In situ measurements of post-fire debris flows in southern California: Comparisons of the timing and magnitude of 24 debris-flow events with rainfall and soil moisture conditions
Debris flows often occur in burned steeplands of southern California, sometimes causing property damage and loss of life. In an effort to better understand the hydrologic controls on post‐fire debris‐flow initiation, timing and magnitude, we measured the flow stage, rainfall, channel bed pore fluid...
Saved in:
Published in | Journal of Geophysical Research Vol. 116; no. F4 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Washington
Blackwell Publishing Ltd
01.12.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Debris flows often occur in burned steeplands of southern California, sometimes causing property damage and loss of life. In an effort to better understand the hydrologic controls on post‐fire debris‐flow initiation, timing and magnitude, we measured the flow stage, rainfall, channel bed pore fluid pressure and hillslope soil‐moisture accompanying 24 debris flows recorded in five different watersheds burned in the 2009 Station and Jesusita Fires (San Gabriel and Santa Ynez Mountains). The measurements show substantial differences in debris‐flow dynamics between sites and between sequential events at the same site. Despite these differences, the timing and magnitude of all events were consistently associated with local peaks in short duration (< = 30 min) rainfall intensity. Overall, debris‐flow stage was best cross‐correlated with time series of 5‐min rainfall intensity, and lagged the rainfall by an average of just 5 min. An index of debris‐flow volume was also best correlated with short‐duration rainfall intensity, but found to be poorly correlated with storm cumulative rainfall and hillslope soil water content. Post‐event observations of erosion and slope stability modeling suggest that the debris flows initiated primarily by processes related to surface water runoff, rather than shallow landslides. By identifying the storm characteristics most closely associated with post‐fire debris flows, these measurements provide valuable guidance for warning operations and important constraints for developing and testing models of post‐fire debris flows.
Key Points
We present the first known in situ measurements of post‐fire debris flow
Debris‐flow timing tightly correlated with short duration rainfall intensity
Debris‐flow magnitude not correlated with cum. rainfall or soil water content |
---|---|
AbstractList | We present the first known in situ measurements of post-fire debris flow Debris-flow timing tightly correlated with short duration rainfall intensity Debris-flow magnitude not correlated with cum. rainfall or soil water content Debris flows often occur in burned steeplands of southern California, sometimes causing property damage and loss of life. In an effort to better understand the hydrologic controls on post-fire debris-flow initiation, timing and magnitude, we measured the flow stage, rainfall, channel bed pore fluid pressure and hillslope soil-moisture accompanying 24 debris flows recorded in five different watersheds burned in the 2009 Station and Jesusita Fires (San Gabriel and Santa Ynez Mountains). The measurements show substantial differences in debris-flow dynamics between sites and between sequential events at the same site. Despite these differences, the timing and magnitude of all events were consistently associated with local peaks in short duration (< = 30 min) rainfall intensity. Overall, debris-flow stage was best cross-correlated with time series of 5-min rainfall intensity, and lagged the rainfall by an average of just 5 min. An index of debris-flow volume was also best correlated with short-duration rainfall intensity, but found to be poorly correlated with storm cumulative rainfall and hillslope soil water content. Post-event observations of erosion and slope stability modeling suggest that the debris flows initiated primarily by processes related to surface water runoff, rather than shallow landslides. By identifying the storm characteristics most closely associated with post-fire debris flows, these measurements provide valuable guidance for warning operations and important constraints for developing and testing models of post-fire debris flows. Debris flows often occur in burned steeplands of southern California, sometimes causing property damage and loss of life. In an effort to better understand the hydrologic controls on post‐fire debris‐flow initiation, timing and magnitude, we measured the flow stage, rainfall, channel bed pore fluid pressure and hillslope soil‐moisture accompanying 24 debris flows recorded in five different watersheds burned in the 2009 Station and Jesusita Fires (San Gabriel and Santa Ynez Mountains). The measurements show substantial differences in debris‐flow dynamics between sites and between sequential events at the same site. Despite these differences, the timing and magnitude of all events were consistently associated with local peaks in short duration (< = 30 min) rainfall intensity. Overall, debris‐flow stage was best cross‐correlated with time series of 5‐min rainfall intensity, and lagged the rainfall by an average of just 5 min. An index of debris‐flow volume was also best correlated with short‐duration rainfall intensity, but found to be poorly correlated with storm cumulative rainfall and hillslope soil water content. Post‐event observations of erosion and slope stability modeling suggest that the debris flows initiated primarily by processes related to surface water runoff, rather than shallow landslides. By identifying the storm characteristics most closely associated with post‐fire debris flows, these measurements provide valuable guidance for warning operations and important constraints for developing and testing models of post‐fire debris flows. Key Points We present the first known in situ measurements of post‐fire debris flow Debris‐flow timing tightly correlated with short duration rainfall intensity Debris‐flow magnitude not correlated with cum. rainfall or soil water content |
ArticleNumber | F04019 |
Author | Staley, Dennis M. Cannon, Susan H. Kean, Jason W. |
Author_xml | – sequence: 1 givenname: Jason W. surname: Kean fullname: Kean, Jason W. email: jwkean@usgs.gov organization: U.S. Geological Survey, Colorado, Denver, USA – sequence: 2 givenname: Dennis M. surname: Staley fullname: Staley, Dennis M. organization: U.S. Geological Survey, Colorado, Denver, USA – sequence: 3 givenname: Susan H. surname: Cannon fullname: Cannon, Susan H. organization: U.S. Geological Survey, Colorado, Denver, USA |
BookMark | eNp9kUFvFCEYhompiWvtzR9APHlwFJgBBm-6umtro6bRaLwQduajpc7ACky3_Vv-QtndxpgmyoUDz_N-X14eogMfPCD0mJLnlDD1ghFKTxaEMEL4PTRjlIuKMcIO0IzQpq0IY_IBOkrpkpTTcNEQOkO_jj1OLk94BJOmCCP4nHCweB1SrqyLgHtYRZewHcImYVfwMOULiB7PzeBsiN6Zl3gexrUpWPA7uwA4u9H5c2x8j0dz7suQHrZvrLmNrLaRGK52IzcuX-BonLdmGHZSCm7AY3Apl71wF3zvsiv5j9D9wiQ4ur0P0ZfF28_zd9Xpx-Xx_NVpZWrVqqoHSVVbM9nWVgrJWWclXXGA2gLjRNWMkt6S1gjWGNl2tViRVlphCYjSjakP0dN97jqGnxOkrEeXOhgG4yFMSZfWG8Eb3pCCPrmDXoYp-rKdVqV3paQSBXq2h7oYUopg9Tq60cSbkrQNU_rvLyw4u4N3LpttA7nUNPxLontp4wa4-e8AfbI8W7RcFafaO6VpuP7jmPhDC1lLrr9-WOrv3_ji9dmnN_p9_RvBd78m |
CitedBy_id | crossref_primary_10_1186_s13617_024_00146_9 crossref_primary_10_1029_2024EA003939 crossref_primary_10_1088_2634_4505_adb90a crossref_primary_10_1002_esp_4981 crossref_primary_10_1002_esp_5553 crossref_primary_10_1007_s10064_017_1187_0 crossref_primary_10_1007_s11069_023_05952_9 crossref_primary_10_1029_2018GL077683 crossref_primary_10_1080_04353676_2021_1932482 crossref_primary_10_5194_nhess_23_2075_2023 crossref_primary_10_1007_s10064_022_03014_1 crossref_primary_10_1002_2016WR018675 crossref_primary_10_1029_2022JF006591 crossref_primary_10_1007_s00445_015_0946_7 crossref_primary_10_1002_hyp_11434 crossref_primary_10_1016_j_geomorph_2013_01_001 crossref_primary_10_5194_esurf_12_67_2024 crossref_primary_10_1016_j_earscirev_2013_03_004 crossref_primary_10_1051_e3sconf_202341504002 crossref_primary_10_1051_e3sconf_202341501013 crossref_primary_10_1071_WF23065 crossref_primary_10_1002_esp_5148 crossref_primary_10_1002_2017WR021084 crossref_primary_10_1016_j_geomorph_2022_108557 crossref_primary_10_1007_s00477_014_0891_6 crossref_primary_10_1029_2011WR011460 crossref_primary_10_1002_hyp_9857 crossref_primary_10_5194_esurf_12_1415_2024 crossref_primary_10_5194_nhess_22_361_2022 crossref_primary_10_1130_G46847_1 crossref_primary_10_1029_2023GL103645 crossref_primary_10_1002_2016JF003867 crossref_primary_10_1002_hyp_10998 crossref_primary_10_1002_hyp_11208 crossref_primary_10_1016_j_hydroa_2024_100180 crossref_primary_10_1029_2024GL109768 crossref_primary_10_1016_j_quascirev_2022_107899 crossref_primary_10_1177_0309133313508802 crossref_primary_10_1002_hyp_13865 crossref_primary_10_1016_j_geomorph_2014_08_003 crossref_primary_10_1029_2019GL083623 crossref_primary_10_1051_e3sconf_202341504010 crossref_primary_10_1029_2022EF003213 crossref_primary_10_2136_sssaj2018_12_0471 crossref_primary_10_5194_nhess_22_2317_2022 crossref_primary_10_1029_2020JF005997 crossref_primary_10_1073_pnas_1922495117 crossref_primary_10_1016_j_geomorph_2018_08_024 crossref_primary_10_1029_2020JF005996 crossref_primary_10_1002_hyp_14208 crossref_primary_10_5194_nhess_24_2359_2024 crossref_primary_10_1007_s10346_012_0341_9 crossref_primary_10_1002_2016WR019110 crossref_primary_10_1016_j_geomorph_2013_06_017 crossref_primary_10_3799_dqkx_2023_145 crossref_primary_10_5194_esurf_7_563_2019 crossref_primary_10_5194_nhess_24_1357_2024 crossref_primary_10_1080_23789689_2019_1593003 crossref_primary_10_1007_s00703_019_00677_6 crossref_primary_10_1016_j_geomorph_2022_108538 crossref_primary_10_1029_2020JF005527 crossref_primary_10_1080_19475705_2023_2286904 crossref_primary_10_5194_nhess_15_905_2015 crossref_primary_10_1016_j_geomorph_2014_04_034 crossref_primary_10_1029_2018RG000626 crossref_primary_10_2113_EEG_D_20_00029 crossref_primary_10_2136_vzj2018_04_0070 crossref_primary_10_1002_2015WR017611 crossref_primary_10_1002_jgrf_20058 crossref_primary_10_1130_GES02048_1 crossref_primary_10_1002_esp_70015 crossref_primary_10_1016_j_geoderma_2016_02_004 crossref_primary_10_1016_j_quascirev_2017_06_002 crossref_primary_10_1007_s10346_022_01890_y crossref_primary_10_1029_2020GL087643 crossref_primary_10_1051_e3sconf_202341505004 crossref_primary_10_1002_esp_6067 crossref_primary_10_3390_su71115219 crossref_primary_10_1130_B31356_1 crossref_primary_10_1071_WF22200 crossref_primary_10_1016_j_catena_2021_105147 crossref_primary_10_2113_EEG_D_20_00022 crossref_primary_10_1007_s11069_022_05604_4 crossref_primary_10_1016_j_geomorph_2013_10_011 crossref_primary_10_1007_s11069_022_05628_w crossref_primary_10_1016_j_enggeo_2015_06_021 crossref_primary_10_1016_j_envsoft_2019_104555 crossref_primary_10_1029_2011JF002278 crossref_primary_10_3390_app11062545 crossref_primary_10_1016_j_geomorph_2014_02_015 crossref_primary_10_1007_s11069_022_05330_x crossref_primary_10_1029_2021JF006091 crossref_primary_10_1002_2016GL069661 crossref_primary_10_3390_rs14061306 crossref_primary_10_1029_2021JF006374 crossref_primary_10_1051_e3sconf_202341505016 crossref_primary_10_1002_2017GL074243 crossref_primary_10_1016_j_enggeo_2020_105742 crossref_primary_10_1029_2018JF004837 crossref_primary_10_1002_esp_5480 crossref_primary_10_1071_WF22211 crossref_primary_10_2478_johh_2022_0033 crossref_primary_10_1016_j_enggeo_2014_04_008 crossref_primary_10_1029_2023GL105101 crossref_primary_10_1139_cgj_2023_0532 crossref_primary_10_5194_nhess_18_2331_2018 crossref_primary_10_1007_s10346_023_02143_2 crossref_primary_10_1038_s41598_020_67511_7 crossref_primary_10_3389_feart_2015_00021 crossref_primary_10_3390_w16091285 crossref_primary_10_1007_s11069_013_0557_6 crossref_primary_10_1002_2017JF004410 crossref_primary_10_1002_jgrf_20152 crossref_primary_10_1088_1755_1315_1124_1_012122 crossref_primary_10_5194_nhess_24_2093_2024 crossref_primary_10_1002_2015WR018176 crossref_primary_10_1029_2024JF007825 crossref_primary_10_1071_WF17122 crossref_primary_10_3389_fevo_2018_00034 crossref_primary_10_1007_s10346_020_01376_9 crossref_primary_10_3390_w17030406 crossref_primary_10_1029_2021EF002149 crossref_primary_10_1016_j_jhydrol_2015_12_054 crossref_primary_10_3390_geosciences11100422 crossref_primary_10_1007_s12145_023_01205_2 crossref_primary_10_1002_2016JF003970 crossref_primary_10_1002_esp_5337 crossref_primary_10_1016_j_earscirev_2019_102981 crossref_primary_10_1007_s12205_024_1550_1 crossref_primary_10_1002_wat2_1728 crossref_primary_10_1016_j_geomorph_2019_04_001 crossref_primary_10_3390_land12030555 crossref_primary_10_1002_hyp_15215 crossref_primary_10_1002_jgrf_20148 crossref_primary_10_1007_s10346_022_01936_1 crossref_primary_10_1016_j_margeo_2017_11_014 crossref_primary_10_3390_rs14122731 crossref_primary_10_1007_s11629_021_7292_3 crossref_primary_10_1016_j_jhydrol_2015_12_048 crossref_primary_10_3996_JFWM_24_037 crossref_primary_10_1007_s10346_023_02106_7 crossref_primary_10_1029_2022GL099850 crossref_primary_10_1002_esp_4117 crossref_primary_10_1007_s11629_023_8507_6 crossref_primary_10_1002_esp_5724 crossref_primary_10_1002_esp_5845 crossref_primary_10_21663_EEG_D_21_00026 crossref_primary_10_1029_2020EF001735 crossref_primary_10_1029_2024JF007725 crossref_primary_10_1088_1757_899X_864_1_012045 crossref_primary_10_1071_WF14071 crossref_primary_10_1038_s41467_023_39095_z crossref_primary_10_3390_ijgi8010005 crossref_primary_10_1007_s12665_020_09336_1 crossref_primary_10_1029_2021JF006108 crossref_primary_10_1029_2022JF007017 crossref_primary_10_1007_s10346_020_01470_y crossref_primary_10_1051_e3sconf_202341503029 |
Cites_doi | 10.13101/ijece.2.33 10.1029/2009WR007993 10.2307/520449 10.1002/hyp.389 10.1007/s10346-009-0177-0 10.1029/2009JF001514 10.1029/WR007i006p01485 10.1016/S0169-555X(00)00108-2 10.1016/j.jhydrol.2009.12.004 10.1007/s10346-005-0062-4 10.1029/2000JB900329 10.1016/j.geomorph.2007.03.016 10.1029/2010JF001722 10.1016/S0378-1127(03)00054-9 10.1016/S0169-555X(99)00018-5 10.1130/REG7-p105 10.1016/j.geomorph.2007.02.033 10.1130/0016-7606(1999)111<1424:DFDEOP>2.3.CO;2 10.1029/2006GL029183 10.1016/S1464-1909(00)00090-3 10.1016/j.geomorph.2007.03.017 10.1139/t02-087 10.1016/S0169-555X(01)00162-3 10.1130/0016-7606(1998)110<0972:ODOLIH>2.3.CO;2 10.1029/2005JF000459 10.1002/hyp.386 10.1002/(SICI)1096-9837(200005)25:5<483::AID-ESP76>3.0.CO;2-Z 10.1016/j.geomorph.2007.03.019 10.1007/s11069-011-9747-2 10.1130/0016-7606(1991)103<0504:FSTIRT>2.3.CO;2 10.1016/j.earscirev.2005.10.006 10.1139/t85-006 10.1146/annurev.fl.13.010181.000421 10.1038/ngeo1040 10.1016/j.geomorph.2006.04.002 10.1016/S1464-1909(00)00101-5 10.1029/2009JF001321 10.1130/G30928.1 10.1016/j.geomorph.2007.02.022 10.3133/ofr20081159 10.1175/JHM-D-11-05.1 10.1007/s10346-007-0112-1 10.1016/j.geomorph.2010.10.016 10.1097/00010694-195804000-00006 10.1029/2000WR900090 10.1002/esp.590 10.1002/hyp.6821 10.1007/BF00595676 10.1029/97RG00426 10.1029/2000JB900330 |
ContentType | Journal Article |
Copyright | Copyright 2011 by the American Geophysical Union. This paper is not subject to U.S. copyright. Published in 2011 by the American Geophysical Union. |
Copyright_xml | – notice: Copyright 2011 by the American Geophysical Union. – notice: This paper is not subject to U.S. copyright. Published in 2011 by the American Geophysical Union. |
DBID | BSCLL AAYXX CITATION 3V. 7ST 7TG 7UA 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KL. KR7 L.G L6V L7M M2O M2P M7S MBDVC P5Z P62 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY Q9U SOI |
DOI | 10.1029/2011JF002005 |
DatabaseName | Istex CrossRef ProQuest Central (Corporate) Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Health Research Premium Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student ProQuest Research Library Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection ProQuest Central Basic Environment Abstracts |
DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Research Library Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environment Abstracts ProQuest Central (Alumni) |
DatabaseTitleList | Meteorological & Geoastrophysical Abstracts - Academic Research Library Prep |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Oceanography Geology Astronomy & Astrophysics Physics |
EISSN | 2156-2202 2169-9011 |
EndPage | n/a |
ExternalDocumentID | 2504050671 10_1029_2011JF002005 JGRF859 ark_67375_WNG_ZX5FBRPD_K |
Genre | article Feature |
GeographicLocations | INE, USA, California |
GeographicLocations_xml | – name: INE, USA, California |
GroupedDBID | 12K 1OC 24P 7XC 88I 8FE 8FH 8G5 8R4 8R5 AANLZ AAXRX ABUWG ACAHQ ACCZN ACXBN AEIGN AEUYR AFFPM AHBTC AITYG ALMA_UNASSIGNED_HOLDINGS AMYDB ATCPS BBNVY BENPR BHPHI BKSAR BPHCQ BRXPI BSCLL DCZOG DRFUL DRSTM DU5 DWQXO GNUQQ GUQSH HCIFZ LATKE LITHE LOXES LUTES LYRES M2O M2P MEWTI MSFUL MSSTM MXFUL MXSTM P-X Q2X RNS WHG WIN WXSBR XSW ~OA ~~A AAHQN AAMNL AAYXX AGYGG CITATION 05W 0R~ 33P 3V. 52M 702 7ST 7TG 7UA 7XB 8FD 8FG 8FK AAESR AASGY AAZKR ABJCF ACGOD ACIWK ACPOU ACXQS ADKYN ADOZA ADXAS ADZMN AEUYN AEYWJ AFKRA AFRAH AIURR ALVPJ ARAPS ASPBG AVWKF AZFZN AZQEC AZVAB BFHJK BGLVJ C1K CCPQU DPXWK F1W FEDTE FR3 H8D H96 HGLYW HVGLF HZ~ KL. KR7 L.G L6V L7M LEEKS LK5 M7R M7S MBDVC MY~ O9- P2W P62 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PROAC PTHSS PYCSY Q9U R.K SOI SUPJJ WBKPD |
ID | FETCH-LOGICAL-a3989-de719832783f76752cf71b5ee3fe25093210df08a624a78c36b087f6f0e6640a3 |
IEDL.DBID | BENPR |
ISSN | 0148-0227 2169-9003 |
IngestDate | Tue Aug 05 11:25:12 EDT 2025 Fri Jul 25 18:57:55 EDT 2025 Tue Jul 01 02:42:17 EDT 2025 Thu Apr 24 23:09:06 EDT 2025 Wed Jan 22 16:50:51 EST 2025 Wed Oct 30 09:52:51 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | F4 |
Language | English |
License | http://doi.wiley.com/10.1002/tdm_license_1.1 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a3989-de719832783f76752cf71b5ee3fe25093210df08a624a78c36b087f6f0e6640a3 |
Notes | istex:4E152165396D5D1B3BEC79BC0E13598BBB92E156 ArticleID:2011JF002005 ark:/67375/WNG-ZX5FBRPD-K SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
PQID | 902299796 |
PQPubID | 54727 |
PageCount | 21 |
ParticipantIDs | proquest_miscellaneous_1024654540 proquest_journals_902299796 crossref_primary_10_1029_2011JF002005 crossref_citationtrail_10_1029_2011JF002005 wiley_primary_10_1029_2011JF002005_JGRF859 istex_primary_ark_67375_WNG_ZX5FBRPD_K |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2011 |
PublicationDateYYYYMMDD | 2011-12-01 |
PublicationDate_xml | – month: 12 year: 2011 text: December 2011 |
PublicationDecade | 2010 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Journal of Geophysical Research |
PublicationTitleAlternate | J. Geophys. Res |
PublicationYear | 2011 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Cannon, S. H., E. M. Boldt, J. L. Laber, J. W. Kean, and D. M. Staley (2011), Rainfall intensity-duration thresholds for postfire debris-flow emergency-response planning, Nat. Hazards, 59, 209-236, doi:10.1007/s11069-011-9747-2. Kinner, D. A., and J. A. Moody (2010), Spatial variability of steady-state infiltration into a two-layer soil system on burned hillslopes, J. Hydrol., 381, 322-332, doi:10.1016/j.jhydrol.2009.12.004. Takahashi, T. (1981), Debris flow, Annu. Rev. Fluid Mech., 13, 57-77, doi:10.1146/annurev.fl.13.010181.000421. Wondzell, S. M., and J. G. King (2003), Postfire erosional processes in the Pacific Northwest and Rocky Mountain regions, For. Ecol. Manage., 178, 75-87, doi:10.1016/S0378-1127(03)00054-9. Berti, M., and A. Simoni (2005), Experimental evidences and numerical modelling of debris flow initiated by channel runoff, Landslides, 2, 171-182, doi:10.1007/s10346-005-0062-4. Shakesby, R. A., and S. H. Doerr (2006), Wildfire as a hydrological and geomorphological agent, Earth Sci. Rev., 74, 269-307, doi:10.1016/j.earscirev.2005.10.006. Berti, M., R. Genovois, A. Simoni, and P. R. Tecca (1999), Field observations of a debris flow event in the Dolomites, Geomorphology, 29, 265-274, doi:10.1016/S0169-555X(99)00018-5. Gabet, E. J., and A. Bookter (2008), A morphometric analysis of gullies scoured by post-fire progressively bulked debris flows in southwest Montana, USA, Geomorphology, 96, 298-309, doi:10.1016/j.geomorph.2007.03.016. McPhee, J. A. (1989), The Control of Nature, 272 pp., Farrar, Straus and Giroux, New York. Guzzetti, F., S. Peruccacci, M. Rossi, and C. P. Stark (2008), The rainfall intensity-duration control of shallow landslides and debris flows: An update, Landslides, 5, 3-17, doi:10.1007/s10346-007-0112-1. Cannon, S. H., J. E. Gartner, R. C. Wilson, J. C. Bowers, and J. L. Laber (2008), Storm rainfall conditions for floods and debris flows from recently burned areas in southwestern Colorado and southern California, Geomorphology, 96, 250-269, doi:10.1016/j.geomorph.2007.03.019. Iverson, R. M., M. Logan, R. G. LaHusen, and M. Berti (2010), The perfect debris flow? Aggregated results from 28 large-scale experiments, J. Geophys. Res., 115, F03005, doi:10.1029/2009JF001514. Berger, C., B. W. McArdell, and F. Schlunegger (2011), Direct measurement of channel erosion by debris flows, Illgraben, Switzerland, J. Geophys. Res., 116, F01002, doi:10.1029/2010JF001722. Larsen, I. J., J. L. Pederson, and J. C. Schmidt (2006), Geologic versus wildfire controls on hillslope processes and debris flow initiation in the Green River canyons of Dinosaur National Monument, Geomorphology, 81, 114-127, doi:10.1016/j.geomorph.2006.04.002. Moody, J. A., and D. A. Martin (2001a), Post-fire, rainfall intensity-peak discharge relations for three mountainous watersheds in the western USA, Hydrol. Processes, 15, 2981-2993, doi:10.1002/hyp.386. Gabet, E. J. (2003), Post-fire thin debris flow: Sediment transport and numerical modelling, Earth Surf. Processes Landforms, 28, 1341-1348, doi:10.1002/esp.590. Cannon, S. H., R. M. Kirkham, and M. Parise (2001), Wildfire-related debris-flow initiation processes, Storm King Mountain, Colorado, Geomorphology, 39, 171-188, doi:10.1016/S0169-555X(00)00108-2. Iverson, R. M. (1997), The physics of debris flow, Rev. Geophys., 35, 245-296, doi:10.1029/97RG00426. McCoy, S. W., J. W. Kean, J. A. Coe, D. M. Staley, T. A. Wasklewicz, and G. E. Tucker (2010), Evolution of a natural debris flow: In situ measurements of flow dynamics, video imagery, and terrestrial laser scanning, Geology, 38, 735-738, doi:10.1130/G30928.1. Chong, J., J. Renaud, and E. Ailsworth (2004), Flash floods wash away lives, dreams, Los Angeles Times, p. B.1, 3 Jan. Doehring, D. O. (1968), The effect of fire on geomorphic process in the San Gabriel Mountains, California, Contrib. Geol., 7, 43-65. Hürlimann, M., D. Rickenmann, and C. Graf (2003), Field and monitoring data of debris-flow events in the Swiss Alps, Can. Geotech. J., 40, 161-175, doi:10.1139/t02-087. Meyer, G. A., J. L. Pierce, S. H. Wood, and A. J. T. Jull (2001), Fire, storms, and erosional events in the Idaho batholith, Hydrol. Processes, 15, 3025-3038, doi:10.1002/hyp.389. Lin, R. G., V. Kim, and R. Vives (2010), 'Niagara' of mud hits homes; Dozens of houses in La Canada Flintridge are damaged or destroyed in a storm that defied forecast, Los Angeles Times, p. A.1, 7 Feb. Caine, N. (1980), The rainfall intensity-duration control of shallow landslides and debris flows, Geogr. Ann., Ser. A, 62, 23-27. Rice, R. M., and G. T. Foggin III (1971), Effect of high intensity storms in on soil slippage on mountainous watersheds in southern California, Water Resour. Res., 7, 1485-1496, doi:10.1029/WR007i006p01485. McArdell, B. W., P. Bartelt, and J. Kowalski (2007), Field observations of basal forces and fluid pore pressure in a debris flow, Geophys. Res. Lett., 34, L07406, doi:10.1029/2006GL029183. Gregoretti, C., and G. D. Fontana (2008), The triggering of debris flow due to channel-bed failure in some alpine headwater basins of the Dolomites: Analyses of critical runoff, Hydrol. Processes, 22, 2248-2263, doi:10.1002/hyp.6821. Santi, P. M., V. G. deWolfe, J. D. Higgins, S. H. Cannon, and J. E. Gartner (2008), Sources of debris flow material in burned areas, Geomorphology, 96, 310-321, doi:10.1016/j.geomorph.2007.02.022. Baum, R. L., and J. W. Godt (2010), Early warning of rainfall-induced shallow landslides and debris flows in the USA, Landslides, 7, 259-272, doi:101007/s10346-009-0177-0. Florsheim, J. L., E. A. Keller, and D. W. Best (1991), Fluvial sediment transport in response to moderate storm flows following chaparral wildfire, Ventura County, southern California, Geol. Soc. Am. Bull., 103, 504-511, doi:10.1130/0016-7606(1991)103<0504:FSTIRT>2.3.CO;2. Nyman, P., G. J. Sheridan, H. G. Smith, and P. N. J. Lane (2011), Evidence of debris flow occurrence after wildfire in upland catchments of south-east Australia, Geomorphology, 125, 383-401, doi:10.1016/j.geomorph.2010.10.016. Iverson, R. M., S. P. Schilling, and J. W. Vallance (1998), Objective delineation of lahar-inundation hazard zones, Geol. Soc. Am. Bull., 110(8), 972-984, doi:10.1130/0016-7606(1998)110<0972:ODOLIH>2.3.CO;2. Coe, J. A., D. A. Kinner, and J. W. Godt (2008), Initiation conditions for debris flows generated by runoff at Chalk Cliffs, central Colorado, Geomorphology, 96, 270-297, doi:10.1016/j.geomorph.2007.03.017. Wells, W. G. (1987), The effects of fire on the generation of debris flows in southern California, Rev. Eng. Geol., 7, 105-114. Malmon, D. V., S. L. Reneau, D. Katzmann, A. Lavine, and J. Lyman (2007), Suspended sediment transport in an ephemeral stream following wildfire, J. Geophys. Res., 112, F02006, doi:10.1029/2005JF000459. NOAA-USGS Debris Flow Task Force (2005), NOAA-USGS debris-flow warning system-Final report, U.S. Geol. Surv. Circ., 1283, 47 pp. Iverson, R. M., M. E. Reid, M. Logan, R. G. LaHusen, J. W. Godt, and J. P. Griswold (2011), Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment, Nat. Geosci., 4, 116-121, doi:10.1038/ngeo1040. Suwa, H., K. Okano, and T. Kanno (2009), Behavior of debris flows monitored on test slopes of Kamikamihorizawa Creek, Mount Yakedake, Japan, Int. J. Erosion Control Eng., 2, 33-45. Jorgensen, D. P., M. N. Hanshaw, K. M. Schmidt, J. L. Laber, D. M. Staley, J. W. Kean, and P. J. Restrepo (2011), Value of a dual-polarized gap-filling radar in support of southern California post-fire debris-flow warnings, J. Hydrometeorol., doi:10.1175/JHM-D-11-05.1, in press. Meyer, G. A., and S. G. Wells (1997), Fire-related sedimentation events on alluvial fans, Yellowstone National Park, U.S.A. J. Sediment. Res., 67(5), 776-791, doi:10.1306/D426863A-2B26-11D7-8648000102C1865D. Zhang, S. (1993), A comprehensive approach to the observation and prevention of debris flows in China, Nat. Hazards, 7, 1-23, doi:10.1007/BF00595676. Arattano, M., and L. Marchi (2000), Video-derived velocity distribution along a debris flow surge, Phys. Chem. Earth, Part B, 25(9), 781-784, doi:10.1016/S1464-1909(00)00101-5. Baum, R. L., J. W. Godt, and W. Z. Savage (2010), Estimating the timing and location of shallow rainfall-induced landslides using a model for transient, unsaturated infiltration, J. Geophys. Res., 115, F03013, doi:10.1029/2009JF001321. Iverson, R. M., and R. P. Denlinger (2001), Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory, J. Geophys. Res., 106, 537-552, doi:10.1029/2000JB900329. Suwa, H., K. Okunishi, and M. Sakai (1993), Motion, debris size and scale of debris flows in a valley on Mount Yakedake, Japan, in Sediment Problems: Strategies for Monitoring, Prediction and Control, IAHS Publ., 217, 239-248. Gartner, J. E., S. H. Cannon, P. M. Santi, and V. G. DeWolfe (2008), Empirical models to predict the volumes of debris flows generated by recently burned basins in the western U.S, Geomorphology, 96, 339-354, doi:10.1016/j.geomorph.2007.02.033. Iverson, R. M. (2000), Landslide triggering by rain infiltration, Water Resour. Res., 36, 1897-1910, doi:10.1029/2000WR900090. Eaton, E. C. (1935), Flood and erosion control problems and their solution, Proc. Am. Soc. Civ. Eng., 62(8), 1302-1362. Major, J. J., and R. M. Iverson (1999), Debris-flow deposition: Effects of pore-fluid pressure and friction concentrated at flow margins, Geol. Soc. Am. Bull., 111, 1424-1434, doi:10.1130/0016-7606(1999)111<1424:DFDEOP>2.3.CO;2. Minor, S. A., K. S. Kellogg, R. G. Stanley, L. D. Gurrola, E. A. Keller, and T. R. Brandt (2009), Geologic map of the Santa Barbara coastal plain area, Santa Barbara County, California, U.S. Geol. Surv. Sci. Invest. Map, 3001, 38 pp. VanDine, D. F. (1985), Debris flows and debris torrents in the Southern Canadian Cordillera, Can. Geotech. J., 22, 44-68, doi:10.1139/t85-006. Marchi, L., M. Arattano, and A. Deganutti (2002), Ten years of debris-flow monitoring in the Moscardo Torrent (Italian Alps), Geomo 2011; 116 1968; 7 1993; 7 2006; 74 1987; 7 2008; 5 2010; 381 2011; 59 1985; 22 1998; 110 2007; 34 1934 2001; 106 1935; 62 2011; 125 1971; 7 1991; 103 1993; 217 2001 2000 2010; 115 2002; 46 1986 1985 1958; 85 1984 2005; 1283 2001; 15 2008; 22 2003; 40 2010; 7 1989 2010; 38 1987; 165 2011; 1 2000; 25 2011 1980; 62 2010 1999; 29 1997; 67 2008 2005 2004 2008; 96 2011; 4 2009; 3001 2003; 178 2006; 81 2007; 112 2010; 46 2000; 36 1997; 35 1971; 750C 1981; 13 2003; 28 2001; 39 1999; 111 2005; 2 2009; 2 Florsheim (10.1029/2011JF002005:flor91) 1991; 103 McArdell (10.1029/2011JF002005:mcar07) 2007; 34 Nyman (10.1029/2011JF002005:nyma11) 2011; 125 Arattano (10.1029/2011JF002005:arat00) 2000; 25 Baum (10.1029/2011JF002005:baum10a) 2010; 7 Gartner (10.1029/2011JF002005:gart08) 2008; 96 Larsen (10.1029/2011JF002005:lars06) 2006; 81 Shakesby (10.1029/2011JF002005:shak06) 2006; 74 Yerkes (10.1029/2011JF002005:yerk05) 2005 Malmon (10.1029/2011JF002005:malm07) 2007; 112 Suwa (10.1029/2011JF002005:suwa93) 1993; 217 Iverson (10.1029/2011JF002005:iver01) 2001; 106 Major (10.1029/2011JF002005:majo99) 1999; 111 Iverson (10.1029/2011JF002005:iver10) 2010; 115 Chong (10.1029/2011JF002005:chon04) 2004 Armanini (10.1029/2011JF002005:arma00) 2000 Berti (10.1029/2011JF002005:bert05) 2005; 2 Scott (10.1029/2011JF002005:scot71) 1971; 750C Chawner (10.1029/2011JF002005:chaw34) 1934 VanDine (10.1029/2011JF002005:vand85) 1985; 22 Kean (10.1029/2011JF002005:kean11) 2011 Iverson (10.1029/2011JF002005:iver98) 1998; 110 McCoy (10.1029/2011JF002005:mcco11) 2011; 1 Cannon (10.1029/2011JF002005:cann01) 2001; 39 Moody (10.1029/2011JF002005:mood01a) 2001; 15 Coe (10.1029/2011JF002005:coe08) 2008; 96 Gabet (10.1029/2011JF002005:gabe03) 2003; 28 Leeper (10.1029/2011JF002005:leep10) 2010 Baum (10.1029/2011JF002005:baum08) 2008 Moody (10.1029/2011JF002005:mood01b) 2001 Iverson (10.1029/2011JF002005:iver97) 1997; 35 Doehring (10.1029/2011JF002005:doeh68) 1968; 7 Takahashi (10.1029/2011JF002005:taka81) 1981; 13 Gardner (10.1029/2011JF002005:gard58) 1958; 85 Santi (10.1029/2011JF002005:sant08) 2008; 96 Berti (10.1029/2011JF002005:bert99) 1999; 29 Berti (10.1029/2011JF002005:bert00) 2000; 25 Baum (10.1029/2011JF002005:baum10b) 2010; 115 Wells (10.1029/2011JF002005:well85) 1985 Wondzell (10.1029/2011JF002005:wond03) 2003; 178 Schmidt (10.1029/2011JF002005:schm11) 2011 Berger (10.1029/2011JF002005:berg10) 2010; 46 Eaton (10.1029/2011JF002005:eato35) 1935; 62 Iverson (10.1029/2011JF002005:iver00) 2000; 36 Wells (10.1029/2011JF002005:well87b) 1987; 165 Meyer (10.1029/2011JF002005:meye97) 1997; 67 NOAA-USGS Debris Flow Task Force (10.1029/2011JF002005:noaa05) 2005; 1283 Meyer (10.1029/2011JF002005:meye01) 2001; 15 Pierson (10.1029/2011JF002005:pier86) 1986 Kinner (10.1029/2011JF002005:kinn10) 2010; 381 Rice (10.1029/2011JF002005:rice71) 1971; 7 Cannon (10.1029/2011JF002005:cann11) 2011; 59 Denlinger (10.1029/2011JF002005:denl01) 2001; 106 Gabet (10.1029/2011JF002005:gabe08) 2008; 96 Gregoretti (10.1029/2011JF002005:greg08) 2008; 22 Marchi (10.1029/2011JF002005:marc02) 2002; 46 McCoy (10.1029/2011JF002005:mcco10) 2010; 38 Johnson (10.1029/2011JF002005:john84) 1984 McPhee (10.1029/2011JF002005:mcph89) 1989 Caine (10.1029/2011JF002005:cain80) 1980; 62 Suwa (10.1029/2011JF002005:suwa09) 2009; 2 Iverson (10.1029/2011JF002005:iver11) 2011; 4 Minor (10.1029/2011JF002005:mino09) 2009; 3001 Berger (10.1029/2011JF002005:berg11) 2011; 116 Zhang (10.1029/2011JF002005:zhan93) 1993; 7 Hungr (10.1029/2011JF002005:hung00) 2000; 25 Cannon (10.1029/2011JF002005:cann08) 2008; 96 Jorgensen (10.1029/2011JF002005:jorg11) 2011 Lin (10.1029/2011JF002005:lin10) 2010 Hürlimann (10.1029/2011JF002005:hurl03) 2003; 40 Wells (10.1029/2011JF002005:well87a) 1987; 7 Tognacca (10.1029/2011JF002005:togn00) 2000 Guzzetti (10.1029/2011JF002005:guzz08) 2008; 5 |
References_xml | – reference: Larsen, I. J., J. L. Pederson, and J. C. Schmidt (2006), Geologic versus wildfire controls on hillslope processes and debris flow initiation in the Green River canyons of Dinosaur National Monument, Geomorphology, 81, 114-127, doi:10.1016/j.geomorph.2006.04.002. – reference: VanDine, D. F. (1985), Debris flows and debris torrents in the Southern Canadian Cordillera, Can. Geotech. J., 22, 44-68, doi:10.1139/t85-006. – reference: Gardner, W. R. (1958), Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table, Soil Sci., 85, 228-232, doi:10.1097/00010694-195804000-00006. – reference: Coe, J. A., D. A. Kinner, and J. W. Godt (2008), Initiation conditions for debris flows generated by runoff at Chalk Cliffs, central Colorado, Geomorphology, 96, 270-297, doi:10.1016/j.geomorph.2007.03.017. – reference: Gabet, E. J. (2003), Post-fire thin debris flow: Sediment transport and numerical modelling, Earth Surf. Processes Landforms, 28, 1341-1348, doi:10.1002/esp.590. – reference: Iverson, R. M., S. P. Schilling, and J. W. Vallance (1998), Objective delineation of lahar-inundation hazard zones, Geol. Soc. Am. Bull., 110(8), 972-984, doi:10.1130/0016-7606(1998)110<0972:ODOLIH>2.3.CO;2. – reference: Guzzetti, F., S. Peruccacci, M. Rossi, and C. P. Stark (2008), The rainfall intensity-duration control of shallow landslides and debris flows: An update, Landslides, 5, 3-17, doi:10.1007/s10346-007-0112-1. – reference: Caine, N. (1980), The rainfall intensity-duration control of shallow landslides and debris flows, Geogr. Ann., Ser. A, 62, 23-27. – reference: Iverson, R. M., and R. P. Denlinger (2001), Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory, J. Geophys. Res., 106, 537-552, doi:10.1029/2000JB900329. – reference: McCoy, S. W., J. W. Kean, J. A. Coe, D. M. Staley, T. A. Wasklewicz, and G. E. Tucker (2010), Evolution of a natural debris flow: In situ measurements of flow dynamics, video imagery, and terrestrial laser scanning, Geology, 38, 735-738, doi:10.1130/G30928.1. – reference: Santi, P. M., V. G. deWolfe, J. D. Higgins, S. H. Cannon, and J. E. Gartner (2008), Sources of debris flow material in burned areas, Geomorphology, 96, 310-321, doi:10.1016/j.geomorph.2007.02.022. – reference: Zhang, S. (1993), A comprehensive approach to the observation and prevention of debris flows in China, Nat. Hazards, 7, 1-23, doi:10.1007/BF00595676. – reference: Berti, M., R. Genevois, R. LaHusen, A. Simoni, and P. R. Tecca (2000), Debris flow monitoring in the acquabona watershed in the Dolomites (Italian Alps), Phys. Chem. Earth, Part B, 25(9), 707-715, doi:10.1016/S1464-1909(00)00090-3. – reference: Meyer, G. A., J. L. Pierce, S. H. Wood, and A. J. T. Jull (2001), Fire, storms, and erosional events in the Idaho batholith, Hydrol. Processes, 15, 3025-3038, doi:10.1002/hyp.389. – reference: McArdell, B. W., P. Bartelt, and J. Kowalski (2007), Field observations of basal forces and fluid pore pressure in a debris flow, Geophys. Res. Lett., 34, L07406, doi:10.1029/2006GL029183. – reference: Major, J. J., and R. M. Iverson (1999), Debris-flow deposition: Effects of pore-fluid pressure and friction concentrated at flow margins, Geol. Soc. Am. Bull., 111, 1424-1434, doi:10.1130/0016-7606(1999)111<1424:DFDEOP>2.3.CO;2. – reference: Iverson, R. M. (2000), Landslide triggering by rain infiltration, Water Resour. Res., 36, 1897-1910, doi:10.1029/2000WR900090. – reference: Denlinger, R. P., and R. M. Iverson (2001), Flow of variably fluidized granular masses across three-dimensional terrain: 2. Numerical predictions and experimental tests, J. Geophys. Res., 106, 553-566, doi:10.1029/2000JB900330. – reference: Berger, C., B. W. McArdell, B. Fritschi, and F. Schlunegger (2010), A novel method for measuring the timing of bed erosion during debris flows and floods, Water Resour. Res., 46, W02502, doi:10.1029/2009WR007993. – reference: Minor, S. A., K. S. Kellogg, R. G. Stanley, L. D. Gurrola, E. A. Keller, and T. R. Brandt (2009), Geologic map of the Santa Barbara coastal plain area, Santa Barbara County, California, U.S. Geol. Surv. Sci. Invest. Map, 3001, 38 pp. – reference: Iverson, R. M., M. Logan, R. G. LaHusen, and M. Berti (2010), The perfect debris flow? Aggregated results from 28 large-scale experiments, J. Geophys. Res., 115, F03005, doi:10.1029/2009JF001514. – reference: Hungr, O. (2000), Analysis of debris flow surges using the theory of uniformly progressive flow, Earth Surf. Processes Landforms, 25, 483-495, doi:10.1002/(SICI)1096-9837(200005)25:5<483::AID-ESP76>3.0.CO;2-Z. – reference: Doehring, D. O. (1968), The effect of fire on geomorphic process in the San Gabriel Mountains, California, Contrib. Geol., 7, 43-65. – reference: Takahashi, T. (1981), Debris flow, Annu. Rev. Fluid Mech., 13, 57-77, doi:10.1146/annurev.fl.13.010181.000421. – reference: Cannon, S. H., E. M. Boldt, J. L. Laber, J. W. Kean, and D. M. Staley (2011), Rainfall intensity-duration thresholds for postfire debris-flow emergency-response planning, Nat. Hazards, 59, 209-236, doi:10.1007/s11069-011-9747-2. – reference: Arattano, M., and L. Marchi (2000), Video-derived velocity distribution along a debris flow surge, Phys. Chem. Earth, Part B, 25(9), 781-784, doi:10.1016/S1464-1909(00)00101-5. – reference: Eaton, E. C. (1935), Flood and erosion control problems and their solution, Proc. Am. Soc. Civ. Eng., 62(8), 1302-1362. – reference: Cannon, S. H., J. E. Gartner, R. C. Wilson, J. C. Bowers, and J. L. Laber (2008), Storm rainfall conditions for floods and debris flows from recently burned areas in southwestern Colorado and southern California, Geomorphology, 96, 250-269, doi:10.1016/j.geomorph.2007.03.019. – reference: Suwa, H., K. Okano, and T. Kanno (2009), Behavior of debris flows monitored on test slopes of Kamikamihorizawa Creek, Mount Yakedake, Japan, Int. J. Erosion Control Eng., 2, 33-45. – reference: Gartner, J. E., S. H. Cannon, P. M. Santi, and V. G. DeWolfe (2008), Empirical models to predict the volumes of debris flows generated by recently burned basins in the western U.S, Geomorphology, 96, 339-354, doi:10.1016/j.geomorph.2007.02.033. – reference: NOAA-USGS Debris Flow Task Force (2005), NOAA-USGS debris-flow warning system-Final report, U.S. Geol. Surv. Circ., 1283, 47 pp. – reference: Gregoretti, C., and G. D. Fontana (2008), The triggering of debris flow due to channel-bed failure in some alpine headwater basins of the Dolomites: Analyses of critical runoff, Hydrol. Processes, 22, 2248-2263, doi:10.1002/hyp.6821. – reference: Lin, R. G., V. Kim, and R. Vives (2010), 'Niagara' of mud hits homes; Dozens of houses in La Canada Flintridge are damaged or destroyed in a storm that defied forecast, Los Angeles Times, p. A.1, 7 Feb. – reference: Berti, M., R. Genovois, A. Simoni, and P. R. Tecca (1999), Field observations of a debris flow event in the Dolomites, Geomorphology, 29, 265-274, doi:10.1016/S0169-555X(99)00018-5. – reference: Chong, J., J. Renaud, and E. Ailsworth (2004), Flash floods wash away lives, dreams, Los Angeles Times, p. B.1, 3 Jan. – reference: Berger, C., B. W. McArdell, and F. Schlunegger (2011), Direct measurement of channel erosion by debris flows, Illgraben, Switzerland, J. Geophys. Res., 116, F01002, doi:10.1029/2010JF001722. – reference: Baum, R. L., and J. W. Godt (2010), Early warning of rainfall-induced shallow landslides and debris flows in the USA, Landslides, 7, 259-272, doi:101007/s10346-009-0177-0. – reference: Malmon, D. V., S. L. Reneau, D. Katzmann, A. Lavine, and J. Lyman (2007), Suspended sediment transport in an ephemeral stream following wildfire, J. Geophys. Res., 112, F02006, doi:10.1029/2005JF000459. – reference: Meyer, G. A., and S. G. Wells (1997), Fire-related sedimentation events on alluvial fans, Yellowstone National Park, U.S.A. J. Sediment. Res., 67(5), 776-791, doi:10.1306/D426863A-2B26-11D7-8648000102C1865D. – reference: Hürlimann, M., D. Rickenmann, and C. Graf (2003), Field and monitoring data of debris-flow events in the Swiss Alps, Can. Geotech. J., 40, 161-175, doi:10.1139/t02-087. – reference: Iverson, R. M., M. E. Reid, M. Logan, R. G. LaHusen, J. W. Godt, and J. P. Griswold (2011), Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment, Nat. Geosci., 4, 116-121, doi:10.1038/ngeo1040. – reference: Wondzell, S. M., and J. G. King (2003), Postfire erosional processes in the Pacific Northwest and Rocky Mountain regions, For. Ecol. Manage., 178, 75-87, doi:10.1016/S0378-1127(03)00054-9. – reference: Cannon, S. H., R. M. Kirkham, and M. Parise (2001), Wildfire-related debris-flow initiation processes, Storm King Mountain, Colorado, Geomorphology, 39, 171-188, doi:10.1016/S0169-555X(00)00108-2. – reference: Iverson, R. M. (1997), The physics of debris flow, Rev. Geophys., 35, 245-296, doi:10.1029/97RG00426. – reference: Berti, M., and A. Simoni (2005), Experimental evidences and numerical modelling of debris flow initiated by channel runoff, Landslides, 2, 171-182, doi:10.1007/s10346-005-0062-4. – reference: Suwa, H., K. Okunishi, and M. Sakai (1993), Motion, debris size and scale of debris flows in a valley on Mount Yakedake, Japan, in Sediment Problems: Strategies for Monitoring, Prediction and Control, IAHS Publ., 217, 239-248. – reference: Florsheim, J. L., E. A. Keller, and D. W. Best (1991), Fluvial sediment transport in response to moderate storm flows following chaparral wildfire, Ventura County, southern California, Geol. Soc. Am. Bull., 103, 504-511, doi:10.1130/0016-7606(1991)103<0504:FSTIRT>2.3.CO;2. – reference: Nyman, P., G. J. Sheridan, H. G. Smith, and P. N. J. Lane (2011), Evidence of debris flow occurrence after wildfire in upland catchments of south-east Australia, Geomorphology, 125, 383-401, doi:10.1016/j.geomorph.2010.10.016. – reference: Baum, R. L., J. W. Godt, and W. Z. Savage (2010), Estimating the timing and location of shallow rainfall-induced landslides using a model for transient, unsaturated infiltration, J. Geophys. Res., 115, F03013, doi:10.1029/2009JF001321. – reference: Shakesby, R. A., and S. H. Doerr (2006), Wildfire as a hydrological and geomorphological agent, Earth Sci. Rev., 74, 269-307, doi:10.1016/j.earscirev.2005.10.006. – reference: McPhee, J. A. (1989), The Control of Nature, 272 pp., Farrar, Straus and Giroux, New York. – reference: Jorgensen, D. P., M. N. Hanshaw, K. M. Schmidt, J. L. Laber, D. M. Staley, J. W. Kean, and P. J. Restrepo (2011), Value of a dual-polarized gap-filling radar in support of southern California post-fire debris-flow warnings, J. Hydrometeorol., doi:10.1175/JHM-D-11-05.1, in press. – reference: Marchi, L., M. Arattano, and A. Deganutti (2002), Ten years of debris-flow monitoring in the Moscardo Torrent (Italian Alps), Geomorphology, 46, 1-17, doi:10.1016/S0169-555X(01)00162-3. – reference: Moody, J. A., and D. A. Martin (2001a), Post-fire, rainfall intensity-peak discharge relations for three mountainous watersheds in the western USA, Hydrol. Processes, 15, 2981-2993, doi:10.1002/hyp.386. – reference: Rice, R. M., and G. T. Foggin III (1971), Effect of high intensity storms in on soil slippage on mountainous watersheds in southern California, Water Resour. Res., 7, 1485-1496, doi:10.1029/WR007i006p01485. – reference: Wells, W. G. (1987), The effects of fire on the generation of debris flows in southern California, Rev. Eng. Geol., 7, 105-114. – reference: Gabet, E. J., and A. Bookter (2008), A morphometric analysis of gullies scoured by post-fire progressively bulked debris flows in southwest Montana, USA, Geomorphology, 96, 298-309, doi:10.1016/j.geomorph.2007.03.016. – reference: Kinner, D. A., and J. A. Moody (2010), Spatial variability of steady-state infiltration into a two-layer soil system on burned hillslopes, J. Hydrol., 381, 322-332, doi:10.1016/j.jhydrol.2009.12.004. – start-page: 269 year: 1986 end-page: 296 – volume: 74 start-page: 269 year: 2006 end-page: 307 article-title: Wildfire as a hydrological and geomorphological agent publication-title: Earth Sci. Rev. – volume: 217 start-page: 239 year: 1993 end-page: 248 article-title: Motion, debris size and scale of debris flows in a valley on Mount Yakedake, Japan, in Sediment Problems: Strategies for Monitoring, Prediction and Control publication-title: IAHS Publ. – volume: 96 start-page: 270 year: 2008 end-page: 297 article-title: Initiation conditions for debris flows generated by runoff at Chalk Cliffs, central Colorado publication-title: Geomorphology – year: 2005 – volume: 38 start-page: 735 year: 2010 end-page: 738 article-title: Evolution of a natural debris flow: In situ measurements of flow dynamics, video imagery, and terrestrial laser scanning publication-title: Geology – year: 2001 – year: 1989 – volume: 15 start-page: 2981 year: 2001 end-page: 2993 article-title: Post‐fire, rainfall intensity–peak discharge relations for three mountainous watersheds in the western USA publication-title: Hydrol. Processes – volume: 110 start-page: 972 issue: 8 year: 1998 end-page: 984 article-title: Objective delineation of lahar‐inundation hazard zones publication-title: Geol. Soc. Am. Bull. – volume: 178 start-page: 75 year: 2003 end-page: 87 article-title: Postfire erosional processes in the Pacific Northwest and Rocky Mountain regions publication-title: For. Ecol. Manage. – volume: 40 start-page: 161 year: 2003 end-page: 175 article-title: Field and monitoring data of debris‐flow events in the Swiss Alps publication-title: Can. Geotech. J. – volume: 25 start-page: 781 issue: 9 year: 2000 end-page: 784 article-title: Video‐derived velocity distribution along a debris flow surge publication-title: Phys. Chem. Earth, Part B – year: 2010 article-title: ‘Niagara’ of mud hits homes; Dozens of houses in La Canada Flintridge are damaged or destroyed in a storm that defied forecast publication-title: Los Angeles Times – volume: 116 year: 2011 article-title: Direct measurement of channel erosion by debris flows, Illgraben, Switzerland publication-title: J. Geophys. Res. – volume: 96 start-page: 250 year: 2008 end-page: 269 article-title: Storm rainfall conditions for floods and debris flows from recently burned areas in southwestern Colorado and southern California publication-title: Geomorphology – volume: 28 start-page: 1341 year: 2003 end-page: 1348 article-title: Post‐fire thin debris flow: Sediment transport and numerical modelling publication-title: Earth Surf. Processes Landforms – start-page: 117 year: 2000 end-page: 124 – volume: 25 start-page: 483 year: 2000 end-page: 495 article-title: Analysis of debris flow surges using the theory of uniformly progressive flow publication-title: Earth Surf. Processes Landforms – volume: 7 start-page: 1485 year: 1971 end-page: 1496 article-title: Effect of high intensity storms in on soil slippage on mountainous watersheds in southern California publication-title: Water Resour. Res. – volume: 5 start-page: 3 year: 2008 end-page: 17 article-title: The rainfall intensity‐duration control of shallow landslides and debris flows: An update publication-title: Landslides – volume: 4 start-page: 116 year: 2011 end-page: 121 article-title: Positive feedback and momentum growth during debris‐flow entrainment of wet bed sediment publication-title: Nat. Geosci. – volume: 7 start-page: 43 year: 1968 end-page: 65 article-title: The effect of fire on geomorphic process in the San Gabriel Mountains, California publication-title: Contrib. Geol. – year: 2004 article-title: Flash floods wash away lives, dreams publication-title: Los Angeles Times – volume: 111 start-page: 1424 year: 1999 end-page: 1434 article-title: Debris‐flow deposition: Effects of pore‐fluid pressure and friction concentrated at flow margins publication-title: Geol. Soc. Am. Bull. – year: 1934 – volume: 59 start-page: 209 year: 2011 end-page: 236 article-title: Rainfall intensity‐duration thresholds for postfire debris‐flow emergency‐response planning publication-title: Nat. Hazards – volume: 106 start-page: 553 year: 2001 end-page: 566 article-title: Flow of variably fluidized granular masses across three‐dimensional terrain: 2. Numerical predictions and experimental tests publication-title: J. Geophys. Res. – year: 2008 – volume: 115 year: 2010 article-title: The perfect debris flow? Aggregated results from 28 large‐scale experiments publication-title: J. Geophys. Res. – volume: 62 start-page: 23 year: 1980 end-page: 27 article-title: The rainfall intensity‐duration control of shallow landslides and debris flows publication-title: Geogr. Ann., Ser. A – volume: 22 start-page: 44 year: 1985 end-page: 68 article-title: Debris flows and debris torrents in the Southern Canadian Cordillera publication-title: Can. Geotech. J. – volume: 85 start-page: 228 year: 1958 end-page: 232 article-title: Some steady‐state solutions of the unsaturated moisture flow equation with application to evaporation from a water table publication-title: Soil Sci. – volume: 112 year: 2007 article-title: Suspended sediment transport in an ephemeral stream following wildfire publication-title: J. Geophys. Res. – volume: 750C start-page: C242 year: 1971 end-page: C247 – volume: 1 start-page: 67 issue: 11 year: 2011 end-page: 75 – volume: 46 year: 2010 article-title: A novel method for measuring the timing of bed erosion during debris flows and floods publication-title: Water Resour. Res. – volume: 81 start-page: 114 year: 2006 end-page: 127 article-title: Geologic versus wildfire controls on hillslope processes and debris flow initiation in the Green River canyons of Dinosaur National Monument publication-title: Geomorphology – start-page: 89 year: 2000 end-page: 97 – volume: 25 start-page: 707 issue: 9 year: 2000 end-page: 715 article-title: Debris flow monitoring in the acquabona watershed in the Dolomites (Italian Alps) publication-title: Phys. Chem. Earth, Part B – volume: 2 start-page: 171 year: 2005 end-page: 182 article-title: Experimental evidences and numerical modelling of debris flow initiated by channel runoff publication-title: Landslides – volume: 381 start-page: 322 year: 2010 end-page: 332 article-title: Spatial variability of steady‐state infiltration into a two‐layer soil system on burned hillslopes publication-title: J. Hydrol. – volume: 62 start-page: 1302 issue: 8 year: 1935 end-page: 1362 article-title: Flood and erosion control problems and their solution publication-title: Proc. Am. Soc. Civ. Eng. – volume: 35 start-page: 245 year: 1997 end-page: 296 article-title: The physics of debris flow publication-title: Rev. Geophys. – volume: 22 start-page: 2248 year: 2008 end-page: 2263 article-title: The triggering of debris flow due to channel‐bed failure in some alpine headwater basins of the Dolomites: Analyses of critical runoff publication-title: Hydrol. Processes – volume: 39 start-page: 171 year: 2001 end-page: 188 article-title: Wildfire‐related debris‐flow initiation processes, Storm King Mountain, Colorado publication-title: Geomorphology – volume: 165 start-page: 275 year: 1987 end-page: 276 – year: 2011 article-title: Value of a dual‐polarized gap‐filling radar in support of southern California post‐fire debris‐flow warnings publication-title: J. Hydrometeorol. – volume: 103 start-page: 504 year: 1991 end-page: 511 article-title: Fluvial sediment transport in response to moderate storm flows following chaparral wildfire, Ventura County, southern California publication-title: Geol. Soc. Am. Bull. – volume: 96 start-page: 298 year: 2008 end-page: 309 article-title: A morphometric analysis of gullies scoured by post‐fire progressively bulked debris flows in southwest Montana, USA publication-title: Geomorphology – volume: 34 year: 2007 article-title: Field observations of basal forces and fluid pore pressure in a debris flow publication-title: Geophys. Res. Lett. – start-page: 685 year: 2011 end-page: 694 – volume: 2 start-page: 33 year: 2009 end-page: 45 article-title: Behavior of debris flows monitored on test slopes of Kamikamihorizawa Creek, Mount Yakedake, Japan publication-title: Int. J. Erosion Control Eng. – volume: 106 start-page: 537 year: 2001 end-page: 552 article-title: Flow of variably fluidized granular masses across three‐dimensional terrain: 1. Coulomb mixture theory publication-title: J. Geophys. Res. – year: 2010 – volume: 1283 year: 2005 article-title: NOAA‐USGS debris‐flow warning system—Final report publication-title: U.S. Geol. Surv. Circ. – volume: 7 start-page: 259 year: 2010 end-page: 272 article-title: Early warning of rainfall‐induced shallow landslides and debris flows in the USA publication-title: Landslides – volume: 115 year: 2010 article-title: Estimating the timing and location of shallow rainfall‐induced landslides using a model for transient, unsaturated infiltration publication-title: J. Geophys. Res. – volume: 46 start-page: 1 year: 2002 end-page: 17 article-title: Ten years of debris‐flow monitoring in the Moscardo Torrent (Italian Alps) publication-title: Geomorphology – volume: 7 start-page: 105 year: 1987 end-page: 114 article-title: The effects of fire on the generation of debris flows in southern California publication-title: Rev. Eng. Geol. – volume: 3001 year: 2009 article-title: Geologic map of the Santa Barbara coastal plain area, Santa Barbara County, California publication-title: U.S. Geol. Surv. Sci. Invest. Map – volume: 13 start-page: 57 year: 1981 end-page: 77 article-title: Debris flow publication-title: Annu. Rev. Fluid Mech. – volume: 125 start-page: 383 year: 2011 end-page: 401 article-title: Evidence of debris flow occurrence after wildfire in upland catchments of south‐east Australia publication-title: Geomorphology – volume: 29 start-page: 265 year: 1999 end-page: 274 article-title: Field observations of a debris flow event in the Dolomites publication-title: Geomorphology – volume: 67 start-page: 776 issue: 5 year: 1997 end-page: 791 article-title: Fire‐related sedimentation events on alluvial fans, Yellowstone National Park, U.S.A. publication-title: J. Sediment. Res. – volume: 15 start-page: 3025 year: 2001 end-page: 3038 article-title: Fire, storms, and erosional events in the Idaho batholith publication-title: Hydrol. Processes – volume: 7 start-page: 1 year: 1993 end-page: 23 article-title: A comprehensive approach to the observation and prevention of debris flows in China publication-title: Nat. Hazards – start-page: 583 year: 2011 end-page: 593 – volume: 96 start-page: 310 year: 2008 end-page: 321 article-title: Sources of debris flow material in burned areas publication-title: Geomorphology – volume: 36 start-page: 1897 year: 2000 end-page: 1910 article-title: Landslide triggering by rain infiltration publication-title: Water Resour. Res. – start-page: 57 year: 1985 end-page: 62 – volume: 96 start-page: 339 year: 2008 end-page: 354 article-title: Empirical models to predict the volumes of debris flows generated by recently burned basins in the western U.S publication-title: Geomorphology – start-page: 257 year: 1984 end-page: 361 – volume: 62 start-page: 1302 issue: 8 year: 1935 ident: 10.1029/2011JF002005:eato35 article-title: Flood and erosion control problems and their solution publication-title: Proc. Am. Soc. Civ. Eng. – year: 1934 ident: 10.1029/2011JF002005:chaw34 article-title: The Montrose–La Crescenta (California) flood of 1 January 1934, and its sedimentary aspects – volume: 2 start-page: 33 year: 2009 ident: 10.1029/2011JF002005:suwa09 article-title: Behavior of debris flows monitored on test slopes of Kamikamihorizawa Creek, Mount Yakedake, Japan publication-title: Int. J. Erosion Control Eng. doi: 10.13101/ijece.2.33 – volume: 46 start-page: W02502 year: 2010 ident: 10.1029/2011JF002005:berg10 article-title: A novel method for measuring the timing of bed erosion during debris flows and floods publication-title: Water Resour. Res. doi: 10.1029/2009WR007993 – volume: 62 start-page: 23 year: 1980 ident: 10.1029/2011JF002005:cain80 article-title: The rainfall intensity-duration control of shallow landslides and debris flows publication-title: Geogr. Ann., Ser. A doi: 10.2307/520449 – volume: 15 start-page: 3025 year: 2001 ident: 10.1029/2011JF002005:meye01 article-title: Fire, storms, and erosional events in the Idaho batholith publication-title: Hydrol. Processes doi: 10.1002/hyp.389 – volume: 7 start-page: 259 year: 2010 ident: 10.1029/2011JF002005:baum10a article-title: Early warning of rainfall-induced shallow landslides and debris flows in the USA publication-title: Landslides doi: 10.1007/s10346-009-0177-0 – volume: 115 start-page: F03005 year: 2010 ident: 10.1029/2011JF002005:iver10 article-title: The perfect debris flow? Aggregated results from 28 large-scale experiments publication-title: J. Geophys. Res. doi: 10.1029/2009JF001514 – start-page: 117 volume-title: Proceedings of the 2nd International Conference on Debris Flow Hazards Mitigation year: 2000 ident: 10.1029/2011JF002005:arma00 article-title: Triggering of debris flow by overland flow: A comparison between theoretical and experimental results – volume: 7 start-page: 1485 year: 1971 ident: 10.1029/2011JF002005:rice71 article-title: Effect of high intensity storms in on soil slippage on mountainous watersheds in southern California publication-title: Water Resour. Res. doi: 10.1029/WR007i006p01485 – volume: 39 start-page: 171 year: 2001 ident: 10.1029/2011JF002005:cann01 article-title: Wildfire-related debris-flow initiation processes, Storm King Mountain, Colorado publication-title: Geomorphology doi: 10.1016/S0169-555X(00)00108-2 – volume: 381 start-page: 322 year: 2010 ident: 10.1029/2011JF002005:kinn10 article-title: Spatial variability of steady-state infiltration into a two-layer soil system on burned hillslopes publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2009.12.004 – volume: 2 start-page: 171 year: 2005 ident: 10.1029/2011JF002005:bert05 article-title: Experimental evidences and numerical modelling of debris flow initiated by channel runoff publication-title: Landslides doi: 10.1007/s10346-005-0062-4 – volume: 106 start-page: 537 year: 2001 ident: 10.1029/2011JF002005:iver01 article-title: Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory publication-title: J. Geophys. Res. doi: 10.1029/2000JB900329 – volume: 750C volume-title: Origin and sedimentology of 1969 debris flows near Glendora, California year: 1971 ident: 10.1029/2011JF002005:scot71 – volume: 96 start-page: 298 year: 2008 ident: 10.1029/2011JF002005:gabe08 article-title: A morphometric analysis of gullies scoured by post-fire progressively bulked debris flows in southwest Montana, USA publication-title: Geomorphology doi: 10.1016/j.geomorph.2007.03.016 – year: 2004 ident: 10.1029/2011JF002005:chon04 article-title: Flash floods wash away lives, dreams publication-title: Los Angeles Times – volume: 116 start-page: F01002 year: 2011 ident: 10.1029/2011JF002005:berg11 article-title: Direct measurement of channel erosion by debris flows, Illgraben, Switzerland publication-title: J. Geophys. Res. doi: 10.1029/2010JF001722 – start-page: 685 volume-title: Debris-Flow Hazards Mitigation, Mechanics, Prediction, and Assessment year: 2011 ident: 10.1029/2011JF002005:kean11 article-title: Direct measurements of the hydrologic conditions leading up to and during post-fire debris flow in southern California, USA – volume: 178 start-page: 75 year: 2003 ident: 10.1029/2011JF002005:wond03 article-title: Postfire erosional processes in the Pacific Northwest and Rocky Mountain regions publication-title: For. Ecol. Manage. doi: 10.1016/S0378-1127(03)00054-9 – volume: 29 start-page: 265 year: 1999 ident: 10.1029/2011JF002005:bert99 article-title: Field observations of a debris flow event in the Dolomites publication-title: Geomorphology doi: 10.1016/S0169-555X(99)00018-5 – volume: 7 start-page: 105 year: 1987 ident: 10.1029/2011JF002005:well87a article-title: The effects of fire on the generation of debris flows in southern California publication-title: Rev. Eng. Geol. doi: 10.1130/REG7-p105 – volume: 96 start-page: 339 year: 2008 ident: 10.1029/2011JF002005:gart08 article-title: Empirical models to predict the volumes of debris flows generated by recently burned basins in the western U.S publication-title: Geomorphology doi: 10.1016/j.geomorph.2007.02.033 – volume: 111 start-page: 1424 year: 1999 ident: 10.1029/2011JF002005:majo99 article-title: Debris-flow deposition: Effects of pore-fluid pressure and friction concentrated at flow margins publication-title: Geol. Soc. Am. Bull. doi: 10.1130/0016-7606(1999)111<1424:DFDEOP>2.3.CO;2 – volume-title: Annual Meeting year: 2010 ident: 10.1029/2011JF002005:leep10 article-title: A low-cost method to measure the timing of post-fire debris flows and flash floods – volume: 34 start-page: L07406 year: 2007 ident: 10.1029/2011JF002005:mcar07 article-title: Field observations of basal forces and fluid pore pressure in a debris flow publication-title: Geophys. Res. Lett. doi: 10.1029/2006GL029183 – volume: 25 start-page: 707 issue: 9 year: 2000 ident: 10.1029/2011JF002005:bert00 article-title: Debris flow monitoring in the acquabona watershed in the Dolomites (Italian Alps) publication-title: Phys. Chem. Earth, Part B doi: 10.1016/S1464-1909(00)00090-3 – volume: 96 start-page: 270 year: 2008 ident: 10.1029/2011JF002005:coe08 article-title: Initiation conditions for debris flows generated by runoff at Chalk Cliffs, central Colorado publication-title: Geomorphology doi: 10.1016/j.geomorph.2007.03.017 – volume: 40 start-page: 161 year: 2003 ident: 10.1029/2011JF002005:hurl03 article-title: Field and monitoring data of debris-flow events in the Swiss Alps publication-title: Can. Geotech. J. doi: 10.1139/t02-087 – start-page: 269 volume-title: Hillslope Processes year: 1986 ident: 10.1029/2011JF002005:pier86 article-title: Flow behaviour of channelized debris flows, Mount St. Helens, Washington – volume: 46 start-page: 1 year: 2002 ident: 10.1029/2011JF002005:marc02 article-title: Ten years of debris-flow monitoring in the Moscardo Torrent (Italian Alps) publication-title: Geomorphology doi: 10.1016/S0169-555X(01)00162-3 – volume: 110 start-page: 972 issue: 8 year: 1998 ident: 10.1029/2011JF002005:iver98 article-title: Objective delineation of lahar-inundation hazard zones publication-title: Geol. Soc. Am. Bull. doi: 10.1130/0016-7606(1998)110<0972:ODOLIH>2.3.CO;2 – volume: 112 start-page: F02006 year: 2007 ident: 10.1029/2011JF002005:malm07 article-title: Suspended sediment transport in an ephemeral stream following wildfire publication-title: J. Geophys. Res. doi: 10.1029/2005JF000459 – volume: 1 start-page: 67 year: 2011 ident: 10.1029/2011JF002005:mcco11 article-title: Observations of debris flows at Chalk Cliffs, Colorado, USA: Part 1, In-situ measurements of flow dynamics, tracer particle movement, and video imagery from the summer of 2009 – volume: 165 volume-title: Post-fire sediment movement by debris flows in the Santa Ynez Mountains, California year: 1987 ident: 10.1029/2011JF002005:well87b – volume: 1283 year: 2005 ident: 10.1029/2011JF002005:noaa05 article-title: NOAA-USGS debris-flow warning system—Final report publication-title: U.S. Geol. Surv. Circ. – volume: 15 start-page: 2981 year: 2001 ident: 10.1029/2011JF002005:mood01a article-title: Post-fire, rainfall intensity–peak discharge relations for three mountainous watersheds in the western USA publication-title: Hydrol. Processes doi: 10.1002/hyp.386 – start-page: 257 volume-title: Slope Instability year: 1984 ident: 10.1029/2011JF002005:john84 article-title: Debris flow – volume: 7 start-page: 43 year: 1968 ident: 10.1029/2011JF002005:doeh68 article-title: The effect of fire on geomorphic process in the San Gabriel Mountains, California publication-title: Contrib. Geol. – start-page: 89 volume-title: Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment: Proceedings of the 2nd International Conference on Debris Flow Hazards Mitigation, Taipei, Taiwan, 16–18 August 2000 year: 2000 ident: 10.1029/2011JF002005:togn00 article-title: Threshold criterion for debris-flow initiation due to channel bed failure – volume: 25 start-page: 483 year: 2000 ident: 10.1029/2011JF002005:hung00 article-title: Analysis of debris flow surges using the theory of uniformly progressive flow publication-title: Earth Surf. Processes Landforms doi: 10.1002/(SICI)1096-9837(200005)25:5<483::AID-ESP76>3.0.CO;2-Z – volume: 96 start-page: 250 year: 2008 ident: 10.1029/2011JF002005:cann08 article-title: Storm rainfall conditions for floods and debris flows from recently burned areas in southwestern Colorado and southern California publication-title: Geomorphology doi: 10.1016/j.geomorph.2007.03.019 – volume: 59 start-page: 209 year: 2011 ident: 10.1029/2011JF002005:cann11 article-title: Rainfall intensity-duration thresholds for postfire debris-flow emergency-response planning publication-title: Nat. Hazards doi: 10.1007/s11069-011-9747-2 – volume: 103 start-page: 504 year: 1991 ident: 10.1029/2011JF002005:flor91 article-title: Fluvial sediment transport in response to moderate storm flows following chaparral wildfire, Ventura County, southern California publication-title: Geol. Soc. Am. Bull. doi: 10.1130/0016-7606(1991)103<0504:FSTIRT>2.3.CO;2 – volume: 67 start-page: 776 issue: 5 year: 1997 ident: 10.1029/2011JF002005:meye97 article-title: Fire-related sedimentation events on alluvial fans, Yellowstone National Park, U.S.A. publication-title: J. Sediment. Res. – volume: 74 start-page: 269 year: 2006 ident: 10.1029/2011JF002005:shak06 article-title: Wildfire as a hydrological and geomorphological agent publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2005.10.006 – volume: 22 start-page: 44 year: 1985 ident: 10.1029/2011JF002005:vand85 article-title: Debris flows and debris torrents in the Southern Canadian Cordillera publication-title: Can. Geotech. J. doi: 10.1139/t85-006 – volume: 13 start-page: 57 year: 1981 ident: 10.1029/2011JF002005:taka81 article-title: Debris flow publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fl.13.010181.000421 – volume: 3001 year: 2009 ident: 10.1029/2011JF002005:mino09 article-title: Geologic map of the Santa Barbara coastal plain area, Santa Barbara County, California – volume: 4 start-page: 116 year: 2011 ident: 10.1029/2011JF002005:iver11 article-title: Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment publication-title: Nat. Geosci. doi: 10.1038/ngeo1040 – volume: 81 start-page: 114 year: 2006 ident: 10.1029/2011JF002005:lars06 article-title: Geologic versus wildfire controls on hillslope processes and debris flow initiation in the Green River canyons of Dinosaur National Monument publication-title: Geomorphology doi: 10.1016/j.geomorph.2006.04.002 – start-page: 583 volume-title: Debris-Flow Hazards Mitigation, Mechanics, Prediction, and Assessment year: 2011 ident: 10.1029/2011JF002005:schm11 article-title: Hydrologic conditions and terrestrial laser scanning of post-fire debris flows in the San Gabriel Mountains, CA, U.S.A. – volume: 25 start-page: 781 issue: 9 year: 2000 ident: 10.1029/2011JF002005:arat00 article-title: Video-derived velocity distribution along a debris flow surge publication-title: Phys. Chem. Earth, Part B doi: 10.1016/S1464-1909(00)00101-5 – volume: 115 start-page: F03013 year: 2010 ident: 10.1029/2011JF002005:baum10b article-title: Estimating the timing and location of shallow rainfall-induced landslides using a model for transient, unsaturated infiltration publication-title: J. Geophys. Res. doi: 10.1029/2009JF001321 – start-page: 57 volume-title: Proceedings of the Chaparral Ecosystem Conference year: 1985 ident: 10.1029/2011JF002005:well85 article-title: The influence of fire on erosion rates in California chaparral – volume: 38 start-page: 735 year: 2010 ident: 10.1029/2011JF002005:mcco10 article-title: Evolution of a natural debris flow: In situ measurements of flow dynamics, video imagery, and terrestrial laser scanning publication-title: Geology doi: 10.1130/G30928.1 – volume: 217 start-page: 239 year: 1993 ident: 10.1029/2011JF002005:suwa93 article-title: Motion, debris size and scale of debris flows in a valley on Mount Yakedake, Japan, in Sediment Problems: Strategies for Monitoring, Prediction and Control publication-title: IAHS Publ. – volume: 96 start-page: 310 year: 2008 ident: 10.1029/2011JF002005:sant08 article-title: Sources of debris flow material in burned areas publication-title: Geomorphology doi: 10.1016/j.geomorph.2007.02.022 – year: 2008 ident: 10.1029/2011JF002005:baum08 article-title: TRIGRS—A FORTRAN program for transient rainfall infiltration and grid-based regional slope-stability analysis, version 2.0 doi: 10.3133/ofr20081159 – volume-title: The Control of Nature year: 1989 ident: 10.1029/2011JF002005:mcph89 – year: 2001 ident: 10.1029/2011JF002005:mood01b article-title: Hydrologic and sedimentologic response of two burned watersheds in Colorado – year: 2011 ident: 10.1029/2011JF002005:jorg11 article-title: Value of a dual-polarized gap-filling radar in support of southern California post-fire debris-flow warnings publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-11-05.1 – volume: 5 start-page: 3 year: 2008 ident: 10.1029/2011JF002005:guzz08 article-title: The rainfall intensity-duration control of shallow landslides and debris flows: An update publication-title: Landslides doi: 10.1007/s10346-007-0112-1 – volume: 125 start-page: 383 year: 2011 ident: 10.1029/2011JF002005:nyma11 article-title: Evidence of debris flow occurrence after wildfire in upland catchments of south-east Australia publication-title: Geomorphology doi: 10.1016/j.geomorph.2010.10.016 – volume: 85 start-page: 228 year: 1958 ident: 10.1029/2011JF002005:gard58 article-title: Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table publication-title: Soil Sci. doi: 10.1097/00010694-195804000-00006 – volume: 36 start-page: 1897 year: 2000 ident: 10.1029/2011JF002005:iver00 article-title: Landslide triggering by rain infiltration publication-title: Water Resour. Res. doi: 10.1029/2000WR900090 – year: 2005 ident: 10.1029/2011JF002005:yerk05 article-title: Preliminary geologic map of the Los Angeles 30′ × 60′ quadrangle, southern California – year: 2010 ident: 10.1029/2011JF002005:lin10 article-title: ‘Niagara’ of mud hits homes; Dozens of houses in La Canada Flintridge are damaged or destroyed in a storm that defied forecast publication-title: Los Angeles Times – volume: 28 start-page: 1341 year: 2003 ident: 10.1029/2011JF002005:gabe03 article-title: Post-fire thin debris flow: Sediment transport and numerical modelling publication-title: Earth Surf. Processes Landforms doi: 10.1002/esp.590 – volume: 22 start-page: 2248 year: 2008 ident: 10.1029/2011JF002005:greg08 article-title: The triggering of debris flow due to channel-bed failure in some alpine headwater basins of the Dolomites: Analyses of critical runoff publication-title: Hydrol. Processes doi: 10.1002/hyp.6821 – volume: 7 start-page: 1 year: 1993 ident: 10.1029/2011JF002005:zhan93 article-title: A comprehensive approach to the observation and prevention of debris flows in China publication-title: Nat. Hazards doi: 10.1007/BF00595676 – volume: 35 start-page: 245 year: 1997 ident: 10.1029/2011JF002005:iver97 article-title: The physics of debris flow publication-title: Rev. Geophys. doi: 10.1029/97RG00426 – volume: 106 start-page: 553 year: 2001 ident: 10.1029/2011JF002005:denl01 article-title: Flow of variably fluidized granular masses across three-dimensional terrain: 2. Numerical predictions and experimental tests publication-title: J. Geophys. Res. doi: 10.1029/2000JB900330 |
SSID | ssj0000456401 ssj0014561 ssj0030581 ssj0030583 ssj0043761 ssj0030582 ssj0030585 ssj0030584 ssj0030586 ssj0000816912 |
Score | 2.4872766 |
Snippet | Debris flows often occur in burned steeplands of southern California, sometimes causing property damage and loss of life. In an effort to better understand the... We present the first known in situ measurements of post-fire debris flow Debris-flow timing tightly correlated with short duration rainfall intensity... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Atmospheric sciences Debris flow Detritus fire Floods Hydrology In situ measurement Landslides Landslides & mudslides Moisture content monitoring Mountains Precipitation Rainfall intensity San Gabriel Mountains Slope stability Soil erosion Soil moisture Soil water Surface runoff Surface water Water content |
Title | In situ measurements of post-fire debris flows in southern California: Comparisons of the timing and magnitude of 24 debris-flow events with rainfall and soil moisture conditions |
URI | https://api.istex.fr/ark:/67375/WNG-ZX5FBRPD-K/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2011JF002005 https://www.proquest.com/docview/902299796 https://www.proquest.com/docview/1024654540 |
Volume | 116 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZo98IFgQARCtVUAg4gq2niJHYvFS3NlkWsqhUVKy6RE9tVRTbZNruiv4tfWI_Xmy4Heovk8SN-jsffzEfIu6wyqpSMUxkaTVmiBS3jMqTS2JXFWBynAn2Hv4_Tsws2miZTj83pPKxyvSe6jVq1FdrI94U9bITIRHo0v6ZIGoWPq55BY4sM7A7M7d1rcHw6Pp_0RhZklRDuxTOyHxStdh78HkZiH8--UY4KE5LXbRxLA-zh2390zk3N1R09-VPyxOuM8Hk1yM_II908J3-_NmAbt4TZvZWvg9bAvO0W1NidDJRGOD-Yuv3TwZUVbx2cvYF7h6xDOOmJCF1uKwALZPq6BNkomElEFy2VxrSI-SIpFgku9lMHaMkFJJowsq5dpq69qmHW2t-z7QJ74VYrXNgLcpGf_jg5o56AgcoYoVRKZwfCLvmMxwaDvkSVyQ7KROvYaKs6CfT_USbkMo2YzHgVp2XIM5OaUKcpC2X8kmw3baNfEVDc3gNVwgx6PSShEZlGr1ZVSaZZmqiAfFr3f1H56ORIklEX7pU8EsXmaAXkfS89X0Xl-I_cBzeUvZC8-Y1Itiwpfo6Hxa9pkh9Pzr8U3wKysx7rwi_iruinXED2-lS7-vBJRTa6XXZYIwaks2pvQD66KfJge4rRcJLzRLx-sLod8thZrh1o5g3ZXtws9Vur-izKXbLF8-Gun-Z3vYIB6g |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKe4ALAgFiKY9BohxAVkPiPIyEELRkX-0KVa1Y9WKc2EYV2WRpdlX4UVz4hXi8Sboc6K23SB7bsWdsj8cz8xHyIs6NyiRLqPSMpizUnGZB5lFp7MpiLAgijrHDh5NocMJG03C6QX63sTDoVtnuiW6jVlWONvJdbg8bzmMevZ__oAgahY-rLYLGSirG-teFvbHV74b7lr07vp9-Ot4b0AZUgMoA3YOUju09O0CACYOJTPzcxG-yUOvAaKsOcIxpUcZLZOQzGSd5EGVeEpvIeDqKmCcD2-4NsmVHwXFBJWm_M-kghgV376u-_aBoI2xc7T2f7-JJO0pRPUOovLVDcAv5-fMfDXddT3YHXXqH3G40VPiwEqm7ZEOX98ifYQl2KpYwu7Qp1lAZmFf1ghq7b4LSGDwApqguajiz5JVzni_hMvzrLex1sIeutiWABeKKfQNZKphJ9GVaKo1lPmuapNgkuExTNaDdGBDWwsiicJXq6qyAWWWHZ_8L7PVerbzQ7pOTa-HMA7JZVqV-SEAl9tapQmYwxiL0DI81xtCqXDLNolD1yOt2_kXe5EJHSI5CuDd5n4t1bvXITkc9X-UA-Q_dS8fKjkief0e_uTgUXyZ9cToN049Hn_fFuEe2W16LZsuoRSfgPfK8K7VrHR9wZKmrZY09Yvo7q2T3yCsnIlf-jxj1j9Ik5I-u7O4ZuTk4PjwQB8PJeJvccjZz567zmGwuzpf6iVW6FtlTJ-pAvl732voLcCc6fg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGKyFeEAgQYXwYifEAihoS58NICLF12dpCVVVMVHsxTmyjiTQpS6vBv8Ub_x13bpqVB_a2t0q5OGnubN-df3c_Ql7EuVGZZIkrPaNdFmruZkHmudLAzGIsCCKOtcOfxtHxCRvOwtkO-bOphUFY5WZNtAu1qnLMkfc4bDacxzzqmQYVMemn7xc_XCSQwoPWDZvG2kJG-tcFRG_1u0EfVL3n--nh54NjtyEYcGWAUCGlY4i5AySbMNjUxM9N_CYLtQ6MBteAY32LMl4iI5_JOMmDKPOS2ETG01HEPBnAuDdIN4agyOuQ7v7heDJtEzzIaMHtaasPP1zMGDbAe8_nPdx3hyk6a0ict7UldlG7P__xd7e9ZrvtpXfI7cZfpR_WBnaX7OjyHvk9KCl8jBWdX2YYa1oZuqjqpWtgFaVKYykBNUV1UdMzEK8slL6kl8Vgb-lBS4Jo7wYBukSWsW9UlorOJSKbVkrjNZ81Q7o4JLV9p2qKWWSKJBdGFoW9qa7OCjqv4O_Be1EI9tUak3afnFyLbh6QTlmV-iGhKoEYVIXMYMVF6Bkea6yoVblkmkWhcsjrzfcXedMZHQk6CmFP6H0utrXlkL1WerHuCPIfuZdWla2QPP-OKLo4FF_GR-J0Fqb700lfjByyu9G1aBaQWrTm7pDn7VWY-XicI0tdrWp8IjbDA5fbIa-siVz5PmJ4NE2TkD-68nHPyE2YV-LjYDzaJbdsAt1idx6TzvJ8pZ-AB7bMnja2TsnX655efwGRcUAQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+situ+measurements+of+post%E2%80%90fire+debris+flows+in+southern+California%3A+Comparisons+of+the+timing+and+magnitude+of+24+debris%E2%80%90flow+events+with+rainfall+and+soil+moisture+conditions&rft.jtitle=Journal+of+Geophysical+Research%3A+Earth+Surface&rft.au=Kean%2C+Jason+W.&rft.au=Staley%2C+Dennis+M.&rft.au=Cannon%2C+Susan+H.&rft.date=2011-12-01&rft.issn=0148-0227&rft.eissn=2156-2202&rft.volume=116&rft.issue=F4&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2011JF002005&rft.externalDBID=10.1029%252F2011JF002005&rft.externalDocID=JGRF859 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon |