Water-Transferred, Inkjet-Printed Supercapacitors toward Conformal and Epidermal Energy Storage

Rapid growth of the internet of things and health monitoring systems have stimulated the development of flexible, wearable, and conformal embedded electronics with the unprecedented need for energy storage systems fully adaptable to diverse form factors. Conventional fabrication methods, such as pho...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 12; no. 7; pp. 8456 - 8465
Main Authors Giannakou, Pavlos, Tas, Mehmet O, Le Borgne, Brice, Shkunov, Maxim
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 19.02.2020
Washington, D.C. : American Chemical Society
Subjects
Online AccessGet full text
ISSN1944-8244
1944-8252
1944-8252
DOI10.1021/acsami.9b21283

Cover

Loading…
Abstract Rapid growth of the internet of things and health monitoring systems have stimulated the development of flexible, wearable, and conformal embedded electronics with the unprecedented need for energy storage systems fully adaptable to diverse form factors. Conventional fabrication methods, such as photolithography for electronics and electrode winding/stacking for energy storage systems, struggle as fabrication strategies to produce devices with three-dimensional, stretchable, and conformal form factors. In this study, we demonstrate the fabrication of supercapacitors on 3D objects through inkjet and water-transfer printing. The devices are initially printed on a water-soluble substrate, which is then placed on the surface of water. Once the substrate is dissolved, the level of water is lowered until the devices are transferred on to the submerged 3D object. As a proof of concept, planar supercapacitors constituted of a silver nanoparticle-based current collector, nickel­(II) oxide (NiO) nanoparticle-based active electrodes, and ultraviolet-cured triacrylate polymer-based solid-state electrolyte were used as model materials. The conformal supercapacitors showed a maximum areal capacitance of 87.2 mF·cm–2 at a voltage window of 0–1.5 V. Moreover, the concept of water transfer was further explored with a particular focus on wearable applications by transferring the supercapacitors onto the skin of a human subject to realize epidermal energy storage. This new class of conformal electrochemical energy storage offers a new alternative approach toward monolithically integrated/object-tailored energy storage systems that are essential for complex-shaped devices for internet of things and flexible/on-skin electronic applications.
AbstractList Rapid growth of the internet of things and health monitoring systems have stimulated the development of flexible, wearable, and conformal embedded electronics with the unprecedented need for energy storage systems fully adaptable to diverse form factors. Conventional fabrication methods, such as photolithography for electronics and electrode winding/stacking for energy storage systems, struggle as fabrication strategies to produce devices with three-dimensional, stretchable, and conformal form factors. In this study, we demonstrate the fabrication of supercapacitors on 3D objects through inkjet and water-transfer printing. The devices are initially printed on a water-soluble substrate, which is then placed on the surface of water. Once the substrate is dissolved, the level of water is lowered until the devices are transferred on to the submerged 3D object. As a proof of concept, planar supercapacitors constituted of a silver nanoparticle-based current collector, nickel­(II) oxide (NiO) nanoparticle-based active electrodes, and ultraviolet-cured triacrylate polymer-based solid-state electrolyte were used as model materials. The conformal supercapacitors showed a maximum areal capacitance of 87.2 mF·cm–2 at a voltage window of 0–1.5 V. Moreover, the concept of water transfer was further explored with a particular focus on wearable applications by transferring the supercapacitors onto the skin of a human subject to realize epidermal energy storage. This new class of conformal electrochemical energy storage offers a new alternative approach toward monolithically integrated/object-tailored energy storage systems that are essential for complex-shaped devices for internet of things and flexible/on-skin electronic applications.
Rapid growth of the internet of things and health monitoring systems have stimulated the development of flexible, wearable, and conformal embedded electronics with the unprecedented need for energy storage systems fully adaptable to diverse form factors. Conventional fabrication methods, such as photolithography for electronics and electrode winding/stacking for energy storage systems, struggle as fabrication strategies to produce devices with three-dimensional, stretchable, and conformal form factors. In this study, we demonstrate the fabrication of supercapacitors on 3D objects through inkjet and water-transfer printing. The devices are initially printed on a water-soluble substrate, which is then placed on the surface of water. Once the substrate is dissolved, the level of water is lowered until the devices are transferred on to the submerged 3D object. As a proof of concept, planar supercapacitors constituted of a silver nanoparticle-based current collector, nickel(II) oxide (NiO) nanoparticle-based active electrodes, and ultraviolet-cured triacrylate polymer-based solid-state electrolyte were used as model materials. The conformal supercapacitors showed a maximum areal capacitance of 87.2 mF·cm-2 at a voltage window of 0-1.5 V. Moreover, the concept of water transfer was further explored with a particular focus on wearable applications by transferring the supercapacitors onto the skin of a human subject to realize epidermal energy storage. This new class of conformal electrochemical energy storage offers a new alternative approach toward monolithically integrated/object-tailored energy storage systems that are essential for complex-shaped devices for internet of things and flexible/on-skin electronic applications.Rapid growth of the internet of things and health monitoring systems have stimulated the development of flexible, wearable, and conformal embedded electronics with the unprecedented need for energy storage systems fully adaptable to diverse form factors. Conventional fabrication methods, such as photolithography for electronics and electrode winding/stacking for energy storage systems, struggle as fabrication strategies to produce devices with three-dimensional, stretchable, and conformal form factors. In this study, we demonstrate the fabrication of supercapacitors on 3D objects through inkjet and water-transfer printing. The devices are initially printed on a water-soluble substrate, which is then placed on the surface of water. Once the substrate is dissolved, the level of water is lowered until the devices are transferred on to the submerged 3D object. As a proof of concept, planar supercapacitors constituted of a silver nanoparticle-based current collector, nickel(II) oxide (NiO) nanoparticle-based active electrodes, and ultraviolet-cured triacrylate polymer-based solid-state electrolyte were used as model materials. The conformal supercapacitors showed a maximum areal capacitance of 87.2 mF·cm-2 at a voltage window of 0-1.5 V. Moreover, the concept of water transfer was further explored with a particular focus on wearable applications by transferring the supercapacitors onto the skin of a human subject to realize epidermal energy storage. This new class of conformal electrochemical energy storage offers a new alternative approach toward monolithically integrated/object-tailored energy storage systems that are essential for complex-shaped devices for internet of things and flexible/on-skin electronic applications.
Rapid growth of the internet of things and health monitoring systems have stimulated the development of flexible, wearable, and conformal embedded electronics with the unprecedented need for energy storage systems fully adaptable to diverse form factors. Conventional fabrication methods, such as photolithography for electronics and electrode winding/stacking for energy storage systems, struggle as fabrication strategies to produce devices with three-dimensional, stretchable, and conformal form factors. In this study, we demonstrate the fabrication of supercapacitors on 3D objects through inkjet and water-transfer printing. The devices are initially printed on a water-soluble substrate, which is then placed on the surface of water. Once the substrate is dissolved, the level of water is lowered until the devices are transferred on to the submerged 3D object. As a proof of concept, planar supercapacitors constituted of a silver nanoparticle-based current collector, nickel(II) oxide (NiO) nanoparticle-based active electrodes, and ultraviolet-cured triacrylate polymer-based solid-state electrolyte were used as model materials. The conformal supercapacitors showed a maximum areal capacitance of 87.2 mF·cm–² at a voltage window of 0–1.5 V. Moreover, the concept of water transfer was further explored with a particular focus on wearable applications by transferring the supercapacitors onto the skin of a human subject to realize epidermal energy storage. This new class of conformal electrochemical energy storage offers a new alternative approach toward monolithically integrated/object-tailored energy storage systems that are essential for complex-shaped devices for internet of things and flexible/on-skin electronic applications.
Rapid growth of the internet of things and health monitoring systems have stimulated the development of flexible, wearable, and conformal embedded electronics with the unprecedented need for energy storage systems fully adaptable to diverse form factors. Conventional fabrication methods, such as photolithography for electronics and electrode winding/stacking for energy storage systems, struggle as fabrication strategies to produce devices with three-dimensional, stretchable, and conformal form factors. In this study, we demonstrate the fabrication of supercapacitors on 3D objects through inkjet and water-transfer printing. The devices are initially printed on a water-soluble substrate, which is then placed on the surface of water. Once the substrate is dissolved, the level of water is lowered until the devices are transferred on to the submerged 3D object. As a proof of concept, planar supercapacitors constituted of a silver nanoparticle-based current collector, nickel(II) oxide (NiO) nanoparticle-based active electrodes, and ultraviolet-cured triacrylate polymer-based solid-state electrolyte were used as model materials. The conformal supercapacitors showed a maximum areal capacitance of 87.2 mF·cm at a voltage window of 0-1.5 V. Moreover, the concept of water transfer was further explored with a particular focus on wearable applications by transferring the supercapacitors onto the skin of a human subject to realize epidermal energy storage. This new class of conformal electrochemical energy storage offers a new alternative approach toward monolithically integrated/object-tailored energy storage systems that are essential for complex-shaped devices for internet of things and flexible/on-skin electronic applications.
Author Shkunov, Maxim
Giannakou, Pavlos
Le Borgne, Brice
Tas, Mehmet O
AuthorAffiliation GREMAN Institute and CERTEM
Advanced Technology Institute, Department of Electrical and Electronic Engineering
AuthorAffiliation_xml – name: Advanced Technology Institute, Department of Electrical and Electronic Engineering
– name: GREMAN Institute and CERTEM
Author_xml – sequence: 1
  givenname: Pavlos
  orcidid: 0000-0002-8090-4426
  surname: Giannakou
  fullname: Giannakou, Pavlos
  email: p.giannakou@surrey.ac.uk
  organization: Advanced Technology Institute, Department of Electrical and Electronic Engineering
– sequence: 2
  givenname: Mehmet O
  orcidid: 0000-0003-4688-1678
  surname: Tas
  fullname: Tas, Mehmet O
  organization: Advanced Technology Institute, Department of Electrical and Electronic Engineering
– sequence: 3
  givenname: Brice
  surname: Le Borgne
  fullname: Le Borgne, Brice
  organization: GREMAN Institute and CERTEM
– sequence: 4
  givenname: Maxim
  surname: Shkunov
  fullname: Shkunov, Maxim
  email: m.shkunov@surrey.ac.uk
  organization: Advanced Technology Institute, Department of Electrical and Electronic Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31985204$$D View this record in MEDLINE/PubMed
https://univ-tours.hal.science/hal-02590667$$DView record in HAL
BookMark eNqFkUtr3DAUhUVJaB7ttsviZRPqqd6yl2GYJoGBBJLSpbhjX6ee2pIryS359_XUkywCoStJl-8crs45IQfOOyTkA6MLRjn7AlWEvl2UG854Id6QY1ZKmRdc8YPnu5RH5CTGLaVacKrekiPBykJxKo-J_Q4JQ34fwMUGQ8D6c3btfm4x5behdQnr7G4cMFQwQNUmH2KW_B8Idbb0rvGhhy4DV2eroa3x32vlMDw8ZncTCw_4jhw20EV8vz9Pybevq_vlVb6-ubxeXqxzEKVJeWOqgjUIlG-0rJoakCkmyoobBOBGKaOFVtN3Ss0lclFKriktVKFFTdWmEafkbPb9AZ0dQttDeLQeWnt1sba7GeWqpFqb32xiP83sEPyvEWOyfRsr7Dpw6MdouaRUGqON-D8qpJ5yV2rn-nGPjpse6-clnrKeADkDVfAxBmzsFCik1rsUoO0so3ZXqZ0rtftKJ9nihezJ-VXB-SyY5nbrx-Cm4F-D_wIEwbCZ
CitedBy_id crossref_primary_10_1088_2399_1984_ac74f9
crossref_primary_10_1149_2162_8777_ad4fbf
crossref_primary_10_1002_adfm_202208034
crossref_primary_10_1016_j_mattod_2025_02_010
crossref_primary_10_1134_S0036023621140138
crossref_primary_10_1016_j_jechem_2023_01_037
crossref_primary_10_1016_j_jallcom_2020_154957
crossref_primary_10_1021_acsami_2c08939
crossref_primary_10_4028_p_t38h57
crossref_primary_10_1021_acs_chemrev_3c00626
crossref_primary_10_1088_2631_7990_ac1158
crossref_primary_10_1007_s10854_021_07540_8
crossref_primary_10_1002_aelm_202201281
crossref_primary_10_1016_j_mtcomm_2022_103263
crossref_primary_10_1038_s41528_024_00340_0
crossref_primary_10_1088_1361_6463_adade5
crossref_primary_10_1016_j_cej_2024_152862
crossref_primary_10_1002_smtd_202100869
crossref_primary_10_1016_j_jcis_2020_12_052
crossref_primary_10_1016_j_addma_2024_104579
crossref_primary_10_1021_acsami_0c08931
crossref_primary_10_1002_eem2_12657
crossref_primary_10_1039_D4NJ04750H
crossref_primary_10_1016_j_ensm_2023_102839
crossref_primary_10_1021_acsami_0c07689
crossref_primary_10_1038_s41598_020_72244_8
crossref_primary_10_3390_ma16186133
crossref_primary_10_1039_D1MH00143D
crossref_primary_10_1016_j_electacta_2020_136539
crossref_primary_10_1063_5_0031669
crossref_primary_10_1002_adma_202106683
crossref_primary_10_1002_admi_202300942
crossref_primary_10_1007_s10854_022_08769_7
crossref_primary_10_1002_adfm_202210084
crossref_primary_10_1007_s41230_023_2106_6
crossref_primary_10_1021_acsami_0c14704
crossref_primary_10_1063_5_0048446
crossref_primary_10_1002_adfm_202211597
crossref_primary_10_1002_adsr_202200073
crossref_primary_10_1038_s41598_022_08921_7
crossref_primary_10_1088_1361_6528_ad983a
crossref_primary_10_1021_acssensors_4c01171
crossref_primary_10_1155_2022_6933510
crossref_primary_10_1016_j_jpowsour_2022_231475
crossref_primary_10_1021_acsomega_1c01488
crossref_primary_10_1002_smll_202410201
crossref_primary_10_1109_LSENS_2023_3301845
Cites_doi 10.1126/science.aag0476
10.1038/nnano.2010.162
10.1016/j.procir.2014.02.046
10.3390/coatings5030488
10.1002/aenm.201800408
10.1039/c0ee00074d
10.1039/C6EE00966B
10.1002/adma.201505304
10.1177/0021998314554125
10.1002/adfm.201705506
10.1088/2053-1583/aa7d71
10.1002/adfm.201807933
10.1021/acsami.7b07327
10.1108/CW-10-2015-0047
10.1021/acsami.6b14100
10.1038/nnano.2011.110
10.1038/s41467-019-09398-1
10.1039/C9TA07878A
10.1021/jp0609232
10.29026/oea.2018.170004
10.1002/admt.201800600
10.1007/978-1-4614-9625-0
10.1109/FIIW.2012.6378343
10.1002/aenm.201401303
10.1021/acsnano.7b03354
10.1039/C6NR00708B
10.1016/j.tsf.2013.03.067
10.1002/9783527679973.ch10
10.1088/0960-1317/21/9/095026
10.1149/1.2969948
10.1002/adma.201701736
10.3390/mi9090474
10.1038/ncomms2553
10.1038/srep45048
10.1002/adma.201300361
10.1002/9781118920954
10.1038/s41598-017-17899-6
10.1002/aenm.201401401
10.1038/ncomms2446
10.1038/srep04452
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
1XC
DOI 10.1021/acsami.9b21283
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 8465
ExternalDocumentID oai_HAL_hal_02590667v1
31985204
10_1021_acsami_9b21283
h62317026
Genre Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
F5P
GNL
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
4.4
5VS
5ZA
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
7S9
L.6
1XC
ID FETCH-LOGICAL-a397t-f7c81fea02b64cfdae15139c27eaa2755763659449624e2394260085863d05bf3
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Fri May 09 12:31:26 EDT 2025
Thu Jul 10 18:29:47 EDT 2025
Fri Jul 11 02:27:32 EDT 2025
Thu Jan 02 23:00:52 EST 2025
Tue Jul 01 01:48:29 EDT 2025
Thu Apr 24 23:00:48 EDT 2025
Thu Aug 27 22:06:50 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords inkjet printing
water-transfer printing
conformal
3D electronics
all solid-state supercapacitors
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a397t-f7c81fea02b64cfdae15139c27eaa2755763659449624e2394260085863d05bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4688-1678
0000-0002-8090-4426
0000-0001-5158-9140
PMID 31985204
PQID 2346283551
PQPubID 23479
PageCount 10
ParticipantIDs hal_primary_oai_HAL_hal_02590667v1
proquest_miscellaneous_2400477673
proquest_miscellaneous_2346283551
pubmed_primary_31985204
crossref_citationtrail_10_1021_acsami_9b21283
crossref_primary_10_1021_acsami_9b21283
acs_journals_10_1021_acsami_9b21283
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-19
PublicationDateYYYYMMDD 2020-02-19
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-19
  day: 19
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2020
Publisher American Chemical Society
Washington, D.C. : American Chemical Society
Publisher_xml – name: American Chemical Society
– name: Washington, D.C. : American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
Cui Z. (ref16/cit16) 2016
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref10/cit10
ref35/cit35
ref19/cit19
Suganuma K. (ref17/cit17) 2014; 74
ref21/cit21
ref12/cit12
ref15/cit15
MacDonald W. A. (ref26/cit26) 2015
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref1/cit1
  doi: 10.1126/science.aag0476
– ident: ref39/cit39
  doi: 10.1038/nnano.2010.162
– ident: ref30/cit30
  doi: 10.1016/j.procir.2014.02.046
– ident: ref31/cit31
  doi: 10.3390/coatings5030488
– ident: ref4/cit4
  doi: 10.1002/aenm.201800408
– ident: ref34/cit34
  doi: 10.1039/c0ee00074d
– ident: ref7/cit7
  doi: 10.1039/C6EE00966B
– ident: ref9/cit9
  doi: 10.1002/adma.201505304
– ident: ref8/cit8
  doi: 10.1177/0021998314554125
– ident: ref15/cit15
  doi: 10.1002/adfm.201705506
– ident: ref12/cit12
  doi: 10.1088/2053-1583/aa7d71
– ident: ref21/cit21
  doi: 10.1002/adfm.201807933
– ident: ref3/cit3
  doi: 10.1021/acsami.7b07327
– ident: ref28/cit28
  doi: 10.1108/CW-10-2015-0047
– ident: ref33/cit33
  doi: 10.1021/acsami.6b14100
– ident: ref13/cit13
  doi: 10.1038/nnano.2011.110
– ident: ref24/cit24
  doi: 10.1038/s41467-019-09398-1
– ident: ref18/cit18
  doi: 10.1039/C9TA07878A
– ident: ref27/cit27
  doi: 10.1021/jp0609232
– ident: ref2/cit2
  doi: 10.29026/oea.2018.170004
– ident: ref6/cit6
  doi: 10.1002/admt.201800600
– volume: 74
  volume-title: Introduction to Printed Electronics
  year: 2014
  ident: ref17/cit17
  doi: 10.1007/978-1-4614-9625-0
– ident: ref19/cit19
  doi: 10.1109/FIIW.2012.6378343
– ident: ref36/cit36
  doi: 10.1002/aenm.201401303
– ident: ref10/cit10
  doi: 10.1021/acsnano.7b03354
– ident: ref23/cit23
  doi: 10.1039/C6NR00708B
– ident: ref32/cit32
  doi: 10.1016/j.tsf.2013.03.067
– start-page: 291
  volume-title: Large Area and Flexible Electronics
  year: 2015
  ident: ref26/cit26
  doi: 10.1002/9783527679973.ch10
– ident: ref29/cit29
  doi: 10.1088/0960-1317/21/9/095026
– ident: ref37/cit37
  doi: 10.1149/1.2969948
– ident: ref11/cit11
  doi: 10.1002/adma.201701736
– ident: ref20/cit20
  doi: 10.3390/mi9090474
– ident: ref5/cit5
  doi: 10.1038/ncomms2553
– ident: ref40/cit40
  doi: 10.1038/srep45048
– ident: ref25/cit25
  doi: 10.1002/adma.201300361
– volume-title: Printed Electronics
  year: 2016
  ident: ref16/cit16
  doi: 10.1002/9781118920954
– ident: ref38/cit38
  doi: 10.1038/s41598-017-17899-6
– ident: ref35/cit35
  doi: 10.1002/aenm.201401401
– ident: ref14/cit14
  doi: 10.1038/ncomms2446
– ident: ref22/cit22
  doi: 10.1038/srep04452
SSID ssj0063205
Score 2.4942589
Snippet Rapid growth of the internet of things and health monitoring systems have stimulated the development of flexible, wearable, and conformal embedded electronics...
SourceID hal
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8456
SubjectTerms capacitance
electric potential difference
electrochemical capacitors
electrochemistry
electrodes
electrolytes
electronics
Engineering Sciences
humans
Internet
Micro and nanotechnologies
Microelectronics
monitoring
nanosilver
nickel
nickel oxide
silver
water solubility
Title Water-Transferred, Inkjet-Printed Supercapacitors toward Conformal and Epidermal Energy Storage
URI http://dx.doi.org/10.1021/acsami.9b21283
https://www.ncbi.nlm.nih.gov/pubmed/31985204
https://www.proquest.com/docview/2346283551
https://www.proquest.com/docview/2400477673
https://univ-tours.hal.science/hal-02590667
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELb6uMCh0PLo8qjMQ-KCy8ZxEudYVVstiCKkpaI3y7HHKrRKqyTLgV_PjJNdHtWWHhNNZGXimfkmM_6Gsde2tJWvrBaq0oAJigdBcUYk4AoFNi_LQBXd40_59ER9OM1Of__v-LeCL5N31rU0Cqes0MnqdJ1tyhwtmEDQ4Wzhc_NUxmZFzMgVrqXUgp7x2vMUhFz7VxBaP6MWyFX4MsaZo3s96VEb6QmpveR8f95V--7ndfLG_77CfbY1gE1-0O-ObbYG9Q67-wcF4QNmviLYbEQMWQGaBvxb_r4-_w6d-NwQl4Tns_kVNA6DqvtGo3l4FzttOZ0VJMB7wW3t-YQmzcarSTxNyGcoi77qITs5mnw5nIph6IKwCE06EQqnkwB2LKtcueAtICZISycLsFYWGeYnaZ6hnstcKqDB6kRxrzOdp36cVSF9xDbqyxp2GR-nhQMdfBK8VtoF7TFbK7R3RJPmwI7YK9SMGYymNbEeLhPTq8sM6hoxsfhWxg285TQ-42Kl_Jul_FXP2LFS8iV--qUQEW1PDz4auodIsKT23x_JiL1Y7AyDlkflFFvD5bw1MqVzvYjXbpIhF0mESbjY435bLddD56czOVZPbqWGp-yOpFSfZtGUz9hG18zhOeKhrtqLpvALgwQEZQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbacgAOvB8LBcJD4lK3G8dJnOOq2moL26rStqI3y7HHAlqlVZLtob-eGW-yFNAiOMaaxM5kPPM5Hn_D2AdTmNKVRnFZKsAFigNOcYbHYHMJJisKTzu6B4fZ5ER-Ok1P19hOfxYGB9Hgk5qwif-TXSDewTaqiFOU6GtVss5uIRIRZNKj3VnverNEhJxFXJhL7FLKnqXxj_spFtnml1i0_pUyIVfBzBBu9u6zo-VAQ5bJ2fa8Lbft9W8cjv_xJg_YvQ56RqOFrTxka1A9YndvEBI-ZvoLQs-ahwDmoa7BbUX71dl3aPlRTcwSLprNL6G2GGLtNyrUE7Uh7zaik4MEf88jU7loTHVnw9U4nC2MZiiLnusJO9kbH-9OeFeCgRsEKi33uVWxBzMUZSatdwYQISSFFTkYI_IUVytJlqK6i0xIoDLrRHivUpUlbpiWPnnKNqqLCp6zaJjkFpR3sXdKKuuVw7Vbrpwl0jQLZsDeo2Z0N4UaHXbHRawX6tKdugaM959M247FnIppnK-U_7iUv1zwd6yUfIcWsBQi2u3JaKqpDXFhQcnAV_GAve0NROM8pM0VU8HFvNEioVO-iN7-JkMOk-iTsLNnC-ta9oeuUKViKF_8kxresNuT44Opnu4ffn7J7gj6CUBVaopNttHWc3iFSKktX4fZ8QMNEAzG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfYkBB74JtRPs2HxAsejeMkzmM1WnUwpkndxN4sxz4L2JRVScoDfz13blrxoSJ4bHSt08v57ufc3e8Ye2VLW_nKaqEqDXhA8SAozogEXKHA5mUZKKP78Sifnqr3Z9lZ38dNvTB4Ey3-UhuT-LSr5z70DAPJW7xOU3HKCv2tTrfYVcrZkVmP9mcr95unMtYt4uFc4bJKrZga__g-xSPX_hKPtj5TNeQmqBlDzuQmO1nfbKw0Od9bdNWe-_4bj-N__ptb7EYPQfloaTO32RWo77Cdn4gJ7zLzCSFoI2IgC9A04N_wg_r8K3TiuCGGCc9nizk0DkOt-0IDe3gX6285dRASDL7gtvZ8TPNn46dx7DHkM5RFD3aPnU7GJ_tT0Y9iEBYBSydC4XQSwA5llSsXvAVECmnpZAHWyiLDx5DmGaq8zKUCGrdOxPc603nqh1kV0vtsu76s4QHjw7RwoINPgtdKu6A9nuEK7R2RpzmwA_YSNWP6rdSamCWXiVmqy_TqGjCxemzG9WzmNFTjYqP867X8fMnjsVHyBVrBWojot6ejQ0PXEB-WVBT8LRmw5ysjMbgfKclia7hctEam1O2LKO5vMuQ4iUYJF9tdWth6PXSJOpND9fCf1PCMXTt-NzGHB0cfHrHrkt4F0LCa8jHb7poFPEHA1FVP4wb5AcXoD0k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Water-Transferred%2C+Inkjet-Printed+Supercapacitors+toward+Conformal+and+Epidermal+Energy+Storage&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Giannakou%2C+Pavlos&rft.au=Tas%2C+Mehmet+O&rft.au=Le+Borgne%2C+Brice&rft.au=Shkunov%2C+Maxim&rft.date=2020-02-19&rft.issn=1944-8252&rft.eissn=1944-8252&rft.volume=12&rft.issue=7&rft.spage=8456&rft_id=info:doi/10.1021%2Facsami.9b21283&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon