Santa Ynez Mountains). The measurements show substantial differences in debris‐flow dynamics between sites and between sequential events at the same site. Despite these differences, the timing and magnitude of all events were consistently associated with local peaks in short duration (< = 30 min) rainfall intensity. Overall, debris‐flow stage was best cross‐correlated with time series of 5‐min rainfall intensity, and lagged the rainfall by an average of just 5 min. An index of debris‐flow volume was also best correlated with short‐duration rainfall intensity, but found to be poorly correlated with storm cumulative rainfall and hillslope soil water content. Post‐event observations of erosion and slope stability modeling suggest that the debris flows initiated primarily by processes related to surface water runoff, rather than shallow landslides. By identifying the storm characteristics most closely associated with post‐fire debris flows, these measurements provide valuable guidance for warning operations and important constraints for developing and testing models of post‐fire debris flows. Key Points We present the first known in situ measurements of post‐fire debris flow Debris‐flow timing tightly correlated with short duration rainfall intensity Debris‐flow magnitude not correlated with cum. rainfall or soil water content
ArticleNumber F04019
Author Staley, Dennis M.
Cannon, Susan H.
Kean, Jason W.
Author_xml – sequence: 1
  givenname: Jason W.
  surname: Kean
  fullname: Kean, Jason W.
  email: jwkean@usgs.gov
  organization: U.S. Geological Survey, Colorado, Denver, USA
– sequence: 2
  givenname: Dennis M.
  surname: Staley
  fullname: Staley, Dennis M.
  organization: U.S. Geological Survey, Colorado, Denver, USA
– sequence: 3
  givenname: Susan H.
  surname: Cannon
  fullname: Cannon, Susan H.
  organization: U.S. Geological Survey, Colorado, Denver, USA
BookMark eNp9kUFvFCEYhompiWvtzR9APHlwFJgBBm-6umtro6bRaLwQduajpc7ACky3_Vv-QtndxpgmyoUDz_N-X14eogMfPCD0mJLnlDD1ghFKTxaEMEL4PTRjlIuKMcIO0IzQpq0IY_IBOkrpkpTTcNEQOkO_jj1OLk94BJOmCCP4nHCweB1SrqyLgHtYRZewHcImYVfwMOULiB7PzeBsiN6Zl3gexrUpWPA7uwA4u9H5c2x8j0dz7suQHrZvrLmNrLaRGK52IzcuX-BonLdmGHZSCm7AY3Apl71wF3zvsiv5j9D9wiQ4ur0P0ZfF28_zd9Xpx-Xx_NVpZWrVqqoHSVVbM9nWVgrJWWclXXGA2gLjRNWMkt6S1gjWGNl2tViRVlphCYjSjakP0dN97jqGnxOkrEeXOhgG4yFMSZfWG8Eb3pCCPrmDXoYp-rKdVqV3paQSBXq2h7oYUopg9Tq60cSbkrQNU_rvLyw4u4N3LpttA7nUNPxLontp4wa4-e8AfbI8W7RcFafaO6VpuP7jmPhDC1lLrr9-WOrv3_ji9dmnN_p9_RvBd78m
CitedBy_id crossref_primary_10_1186_s13617_024_00146_9
crossref_primary_10_1029_2024EA003939
crossref_primary_10_1088_2634_4505_adb90a
crossref_primary_10_1002_esp_4981
crossref_primary_10_1002_esp_5553
crossref_primary_10_1007_s10064_017_1187_0
crossref_primary_10_1007_s11069_023_05952_9
crossref_primary_10_1029_2018GL077683
crossref_primary_10_1080_04353676_2021_1932482
crossref_primary_10_5194_nhess_23_2075_2023
crossref_primary_10_1007_s10064_022_03014_1
crossref_primary_10_1002_2016WR018675
crossref_primary_10_1029_2022JF006591
crossref_primary_10_1007_s00445_015_0946_7
crossref_primary_10_1002_hyp_11434
crossref_primary_10_1016_j_geomorph_2013_01_001
crossref_primary_10_5194_esurf_12_67_2024
crossref_primary_10_1016_j_earscirev_2013_03_004
crossref_primary_10_1051_e3sconf_202341504002
crossref_primary_10_1051_e3sconf_202341501013
crossref_primary_10_1071_WF23065
crossref_primary_10_1002_esp_5148
crossref_primary_10_1002_2017WR021084
crossref_primary_10_1016_j_geomorph_2022_108557
crossref_primary_10_1007_s00477_014_0891_6
crossref_primary_10_1029_2011WR011460
crossref_primary_10_1002_hyp_9857
crossref_primary_10_5194_esurf_12_1415_2024
crossref_primary_10_5194_nhess_22_361_2022
crossref_primary_10_1130_G46847_1
crossref_primary_10_1029_2023GL103645
crossref_primary_10_1002_2016JF003867
crossref_primary_10_1002_hyp_10998
crossref_primary_10_1002_hyp_11208
crossref_primary_10_1016_j_hydroa_2024_100180
crossref_primary_10_1029_2024GL109768
crossref_primary_10_1016_j_quascirev_2022_107899
crossref_primary_10_1177_0309133313508802
crossref_primary_10_1002_hyp_13865
crossref_primary_10_1016_j_geomorph_2014_08_003
crossref_primary_10_1029_2019GL083623
crossref_primary_10_1051_e3sconf_202341504010
crossref_primary_10_1029_2022EF003213
crossref_primary_10_2136_sssaj2018_12_0471
crossref_primary_10_5194_nhess_22_2317_2022
crossref_primary_10_1029_2020JF005997
crossref_primary_10_1073_pnas_1922495117
crossref_primary_10_1016_j_geomorph_2018_08_024
crossref_primary_10_1029_2020JF005996
crossref_primary_10_1002_hyp_14208
crossref_primary_10_5194_nhess_24_2359_2024
crossref_primary_10_1007_s10346_012_0341_9
crossref_primary_10_1002_2016WR019110
crossref_primary_10_1016_j_geomorph_2013_06_017
crossref_primary_10_3799_dqkx_2023_145
crossref_primary_10_5194_esurf_7_563_2019
crossref_primary_10_5194_nhess_24_1357_2024
crossref_primary_10_1080_23789689_2019_1593003
crossref_primary_10_1007_s00703_019_00677_6
crossref_primary_10_1016_j_geomorph_2022_108538
crossref_primary_10_1029_2020JF005527
crossref_primary_10_1080_19475705_2023_2286904
crossref_primary_10_5194_nhess_15_905_2015
crossref_primary_10_1016_j_geomorph_2014_04_034
crossref_primary_10_1029_2018RG000626
crossref_primary_10_2113_EEG_D_20_00029
crossref_primary_10_2136_vzj2018_04_0070
crossref_primary_10_1002_2015WR017611
crossref_primary_10_1002_jgrf_20058
crossref_primary_10_1130_GES02048_1
crossref_primary_10_1002_esp_70015
crossref_primary_10_1016_j_geoderma_2016_02_004
crossref_primary_10_1016_j_quascirev_2017_06_002
crossref_primary_10_1007_s10346_022_01890_y
crossref_primary_10_1029_2020GL087643
crossref_primary_10_1051_e3sconf_202341505004
crossref_primary_10_1002_esp_6067
crossref_primary_10_3390_su71115219
crossref_primary_10_1130_B31356_1
crossref_primary_10_1071_WF22200
crossref_primary_10_1016_j_catena_2021_105147
crossref_primary_10_2113_EEG_D_20_00022
crossref_primary_10_1007_s11069_022_05604_4
crossref_primary_10_1016_j_geomorph_2013_10_011
crossref_primary_10_1007_s11069_022_05628_w
crossref_primary_10_1016_j_enggeo_2015_06_021
crossref_primary_10_1016_j_envsoft_2019_104555
crossref_primary_10_1029_2011JF002278
crossref_primary_10_3390_app11062545
crossref_primary_10_1016_j_geomorph_2014_02_015
crossref_primary_10_1007_s11069_022_05330_x
crossref_primary_10_1029_2021JF006091
crossref_primary_10_1002_2016GL069661
crossref_primary_10_3390_rs14061306
crossref_primary_10_1029_2021JF006374
crossref_primary_10_1051_e3sconf_202341505016
crossref_primary_10_1002_2017GL074243
crossref_primary_10_1016_j_enggeo_2020_105742
crossref_primary_10_1029_2018JF004837
crossref_primary_10_1002_esp_5480
crossref_primary_10_1071_WF22211
crossref_primary_10_2478_johh_2022_0033
crossref_primary_10_1016_j_enggeo_2014_04_008
crossref_primary_10_1029_2023GL105101
crossref_primary_10_1139_cgj_2023_0532
crossref_primary_10_5194_nhess_18_2331_2018
crossref_primary_10_1007_s10346_023_02143_2
crossref_primary_10_1038_s41598_020_67511_7
crossref_primary_10_3389_feart_2015_00021
crossref_primary_10_3390_w16091285
crossref_primary_10_1007_s11069_013_0557_6
crossref_primary_10_1002_2017JF004410
crossref_primary_10_1002_jgrf_20152
crossref_primary_10_1088_1755_1315_1124_1_012122
crossref_primary_10_5194_nhess_24_2093_2024
crossref_primary_10_1002_2015WR018176
crossref_primary_10_1029_2024JF007825
crossref_primary_10_1071_WF17122
crossref_primary_10_3389_fevo_2018_00034
crossref_primary_10_1007_s10346_020_01376_9
crossref_primary_10_3390_w17030406
crossref_primary_10_1029_2021EF002149
crossref_primary_10_1016_j_jhydrol_2015_12_054
crossref_primary_10_3390_geosciences11100422
crossref_primary_10_1007_s12145_023_01205_2
crossref_primary_10_1002_2016JF003970
crossref_primary_10_1002_esp_5337
crossref_primary_10_1016_j_earscirev_2019_102981
crossref_primary_10_1007_s12205_024_1550_1
crossref_primary_10_1002_wat2_1728
crossref_primary_10_1016_j_geomorph_2019_04_001
crossref_primary_10_3390_land12030555
crossref_primary_10_1002_hyp_15215
crossref_primary_10_1002_jgrf_20148
crossref_primary_10_1007_s10346_022_01936_1
crossref_primary_10_1016_j_margeo_2017_11_014
crossref_primary_10_3390_rs14122731
crossref_primary_10_1007_s11629_021_7292_3
crossref_primary_10_1016_j_jhydrol_2015_12_048
crossref_primary_10_3996_JFWM_24_037
crossref_primary_10_1007_s10346_023_02106_7
crossref_primary_10_1029_2022GL099850
crossref_primary_10_1002_esp_4117
crossref_primary_10_1007_s11629_023_8507_6
crossref_primary_10_1002_esp_5724
crossref_primary_10_1002_esp_5845
crossref_primary_10_21663_EEG_D_21_00026
crossref_primary_10_1029_2020EF001735
crossref_primary_10_1029_2024JF007725
crossref_primary_10_1088_1757_899X_864_1_012045
crossref_primary_10_1071_WF14071
crossref_primary_10_1038_s41467_023_39095_z
crossref_primary_10_3390_ijgi8010005
crossref_primary_10_1007_s12665_020_09336_1
crossref_primary_10_1029_2021JF006108
crossref_primary_10_1029_2022JF007017
crossref_primary_10_1007_s10346_020_01470_y
crossref_primary_10_1051_e3sconf_202341503029
Cites_doi 10.13101/ijece.2.33
10.1029/2009WR007993
10.2307/520449
10.1002/hyp.389
10.1007/s10346-009-0177-0
10.1029/2009JF001514
10.1029/WR007i006p01485
10.1016/S0169-555X(00)00108-2
10.1016/j.jhydrol.2009.12.004
10.1007/s10346-005-0062-4
10.1029/2000JB900329
10.1016/j.geomorph.2007.03.016
10.1029/2010JF001722
10.1016/S0378-1127(03)00054-9
10.1016/S0169-555X(99)00018-5
10.1130/REG7-p105
10.1016/j.geomorph.2007.02.033
10.1130/0016-7606(1999)111<1424:DFDEOP>2.3.CO;2
10.1029/2006GL029183
10.1016/S1464-1909(00)00090-3
10.1016/j.geomorph.2007.03.017
10.1139/t02-087
10.1016/S0169-555X(01)00162-3
10.1130/0016-7606(1998)110<0972:ODOLIH>2.3.CO;2
10.1029/2005JF000459
10.1002/hyp.386
10.1002/(SICI)1096-9837(200005)25:5<483::AID-ESP76>3.0.CO;2-Z
10.1016/j.geomorph.2007.03.019
10.1007/s11069-011-9747-2
10.1130/0016-7606(1991)103<0504:FSTIRT>2.3.CO;2
10.1016/j.earscirev.2005.10.006
10.1139/t85-006
10.1146/annurev.fl.13.010181.000421
10.1038/ngeo1040
10.1016/j.geomorph.2006.04.002
10.1016/S1464-1909(00)00101-5
10.1029/2009JF001321
10.1130/G30928.1
10.1016/j.geomorph.2007.02.022
10.3133/ofr20081159
10.1175/JHM-D-11-05.1
10.1007/s10346-007-0112-1
10.1016/j.geomorph.2010.10.016
10.1097/00010694-195804000-00006
10.1029/2000WR900090
10.1002/esp.590
10.1002/hyp.6821
10.1007/BF00595676
10.1029/97RG00426
10.1029/2000JB900330
ContentType Journal Article
Copyright Copyright 2011 by the American Geophysical Union.
This paper is not subject to U.S. copyright. Published in 2011 by the American Geophysical Union.
Copyright_xml – notice: Copyright 2011 by the American Geophysical Union.
– notice: This paper is not subject to U.S. copyright. Published in 2011 by the American Geophysical Union.
DBID BSCLL
AAYXX
CITATION
3V.
7ST
7TG
7UA
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KL.
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
Q9U
SOI
DOI 10.1029/2011JF002005
DatabaseName Istex
CrossRef
ProQuest Central (Corporate)
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Health Research Premium Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
ProQuest Research Library
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environment Abstracts
ProQuest Central (Alumni)
DatabaseTitleList Meteorological & Geoastrophysical Abstracts - Academic
Research Library Prep

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Oceanography
Geology
Astronomy & Astrophysics
Physics
EISSN 2156-2202
2169-9011
EndPage n/a
ExternalDocumentID 2504050671
10_1029_2011JF002005
JGRF859
ark_67375_WNG_ZX5FBRPD_K
Genre article
Feature
GeographicLocations INE, USA, California
GeographicLocations_xml – name: INE, USA, California
GroupedDBID 12K
1OC
24P
7XC
88I
8FE
8FH
8G5
8R4
8R5
AANLZ
AAXRX
ABUWG
ACAHQ
ACCZN
ACXBN
AEIGN
AEUYR
AFFPM
AHBTC
AITYG
ALMA_UNASSIGNED_HOLDINGS
AMYDB
ATCPS
BBNVY
BENPR
BHPHI
BKSAR
BPHCQ
BRXPI
BSCLL
DCZOG
DRFUL
DRSTM
DU5
DWQXO
GNUQQ
GUQSH
HCIFZ
LATKE
LITHE
LOXES
LUTES
LYRES
M2O
M2P
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
P-X
Q2X
RNS
WHG
WIN
WXSBR
XSW
~OA
~~A
AAHQN
AAMNL
AAYXX
AGYGG
CITATION
05W
0R~
33P
3V.
52M
702
7ST
7TG
7UA
7XB
8FD
8FG
8FK
AAESR
AASGY
AAZKR
ABJCF
ACGOD
ACIWK
ACPOU
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
AEUYN
AEYWJ
AFKRA
AFRAH
AIURR
ALVPJ
ARAPS
ASPBG
AVWKF
AZFZN
AZQEC
AZVAB
BFHJK
BGLVJ
C1K
CCPQU
DPXWK
F1W
FEDTE
FR3
H8D
H96
HGLYW
HVGLF
HZ~
KL.
KR7
L.G
L6V
L7M
LEEKS
LK5
M7R
M7S
MBDVC
MY~
O9-
P2W
P62
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PROAC
PTHSS
PYCSY
Q9U
R.K
SOI
SUPJJ
WBKPD
ID FETCH-LOGICAL-a3989-de719832783f76752cf71b5ee3fe25093210df08a624a78c36b087f6f0e6640a3
IEDL.DBID BENPR
ISSN 0148-0227
2169-9003
IngestDate Tue Aug 05 11:25:12 EDT 2025
Fri Jul 25 18:57:55 EDT 2025
Tue Jul 01 02:42:17 EDT 2025
Thu Apr 24 23:09:06 EDT 2025
Wed Jan 22 16:50:51 EST 2025
Wed Oct 30 09:52:51 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue F4
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a3989-de719832783f76752cf71b5ee3fe25093210df08a624a78c36b087f6f0e6640a3
Notes istex:4E152165396D5D1B3BEC79BC0E13598BBB92E156
ArticleID:2011JF002005
ark:/67375/WNG-ZX5FBRPD-K
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 902299796
PQPubID 54727
PageCount 21
ParticipantIDs proquest_miscellaneous_1024654540
proquest_journals_902299796
crossref_primary_10_1029_2011JF002005
crossref_citationtrail_10_1029_2011JF002005
wiley_primary_10_1029_2011JF002005_JGRF859
istex_primary_ark_67375_WNG_ZX5FBRPD_K
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2011
PublicationDateYYYYMMDD 2011-12-01
PublicationDate_xml – month: 12
  year: 2011
  text: December 2011
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Journal of Geophysical Research
PublicationTitleAlternate J. Geophys. Res
PublicationYear 2011
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Cannon, S. H., E. M. Boldt, J. L. Laber, J. W. Kean, and D. M. Staley (2011), Rainfall intensity-duration thresholds for postfire debris-flow emergency-response planning, Nat. Hazards, 59, 209-236, doi:10.1007/s11069-011-9747-2.
Kinner, D. A., and J. A. Moody (2010), Spatial variability of steady-state infiltration into a two-layer soil system on burned hillslopes, J. Hydrol., 381, 322-332, doi:10.1016/j.jhydrol.2009.12.004.
Takahashi, T. (1981), Debris flow, Annu. Rev. Fluid Mech., 13, 57-77, doi:10.1146/annurev.fl.13.010181.000421.
Wondzell, S. M., and J. G. King (2003), Postfire erosional processes in the Pacific Northwest and Rocky Mountain regions, For. Ecol. Manage., 178, 75-87, doi:10.1016/S0378-1127(03)00054-9.
Berti, M., and A. Simoni (2005), Experimental evidences and numerical modelling of debris flow initiated by channel runoff, Landslides, 2, 171-182, doi:10.1007/s10346-005-0062-4.
Shakesby, R. A., and S. H. Doerr (2006), Wildfire as a hydrological and geomorphological agent, Earth Sci. Rev., 74, 269-307, doi:10.1016/j.earscirev.2005.10.006.
Berti, M., R. Genovois, A. Simoni, and P. R. Tecca (1999), Field observations of a debris flow event in the Dolomites, Geomorphology, 29, 265-274, doi:10.1016/S0169-555X(99)00018-5.
Gabet, E. J., and A. Bookter (2008), A morphometric analysis of gullies scoured by post-fire progressively bulked debris flows in southwest Montana, USA, Geomorphology, 96, 298-309, doi:10.1016/j.geomorph.2007.03.016.
McPhee, J. A. (1989), The Control of Nature, 272 pp., Farrar, Straus and Giroux, New York.
Guzzetti, F., S. Peruccacci, M. Rossi, and C. P. Stark (2008), The rainfall intensity-duration control of shallow landslides and debris flows: An update, Landslides, 5, 3-17, doi:10.1007/s10346-007-0112-1.
Cannon, S. H., J. E. Gartner, R. C. Wilson, J. C. Bowers, and J. L. Laber (2008), Storm rainfall conditions for floods and debris flows from recently burned areas in southwestern Colorado and southern California, Geomorphology, 96, 250-269, doi:10.1016/j.geomorph.2007.03.019.
Iverson, R. M., M. Logan, R. G. LaHusen, and M. Berti (2010), The perfect debris flow? Aggregated results from 28 large-scale experiments, J. Geophys. Res., 115, F03005, doi:10.1029/2009JF001514.
Berger, C., B. W. McArdell, and F. Schlunegger (2011), Direct measurement of channel erosion by debris flows, Illgraben, Switzerland, J. Geophys. Res., 116, F01002, doi:10.1029/2010JF001722.
Larsen, I. J., J. L. Pederson, and J. C. Schmidt (2006), Geologic versus wildfire controls on hillslope processes and debris flow initiation in the Green River canyons of Dinosaur National Monument, Geomorphology, 81, 114-127, doi:10.1016/j.geomorph.2006.04.002.
Moody, J. A., and D. A. Martin (2001a), Post-fire, rainfall intensity-peak discharge relations for three mountainous watersheds in the western USA, Hydrol. Processes, 15, 2981-2993, doi:10.1002/hyp.386.
Gabet, E. J. (2003), Post-fire thin debris flow: Sediment transport and numerical modelling, Earth Surf. Processes Landforms, 28, 1341-1348, doi:10.1002/esp.590.
Cannon, S. H., R. M. Kirkham, and M. Parise (2001), Wildfire-related debris-flow initiation processes, Storm King Mountain, Colorado, Geomorphology, 39, 171-188, doi:10.1016/S0169-555X(00)00108-2.
Iverson, R. M. (1997), The physics of debris flow, Rev. Geophys., 35, 245-296, doi:10.1029/97RG00426.
McCoy, S. W., J. W. Kean, J. A. Coe, D. M. Staley, T. A. Wasklewicz, and G. E. Tucker (2010), Evolution of a natural debris flow: In situ measurements of flow dynamics, video imagery, and terrestrial laser scanning, Geology, 38, 735-738, doi:10.1130/G30928.1.
Chong, J., J. Renaud, and E. Ailsworth (2004), Flash floods wash away lives, dreams, Los Angeles Times, p. B.1, 3 Jan.
Doehring, D. O. (1968), The effect of fire on geomorphic process in the San Gabriel Mountains, California, Contrib. Geol., 7, 43-65.
Hürlimann, M., D. Rickenmann, and C. Graf (2003), Field and monitoring data of debris-flow events in the Swiss Alps, Can. Geotech. J., 40, 161-175, doi:10.1139/t02-087.
Meyer, G. A., J. L. Pierce, S. H. Wood, and A. J. T. Jull (2001), Fire, storms, and erosional events in the Idaho batholith, Hydrol. Processes, 15, 3025-3038, doi:10.1002/hyp.389.
Lin, R. G., V. Kim, and R. Vives (2010), 'Niagara' of mud hits homes; Dozens of houses in La Canada Flintridge are damaged or destroyed in a storm that defied forecast, Los Angeles Times, p. A.1, 7 Feb.
Caine, N. (1980), The rainfall intensity-duration control of shallow landslides and debris flows, Geogr. Ann., Ser. A, 62, 23-27.
Rice, R. M., and G. T. Foggin III (1971), Effect of high intensity storms in on soil slippage on mountainous watersheds in southern California, Water Resour. Res., 7, 1485-1496, doi:10.1029/WR007i006p01485.
McArdell, B. W., P. Bartelt, and J. Kowalski (2007), Field observations of basal forces and fluid pore pressure in a debris flow, Geophys. Res. Lett., 34, L07406, doi:10.1029/2006GL029183.
Gregoretti, C., and G. D. Fontana (2008), The triggering of debris flow due to channel-bed failure in some alpine headwater basins of the Dolomites: Analyses of critical runoff, Hydrol. Processes, 22, 2248-2263, doi:10.1002/hyp.6821.
Santi, P. M., V. G. deWolfe, J. D. Higgins, S. H. Cannon, and J. E. Gartner (2008), Sources of debris flow material in burned areas, Geomorphology, 96, 310-321, doi:10.1016/j.geomorph.2007.02.022.
Baum, R. L., and J. W. Godt (2010), Early warning of rainfall-induced shallow landslides and debris flows in the USA, Landslides, 7, 259-272, doi:101007/s10346-009-0177-0.
Florsheim, J. L., E. A. Keller, and D. W. Best (1991), Fluvial sediment transport in response to moderate storm flows following chaparral wildfire, Ventura County, southern California, Geol. Soc. Am. Bull., 103, 504-511, doi:10.1130/0016-7606(1991)103<0504:FSTIRT>2.3.CO;2.
Nyman, P., G. J. Sheridan, H. G. Smith, and P. N. J. Lane (2011), Evidence of debris flow occurrence after wildfire in upland catchments of south-east Australia, Geomorphology, 125, 383-401, doi:10.1016/j.geomorph.2010.10.016.
Iverson, R. M., S. P. Schilling, and J. W. Vallance (1998), Objective delineation of lahar-inundation hazard zones, Geol. Soc. Am. Bull., 110(8), 972-984, doi:10.1130/0016-7606(1998)110<0972:ODOLIH>2.3.CO;2.
Coe, J. A., D. A. Kinner, and J. W. Godt (2008), Initiation conditions for debris flows generated by runoff at Chalk Cliffs, central Colorado, Geomorphology, 96, 270-297, doi:10.1016/j.geomorph.2007.03.017.
Wells, W. G. (1987), The effects of fire on the generation of debris flows in southern California, Rev. Eng. Geol., 7, 105-114.
Malmon, D. V., S. L. Reneau, D. Katzmann, A. Lavine, and J. Lyman (2007), Suspended sediment transport in an ephemeral stream following wildfire, J. Geophys. Res., 112, F02006, doi:10.1029/2005JF000459.
NOAA-USGS Debris Flow Task Force (2005), NOAA-USGS debris-flow warning system-Final report, U.S. Geol. Surv. Circ., 1283, 47 pp.
Iverson, R. M., M. E. Reid, M. Logan, R. G. LaHusen, J. W. Godt, and J. P. Griswold (2011), Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment, Nat. Geosci., 4, 116-121, doi:10.1038/ngeo1040.
Suwa, H., K. Okano, and T. Kanno (2009), Behavior of debris flows monitored on test slopes of Kamikamihorizawa Creek, Mount Yakedake, Japan, Int. J. Erosion Control Eng., 2, 33-45.
Jorgensen, D. P., M. N. Hanshaw, K. M. Schmidt, J. L. Laber, D. M. Staley, J. W. Kean, and P. J. Restrepo (2011), Value of a dual-polarized gap-filling radar in support of southern California post-fire debris-flow warnings, J. Hydrometeorol., doi:10.1175/JHM-D-11-05.1, in press.
Meyer, G. A., and S. G. Wells (1997), Fire-related sedimentation events on alluvial fans, Yellowstone National Park, U.S.A. J. Sediment. Res., 67(5), 776-791, doi:10.1306/D426863A-2B26-11D7-8648000102C1865D.
Zhang, S. (1993), A comprehensive approach to the observation and prevention of debris flows in China, Nat. Hazards, 7, 1-23, doi:10.1007/BF00595676.
Arattano, M., and L. Marchi (2000), Video-derived velocity distribution along a debris flow surge, Phys. Chem. Earth, Part B, 25(9), 781-784, doi:10.1016/S1464-1909(00)00101-5.
Baum, R. L., J. W. Godt, and W. Z. Savage (2010), Estimating the timing and location of shallow rainfall-induced landslides using a model for transient, unsaturated infiltration, J. Geophys. Res., 115, F03013, doi:10.1029/2009JF001321.
Iverson, R. M., and R. P. Denlinger (2001), Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory, J. Geophys. Res., 106, 537-552, doi:10.1029/2000JB900329.
Suwa, H., K. Okunishi, and M. Sakai (1993), Motion, debris size and scale of debris flows in a valley on Mount Yakedake, Japan, in Sediment Problems: Strategies for Monitoring, Prediction and Control, IAHS Publ., 217, 239-248.
Gartner, J. E., S. H. Cannon, P. M. Santi, and V. G. DeWolfe (2008), Empirical models to predict the volumes of debris flows generated by recently burned basins in the western U.S, Geomorphology, 96, 339-354, doi:10.1016/j.geomorph.2007.02.033.
Iverson, R. M. (2000), Landslide triggering by rain infiltration, Water Resour. Res., 36, 1897-1910, doi:10.1029/2000WR900090.
Eaton, E. C. (1935), Flood and erosion control problems and their solution, Proc. Am. Soc. Civ. Eng., 62(8), 1302-1362.
Major, J. J., and R. M. Iverson (1999), Debris-flow deposition: Effects of pore-fluid pressure and friction concentrated at flow margins, Geol. Soc. Am. Bull., 111, 1424-1434, doi:10.1130/0016-7606(1999)111<1424:DFDEOP>2.3.CO;2.
Minor, S. A., K. S. Kellogg, R. G. Stanley, L. D. Gurrola, E. A. Keller, and T. R. Brandt (2009), Geologic map of the Santa Barbara coastal plain area, Santa Barbara County, California, U.S. Geol. Surv. Sci. Invest. Map, 3001, 38 pp.
VanDine, D. F. (1985), Debris flows and debris torrents in the Southern Canadian Cordillera, Can. Geotech. J., 22, 44-68, doi:10.1139/t85-006.
Marchi, L., M. Arattano, and A. Deganutti (2002), Ten years of debris-flow monitoring in the Moscardo Torrent (Italian Alps), Geomo
2011; 116
1968; 7
1993; 7
2006; 74
1987; 7
2008; 5
2010; 381
2011; 59
1985; 22
1998; 110
2007; 34
1934
2001; 106
1935; 62
2011; 125
1971; 7
1991; 103
1993; 217
2001
2000
2010; 115
2002; 46
1986
1985
1958; 85
1984
2005; 1283
2001; 15
2008; 22
2003; 40
2010; 7
1989
2010; 38
1987; 165
2011; 1
2000; 25
2011
1980; 62
2010
1999; 29
1997; 67
2008
2005
2004
2008; 96
2011; 4
2009; 3001
2003; 178
2006; 81
2007; 112
2010; 46
2000; 36
1997; 35
1971; 750C
1981; 13
2003; 28
2001; 39
1999; 111
2005; 2
2009; 2
Florsheim (10.1029/2011JF002005:flor91) 1991; 103
McArdell (10.1029/2011JF002005:mcar07) 2007; 34
Nyman (10.1029/2011JF002005:nyma11) 2011; 125
Arattano (10.1029/2011JF002005:arat00) 2000; 25
Baum (10.1029/2011JF002005:baum10a) 2010; 7
Gartner (10.1029/2011JF002005:gart08) 2008; 96
Larsen (10.1029/2011JF002005:lars06) 2006; 81
Shakesby (10.1029/2011JF002005:shak06) 2006; 74
Yerkes (10.1029/2011JF002005:yerk05) 2005
Malmon (10.1029/2011JF002005:malm07) 2007; 112
Suwa (10.1029/2011JF002005:suwa93) 1993; 217
Iverson (10.1029/2011JF002005:iver01) 2001; 106
Major (10.1029/2011JF002005:majo99) 1999; 111
Iverson (10.1029/2011JF002005:iver10) 2010; 115
Chong (10.1029/2011JF002005:chon04) 2004
Armanini (10.1029/2011JF002005:arma00) 2000
Berti (10.1029/2011JF002005:bert05) 2005; 2
Scott (10.1029/2011JF002005:scot71) 1971; 750C
Chawner (10.1029/2011JF002005:chaw34) 1934
VanDine (10.1029/2011JF002005:vand85) 1985; 22
Kean (10.1029/2011JF002005:kean11) 2011
Iverson (10.1029/2011JF002005:iver98) 1998; 110
McCoy (10.1029/2011JF002005:mcco11) 2011; 1
Cannon (10.1029/2011JF002005:cann01) 2001; 39
Moody (10.1029/2011JF002005:mood01a) 2001; 15
Coe (10.1029/2011JF002005:coe08) 2008; 96
Gabet (10.1029/2011JF002005:gabe03) 2003; 28
Leeper (10.1029/2011JF002005:leep10) 2010
Baum (10.1029/2011JF002005:baum08) 2008
Moody (10.1029/2011JF002005:mood01b) 2001
Iverson (10.1029/2011JF002005:iver97) 1997; 35
Doehring (10.1029/2011JF002005:doeh68) 1968; 7
Takahashi (10.1029/2011JF002005:taka81) 1981; 13
Gardner (10.1029/2011JF002005:gard58) 1958; 85
Santi (10.1029/2011JF002005:sant08) 2008; 96
Berti (10.1029/2011JF002005:bert99) 1999; 29
Berti (10.1029/2011JF002005:bert00) 2000; 25
Baum (10.1029/2011JF002005:baum10b) 2010; 115
Wells (10.1029/2011JF002005:well85) 1985
Wondzell (10.1029/2011JF002005:wond03) 2003; 178
Schmidt (10.1029/2011JF002005:schm11) 2011
Berger (10.1029/2011JF002005:berg10) 2010; 46
Eaton (10.1029/2011JF002005:eato35) 1935; 62
Iverson (10.1029/2011JF002005:iver00) 2000; 36
Wells (10.1029/2011JF002005:well87b) 1987; 165
Meyer (10.1029/2011JF002005:meye97) 1997; 67
NOAA-USGS Debris Flow Task Force (10.1029/2011JF002005:noaa05) 2005; 1283
Meyer (10.1029/2011JF002005:meye01) 2001; 15
Pierson (10.1029/2011JF002005:pier86) 1986
Kinner (10.1029/2011JF002005:kinn10) 2010; 381
Rice (10.1029/2011JF002005:rice71) 1971; 7
Cannon (10.1029/2011JF002005:cann11) 2011; 59
Denlinger (10.1029/2011JF002005:denl01) 2001; 106
Gabet (10.1029/2011JF002005:gabe08) 2008; 96
Gregoretti (10.1029/2011JF002005:greg08) 2008; 22
Marchi (10.1029/2011JF002005:marc02) 2002; 46
McCoy (10.1029/2011JF002005:mcco10) 2010; 38
Johnson (10.1029/2011JF002005:john84) 1984
McPhee (10.1029/2011JF002005:mcph89) 1989
Caine (10.1029/2011JF002005:cain80) 1980; 62
Suwa (10.1029/2011JF002005:suwa09) 2009; 2
Iverson (10.1029/2011JF002005:iver11) 2011; 4
Minor (10.1029/2011JF002005:mino09) 2009; 3001
Berger (10.1029/2011JF002005:berg11) 2011; 116
Zhang (10.1029/2011JF002005:zhan93) 1993; 7
Hungr (10.1029/2011JF002005:hung00) 2000; 25
Cannon (10.1029/2011JF002005:cann08) 2008; 96
Jorgensen (10.1029/2011JF002005:jorg11) 2011
Lin (10.1029/2011JF002005:lin10) 2010
Hürlimann (10.1029/2011JF002005:hurl03) 2003; 40
Wells (10.1029/2011JF002005:well87a) 1987; 7
Tognacca (10.1029/2011JF002005:togn00) 2000
Guzzetti (10.1029/2011JF002005:guzz08) 2008; 5
References_xml – reference: Larsen, I. J., J. L. Pederson, and J. C. Schmidt (2006), Geologic versus wildfire controls on hillslope processes and debris flow initiation in the Green River canyons of Dinosaur National Monument, Geomorphology, 81, 114-127, doi:10.1016/j.geomorph.2006.04.002.
– reference: VanDine, D. F. (1985), Debris flows and debris torrents in the Southern Canadian Cordillera, Can. Geotech. J., 22, 44-68, doi:10.1139/t85-006.
– reference: Gardner, W. R. (1958), Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table, Soil Sci., 85, 228-232, doi:10.1097/00010694-195804000-00006.
– reference: Coe, J. A., D. A. Kinner, and J. W. Godt (2008), Initiation conditions for debris flows generated by runoff at Chalk Cliffs, central Colorado, Geomorphology, 96, 270-297, doi:10.1016/j.geomorph.2007.03.017.
– reference: Gabet, E. J. (2003), Post-fire thin debris flow: Sediment transport and numerical modelling, Earth Surf. Processes Landforms, 28, 1341-1348, doi:10.1002/esp.590.
– reference: Iverson, R. M., S. P. Schilling, and J. W. Vallance (1998), Objective delineation of lahar-inundation hazard zones, Geol. Soc. Am. Bull., 110(8), 972-984, doi:10.1130/0016-7606(1998)110<0972:ODOLIH>2.3.CO;2.
– reference: Guzzetti, F., S. Peruccacci, M. Rossi, and C. P. Stark (2008), The rainfall intensity-duration control of shallow landslides and debris flows: An update, Landslides, 5, 3-17, doi:10.1007/s10346-007-0112-1.
– reference: Caine, N. (1980), The rainfall intensity-duration control of shallow landslides and debris flows, Geogr. Ann., Ser. A, 62, 23-27.
– reference: Iverson, R. M., and R. P. Denlinger (2001), Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory, J. Geophys. Res., 106, 537-552, doi:10.1029/2000JB900329.
– reference: McCoy, S. W., J. W. Kean, J. A. Coe, D. M. Staley, T. A. Wasklewicz, and G. E. Tucker (2010), Evolution of a natural debris flow: In situ measurements of flow dynamics, video imagery, and terrestrial laser scanning, Geology, 38, 735-738, doi:10.1130/G30928.1.
– reference: Santi, P. M., V. G. deWolfe, J. D. Higgins, S. H. Cannon, and J. E. Gartner (2008), Sources of debris flow material in burned areas, Geomorphology, 96, 310-321, doi:10.1016/j.geomorph.2007.02.022.
– reference: Zhang, S. (1993), A comprehensive approach to the observation and prevention of debris flows in China, Nat. Hazards, 7, 1-23, doi:10.1007/BF00595676.
– reference: Berti, M., R. Genevois, R. LaHusen, A. Simoni, and P. R. Tecca (2000), Debris flow monitoring in the acquabona watershed in the Dolomites (Italian Alps), Phys. Chem. Earth, Part B, 25(9), 707-715, doi:10.1016/S1464-1909(00)00090-3.
– reference: Meyer, G. A., J. L. Pierce, S. H. Wood, and A. J. T. Jull (2001), Fire, storms, and erosional events in the Idaho batholith, Hydrol. Processes, 15, 3025-3038, doi:10.1002/hyp.389.
– reference: McArdell, B. W., P. Bartelt, and J. Kowalski (2007), Field observations of basal forces and fluid pore pressure in a debris flow, Geophys. Res. Lett., 34, L07406, doi:10.1029/2006GL029183.
– reference: Major, J. J., and R. M. Iverson (1999), Debris-flow deposition: Effects of pore-fluid pressure and friction concentrated at flow margins, Geol. Soc. Am. Bull., 111, 1424-1434, doi:10.1130/0016-7606(1999)111<1424:DFDEOP>2.3.CO;2.
– reference: Iverson, R. M. (2000), Landslide triggering by rain infiltration, Water Resour. Res., 36, 1897-1910, doi:10.1029/2000WR900090.
– reference: Denlinger, R. P., and R. M. Iverson (2001), Flow of variably fluidized granular masses across three-dimensional terrain: 2. Numerical predictions and experimental tests, J. Geophys. Res., 106, 553-566, doi:10.1029/2000JB900330.
– reference: Berger, C., B. W. McArdell, B. Fritschi, and F. Schlunegger (2010), A novel method for measuring the timing of bed erosion during debris flows and floods, Water Resour. Res., 46, W02502, doi:10.1029/2009WR007993.
– reference: Minor, S. A., K. S. Kellogg, R. G. Stanley, L. D. Gurrola, E. A. Keller, and T. R. Brandt (2009), Geologic map of the Santa Barbara coastal plain area, Santa Barbara County, California, U.S. Geol. Surv. Sci. Invest. Map, 3001, 38 pp.
– reference: Iverson, R. M., M. Logan, R. G. LaHusen, and M. Berti (2010), The perfect debris flow? Aggregated results from 28 large-scale experiments, J. Geophys. Res., 115, F03005, doi:10.1029/2009JF001514.
– reference: Hungr, O. (2000), Analysis of debris flow surges using the theory of uniformly progressive flow, Earth Surf. Processes Landforms, 25, 483-495, doi:10.1002/(SICI)1096-9837(200005)25:5<483::AID-ESP76>3.0.CO;2-Z.
– reference: Doehring, D. O. (1968), The effect of fire on geomorphic process in the San Gabriel Mountains, California, Contrib. Geol., 7, 43-65.
– reference: Takahashi, T. (1981), Debris flow, Annu. Rev. Fluid Mech., 13, 57-77, doi:10.1146/annurev.fl.13.010181.000421.
– reference: Cannon, S. H., E. M. Boldt, J. L. Laber, J. W. Kean, and D. M. Staley (2011), Rainfall intensity-duration thresholds for postfire debris-flow emergency-response planning, Nat. Hazards, 59, 209-236, doi:10.1007/s11069-011-9747-2.
– reference: Arattano, M., and L. Marchi (2000), Video-derived velocity distribution along a debris flow surge, Phys. Chem. Earth, Part B, 25(9), 781-784, doi:10.1016/S1464-1909(00)00101-5.
– reference: Eaton, E. C. (1935), Flood and erosion control problems and their solution, Proc. Am. Soc. Civ. Eng., 62(8), 1302-1362.
– reference: Cannon, S. H., J. E. Gartner, R. C. Wilson, J. C. Bowers, and J. L. Laber (2008), Storm rainfall conditions for floods and debris flows from recently burned areas in southwestern Colorado and southern California, Geomorphology, 96, 250-269, doi:10.1016/j.geomorph.2007.03.019.
– reference: Suwa, H., K. Okano, and T. Kanno (2009), Behavior of debris flows monitored on test slopes of Kamikamihorizawa Creek, Mount Yakedake, Japan, Int. J. Erosion Control Eng., 2, 33-45.
– reference: Gartner, J. E., S. H. Cannon, P. M. Santi, and V. G. DeWolfe (2008), Empirical models to predict the volumes of debris flows generated by recently burned basins in the western U.S, Geomorphology, 96, 339-354, doi:10.1016/j.geomorph.2007.02.033.
– reference: NOAA-USGS Debris Flow Task Force (2005), NOAA-USGS debris-flow warning system-Final report, U.S. Geol. Surv. Circ., 1283, 47 pp.
– reference: Gregoretti, C., and G. D. Fontana (2008), The triggering of debris flow due to channel-bed failure in some alpine headwater basins of the Dolomites: Analyses of critical runoff, Hydrol. Processes, 22, 2248-2263, doi:10.1002/hyp.6821.
– reference: Lin, R. G., V. Kim, and R. Vives (2010), 'Niagara' of mud hits homes; Dozens of houses in La Canada Flintridge are damaged or destroyed in a storm that defied forecast, Los Angeles Times, p. A.1, 7 Feb.
– reference: Berti, M., R. Genovois, A. Simoni, and P. R. Tecca (1999), Field observations of a debris flow event in the Dolomites, Geomorphology, 29, 265-274, doi:10.1016/S0169-555X(99)00018-5.
– reference: Chong, J., J. Renaud, and E. Ailsworth (2004), Flash floods wash away lives, dreams, Los Angeles Times, p. B.1, 3 Jan.
– reference: Berger, C., B. W. McArdell, and F. Schlunegger (2011), Direct measurement of channel erosion by debris flows, Illgraben, Switzerland, J. Geophys. Res., 116, F01002, doi:10.1029/2010JF001722.
– reference: Baum, R. L., and J. W. Godt (2010), Early warning of rainfall-induced shallow landslides and debris flows in the USA, Landslides, 7, 259-272, doi:101007/s10346-009-0177-0.
– reference: Malmon, D. V., S. L. Reneau, D. Katzmann, A. Lavine, and J. Lyman (2007), Suspended sediment transport in an ephemeral stream following wildfire, J. Geophys. Res., 112, F02006, doi:10.1029/2005JF000459.
– reference: Meyer, G. A., and S. G. Wells (1997), Fire-related sedimentation events on alluvial fans, Yellowstone National Park, U.S.A. J. Sediment. Res., 67(5), 776-791, doi:10.1306/D426863A-2B26-11D7-8648000102C1865D.
– reference: Hürlimann, M., D. Rickenmann, and C. Graf (2003), Field and monitoring data of debris-flow events in the Swiss Alps, Can. Geotech. J., 40, 161-175, doi:10.1139/t02-087.
– reference: Iverson, R. M., M. E. Reid, M. Logan, R. G. LaHusen, J. W. Godt, and J. P. Griswold (2011), Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment, Nat. Geosci., 4, 116-121, doi:10.1038/ngeo1040.
– reference: Wondzell, S. M., and J. G. King (2003), Postfire erosional processes in the Pacific Northwest and Rocky Mountain regions, For. Ecol. Manage., 178, 75-87, doi:10.1016/S0378-1127(03)00054-9.
– reference: Cannon, S. H., R. M. Kirkham, and M. Parise (2001), Wildfire-related debris-flow initiation processes, Storm King Mountain, Colorado, Geomorphology, 39, 171-188, doi:10.1016/S0169-555X(00)00108-2.
– reference: Iverson, R. M. (1997), The physics of debris flow, Rev. Geophys., 35, 245-296, doi:10.1029/97RG00426.
– reference: Berti, M., and A. Simoni (2005), Experimental evidences and numerical modelling of debris flow initiated by channel runoff, Landslides, 2, 171-182, doi:10.1007/s10346-005-0062-4.
– reference: Suwa, H., K. Okunishi, and M. Sakai (1993), Motion, debris size and scale of debris flows in a valley on Mount Yakedake, Japan, in Sediment Problems: Strategies for Monitoring, Prediction and Control, IAHS Publ., 217, 239-248.
– reference: Florsheim, J. L., E. A. Keller, and D. W. Best (1991), Fluvial sediment transport in response to moderate storm flows following chaparral wildfire, Ventura County, southern California, Geol. Soc. Am. Bull., 103, 504-511, doi:10.1130/0016-7606(1991)103<0504:FSTIRT>2.3.CO;2.
– reference: Nyman, P., G. J. Sheridan, H. G. Smith, and P. N. J. Lane (2011), Evidence of debris flow occurrence after wildfire in upland catchments of south-east Australia, Geomorphology, 125, 383-401, doi:10.1016/j.geomorph.2010.10.016.
– reference: Baum, R. L., J. W. Godt, and W. Z. Savage (2010), Estimating the timing and location of shallow rainfall-induced landslides using a model for transient, unsaturated infiltration, J. Geophys. Res., 115, F03013, doi:10.1029/2009JF001321.
– reference: Shakesby, R. A., and S. H. Doerr (2006), Wildfire as a hydrological and geomorphological agent, Earth Sci. Rev., 74, 269-307, doi:10.1016/j.earscirev.2005.10.006.
– reference: McPhee, J. A. (1989), The Control of Nature, 272 pp., Farrar, Straus and Giroux, New York.
– reference: Jorgensen, D. P., M. N. Hanshaw, K. M. Schmidt, J. L. Laber, D. M. Staley, J. W. Kean, and P. J. Restrepo (2011), Value of a dual-polarized gap-filling radar in support of southern California post-fire debris-flow warnings, J. Hydrometeorol., doi:10.1175/JHM-D-11-05.1, in press.
– reference: Marchi, L., M. Arattano, and A. Deganutti (2002), Ten years of debris-flow monitoring in the Moscardo Torrent (Italian Alps), Geomorphology, 46, 1-17, doi:10.1016/S0169-555X(01)00162-3.
– reference: Moody, J. A., and D. A. Martin (2001a), Post-fire, rainfall intensity-peak discharge relations for three mountainous watersheds in the western USA, Hydrol. Processes, 15, 2981-2993, doi:10.1002/hyp.386.
– reference: Rice, R. M., and G. T. Foggin III (1971), Effect of high intensity storms in on soil slippage on mountainous watersheds in southern California, Water Resour. Res., 7, 1485-1496, doi:10.1029/WR007i006p01485.
– reference: Wells, W. G. (1987), The effects of fire on the generation of debris flows in southern California, Rev. Eng. Geol., 7, 105-114.
– reference: Gabet, E. J., and A. Bookter (2008), A morphometric analysis of gullies scoured by post-fire progressively bulked debris flows in southwest Montana, USA, Geomorphology, 96, 298-309, doi:10.1016/j.geomorph.2007.03.016.
– reference: Kinner, D. A., and J. A. Moody (2010), Spatial variability of steady-state infiltration into a two-layer soil system on burned hillslopes, J. Hydrol., 381, 322-332, doi:10.1016/j.jhydrol.2009.12.004.
– start-page: 269
  year: 1986
  end-page: 296
– volume: 74
  start-page: 269
  year: 2006
  end-page: 307
  article-title: Wildfire as a hydrological and geomorphological agent
  publication-title: Earth Sci. Rev.
– volume: 217
  start-page: 239
  year: 1993
  end-page: 248
  article-title: Motion, debris size and scale of debris flows in a valley on Mount Yakedake, Japan, in Sediment Problems: Strategies for Monitoring, Prediction and Control
  publication-title: IAHS Publ.
– volume: 96
  start-page: 270
  year: 2008
  end-page: 297
  article-title: Initiation conditions for debris flows generated by runoff at Chalk Cliffs, central Colorado
  publication-title: Geomorphology
– year: 2005
– volume: 38
  start-page: 735
  year: 2010
  end-page: 738
  article-title: Evolution of a natural debris flow: In situ measurements of flow dynamics, video imagery, and terrestrial laser scanning
  publication-title: Geology
– year: 2001
– year: 1989
– volume: 15
  start-page: 2981
  year: 2001
  end-page: 2993
  article-title: Post‐fire, rainfall intensity–peak discharge relations for three mountainous watersheds in the western USA
  publication-title: Hydrol. Processes
– volume: 110
  start-page: 972
  issue: 8
  year: 1998
  end-page: 984
  article-title: Objective delineation of lahar‐inundation hazard zones
  publication-title: Geol. Soc. Am. Bull.
– volume: 178
  start-page: 75
  year: 2003
  end-page: 87
  article-title: Postfire erosional processes in the Pacific Northwest and Rocky Mountain regions
  publication-title: For. Ecol. Manage.
– volume: 40
  start-page: 161
  year: 2003
  end-page: 175
  article-title: Field and monitoring data of debris‐flow events in the Swiss Alps
  publication-title: Can. Geotech. J.
– volume: 25
  start-page: 781
  issue: 9
  year: 2000
  end-page: 784
  article-title: Video‐derived velocity distribution along a debris flow surge
  publication-title: Phys. Chem. Earth, Part B
– year: 2010
  article-title: ‘Niagara’ of mud hits homes; Dozens of houses in La Canada Flintridge are damaged or destroyed in a storm that defied forecast
  publication-title: Los Angeles Times
– volume: 116
  year: 2011
  article-title: Direct measurement of channel erosion by debris flows, Illgraben, Switzerland
  publication-title: J. Geophys. Res.
– volume: 96
  start-page: 250
  year: 2008
  end-page: 269
  article-title: Storm rainfall conditions for floods and debris flows from recently burned areas in southwestern Colorado and southern California
  publication-title: Geomorphology
– volume: 28
  start-page: 1341
  year: 2003
  end-page: 1348
  article-title: Post‐fire thin debris flow: Sediment transport and numerical modelling
  publication-title: Earth Surf. Processes Landforms
– start-page: 117
  year: 2000
  end-page: 124
– volume: 25
  start-page: 483
  year: 2000
  end-page: 495
  article-title: Analysis of debris flow surges using the theory of uniformly progressive flow
  publication-title: Earth Surf. Processes Landforms
– volume: 7
  start-page: 1485
  year: 1971
  end-page: 1496
  article-title: Effect of high intensity storms in on soil slippage on mountainous watersheds in southern California
  publication-title: Water Resour. Res.
– volume: 5
  start-page: 3
  year: 2008
  end-page: 17
  article-title: The rainfall intensity‐duration control of shallow landslides and debris flows: An update
  publication-title: Landslides
– volume: 4
  start-page: 116
  year: 2011
  end-page: 121
  article-title: Positive feedback and momentum growth during debris‐flow entrainment of wet bed sediment
  publication-title: Nat. Geosci.
– volume: 7
  start-page: 43
  year: 1968
  end-page: 65
  article-title: The effect of fire on geomorphic process in the San Gabriel Mountains, California
  publication-title: Contrib. Geol.
– year: 2004
  article-title: Flash floods wash away lives, dreams
  publication-title: Los Angeles Times
– volume: 111
  start-page: 1424
  year: 1999
  end-page: 1434
  article-title: Debris‐flow deposition: Effects of pore‐fluid pressure and friction concentrated at flow margins
  publication-title: Geol. Soc. Am. Bull.
– year: 1934
– volume: 59
  start-page: 209
  year: 2011
  end-page: 236
  article-title: Rainfall intensity‐duration thresholds for postfire debris‐flow emergency‐response planning
  publication-title: Nat. Hazards
– volume: 106
  start-page: 553
  year: 2001
  end-page: 566
  article-title: Flow of variably fluidized granular masses across three‐dimensional terrain: 2. Numerical predictions and experimental tests
  publication-title: J. Geophys. Res.
– year: 2008
– volume: 115
  year: 2010
  article-title: The perfect debris flow? Aggregated results from 28 large‐scale experiments
  publication-title: J. Geophys. Res.
– volume: 62
  start-page: 23
  year: 1980
  end-page: 27
  article-title: The rainfall intensity‐duration control of shallow landslides and debris flows
  publication-title: Geogr. Ann., Ser. A
– volume: 22
  start-page: 44
  year: 1985
  end-page: 68
  article-title: Debris flows and debris torrents in the Southern Canadian Cordillera
  publication-title: Can. Geotech. J.
– volume: 85
  start-page: 228
  year: 1958
  end-page: 232
  article-title: Some steady‐state solutions of the unsaturated moisture flow equation with application to evaporation from a water table
  publication-title: Soil Sci.
– volume: 112
  year: 2007
  article-title: Suspended sediment transport in an ephemeral stream following wildfire
  publication-title: J. Geophys. Res.
– volume: 750C
  start-page: C242
  year: 1971
  end-page: C247
– volume: 1
  start-page: 67
  issue: 11
  year: 2011
  end-page: 75
– volume: 46
  year: 2010
  article-title: A novel method for measuring the timing of bed erosion during debris flows and floods
  publication-title: Water Resour. Res.
– volume: 81
  start-page: 114
  year: 2006
  end-page: 127
  article-title: Geologic versus wildfire controls on hillslope processes and debris flow initiation in the Green River canyons of Dinosaur National Monument
  publication-title: Geomorphology
– start-page: 89
  year: 2000
  end-page: 97
– volume: 25
  start-page: 707
  issue: 9
  year: 2000
  end-page: 715
  article-title: Debris flow monitoring in the acquabona watershed in the Dolomites (Italian Alps)
  publication-title: Phys. Chem. Earth, Part B
– volume: 2
  start-page: 171
  year: 2005
  end-page: 182
  article-title: Experimental evidences and numerical modelling of debris flow initiated by channel runoff
  publication-title: Landslides
– volume: 381
  start-page: 322
  year: 2010
  end-page: 332
  article-title: Spatial variability of steady‐state infiltration into a two‐layer soil system on burned hillslopes
  publication-title: J. Hydrol.
– volume: 62
  start-page: 1302
  issue: 8
  year: 1935
  end-page: 1362
  article-title: Flood and erosion control problems and their solution
  publication-title: Proc. Am. Soc. Civ. Eng.
– volume: 35
  start-page: 245
  year: 1997
  end-page: 296
  article-title: The physics of debris flow
  publication-title: Rev. Geophys.
– volume: 22
  start-page: 2248
  year: 2008
  end-page: 2263
  article-title: The triggering of debris flow due to channel‐bed failure in some alpine headwater basins of the Dolomites: Analyses of critical runoff
  publication-title: Hydrol. Processes
– volume: 39
  start-page: 171
  year: 2001
  end-page: 188
  article-title: Wildfire‐related debris‐flow initiation processes, Storm King Mountain, Colorado
  publication-title: Geomorphology
– volume: 165
  start-page: 275
  year: 1987
  end-page: 276
– year: 2011
  article-title: Value of a dual‐polarized gap‐filling radar in support of southern California post‐fire debris‐flow warnings
  publication-title: J. Hydrometeorol.
– volume: 103
  start-page: 504
  year: 1991
  end-page: 511
  article-title: Fluvial sediment transport in response to moderate storm flows following chaparral wildfire, Ventura County, southern California
  publication-title: Geol. Soc. Am. Bull.
– volume: 96
  start-page: 298
  year: 2008
  end-page: 309
  article-title: A morphometric analysis of gullies scoured by post‐fire progressively bulked debris flows in southwest Montana, USA
  publication-title: Geomorphology
– volume: 34
  year: 2007
  article-title: Field observations of basal forces and fluid pore pressure in a debris flow
  publication-title: Geophys. Res. Lett.
– start-page: 685
  year: 2011
  end-page: 694
– volume: 2
  start-page: 33
  year: 2009
  end-page: 45
  article-title: Behavior of debris flows monitored on test slopes of Kamikamihorizawa Creek, Mount Yakedake, Japan
  publication-title: Int. J. Erosion Control Eng.
– volume: 106
  start-page: 537
  year: 2001
  end-page: 552
  article-title: Flow of variably fluidized granular masses across three‐dimensional terrain: 1. Coulomb mixture theory
  publication-title: J. Geophys. Res.
– year: 2010
– volume: 1283
  year: 2005
  article-title: NOAA‐USGS debris‐flow warning system—Final report
  publication-title: U.S. Geol. Surv. Circ.
– volume: 7
  start-page: 259
  year: 2010
  end-page: 272
  article-title: Early warning of rainfall‐induced shallow landslides and debris flows in the USA
  publication-title: Landslides
– volume: 115
  year: 2010
  article-title: Estimating the timing and location of shallow rainfall‐induced landslides using a model for transient, unsaturated infiltration
  publication-title: J. Geophys. Res.
– volume: 46
  start-page: 1
  year: 2002
  end-page: 17
  article-title: Ten years of debris‐flow monitoring in the Moscardo Torrent (Italian Alps)
  publication-title: Geomorphology
– volume: 7
  start-page: 105
  year: 1987
  end-page: 114
  article-title: The effects of fire on the generation of debris flows in southern California
  publication-title: Rev. Eng. Geol.
– volume: 3001
  year: 2009
  article-title: Geologic map of the Santa Barbara coastal plain area, Santa Barbara County, California
  publication-title: U.S. Geol. Surv. Sci. Invest. Map
– volume: 13
  start-page: 57
  year: 1981
  end-page: 77
  article-title: Debris flow
  publication-title: Annu. Rev. Fluid Mech.
– volume: 125
  start-page: 383
  year: 2011
  end-page: 401
  article-title: Evidence of debris flow occurrence after wildfire in upland catchments of south‐east Australia
  publication-title: Geomorphology
– volume: 29
  start-page: 265
  year: 1999
  end-page: 274
  article-title: Field observations of a debris flow event in the Dolomites
  publication-title: Geomorphology
– volume: 67
  start-page: 776
  issue: 5
  year: 1997
  end-page: 791
  article-title: Fire‐related sedimentation events on alluvial fans, Yellowstone National Park, U.S.A.
  publication-title: J. Sediment. Res.
– volume: 15
  start-page: 3025
  year: 2001
  end-page: 3038
  article-title: Fire, storms, and erosional events in the Idaho batholith
  publication-title: Hydrol. Processes
– volume: 7
  start-page: 1
  year: 1993
  end-page: 23
  article-title: A comprehensive approach to the observation and prevention of debris flows in China
  publication-title: Nat. Hazards
– start-page: 583
  year: 2011
  end-page: 593
– volume: 96
  start-page: 310
  year: 2008
  end-page: 321
  article-title: Sources of debris flow material in burned areas
  publication-title: Geomorphology
– volume: 36
  start-page: 1897
  year: 2000
  end-page: 1910
  article-title: Landslide triggering by rain infiltration
  publication-title: Water Resour. Res.
– start-page: 57
  year: 1985
  end-page: 62
– volume: 96
  start-page: 339
  year: 2008
  end-page: 354
  article-title: Empirical models to predict the volumes of debris flows generated by recently burned basins in the western U.S
  publication-title: Geomorphology
– start-page: 257
  year: 1984
  end-page: 361
– volume: 62
  start-page: 1302
  issue: 8
  year: 1935
  ident: 10.1029/2011JF002005:eato35
  article-title: Flood and erosion control problems and their solution
  publication-title: Proc. Am. Soc. Civ. Eng.
– year: 1934
  ident: 10.1029/2011JF002005:chaw34
  article-title: The Montrose–La Crescenta (California) flood of 1 January 1934, and its sedimentary aspects
– volume: 2
  start-page: 33
  year: 2009
  ident: 10.1029/2011JF002005:suwa09
  article-title: Behavior of debris flows monitored on test slopes of Kamikamihorizawa Creek, Mount Yakedake, Japan
  publication-title: Int. J. Erosion Control Eng.
  doi: 10.13101/ijece.2.33
– volume: 46
  start-page: W02502
  year: 2010
  ident: 10.1029/2011JF002005:berg10
  article-title: A novel method for measuring the timing of bed erosion during debris flows and floods
  publication-title: Water Resour. Res.
  doi: 10.1029/2009WR007993
– volume: 62
  start-page: 23
  year: 1980
  ident: 10.1029/2011JF002005:cain80
  article-title: The rainfall intensity-duration control of shallow landslides and debris flows
  publication-title: Geogr. Ann., Ser. A
  doi: 10.2307/520449
– volume: 15
  start-page: 3025
  year: 2001
  ident: 10.1029/2011JF002005:meye01
  article-title: Fire, storms, and erosional events in the Idaho batholith
  publication-title: Hydrol. Processes
  doi: 10.1002/hyp.389
– volume: 7
  start-page: 259
  year: 2010
  ident: 10.1029/2011JF002005:baum10a
  article-title: Early warning of rainfall-induced shallow landslides and debris flows in the USA
  publication-title: Landslides
  doi: 10.1007/s10346-009-0177-0
– volume: 115
  start-page: F03005
  year: 2010
  ident: 10.1029/2011JF002005:iver10
  article-title: The perfect debris flow? Aggregated results from 28 large-scale experiments
  publication-title: J. Geophys. Res.
  doi: 10.1029/2009JF001514
– start-page: 117
  volume-title: Proceedings of the 2nd International Conference on Debris Flow Hazards Mitigation
  year: 2000
  ident: 10.1029/2011JF002005:arma00
  article-title: Triggering of debris flow by overland flow: A comparison between theoretical and experimental results
– volume: 7
  start-page: 1485
  year: 1971
  ident: 10.1029/2011JF002005:rice71
  article-title: Effect of high intensity storms in on soil slippage on mountainous watersheds in southern California
  publication-title: Water Resour. Res.
  doi: 10.1029/WR007i006p01485
– volume: 39
  start-page: 171
  year: 2001
  ident: 10.1029/2011JF002005:cann01
  article-title: Wildfire-related debris-flow initiation processes, Storm King Mountain, Colorado
  publication-title: Geomorphology
  doi: 10.1016/S0169-555X(00)00108-2
– volume: 381
  start-page: 322
  year: 2010
  ident: 10.1029/2011JF002005:kinn10
  article-title: Spatial variability of steady-state infiltration into a two-layer soil system on burned hillslopes
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2009.12.004
– volume: 2
  start-page: 171
  year: 2005
  ident: 10.1029/2011JF002005:bert05
  article-title: Experimental evidences and numerical modelling of debris flow initiated by channel runoff
  publication-title: Landslides
  doi: 10.1007/s10346-005-0062-4
– volume: 106
  start-page: 537
  year: 2001
  ident: 10.1029/2011JF002005:iver01
  article-title: Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory
  publication-title: J. Geophys. Res.
  doi: 10.1029/2000JB900329
– volume: 750C
  volume-title: Origin and sedimentology of 1969 debris flows near Glendora, California
  year: 1971
  ident: 10.1029/2011JF002005:scot71
– volume: 96
  start-page: 298
  year: 2008
  ident: 10.1029/2011JF002005:gabe08
  article-title: A morphometric analysis of gullies scoured by post-fire progressively bulked debris flows in southwest Montana, USA
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2007.03.016
– year: 2004
  ident: 10.1029/2011JF002005:chon04
  article-title: Flash floods wash away lives, dreams
  publication-title: Los Angeles Times
– volume: 116
  start-page: F01002
  year: 2011
  ident: 10.1029/2011JF002005:berg11
  article-title: Direct measurement of channel erosion by debris flows, Illgraben, Switzerland
  publication-title: J. Geophys. Res.
  doi: 10.1029/2010JF001722
– start-page: 685
  volume-title: Debris-Flow Hazards Mitigation, Mechanics, Prediction, and Assessment
  year: 2011
  ident: 10.1029/2011JF002005:kean11
  article-title: Direct measurements of the hydrologic conditions leading up to and during post-fire debris flow in southern California, USA
– volume: 178
  start-page: 75
  year: 2003
  ident: 10.1029/2011JF002005:wond03
  article-title: Postfire erosional processes in the Pacific Northwest and Rocky Mountain regions
  publication-title: For. Ecol. Manage.
  doi: 10.1016/S0378-1127(03)00054-9
– volume: 29
  start-page: 265
  year: 1999
  ident: 10.1029/2011JF002005:bert99
  article-title: Field observations of a debris flow event in the Dolomites
  publication-title: Geomorphology
  doi: 10.1016/S0169-555X(99)00018-5
– volume: 7
  start-page: 105
  year: 1987
  ident: 10.1029/2011JF002005:well87a
  article-title: The effects of fire on the generation of debris flows in southern California
  publication-title: Rev. Eng. Geol.
  doi: 10.1130/REG7-p105
– volume: 96
  start-page: 339
  year: 2008
  ident: 10.1029/2011JF002005:gart08
  article-title: Empirical models to predict the volumes of debris flows generated by recently burned basins in the western U.S
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2007.02.033
– volume: 111
  start-page: 1424
  year: 1999
  ident: 10.1029/2011JF002005:majo99
  article-title: Debris-flow deposition: Effects of pore-fluid pressure and friction concentrated at flow margins
  publication-title: Geol. Soc. Am. Bull.
  doi: 10.1130/0016-7606(1999)111<1424:DFDEOP>2.3.CO;2
– volume-title: Annual Meeting
  year: 2010
  ident: 10.1029/2011JF002005:leep10
  article-title: A low-cost method to measure the timing of post-fire debris flows and flash floods
– volume: 34
  start-page: L07406
  year: 2007
  ident: 10.1029/2011JF002005:mcar07
  article-title: Field observations of basal forces and fluid pore pressure in a debris flow
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2006GL029183
– volume: 25
  start-page: 707
  issue: 9
  year: 2000
  ident: 10.1029/2011JF002005:bert00
  article-title: Debris flow monitoring in the acquabona watershed in the Dolomites (Italian Alps)
  publication-title: Phys. Chem. Earth, Part B
  doi: 10.1016/S1464-1909(00)00090-3
– volume: 96
  start-page: 270
  year: 2008
  ident: 10.1029/2011JF002005:coe08
  article-title: Initiation conditions for debris flows generated by runoff at Chalk Cliffs, central Colorado
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2007.03.017
– volume: 40
  start-page: 161
  year: 2003
  ident: 10.1029/2011JF002005:hurl03
  article-title: Field and monitoring data of debris-flow events in the Swiss Alps
  publication-title: Can. Geotech. J.
  doi: 10.1139/t02-087
– start-page: 269
  volume-title: Hillslope Processes
  year: 1986
  ident: 10.1029/2011JF002005:pier86
  article-title: Flow behaviour of channelized debris flows, Mount St. Helens, Washington
– volume: 46
  start-page: 1
  year: 2002
  ident: 10.1029/2011JF002005:marc02
  article-title: Ten years of debris-flow monitoring in the Moscardo Torrent (Italian Alps)
  publication-title: Geomorphology
  doi: 10.1016/S0169-555X(01)00162-3
– volume: 110
  start-page: 972
  issue: 8
  year: 1998
  ident: 10.1029/2011JF002005:iver98
  article-title: Objective delineation of lahar-inundation hazard zones
  publication-title: Geol. Soc. Am. Bull.
  doi: 10.1130/0016-7606(1998)110<0972:ODOLIH>2.3.CO;2
– volume: 112
  start-page: F02006
  year: 2007
  ident: 10.1029/2011JF002005:malm07
  article-title: Suspended sediment transport in an ephemeral stream following wildfire
  publication-title: J. Geophys. Res.
  doi: 10.1029/2005JF000459
– volume: 1
  start-page: 67
  year: 2011
  ident: 10.1029/2011JF002005:mcco11
  article-title: Observations of debris flows at Chalk Cliffs, Colorado, USA: Part 1, In-situ measurements of flow dynamics, tracer particle movement, and video imagery from the summer of 2009
– volume: 165
  volume-title: Post-fire sediment movement by debris flows in the Santa Ynez Mountains, California
  year: 1987
  ident: 10.1029/2011JF002005:well87b
– volume: 1283
  year: 2005
  ident: 10.1029/2011JF002005:noaa05
  article-title: NOAA-USGS debris-flow warning system—Final report
  publication-title: U.S. Geol. Surv. Circ.
– volume: 15
  start-page: 2981
  year: 2001
  ident: 10.1029/2011JF002005:mood01a
  article-title: Post-fire, rainfall intensity–peak discharge relations for three mountainous watersheds in the western USA
  publication-title: Hydrol. Processes
  doi: 10.1002/hyp.386
– start-page: 257
  volume-title: Slope Instability
  year: 1984
  ident: 10.1029/2011JF002005:john84
  article-title: Debris flow
– volume: 7
  start-page: 43
  year: 1968
  ident: 10.1029/2011JF002005:doeh68
  article-title: The effect of fire on geomorphic process in the San Gabriel Mountains, California
  publication-title: Contrib. Geol.
– start-page: 89
  volume-title: Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment: Proceedings of the 2nd International Conference on Debris Flow Hazards Mitigation, Taipei, Taiwan, 16–18 August 2000
  year: 2000
  ident: 10.1029/2011JF002005:togn00
  article-title: Threshold criterion for debris-flow initiation due to channel bed failure
– volume: 25
  start-page: 483
  year: 2000
  ident: 10.1029/2011JF002005:hung00
  article-title: Analysis of debris flow surges using the theory of uniformly progressive flow
  publication-title: Earth Surf. Processes Landforms
  doi: 10.1002/(SICI)1096-9837(200005)25:5<483::AID-ESP76>3.0.CO;2-Z
– volume: 96
  start-page: 250
  year: 2008
  ident: 10.1029/2011JF002005:cann08
  article-title: Storm rainfall conditions for floods and debris flows from recently burned areas in southwestern Colorado and southern California
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2007.03.019
– volume: 59
  start-page: 209
  year: 2011
  ident: 10.1029/2011JF002005:cann11
  article-title: Rainfall intensity-duration thresholds for postfire debris-flow emergency-response planning
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-011-9747-2
– volume: 103
  start-page: 504
  year: 1991
  ident: 10.1029/2011JF002005:flor91
  article-title: Fluvial sediment transport in response to moderate storm flows following chaparral wildfire, Ventura County, southern California
  publication-title: Geol. Soc. Am. Bull.
  doi: 10.1130/0016-7606(1991)103<0504:FSTIRT>2.3.CO;2
– volume: 67
  start-page: 776
  issue: 5
  year: 1997
  ident: 10.1029/2011JF002005:meye97
  article-title: Fire-related sedimentation events on alluvial fans, Yellowstone National Park, U.S.A.
  publication-title: J. Sediment. Res.
– volume: 74
  start-page: 269
  year: 2006
  ident: 10.1029/2011JF002005:shak06
  article-title: Wildfire as a hydrological and geomorphological agent
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2005.10.006
– volume: 22
  start-page: 44
  year: 1985
  ident: 10.1029/2011JF002005:vand85
  article-title: Debris flows and debris torrents in the Southern Canadian Cordillera
  publication-title: Can. Geotech. J.
  doi: 10.1139/t85-006
– volume: 13
  start-page: 57
  year: 1981
  ident: 10.1029/2011JF002005:taka81
  article-title: Debris flow
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.13.010181.000421
– volume: 3001
  year: 2009
  ident: 10.1029/2011JF002005:mino09
  article-title: Geologic map of the Santa Barbara coastal plain area, Santa Barbara County, California
– volume: 4
  start-page: 116
  year: 2011
  ident: 10.1029/2011JF002005:iver11
  article-title: Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo1040
– volume: 81
  start-page: 114
  year: 2006
  ident: 10.1029/2011JF002005:lars06
  article-title: Geologic versus wildfire controls on hillslope processes and debris flow initiation in the Green River canyons of Dinosaur National Monument
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2006.04.002
– start-page: 583
  volume-title: Debris-Flow Hazards Mitigation, Mechanics, Prediction, and Assessment
  year: 2011
  ident: 10.1029/2011JF002005:schm11
  article-title: Hydrologic conditions and terrestrial laser scanning of post-fire debris flows in the San Gabriel Mountains, CA, U.S.A.
– volume: 25
  start-page: 781
  issue: 9
  year: 2000
  ident: 10.1029/2011JF002005:arat00
  article-title: Video-derived velocity distribution along a debris flow surge
  publication-title: Phys. Chem. Earth, Part B
  doi: 10.1016/S1464-1909(00)00101-5
– volume: 115
  start-page: F03013
  year: 2010
  ident: 10.1029/2011JF002005:baum10b
  article-title: Estimating the timing and location of shallow rainfall-induced landslides using a model for transient, unsaturated infiltration
  publication-title: J. Geophys. Res.
  doi: 10.1029/2009JF001321
– start-page: 57
  volume-title: Proceedings of the Chaparral Ecosystem Conference
  year: 1985
  ident: 10.1029/2011JF002005:well85
  article-title: The influence of fire on erosion rates in California chaparral
– volume: 38
  start-page: 735
  year: 2010
  ident: 10.1029/2011JF002005:mcco10
  article-title: Evolution of a natural debris flow: In situ measurements of flow dynamics, video imagery, and terrestrial laser scanning
  publication-title: Geology
  doi: 10.1130/G30928.1
– volume: 217
  start-page: 239
  year: 1993
  ident: 10.1029/2011JF002005:suwa93
  article-title: Motion, debris size and scale of debris flows in a valley on Mount Yakedake, Japan, in Sediment Problems: Strategies for Monitoring, Prediction and Control
  publication-title: IAHS Publ.
– volume: 96
  start-page: 310
  year: 2008
  ident: 10.1029/2011JF002005:sant08
  article-title: Sources of debris flow material in burned areas
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2007.02.022
– year: 2008
  ident: 10.1029/2011JF002005:baum08
  article-title: TRIGRS—A FORTRAN program for transient rainfall infiltration and grid-based regional slope-stability analysis, version 2.0
  doi: 10.3133/ofr20081159
– volume-title: The Control of Nature
  year: 1989
  ident: 10.1029/2011JF002005:mcph89
– year: 2001
  ident: 10.1029/2011JF002005:mood01b
  article-title: Hydrologic and sedimentologic response of two burned watersheds in Colorado
– year: 2011
  ident: 10.1029/2011JF002005:jorg11
  article-title: Value of a dual-polarized gap-filling radar in support of southern California post-fire debris-flow warnings
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-11-05.1
– volume: 5
  start-page: 3
  year: 2008
  ident: 10.1029/2011JF002005:guzz08
  article-title: The rainfall intensity-duration control of shallow landslides and debris flows: An update
  publication-title: Landslides
  doi: 10.1007/s10346-007-0112-1
– volume: 125
  start-page: 383
  year: 2011
  ident: 10.1029/2011JF002005:nyma11
  article-title: Evidence of debris flow occurrence after wildfire in upland catchments of south-east Australia
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2010.10.016
– volume: 85
  start-page: 228
  year: 1958
  ident: 10.1029/2011JF002005:gard58
  article-title: Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table
  publication-title: Soil Sci.
  doi: 10.1097/00010694-195804000-00006
– volume: 36
  start-page: 1897
  year: 2000
  ident: 10.1029/2011JF002005:iver00
  article-title: Landslide triggering by rain infiltration
  publication-title: Water Resour. Res.
  doi: 10.1029/2000WR900090
– year: 2005
  ident: 10.1029/2011JF002005:yerk05
  article-title: Preliminary geologic map of the Los Angeles 30′ × 60′ quadrangle, southern California
– year: 2010
  ident: 10.1029/2011JF002005:lin10
  article-title: ‘Niagara’ of mud hits homes; Dozens of houses in La Canada Flintridge are damaged or destroyed in a storm that defied forecast
  publication-title: Los Angeles Times
– volume: 28
  start-page: 1341
  year: 2003
  ident: 10.1029/2011JF002005:gabe03
  article-title: Post-fire thin debris flow: Sediment transport and numerical modelling
  publication-title: Earth Surf. Processes Landforms
  doi: 10.1002/esp.590
– volume: 22
  start-page: 2248
  year: 2008
  ident: 10.1029/2011JF002005:greg08
  article-title: The triggering of debris flow due to channel-bed failure in some alpine headwater basins of the Dolomites: Analyses of critical runoff
  publication-title: Hydrol. Processes
  doi: 10.1002/hyp.6821
– volume: 7
  start-page: 1
  year: 1993
  ident: 10.1029/2011JF002005:zhan93
  article-title: A comprehensive approach to the observation and prevention of debris flows in China
  publication-title: Nat. Hazards
  doi: 10.1007/BF00595676
– volume: 35
  start-page: 245
  year: 1997
  ident: 10.1029/2011JF002005:iver97
  article-title: The physics of debris flow
  publication-title: Rev. Geophys.
  doi: 10.1029/97RG00426
– volume: 106
  start-page: 553
  year: 2001
  ident: 10.1029/2011JF002005:denl01
  article-title: Flow of variably fluidized granular masses across three-dimensional terrain: 2. Numerical predictions and experimental tests
  publication-title: J. Geophys. Res.
  doi: 10.1029/2000JB900330
SSID ssj0000456401
ssj0014561
ssj0030581
ssj0030583
ssj0043761
ssj0030582
ssj0030585
ssj0030584
ssj0030586
ssj0000816912
Score 2.4872766
Snippet Debris flows often occur in burned steeplands of southern California, sometimes causing property damage and loss of life. In an effort to better understand the...
We present the first known in situ measurements of post-fire debris flow Debris-flow timing tightly correlated with short duration rainfall intensity...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Atmospheric sciences
Debris flow
Detritus
fire
Floods
Hydrology
In situ measurement
Landslides
Landslides & mudslides
Moisture content
monitoring
Mountains
Precipitation
Rainfall intensity
San Gabriel Mountains
Slope stability
Soil erosion
Soil moisture
Soil water
Surface runoff
Surface water
Water content
Title In situ measurements of post-fire debris flows in southern California: Comparisons of the timing and magnitude of 24 debris-flow events with rainfall and soil moisture conditions
URI https://api.istex.fr/ark:/67375/WNG-ZX5FBRPD-K/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2011JF002005
https://www.proquest.com/docview/902299796
https://www.proquest.com/docview/1024654540
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZo98IFgQARCtVUAg4gq2niJHYvFS3NlkWsqhUVKy6RE9tVRTbZNruiv4tfWI_Xmy4Heovk8SN-jsffzEfIu6wyqpSMUxkaTVmiBS3jMqTS2JXFWBynAn2Hv4_Tsws2miZTj83pPKxyvSe6jVq1FdrI94U9bITIRHo0v6ZIGoWPq55BY4sM7A7M7d1rcHw6Pp_0RhZklRDuxTOyHxStdh78HkZiH8--UY4KE5LXbRxLA-zh2390zk3N1R09-VPyxOuM8Hk1yM_II908J3-_NmAbt4TZvZWvg9bAvO0W1NidDJRGOD-Yuv3TwZUVbx2cvYF7h6xDOOmJCF1uKwALZPq6BNkomElEFy2VxrSI-SIpFgku9lMHaMkFJJowsq5dpq69qmHW2t-z7QJ74VYrXNgLcpGf_jg5o56AgcoYoVRKZwfCLvmMxwaDvkSVyQ7KROvYaKs6CfT_USbkMo2YzHgVp2XIM5OaUKcpC2X8kmw3baNfEVDc3gNVwgx6PSShEZlGr1ZVSaZZmqiAfFr3f1H56ORIklEX7pU8EsXmaAXkfS89X0Xl-I_cBzeUvZC8-Y1Itiwpfo6Hxa9pkh9Pzr8U3wKysx7rwi_iruinXED2-lS7-vBJRTa6XXZYIwaks2pvQD66KfJge4rRcJLzRLx-sLod8thZrh1o5g3ZXtws9Vur-izKXbLF8-Gun-Z3vYIB6g
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKe4ALAgFiKY9BohxAVkPiPIyEELRkX-0KVa1Y9WKc2EYV2WRpdlX4UVz4hXi8Sboc6K23SB7bsWdsj8cz8xHyIs6NyiRLqPSMpizUnGZB5lFp7MpiLAgijrHDh5NocMJG03C6QX63sTDoVtnuiW6jVlWONvJdbg8bzmMevZ__oAgahY-rLYLGSirG-teFvbHV74b7lr07vp9-Ot4b0AZUgMoA3YOUju09O0CACYOJTPzcxG-yUOvAaKsOcIxpUcZLZOQzGSd5EGVeEpvIeDqKmCcD2-4NsmVHwXFBJWm_M-kghgV376u-_aBoI2xc7T2f7-JJO0pRPUOovLVDcAv5-fMfDXddT3YHXXqH3G40VPiwEqm7ZEOX98ifYQl2KpYwu7Qp1lAZmFf1ghq7b4LSGDwApqguajiz5JVzni_hMvzrLex1sIeutiWABeKKfQNZKphJ9GVaKo1lPmuapNgkuExTNaDdGBDWwsiicJXq6qyAWWWHZ_8L7PVerbzQ7pOTa-HMA7JZVqV-SEAl9tapQmYwxiL0DI81xtCqXDLNolD1yOt2_kXe5EJHSI5CuDd5n4t1bvXITkc9X-UA-Q_dS8fKjkief0e_uTgUXyZ9cToN049Hn_fFuEe2W16LZsuoRSfgPfK8K7VrHR9wZKmrZY09Yvo7q2T3yCsnIlf-jxj1j9Ik5I-u7O4ZuTk4PjwQB8PJeJvccjZz567zmGwuzpf6iVW6FtlTJ-pAvl732voLcCc6fg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGKyFeEAgQYXwYifEAihoS58NICLF12dpCVVVMVHsxTmyjiTQpS6vBv8Ub_x13bpqVB_a2t0q5OGnubN-df3c_Ql7EuVGZZIkrPaNdFmruZkHmudLAzGIsCCKOtcOfxtHxCRvOwtkO-bOphUFY5WZNtAu1qnLMkfc4bDacxzzqmQYVMemn7xc_XCSQwoPWDZvG2kJG-tcFRG_1u0EfVL3n--nh54NjtyEYcGWAUCGlY4i5AySbMNjUxM9N_CYLtQ6MBteAY32LMl4iI5_JOMmDKPOS2ETG01HEPBnAuDdIN4agyOuQ7v7heDJtEzzIaMHtaasPP1zMGDbAe8_nPdx3hyk6a0ict7UldlG7P__xd7e9ZrvtpXfI7cZfpR_WBnaX7OjyHvk9KCl8jBWdX2YYa1oZuqjqpWtgFaVKYykBNUV1UdMzEK8slL6kl8Vgb-lBS4Jo7wYBukSWsW9UlorOJSKbVkrjNZ81Q7o4JLV9p2qKWWSKJBdGFoW9qa7OCjqv4O_Be1EI9tUak3afnFyLbh6QTlmV-iGhKoEYVIXMYMVF6Bkea6yoVblkmkWhcsjrzfcXedMZHQk6CmFP6H0utrXlkL1WerHuCPIfuZdWla2QPP-OKLo4FF_GR-J0Fqb700lfjByyu9G1aBaQWrTm7pDn7VWY-XicI0tdrWp8IjbDA5fbIa-siVz5PmJ4NE2TkD-68nHPyE2YV-LjYDzaJbdsAt1idx6TzvJ8pZ-AB7bMnja2TsnX655efwGRcUAQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+situ+measurements+of+post%E2%80%90fire+debris+flows+in+southern+California%3A+Comparisons+of+the+timing+and+magnitude+of+24+debris%E2%80%90flow+events+with+rainfall+and+soil+moisture+conditions&rft.jtitle=Journal+of+Geophysical+Research%3A+Earth+Surface&rft.au=Kean%2C+Jason+W.&rft.au=Staley%2C+Dennis+M.&rft.au=Cannon%2C+Susan+H.&rft.date=2011-12-01&rft.issn=0148-0227&rft.eissn=2156-2202&rft.volume=116&rft.issue=F4&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2011JF002005&rft.externalDBID=10.1029%252F2011JF002005&rft.externalDocID=JGRF859
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon