Nanoscale Resolution of Electric-field Induced Motion in Ionic Diblock Copolymer Thin Films
Understanding the responses of ionic block copolymers to applied electric fields is crucial when targeting applications in areas such as energy storage, microelectronics, and transducers. This work shows that the identity of counterions in ionic diblock copolymers substantially affects their respons...
Saved in:
Published in | ACS applied materials & interfaces Vol. 10; no. 38; pp. 32678 - 32687 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
26.09.2018
American Chemical Society (ACS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Understanding the responses of ionic block copolymers to applied electric fields is crucial when targeting applications in areas such as energy storage, microelectronics, and transducers. This work shows that the identity of counterions in ionic diblock copolymers substantially affects their responses to electric fields, demonstrating the importance of ionic species for materials design. In situ neutron reflectometry measurements revealed that thin films containing imidazolium based cationic diblock copolymers, tetrafluoroborate counteranions led to film contraction under applied electric fields, while bromide counteranions drove expansion under similar field strengths. Coarse-grained molecular dynamics simulations were used to develop a fundamental understanding of these responses, uncovering a nonmonotonic trend in thickness change as a function of field strength. This behavior was attributed to elastic responses of microphase separated diblock copolymer chains resulting from variations in interfacial tension of polymer–polymer interfaces due to the redistribution of counteranions in the presence of electric fields. |
---|---|
AbstractList | Understanding the responses of ionic block copolymers to applied electric fields is crucial when targeting applications in areas such as energy storage, microelectronics, and transducers. This work shows that the identity of counterions in ionic diblock copolymers substantially affects their responses to electric fields, demonstrating the importance of ionic species for materials design. In situ neutron reflectometry measurements revealed that thin films containing imidazolium based cationic diblock copolymers, tetrafluoroborate counteranions led to film contraction under applied electric fields, while bromide counteranions drove expansion under similar field strengths. Coarse-grained molecular dynamics simulations were used to develop a fundamental understanding of these responses, uncovering a non-monotonic trend in thickness change as a function of field strength. This behavior was attributed to elastic responses of microphase separated diblock copolymer chains to variations in interfacial tension of polymer-polymer interfaces, arising from the redistribution of counteranions in the presence of electric fields. Understanding the responses of ionic block copolymers to applied electric fields is crucial when targeting applications in areas such as energy storage, microelectronics, and transducers. This work shows that the identity of counterions in ionic diblock copolymers substantially affects their responses to electric fields, demonstrating the importance of ionic species for materials design. In situ neutron reflectometry measurements revealed that thin films containing imidazolium based cationic diblock copolymers, tetrafluoroborate counteranions led to film contraction under applied electric fields, while bromide counteranions drove expansion under similar field strengths. Coarse-grained molecular dynamics simulations were used to develop a fundamental understanding of these responses, uncovering a nonmonotonic trend in thickness change as a function of field strength. Furthermore, this behavior was attributed to elastic responses of microphase separated diblock copolymer chains resulting from variations in interfacial tension of polymer–polymer interfaces due to the redistribution of counteranions in the presence of electric fields. Understanding the responses of ionic block copolymers to applied electric fields is crucial when targeting applications in areas such as energy storage, microelectronics, and transducers. This work shows that the identity of counterions in ionic diblock copolymers substantially affects their responses to electric fields, demonstrating the importance of ionic species for materials design. In situ neutron reflectometry measurements revealed that thin films containing imidazolium based cationic diblock copolymers, tetrafluoroborate counteranions led to film contraction under applied electric fields, while bromide counteranions drove expansion under similar field strengths. Coarse-grained molecular dynamics simulations were used to develop a fundamental understanding of these responses, uncovering a nonmonotonic trend in thickness change as a function of field strength. This behavior was attributed to elastic responses of microphase separated diblock copolymer chains resulting from variations in interfacial tension of polymer–polymer interfaces due to the redistribution of counteranions in the presence of electric fields. |
Author | Kumar, Rajeev Long, Timothy E Skoda, Maximilian W.A Li, Wei Chen, Mingtao Browning, James F Dugger, Jason W Lokitz, Bradley S Welbourn, Rebecca J. L |
AuthorAffiliation | Neutron Scattering Division Center for Nanophase Materials Sciences Macromolecules Innovation Institute (MII), Department of Chemistry Science and Technology Facilities Council, Rutherford Appleton Laboratory Computational Sciences and Engineering Division |
AuthorAffiliation_xml | – name: Macromolecules Innovation Institute (MII), Department of Chemistry – name: Neutron Scattering Division – name: Computational Sciences and Engineering Division – name: Center for Nanophase Materials Sciences – name: Science and Technology Facilities Council, Rutherford Appleton Laboratory |
Author_xml | – sequence: 1 givenname: Jason W orcidid: 0000-0002-1196-0205 surname: Dugger fullname: Dugger, Jason W organization: Center for Nanophase Materials Sciences – sequence: 2 givenname: Wei surname: Li fullname: Li, Wei organization: Center for Nanophase Materials Sciences – sequence: 3 givenname: Mingtao surname: Chen fullname: Chen, Mingtao organization: Macromolecules Innovation Institute (MII), Department of Chemistry – sequence: 4 givenname: Timothy E orcidid: 0000-0001-9515-5491 surname: Long fullname: Long, Timothy E organization: Macromolecules Innovation Institute (MII), Department of Chemistry – sequence: 5 givenname: Rebecca J. L orcidid: 0000-0002-4254-5354 surname: Welbourn fullname: Welbourn, Rebecca J. L organization: Science and Technology Facilities Council, Rutherford Appleton Laboratory – sequence: 6 givenname: Maximilian W.A surname: Skoda fullname: Skoda, Maximilian W.A organization: Science and Technology Facilities Council, Rutherford Appleton Laboratory – sequence: 7 givenname: James F surname: Browning fullname: Browning, James F email: browningjf@ornl.gov organization: Neutron Scattering Division – sequence: 8 givenname: Rajeev orcidid: 0000-0001-9494-3488 surname: Kumar fullname: Kumar, Rajeev email: kumarr@ornl.gov organization: Computational Sciences and Engineering Division – sequence: 9 givenname: Bradley S orcidid: 0000-0002-1229-6078 surname: Lokitz fullname: Lokitz, Bradley S email: lokitzbs@ornl.gov organization: Center for Nanophase Materials Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30180545$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1513410$$D View this record in Osti.gov |
BookMark | eNp1kE1r3DAQhkVJaD6vPRbRUyl4K8mSYx_LZtMspC2EzSkHIY9HrFJZ2lr2Yf99lXiTW04zMM-8zDxn5CjEgIR84mzBmeDfDSTTu0Xdci4E-0BOeSNlUQsljt56KU_IWUpPjFWlYOojOSkZr5mS6pQ8_jYhJjAe6T2m6KfRxUCjpSuPMA4OCuvQd3Qdugmwo7_iC-ACXcfggF671kf4S5dxF_2-x4Futnl443yfLsixNT7h5aGek4eb1WZ5W9z9-ble_rgrTNlcjYWwqrTGCgABilW2QXvVVFI8H8htixYqi7KSSlSMW1TWNHWNbSs6ELVgpjwnX-bcmEanE7gRYQsxhPyB5oqXkrMMfZ2h3RD_TZhG3bsE6L0JGKekBWtybF0ykdHFjMIQUxrQ6t3gejPsNWf62bqereuD9bzw-ZA9tT12b_ir5gx8m4G8qJ_iNITs4720_3KJjeg |
CitedBy_id | crossref_primary_10_1039_D2NR07173H crossref_primary_10_1063_5_0065860 crossref_primary_10_1021_acsmacrolett_0c00592 crossref_primary_10_1016_j_cocis_2019_03_003 crossref_primary_10_1039_D1SM01098K crossref_primary_10_1063_5_0089797 crossref_primary_10_1016_j_cplett_2021_138817 crossref_primary_10_1021_acs_macromol_0c02557 crossref_primary_10_1126_sciadv_aba7952 |
Cites_doi | 10.1021/ma050408m 10.1021/ma00093a025 10.1021/ma800171k 10.1021/ma00024a030 10.1021/acs.macromol.6b01886 10.1021/ma00103a015 10.1021/ma00164a028 10.1080/14786443908521199 10.1039/c2sm07223h 10.1021/acs.macromol.8b00394 10.1038/451652a 10.1039/C4NR05491A 10.1021/acs.langmuir.6b03186 10.1063/1.2936992 10.1021/j100785a001 10.1021/ma050521c 10.1149/2.0581711jes 10.1021/ma049235b 10.1021/ma00076a047 10.1038/nature02758 10.1103/PhysRevLett.89.035501 10.1126/science.273.5277.931 10.1103/PhysRevLett.90.145504 10.1103/PhysRevLett.120.127801 10.1021/ma991896z 10.1107/S0021889806005073 10.1038/nmat3729 10.1007/s11222-006-9438-0 10.1021/ma034026x 10.1103/PhysRevLett.103.257802 10.1103/PhysRevLett.107.198301 10.1063/1.2737049 10.1103/PhysRevLett.109.257802 10.1063/1.4905954 10.1021/acs.macromol.7b01217 10.1016/j.mser.2004.12.003 10.1039/C5TA07170D 10.1073/pnas.0607746104 10.1088/1742-6596/272/1/012027 10.1103/PhysRevLett.95.258302 10.1021/ja01280a048 10.1006/jcph.1995.1039 10.1021/j150548a015 10.1002/pola.29015 10.1146/annurev-matsci-071312-121705 10.1021/ma301036b 10.1039/c2gc16354c 10.1021/acs.macromol.8b00227 10.1063/1.3607969 10.1021/ma00031a022 10.1146/annurev.physchem.57.032905.104609 10.1038/nmat4001 10.1103/PhysRevLett.101.046104 10.1080/10448639208218770 10.1063/1.1749522 10.1021/jp408079z 10.1063/1.446725 10.1103/PhysRevE.81.021501 |
ContentType | Journal Article |
CorporateAuthor | Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) |
CorporateAuthor_xml | – name: Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) |
DBID | NPM AAYXX CITATION 7X8 OIOZB OTOTI |
DOI | 10.1021/acsami.8b11220 |
DatabaseName | PubMed CrossRef MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 32687 |
ExternalDocumentID | 1513410 10_1021_acsami_8b11220 30180545 i25412535 |
Genre | Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ --- .K2 4.4 5VS 5ZA 6J9 AAHBH ABJNI ABQRX ADHLV AHGAQ BAANH CUPRZ GGK NPM AAYXX CITATION 7X8 ABFRP OIOZB OTOTI |
ID | FETCH-LOGICAL-a397t-2f53faf2cc2c506f9ef7964205451fbefc6fe46452601fe5fa988ebb2dc2820a3 |
IEDL.DBID | ACS |
ISSN | 1944-8244 |
IngestDate | Fri May 19 01:47:05 EDT 2023 Sat Aug 17 01:34:49 EDT 2024 Fri Aug 23 02:36:18 EDT 2024 Wed Oct 16 00:58:06 EDT 2024 Thu Aug 27 13:42:43 EDT 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Keywords | ionic block copolymer interfacial tension electric field molecular dynamics neutron reflectometry |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a397t-2f53faf2cc2c506f9ef7964205451fbefc6fe46452601fe5fa988ebb2dc2820a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22) AC05-00OR22725 |
ORCID | 0000-0002-1229-6078 0000-0001-9515-5491 0000-0002-4254-5354 0000-0001-9494-3488 0000-0002-1196-0205 0000000194943488 0000000195155491 0000000242545354 0000000211960205 000000018379259X 0000000212296078 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1513410 |
PMID | 30180545 |
PQID | 2099888302 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | osti_scitechconnect_1513410 proquest_miscellaneous_2099888302 crossref_primary_10_1021_acsami_8b11220 pubmed_primary_30180545 acs_journals_10_1021_acsami_8b11220 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2018-09-26 |
PublicationDateYYYYMMDD | 2018-09-26 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-26 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2018 |
Publisher | American Chemical Society American Chemical Society (ACS) |
Publisher_xml | – name: American Chemical Society – name: American Chemical Society (ACS) |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref15/cit15 doi: 10.1021/ma050408m – ident: ref45/cit45 doi: 10.1021/ma00093a025 – ident: ref3/cit3 doi: 10.1021/ma800171k – ident: ref12/cit12 doi: 10.1021/ma00024a030 – ident: ref26/cit26 doi: 10.1021/acs.macromol.6b01886 – ident: ref14/cit14 doi: 10.1021/ma00103a015 – ident: ref44/cit44 doi: 10.1021/ma00164a028 – ident: ref46/cit46 doi: 10.1080/14786443908521199 – ident: ref5/cit5 doi: 10.1039/c2sm07223h – ident: ref59/cit59 doi: 10.1021/acs.macromol.8b00394 – ident: ref1/cit1 doi: 10.1038/451652a – ident: ref22/cit22 doi: 10.1039/C4NR05491A – ident: ref49/cit49 doi: 10.1021/acs.langmuir.6b03186 – ident: ref54/cit54 doi: 10.1063/1.2936992 – ident: ref39/cit39 doi: 10.1021/j100785a001 – ident: ref57/cit57 doi: 10.1021/ma050521c – ident: ref42/cit42 doi: 10.1149/2.0581711jes – ident: ref58/cit58 doi: 10.1021/ma049235b – ident: ref43/cit43 doi: 10.1021/ma00076a047 – ident: ref17/cit17 doi: 10.1038/nature02758 – ident: ref33/cit33 doi: 10.1103/PhysRevLett.89.035501 – ident: ref13/cit13 doi: 10.1126/science.273.5277.931 – ident: ref18/cit18 doi: 10.1103/PhysRevLett.90.145504 – ident: ref28/cit28 doi: 10.1103/PhysRevLett.120.127801 – ident: ref24/cit24 doi: 10.1021/ma991896z – ident: ref30/cit30 doi: 10.1107/S0021889806005073 – ident: ref21/cit21 doi: 10.1038/nmat3729 – ident: ref31/cit31 doi: 10.1007/s11222-006-9438-0 – ident: ref19/cit19 doi: 10.1021/ma034026x – ident: ref50/cit50 doi: 10.1103/PhysRevLett.103.257802 – ident: ref11/cit11 doi: 10.1103/PhysRevLett.107.198301 – ident: ref8/cit8 doi: 10.1063/1.2737049 – ident: ref41/cit41 doi: 10.1103/PhysRevLett.109.257802 – ident: ref53/cit53 doi: 10.1063/1.4905954 – ident: ref25/cit25 doi: 10.1021/acs.macromol.7b01217 – ident: ref34/cit34 doi: 10.1016/j.mser.2004.12.003 – ident: ref4/cit4 doi: 10.1039/C5TA07170D – ident: ref20/cit20 doi: 10.1073/pnas.0607746104 – ident: ref35/cit35 doi: 10.1088/1742-6596/272/1/012027 – ident: ref16/cit16 doi: 10.1103/PhysRevLett.95.258302 – ident: ref51/cit51 doi: 10.1021/ja01280a048 – ident: ref32/cit32 doi: 10.1006/jcph.1995.1039 – ident: ref23/cit23 doi: 10.1021/j150548a015 – ident: ref29/cit29 doi: 10.1002/pola.29015 – ident: ref2/cit2 doi: 10.1146/annurev-matsci-071312-121705 – ident: ref10/cit10 doi: 10.1021/ma301036b – ident: ref37/cit37 doi: 10.1103/PhysRevLett.89.035501 – ident: ref38/cit38 doi: 10.1039/c2gc16354c – ident: ref27/cit27 doi: 10.1021/acs.macromol.8b00227 – ident: ref56/cit56 doi: 10.1063/1.3607969 – ident: ref7/cit7 doi: 10.1021/ma00031a022 – ident: ref55/cit55 doi: 10.1146/annurev.physchem.57.032905.104609 – ident: ref9/cit9 doi: 10.1038/nmat4001 – ident: ref52/cit52 doi: 10.1103/PhysRevLett.101.046104 – ident: ref36/cit36 doi: 10.1080/10448639208218770 – ident: ref48/cit48 doi: 10.1063/1.1749522 – ident: ref6/cit6 doi: 10.1021/jp408079z – ident: ref47/cit47 doi: 10.1063/1.446725 – ident: ref40/cit40 doi: 10.1103/PhysRevE.81.021501 |
SSID | ssj0063205 |
Score | 2.3543413 |
Snippet | Understanding the responses of ionic block copolymers to applied electric fields is crucial when targeting applications in areas such as energy storage,... |
SourceID | osti proquest crossref pubmed acs |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 32678 |
SubjectTerms | electric field interfacial tension ionic block copolymer MATERIALS SCIENCE molecular dynamics neutron reflectometry |
Title | Nanoscale Resolution of Electric-field Induced Motion in Ionic Diblock Copolymer Thin Films |
URI | http://dx.doi.org/10.1021/acsami.8b11220 https://www.ncbi.nlm.nih.gov/pubmed/30180545 https://search.proquest.com/docview/2099888302 https://www.osti.gov/servlets/purl/1513410 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI7QuMCB92O8FAQSp8KaNF12RINpII0LTJrEIWrSRJoGLaLdAX49drrxmiY4N1UbO44_x85nQk4dNzpiWKdjpQ5gl9SBbqYOohSZctdqpsxfpO3dxd1-dDsQg6_zjt8ZfBZeJKbAVjhSAzJgEJwvsiZYBoKg9v10z40588WKEJFHgQSPNaVnnHkfnZApfjihWg7GNB9gekfTWa1YjwrPT4j1JaPzcanPzfsse-Ofc1gjKxO0SS-r5bFOFmy2QZa_cRBukkfYX_MCNGUpHuVXC5Hmjl77BjlDE_giN4o9PoxNac-3_aHDjN4gqy69GmrwhyPaxm4Lb8_2lWIrUNoZPj0XW6TfuX5od4NJx4UgAVxSBswJ7hLHjGFGNGLXsg6vqoJwIxE6bZ2JnfW5UIjjnBUuaUlptWapgdCtkfBtUsvyzO4SGlvRMFxLmwoX8VS2jEg5DA2ljrgWSZ2cgFTUxGIK5ZPhLFSVqNREVHVyNlWUeqnoN-aO3Ec9KgAOyH5rsEzIlAoADfhpeHo8Va8C-8GkSJLZfFwovDosJbKg1clOpffPL3FkN4Op7_3rX_fJEqApX0zC4gNSK1_H9hAQS6mP_GL9AJYH5SI |
link.rule.ids | 230,315,783,787,888,2772,27088,27936,27937,57066,57116 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6h5VA4QEt5LPRhRKWeArt2nPUe0ZbV8liEBEhIHKzYsaUVkCCSPcCvZ8bZUGiF1F4TJ7FnbM83mfE3AD-8sCbmlKfjlIlwlzSR6WUevRSVCd_vZTwcpB2fJqPL-OhKXs3BXnMWBjtR4pvKEMT_zS7Q3cNrVBFHGQQIHH30edlDa0lYaHDebL2J4CFnER3zOFJouBqWxr-eJ1tkyze2qFXgmnofZwZ7M1yGs5eehjSTm91pZXbt0x8kjv8xlI-wNMOebL-eLJ9gzuUrsPiKkfAzXONuW5SoN8fox349LVnh2UEolzOxUUh5Y1Txw7qMjUMRIDbJ2SFx7LJfE4PW8YYNqPbC4517YFQYlA0nt3flKlwODy4Go2hWfyFKEaVUEfdS-NRza7mVncT3naeDqyjjWHa9cd4m3oXIKHp13kmf9pVyxvDMoiPXScUatPIidxvAEic7VhjlMuljkam-lZnApl1lYmFk2oYdlIqerZ9Sh9A47-paVHomqjb8bPSl72syjndbbpE6NcII4sK1lDRkK43wBq023t1utKxxNVGIJM1dMS01HSRWijjR2rBeq__lS4K4znDom__U1-_wYXQxPtEnh6fHW7CAOCukmfDkC7Sqh6n7ilimMt_C_H0Gqg3thw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swELdQJyF42MYYrLCBJ5D2FGjsOHUfUUsE24om0UpIe7DiL6kCEkTSB_bX785J0NiENF4TJ7Hvzr673N3vCDn03OiEYZ6OkzqCU1JHemg9eCnScj8aWhYKaacX6dk8-Xolrto6bqyFgUlU8KYqBPFxV99Z3yIMxMdwHbviSA1GAgM__ZUYxiE2ezK-7I7flLOQtwjOeRJJUF4dUuM_z6M-MtUTfdQrYV89b2sGnZO9IbPH2YZUk-ujZa2PzK-_gBxfuJy35HVrg9KTRmg2yIor3pH1P5AJN8lPOHXLCvjnKP7gb8STlp6ehrY5CxOF1DeKnT-Ms3QamgHRRUHPEWuXThYatOQ1HWMPhodbd0-xQSjNFje31Xsyz05n47Oo7cMQ5WCt1BHzgvvcM2OYEYPUj5zHAlagcyJir503qXchQgrenXfC5yMpndbMGnDoBjnfIr2iLNwHQlMnBoZr6azwCbdyZITlMDSWOuFa5H1yAFRR7T6qVAiRs1g1pFItqfrkS8czddeAcjw7chdZqsCcQExcg8lDplZg5oD2hrufO04r2FUYKskLVy4rhQXFUiI2Wp9sNyLw-CWOmGew9J3_mus-Wf0xydT384tvu2QNzK2QbcLSj6RX3y_dJzBpar0XRPg3VpzwAQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoscale+Resolution+of+Electric-field+Induced+Motion+in+Ionic+Diblock+Copolymer+Thin+Films&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Dugger%2C+Jason+W&rft.au=Li%2C+Wei&rft.au=Chen%2C+Mingtao&rft.au=Long%2C+Timothy+E&rft.date=2018-09-26&rft.pub=American+Chemical+Society&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=10&rft.issue=38&rft.spage=32678&rft.epage=32687&rft_id=info:doi/10.1021%2Facsami.8b11220&rft.externalDocID=i25412535 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |