Evaluation of performance criteria for simulation of submaximal steady-state cycling using a forward dynamic model
The objectives of this study were twofold. The first was to develop a forward dynamic model of cycling and an optimization framework to simulate pedaling during submaximal steady-state cycling conditions. The second was to use the model and framework to identify the kinetic, kinematic, and muscle ti...
Saved in:
Published in | Journal of biomechanical engineering Vol. 120; no. 3; p. 334 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
01.06.1998
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | The objectives of this study were twofold. The first was to develop a forward dynamic model of cycling and an optimization framework to simulate pedaling during submaximal steady-state cycling conditions. The second was to use the model and framework to identify the kinetic, kinematic, and muscle timing quantities that should be included in a performance criterion to reproduce natural pedaling mechanics best during these pedaling conditions. To make this identification, kinetic and kinematic data were collected from 6 subjects who pedaled at 90 rpm and 225 W. Intersegmental joint moments were computed using an inverse dynamics technique and the muscle excitation onset and offset were taken from electromyographic (EMG) data collected previously (Neptune et al., 1997). Average cycles and their standard deviations for the various quantities were used to describe normal pedaling mechanics. The model of the bicycle-rider system was driven by 15 muscle actuators per leg. The optimization framework determined both the timing and magnitude of the muscle excitations to simulate pedaling at 90 rpm and 225 W. Using the model and optimization framework, seven performance criteria were evaluated. The criterion that included all of the kinematic and kinetic quantities combined with the EMG timing was the most successful in replicating the experimental data. The close agreement between the simulation results and the experimentally collected kinetic, kinematic, and EMG data gives confidence in the model to investigate individual muscle coordination during submaximal steady-state pedaling conditions from a theoretical perspective, which to date has only been performed experimentally. |
---|---|
AbstractList | The objectives of this study were twofold. The first was to develop a forward dynamic model of cycling and an optimization framework to simulate pedaling during submaximal steady-state cycling conditions. The second was to use the model and framework to identify the kinetic, kinematic, and muscle timing quantities that should be included in a performance criterion to reproduce natural pedaling mechanics best during these pedaling conditions. To make this identification, kinetic and kinematic data were collected from 6 subjects who pedaled at 90 rpm and 225 W. Intersegmental joint moments were computed using an inverse dynamics technique and the muscle excitation onset and offset were taken from electromyographic (EMG) data collected previously (Neptune et al., 1997). Average cycles and their standard deviations for the various quantities were used to describe normal pedaling mechanics. The model of the bicycle-rider system was driven by 15 muscle actuators per leg. The optimization framework determined both the timing and magnitude of the muscle excitations to simulate pedaling at 90 rpm and 225 W. Using the model and optimization framework, seven performance criteria were evaluated. The criterion that included all of the kinematic and kinetic quantities combined with the EMG timing was the most successful in replicating the experimental data. The close agreement between the simulation results and the experimentally collected kinetic, kinematic, and EMG data gives confidence in the model to investigate individual muscle coordination during submaximal steady-state pedaling conditions from a theoretical perspective, which to date has only been performed experimentally. |
Author | Hull, M L Neptune, R R |
Author_xml | – sequence: 1 givenname: R R surname: Neptune fullname: Neptune, R R organization: Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, AB – sequence: 2 givenname: M L surname: Hull fullname: Hull, M L |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/10412400$$D View this record in MEDLINE/PubMed |
BookMark | eNo9T8lOwzAU9KGILnDgB5B_IMXPdRYfUVUoUiUucK6eN2TkJJXtAPl7wnqZkUYzo5klmXV9Zwm5ArYGgPIG1ryWtZRyRhYMRFOwegNzskzplTGARrBzMgcmgAvGFiTu3jAMmH3f0d7Rk42ujy122lIdfbbRI50Umnw7hH9bGlSLH77FQFO2aMYiZcxTZNTBdy90SF_4nXzHaKgZO2y9pm1vbLggZw5Dspe_vCLPd7un7b44PN4_bG8PBW5klQsEV-u60dro0tZaSYOTxC2yhlmjBE4fUBlRYcWFUUo5rkpZcWmcQwaSr8j1T-9pWmvN8RSnwXE8_p3nn4UrXnA |
CitedBy_id | crossref_primary_10_1002_cnm_2485 crossref_primary_10_1016_j_humov_2017_09_016 crossref_primary_10_1109_TNSRE_2016_2583464 crossref_primary_10_1080_10255840902788561 crossref_primary_10_5432_ijshs_1_196 crossref_primary_10_1016_j_bbe_2018_02_001 crossref_primary_10_1016_S0021_9290_99_00090_1 crossref_primary_10_1109_TNSRE_2007_906959 crossref_primary_10_1016_j_jbiomech_2010_06_011 crossref_primary_10_3389_fbioe_2024_1386874 crossref_primary_10_1115_1_4029304 crossref_primary_10_1007_BF02844159 crossref_primary_10_1002_icd_421 crossref_primary_10_1007_s00158_014_1135_6 crossref_primary_10_1016_j_jbiomech_2006_05_026 crossref_primary_10_1016_S0966_6362_02_00068_1 crossref_primary_10_1016_S0268_0033_00_00028_0 crossref_primary_10_1051_sm_2011124 crossref_primary_10_1051_sm_2011126 crossref_primary_10_1016_j_jbiomech_2014_01_049 crossref_primary_10_1016_j_procs_2022_09_055 crossref_primary_10_1080_10255842_2023_2184747 crossref_primary_10_1371_journal_pone_0191310 crossref_primary_10_1002_pamm_202300202 crossref_primary_10_1016_j_jbiomech_2005_05_032 crossref_primary_10_1016_j_jbiomech_2006_06_009 crossref_primary_10_1016_S0021_9290_02_00046_5 crossref_primary_10_1146_annurev_bioeng_3_1_245 crossref_primary_10_1242_jeb_023267 crossref_primary_10_1123_jab_26_4_493 crossref_primary_10_1007_s11044_013_9366_7 crossref_primary_10_1016_j_jbiomech_2004_09_037 crossref_primary_10_1016_S0021_9290_99_00150_5 crossref_primary_10_1142_S0219519404000850 crossref_primary_10_1109_TBME_2009_2020175 crossref_primary_10_1109_ACCESS_2020_3036373 crossref_primary_10_1016_S0268_0033_00_00005_X crossref_primary_10_1249_JES_0000000000000254 crossref_primary_10_1016_j_jbiomech_2004_08_010 crossref_primary_10_1109_TNSRE_2004_836778 crossref_primary_10_1371_journal_pone_0264346 crossref_primary_10_1051_sm_2013048 crossref_primary_10_3389_fncom_2016_00143 crossref_primary_10_1115_1_2835111 crossref_primary_10_1016_j_jbiomech_2004_08_025 crossref_primary_10_1016_j_jbiomech_2005_03_025 crossref_primary_10_1109_TBME_2007_901024 crossref_primary_10_1002_mus_24544 crossref_primary_10_1016_S1047_9651_18_30137_2 crossref_primary_10_1016_S0021_9290_99_00155_4 crossref_primary_10_1152_jn_1999_82_2_515 crossref_primary_10_1007_s11044_020_09723_3 crossref_primary_10_1007_s11332_017_0370_9 crossref_primary_10_1016_j_jbiomech_2023_111657 crossref_primary_10_1016_j_jbiomech_2005_02_010 crossref_primary_10_1016_j_gaitpost_2006_04_009 crossref_primary_10_1080_16864360_2006_10738415 crossref_primary_10_1016_j_clinbiomech_2006_09_005 crossref_primary_10_1016_j_clinbiomech_2019_11_004 crossref_primary_10_1016_S0021_9290_01_00105_1 crossref_primary_10_1016_S0021_9290_99_00149_9 crossref_primary_10_1080_10255842_2024_2316240 crossref_primary_10_1016_S0021_9290_02_00432_3 crossref_primary_10_1123_jab_2013_0246 crossref_primary_10_1115_1_1286678 crossref_primary_10_1016_S0021_9290_01_00057_4 crossref_primary_10_3390_math8111947 crossref_primary_10_1016_j_jbiomech_2006_07_009 crossref_primary_10_1080_10255842_2015_1081181 crossref_primary_10_1080_02533839_2008_9671448 crossref_primary_10_1109_TCYB_2021_3109021 crossref_primary_10_1299_jsdd_6_343 crossref_primary_10_1016_j_jbiomech_2014_04_037 crossref_primary_10_1115_1_1406950 crossref_primary_10_1152_japplphysiol_01001_2002 crossref_primary_10_1016_j_jshs_2020_06_002 crossref_primary_10_1080_10255842_2018_1522535 crossref_primary_10_1016_j_piutam_2011_04_018 crossref_primary_10_3390_sports4030037 crossref_primary_10_1007_s00421_009_1086_6 crossref_primary_10_1016_S0966_6362_02_00069_3 crossref_primary_10_1016_j_jbiomech_2016_08_007 crossref_primary_10_1016_S0966_6362_03_00062_6 crossref_primary_10_1016_S0021_9290_97_00129_2 crossref_primary_10_1186_s12984_022_01008_4 crossref_primary_10_1002_zamm_200610290 crossref_primary_10_1007_s11071_010_9717_3 crossref_primary_10_5432_ijshs_3_311 crossref_primary_10_1299_jsmec_45_1082 crossref_primary_10_1016_S0021_9290_98_00182_1 crossref_primary_10_1016_j_jbiomech_2003_11_001 crossref_primary_10_1016_j_humov_2009_03_003 crossref_primary_10_1115_1_3148192 crossref_primary_10_1115_1_4046298 crossref_primary_10_1016_j_jbiomech_2005_06_005 crossref_primary_10_1115_1_1865192 crossref_primary_10_1080_10255840008915275 crossref_primary_10_3390_robotics11010020 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1115/1.2797999 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Medicine Engineering Forestry |
ExternalDocumentID | 10412400 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X .DC .GJ 29J 4.4 53G 5AI 5GY 6TJ AAYJJ ABJNI ACBEA ACGFO ACGFS ACKMT ACXMS ADPDT AI. ALEEW ALMA_UNASSIGNED_HOLDINGS CGR CS3 CUY CVF EBS ECM EIF EJD F5P H~9 L7B NPM P2P RAI RNS RXW TAE TN5 UCJ UKR VH1 VXZ WHG ZE2 |
ID | FETCH-LOGICAL-a396t-a1f7c78ccdc5e7cb9daa1f2ea080edb4a041abd46a624dbbbf2b59629dffa0192 |
ISSN | 0148-0731 |
IngestDate | Wed Feb 19 02:33:25 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a396t-a1f7c78ccdc5e7cb9daa1f2ea080edb4a041abd46a624dbbbf2b59629dffa0192 |
PMID | 10412400 |
ParticipantIDs | pubmed_primary_10412400 |
PublicationCentury | 1900 |
PublicationDate | 1998-06-01 |
PublicationDateYYYYMMDD | 1998-06-01 |
PublicationDate_xml | – month: 06 year: 1998 text: 1998-06-01 day: 01 |
PublicationDecade | 1990 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of biomechanical engineering |
PublicationTitleAlternate | J Biomech Eng |
PublicationYear | 1998 |
SSID | ssj0011840 |
Score | 1.8736007 |
Snippet | The objectives of this study were twofold. The first was to develop a forward dynamic model of cycling and an optimization framework to simulate pedaling... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 334 |
SubjectTerms | Adult Bicycling Biomechanical Phenomena Electromyography Humans Kinetics Male Models, Theoretical Muscle, Skeletal - physiology |
Title | Evaluation of performance criteria for simulation of submaximal steady-state cycling using a forward dynamic model |
URI | https://www.ncbi.nlm.nih.gov/pubmed/10412400 |
Volume | 120 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5WQfQgWt8vcvAmqzbdR_coohShHqSF3iSvBQ99YFuw_npnJmmzFouPPYQlyS67mW9nk8l8M4xdNKRKcpgYRKlKbBSbXEcNHcdRrcjgEFYbhXzn1lPa7MSP3aQbfFWJXTJWV_rjW17Jf6QKdSBXZMn-QbLzm0IFnIN8oQQJQ_krGd_PQ3WT43KJAwC6AIMwS_IiHL32fJIu7DaCP6B8f-0RUQQkPI2IVHSpp5qo6ROyHtCV6FF7aVzOepczZ8lclkj8yCEmkdsQ4zDYmofjiTOePgcfxebEbXq0PPfBBDrezEuqZJAENVH7olHFTQk69ZJ-rDvL5Td6G0NcwHo9w23GvNwHhnzYIwHWKFU2BTb9oXUhhPasqcIqgD_MjoomHb_VhEtc5-fqXsSHn4Inup4_D4aW9fdYWH7QNKS9zbb8mPNbB4YdtmL7VbZZiipZZeuYbhVz-MFpy7tO7LK3ABY-KHgJLHwGFg41PIAFuwWw8DJYuAcLJ7BwuhLBwj1YOIFlj3Ue7tt3zcgn3IhkPU_HkYQvVGcNrY1ObKZVbiRUCSthWWGNiiWMgVQmTmUqYqOUKoTC7E25KQqJa4V9ttof9O0h46nI0iSTcdHIoQAln-oC5oYYDU8LK8QRO3DD-DJ0UVVeZgN8vLTlhG0ECJ6ytQI-Y3sGc8KxOieZfgKqsmSo |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+performance+criteria+for+simulation+of+submaximal+steady-state+cycling+using+a+forward+dynamic+model&rft.jtitle=Journal+of+biomechanical+engineering&rft.au=Neptune%2C+R+R&rft.au=Hull%2C+M+L&rft.date=1998-06-01&rft.issn=0148-0731&rft.volume=120&rft.issue=3&rft.spage=334&rft_id=info:doi/10.1115%2F1.2797999&rft_id=info%3Apmid%2F10412400&rft_id=info%3Apmid%2F10412400&rft.externalDocID=10412400 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0731&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0731&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0731&client=summon |