Three-Dimensional Honeycomb-Like Carbon as Sulfur Host for Sodium–Sulfur Batteries without the Shuttle Effect
Sodium-sulfur batteries operating at ambient temperature are being extensively studied because of the high theoretical capacity and abundant resources, yet the long-chain polysulfides’ shuttle effect causes poor cycling performance of Na–S batteries. We report an annealing/etching method to converse...
Saved in:
Published in | ACS applied materials & interfaces Vol. 14; no. 49; pp. 54662 - 54669 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
14.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Sodium-sulfur batteries operating at ambient temperature are being extensively studied because of the high theoretical capacity and abundant resources, yet the long-chain polysulfides’ shuttle effect causes poor cycling performance of Na–S batteries. We report an annealing/etching method to converse low-cost wheat bran to a 3D honeycomb-like carbon with abundant micropores (WBMC), which is smaller than S8 molecular size (∼0.7 nm). Thus, the microporous structure could only fill small molecular sulfur (S2–4). The micropores made sulfur a one-step reaction without the shuttle effect due to the formed short-chain polysulfides being insoluble. The WBMC@S exhibits an excellent initial capacity (1413 mAh g–1) at 0.2 C, outstanding cycling performance (822 mAh g–1 after 100 cycles at 0.2 C), and high rate performance (483 mAh g–1 at 3.0 C). The electrochemical performance proves that the steric confinement of micropores effectively terminates the shuttle effect. |
---|---|
AbstractList | Sodium-sulfur batteries operating at ambient temperature are being extensively studied because of the high theoretical capacity and abundant resources, yet the long-chain polysulfides' shuttle effect causes poor cycling performance of Na-S batteries. We report an annealing/etching method to converse low-cost wheat bran to a 3D honeycomb-like carbon with abundant micropores (WBMC), which is smaller than S
molecular size (∼0.7 nm). Thus, the microporous structure could only fill small molecular sulfur (S
). The micropores made sulfur a one-step reaction without the shuttle effect due to the formed short-chain polysulfides being insoluble. The WBMC@S exhibits an excellent initial capacity (1413 mAh g
) at 0.2 C, outstanding cycling performance (822 mAh g
after 100 cycles at 0.2 C), and high rate performance (483 mAh g
at 3.0 C). The electrochemical performance proves that the steric confinement of micropores effectively terminates the shuttle effect. Sodium-sulfur batteries operating at ambient temperature are being extensively studied because of the high theoretical capacity and abundant resources, yet the long-chain polysulfides’ shuttle effect causes poor cycling performance of Na–S batteries. We report an annealing/etching method to converse low-cost wheat bran to a 3D honeycomb-like carbon with abundant micropores (WBMC), which is smaller than S8 molecular size (∼0.7 nm). Thus, the microporous structure could only fill small molecular sulfur (S2–4). The micropores made sulfur a one-step reaction without the shuttle effect due to the formed short-chain polysulfides being insoluble. The WBMC@S exhibits an excellent initial capacity (1413 mAh g–1) at 0.2 C, outstanding cycling performance (822 mAh g–1 after 100 cycles at 0.2 C), and high rate performance (483 mAh g–1 at 3.0 C). The electrochemical performance proves that the steric confinement of micropores effectively terminates the shuttle effect. Sodium-sulfur batteries operating at ambient temperature are being extensively studied because of the high theoretical capacity and abundant resources, yet the long-chain polysulfides' shuttle effect causes poor cycling performance of Na-S batteries. We report an annealing/etching method to converse low-cost wheat bran to a 3D honeycomb-like carbon with abundant micropores (WBMC), which is smaller than S8 molecular size (∼0.7 nm). Thus, the microporous structure could only fill small molecular sulfur (S2-4). The micropores made sulfur a one-step reaction without the shuttle effect due to the formed short-chain polysulfides being insoluble. The WBMC@S exhibits an excellent initial capacity (1413 mAh g-1) at 0.2 C, outstanding cycling performance (822 mAh g-1 after 100 cycles at 0.2 C), and high rate performance (483 mAh g-1 at 3.0 C). The electrochemical performance proves that the steric confinement of micropores effectively terminates the shuttle effect.Sodium-sulfur batteries operating at ambient temperature are being extensively studied because of the high theoretical capacity and abundant resources, yet the long-chain polysulfides' shuttle effect causes poor cycling performance of Na-S batteries. We report an annealing/etching method to converse low-cost wheat bran to a 3D honeycomb-like carbon with abundant micropores (WBMC), which is smaller than S8 molecular size (∼0.7 nm). Thus, the microporous structure could only fill small molecular sulfur (S2-4). The micropores made sulfur a one-step reaction without the shuttle effect due to the formed short-chain polysulfides being insoluble. The WBMC@S exhibits an excellent initial capacity (1413 mAh g-1) at 0.2 C, outstanding cycling performance (822 mAh g-1 after 100 cycles at 0.2 C), and high rate performance (483 mAh g-1 at 3.0 C). The electrochemical performance proves that the steric confinement of micropores effectively terminates the shuttle effect. |
Author | Zhao, Decheng Zhou, Jian Liu, Xiang Xu, Xiangyu Ge-Zhang, Shangjie Zhang, Zhen Zhang, Yi Tang, Hao Wang, Zhoulu Xu, Yuanyuan Gao, Fei Liu, Shupei Wu, Yutong |
AuthorAffiliation | College of Science Northeast Forestry University School of Energy Sciences and Engineering |
AuthorAffiliation_xml | – name: College of Science – name: Northeast Forestry University – name: School of Energy Sciences and Engineering |
Author_xml | – sequence: 1 givenname: Decheng surname: Zhao fullname: Zhao, Decheng organization: School of Energy Sciences and Engineering – sequence: 2 givenname: Shangjie surname: Ge-Zhang fullname: Ge-Zhang, Shangjie organization: Northeast Forestry University – sequence: 3 givenname: Zhen surname: Zhang fullname: Zhang, Zhen organization: School of Energy Sciences and Engineering – sequence: 4 givenname: Hao surname: Tang fullname: Tang, Hao organization: School of Energy Sciences and Engineering – sequence: 5 givenname: Yuanyuan surname: Xu fullname: Xu, Yuanyuan organization: School of Energy Sciences and Engineering – sequence: 6 givenname: Fei surname: Gao fullname: Gao, Fei organization: School of Energy Sciences and Engineering – sequence: 7 givenname: Xiangyu surname: Xu fullname: Xu, Xiangyu organization: School of Energy Sciences and Engineering – sequence: 8 givenname: Shupei surname: Liu fullname: Liu, Shupei organization: School of Energy Sciences and Engineering – sequence: 9 givenname: Jian surname: Zhou fullname: Zhou, Jian organization: School of Energy Sciences and Engineering – sequence: 10 givenname: Zhoulu surname: Wang fullname: Wang, Zhoulu organization: School of Energy Sciences and Engineering – sequence: 11 givenname: Yutong orcidid: 0000-0003-1214-9147 surname: Wu fullname: Wu, Yutong organization: School of Energy Sciences and Engineering – sequence: 12 givenname: Xiang surname: Liu fullname: Liu, Xiang email: iamxliu@njtech.edu.cn organization: School of Energy Sciences and Engineering – sequence: 13 givenname: Yi orcidid: 0000-0002-1603-8623 surname: Zhang fullname: Zhang, Yi email: zhangy@njtech.edu.cn organization: School of Energy Sciences and Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36459617$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kctuFDEQRS0URB6wZYm8RJF6cLv9aC9hEkikkbKYZG3Z7rLGobsd_BDKjn_gD_kSGs2ERaSsqlT33Cqp7ik6muMMCL1vyaoltP1kXDZTWFHXdr2gr9BJqxhresrp0f-esWN0mvM9IaKjhL9Bx51gXIlWnqB4u0sAzUWYYM4hzmbEV8uFRxcn22zCd8Brk2ycscl4W0df06Lngn1MeBuHUKc_v34fhC-mFEgBMv4Zyi7WgssO8HZXSxkBX3oPrrxFr70ZM7w71DN09_Xydn3VbG6-Xa8_bxrTKVEaZawgnnhJe0u5l5YpRZTsiBs8abkQvJfCyr4T1CouvVBceBhgkEo5sNCdoY_7vQ8p_qiQi55CdjCOZoZYs6aSiU5xJsiCfjig1U4w6IcUJpMe9dOTFoDtAZdizgm8dqGYsnyrJBNG3RL9Lwu9z0Ifslhsq2e2p80vGs73hmWu72NNSxr5Jfgv7pGcfQ |
CitedBy_id | crossref_primary_10_1002_cssc_202400757 crossref_primary_10_1016_j_jpowsour_2025_236682 crossref_primary_10_3390_jcs7030127 crossref_primary_10_1007_s12598_024_03044_6 crossref_primary_10_1002_app_56070 crossref_primary_10_1007_s11426_023_1711_x crossref_primary_10_1016_j_cej_2024_155230 crossref_primary_10_1002_adsu_202400268 crossref_primary_10_1016_j_matlet_2023_134648 crossref_primary_10_1016_j_jpowsour_2024_235787 crossref_primary_10_1002_ange_202320060 crossref_primary_10_1007_s12598_023_02273_5 crossref_primary_10_1039_D4TA05076B crossref_primary_10_3390_molecules28073134 crossref_primary_10_1039_D4NJ02230K crossref_primary_10_1515_ntrev_2023_0122 crossref_primary_10_1016_j_jallcom_2024_176754 crossref_primary_10_1016_j_mtener_2024_101543 crossref_primary_10_1007_s40820_023_01177_4 crossref_primary_10_1016_j_surfin_2024_104223 crossref_primary_10_1016_j_carbon_2024_119615 crossref_primary_10_1016_j_jcis_2025_137312 crossref_primary_10_1088_1361_6528_acee85 crossref_primary_10_1016_j_carbpol_2024_123041 crossref_primary_10_1016_j_mtchem_2024_102492 crossref_primary_10_1016_j_cej_2024_150187 crossref_primary_10_3390_nano13111744 crossref_primary_10_7209_carbon_030102 crossref_primary_10_3390_polym15132920 crossref_primary_10_1007_s10965_024_03868_x crossref_primary_10_1016_j_inoche_2024_113434 crossref_primary_10_1515_ntrev_2023_0130 crossref_primary_10_1002_adsu_202300101 crossref_primary_10_1016_j_compositesa_2024_108129 crossref_primary_10_1016_j_mtchem_2025_102644 crossref_primary_10_3390_nano13172416 crossref_primary_10_1002_adfm_202504272 crossref_primary_10_3390_ijms25094743 crossref_primary_10_1007_s12598_024_02708_7 crossref_primary_10_1520_JTE20230005 crossref_primary_10_1002_batt_202200549 crossref_primary_10_1007_s12598_023_02490_y crossref_primary_10_1016_j_carbon_2023_118377 crossref_primary_10_1002_anie_202320060 crossref_primary_10_1007_s12598_024_03109_6 crossref_primary_10_3390_nano13010043 crossref_primary_10_26599_JAC_2024_9220895 crossref_primary_10_1021_acs_energyfuels_3c00220 crossref_primary_10_1016_j_cej_2024_150708 crossref_primary_10_1039_D4CC04806G crossref_primary_10_1039_D4CC06120A crossref_primary_10_1039_D5TA00458F crossref_primary_10_1016_j_ceramint_2024_03_145 crossref_primary_10_1002_batt_202300022 crossref_primary_10_3390_en16031416 crossref_primary_10_1016_j_arabjc_2024_106077 crossref_primary_10_1039_D3CS01043K crossref_primary_10_1007_s12598_024_02815_5 crossref_primary_10_3390_c10030067 crossref_primary_10_1016_j_recm_2023_12_002 crossref_primary_10_1016_j_carbon_2025_120245 crossref_primary_10_1016_j_matchemphys_2024_129153 |
Cites_doi | 10.4236/epe.2011.33040 10.1039/D0TA08876E 10.1186/s42834-019-0011-x 10.1021/ja308170k 10.1016/j.jallcom.2021.159341 10.1021/acsami.7b01387 10.1016/j.nanoen.2017.09.041 10.1038/s41467-021-26631-y 10.1021/acsenergylett.0c02488 10.1002/adma.201304126 10.26599/NRE.2022.9120012 10.1038/s41598-019-41769-y 10.1016/j.nanoen.2016.02.049 10.1016/j.ensm.2022.07.028 10.1021/acs.nanolett.1c04182 10.26599/NRE.2022.9120007 10.1039/D0EE02203A 10.1002/cey2.40 10.1002/adfm.201503918 10.1016/j.ensm.2022.01.021 10.1002/adfm.202110313 10.1016/j.mattod.2021.10.026 10.1038/s41560-022-01001-0 10.1021/acsami.1c16035 10.1016/j.jallcom.2020.157316 10.1016/j.cej.2022.137742 10.1109/TDMR.2021.3051840 10.1038/ncomms11722 10.1002/adfm.201705537 10.1039/C6TA00483K 10.1002/adfm.201805371 10.1002/advs.201903246 10.1002/eom2.12019 10.1016/j.electacta.2019.135486 10.1007/s40820-021-00758-5 10.1002/cey2.86 10.26599/NRE.2022.9120008 10.1002/anie.202016233 10.26599/NRE.2022.9120009 10.1016/j.chempr.2022.01.002 10.1021/acs.nanolett.2c01779 10.1021/acsnano.1c09402 |
ContentType | Journal Article |
Copyright | 2022 American Chemical Society |
Copyright_xml | – notice: 2022 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acsami.2c13862 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 54669 |
ExternalDocumentID | 36459617 10_1021_acsami_2c13862 a002026698 |
Genre | Journal Article |
GroupedDBID | --- .K2 23M 4.4 53G 55A 5GY 5VS 5ZA 6J9 7~N AABXI ABFRP ABMVS ABQRX ABUCX ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED~ F5P GGK GNL IH9 JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ AAHBH AAYXX ABBLG ABJNI ABLBI BAANH CITATION CUPRZ NPM 7X8 |
ID | FETCH-LOGICAL-a396t-9ab60f0f728b25f7b49909730cdf015665876b78362b957f6956feded799cebe3 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Fri Jul 11 01:19:01 EDT 2025 Thu Jan 02 22:53:20 EST 2025 Thu Apr 24 22:57:49 EDT 2025 Tue Jul 01 00:55:31 EDT 2025 Fri Dec 16 03:10:29 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 49 |
Keywords | shuttle effect microporous carbon 3D honeycomb-like cathode |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a396t-9ab60f0f728b25f7b49909730cdf015665876b78362b957f6956feded799cebe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1214-9147 0000-0002-1603-8623 |
PMID | 36459617 |
PQID | 2746395460 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2746395460 pubmed_primary_36459617 crossref_citationtrail_10_1021_acsami_2c13862 crossref_primary_10_1021_acsami_2c13862 acs_journals_10_1021_acsami_2c13862 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-14 |
PublicationDateYYYYMMDD | 2022-12-14 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref24/cit24 doi: 10.4236/epe.2011.33040 – ident: ref40/cit40 doi: 10.1039/D0TA08876E – ident: ref21/cit21 doi: 10.1186/s42834-019-0011-x – ident: ref28/cit28 doi: 10.1021/ja308170k – ident: ref13/cit13 doi: 10.1016/j.jallcom.2021.159341 – ident: ref37/cit37 doi: 10.1021/acsami.7b01387 – ident: ref30/cit30 doi: 10.1016/j.nanoen.2017.09.041 – ident: ref17/cit17 doi: 10.1038/s41467-021-26631-y – ident: ref11/cit11 doi: 10.1021/acsenergylett.0c02488 – ident: ref8/cit8 doi: 10.1002/adma.201304126 – ident: ref6/cit6 doi: 10.26599/NRE.2022.9120012 – ident: ref10/cit10 doi: 10.1038/s41598-019-41769-y – ident: ref35/cit35 doi: 10.1016/j.nanoen.2016.02.049 – ident: ref27/cit27 doi: 10.1016/j.ensm.2022.07.028 – ident: ref41/cit41 doi: 10.1021/acs.nanolett.1c04182 – ident: ref29/cit29 doi: 10.26599/NRE.2022.9120007 – ident: ref7/cit7 doi: 10.1039/D0EE02203A – ident: ref22/cit22 doi: 10.1002/cey2.40 – ident: ref38/cit38 doi: 10.1002/adfm.201503918 – ident: ref1/cit1 doi: 10.1016/j.ensm.2022.01.021 – ident: ref25/cit25 doi: 10.1002/adfm.202110313 – ident: ref31/cit31 doi: 10.1016/j.mattod.2021.10.026 – ident: ref5/cit5 doi: 10.1038/s41560-022-01001-0 – ident: ref33/cit33 doi: 10.1021/acsami.1c16035 – ident: ref19/cit19 doi: 10.1016/j.jallcom.2020.157316 – ident: ref2/cit2 doi: 10.1016/j.cej.2022.137742 – ident: ref18/cit18 doi: 10.1109/TDMR.2021.3051840 – ident: ref36/cit36 doi: 10.1038/ncomms11722 – ident: ref42/cit42 doi: 10.1002/adfm.201705537 – ident: ref39/cit39 doi: 10.1039/C6TA00483K – ident: ref3/cit3 doi: 10.1002/adfm.201805371 – ident: ref12/cit12 doi: 10.1002/advs.201903246 – ident: ref20/cit20 doi: 10.1002/eom2.12019 – ident: ref9/cit9 doi: 10.1016/j.electacta.2019.135486 – ident: ref34/cit34 doi: 10.1007/s40820-021-00758-5 – ident: ref15/cit15 doi: 10.1002/cey2.86 – ident: ref23/cit23 doi: 10.26599/NRE.2022.9120008 – ident: ref4/cit4 doi: 10.1002/anie.202016233 – ident: ref26/cit26 doi: 10.26599/NRE.2022.9120009 – ident: ref32/cit32 doi: 10.1016/j.chempr.2022.01.002 – ident: ref16/cit16 doi: 10.1021/acs.nanolett.2c01779 – ident: ref14/cit14 doi: 10.1021/acsnano.1c09402 |
SSID | ssj0063205 |
Score | 2.5954208 |
Snippet | Sodium-sulfur batteries operating at ambient temperature are being extensively studied because of the high theoretical capacity and abundant resources, yet the... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 54662 |
SubjectTerms | Energy, Environmental, and Catalysis Applications |
Title | Three-Dimensional Honeycomb-Like Carbon as Sulfur Host for Sodium–Sulfur Batteries without the Shuttle Effect |
URI | http://dx.doi.org/10.1021/acsami.2c13862 https://www.ncbi.nlm.nih.gov/pubmed/36459617 https://www.proquest.com/docview/2746395460 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3JTsMwEIYtBBc4sC9lkxFInFxSJ3HiIypUFQIupVJvUbyJqiVBTXKAE-_AG_IkjJOUVRVIudmJLHvs-Sdjf0bohCo_Zp7gxIB3J-DxJBHC4STgobQOkpkSpXRzy7p972rgDz7_d_zM4NPWWSwzexUOlS03tIvtAmUwg60Iavemay5zablZESJyj4TgsaZ4xl_vWycks-9OaIayLD1MZ6XCHWUlmNBuLBk1i1w05fNvbOOfjV9Fy7XMxOeVXayhOZ2so6Uv8MENlN7BMGpyYfH-FZoDd9NEP4EJCnI9HGncjiciTXCc4V4xNsUEyrMcg8rFvVQNi4e3l9e6oKJ0QtCN7X_dtMgx6Ercuy8sIRlXhORN1O9c3rW7pL5-gcQuZznhsWCOcUxAQ0F9EwgIjizcx5HK2APYoF0CJuwpECq4HxgGoZbRSquAcwm24W6h-QTavYOwo2lAlRKu0hAO-oZ7vvYCqt1QOVrGpoGOoaeievpkUZkZp62o6r6o7r4GItNRi2RNMLcXaYxn1j_9qP9YsTtm1jyaGkEE08vmTOJEp0UWQdAOGs73mNNA25V1fHzLZnA5KMDdf7V-Dy1Se3SiBY-3j-bzSaEPQNDk4rC05Xf8tvFQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4heqAcaKEFtk-jVurJbNZJnPiItqBtWRDSLhK3KH4JBCRokxzaU_8D_5Bf0nEeC7RaCaScYsea2GPPNx7PZ4CvTIcpD6SgFq07RYunqJSeoJGIlTOQ3NZUSkfHfHQa_DwLz5ag3-XCoBAFtlTUQfx7doFBH9-5G3GYGvixW3NfIBJhTqX3hpNu6eU-q88somMe0BgNV8fS-N_3zhap4rEtWgAwa0Nz8ApO5iLW50sud6tS7qrf_7A3PuMfXsNaCzrJXqMl67Bksg1YfUBF-AbyKQ6qod8d2X9D1EFGeWZ-oUJKOr64NGSYzmSekbQgk-rKVjMsL0qCmJdMcn1RXd_9uW0LGs5OdMGJ2-XNq5IgyiST88rxJZOGL_ktnB7sT4cj2l7GQFNf8JKKVHLPejZisWShjSS6So7qx1PaunRsRDIRly4nhEkRRpaj42WNNjoSQqGm-JuwnKHc20A8wyKmtfS1QecwtCIITRAx48faMyq1PfiCPZW0k6lI6jg5GyRN9yVt9_WAdoOXqJbP3F2rcbWw_rd5_ZuGyWNhzZ1OFxKcbC6CkmYmr4oEXXhEdGHAvR5sNUoyb8vFcwXiwXdPkv4zrIymR-Nk_OP48D28ZC6pYoBP8AGWy1llPiLUKeWnWr3_AkLq-bE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYQlVA5tNBCuzyNQOJkyDqJEx_RwmppKULaReIWxS-BoAnaJAd66n_oP-wvYSbJrnhoJZByih1rYo8933g8nwnZ4yZMRaAkc2DdGVg8zZTyJItkrNFACldTKf06F4PL4MdVeNXmcWMuDAhRQEtFHcTHWX1vXMsw0D2E93grDtddP8Z19wPG7FCtj3rDyfIrfF6fWwTnPGAxGK8JU-Or79Ee6eK5PZoBMmtj0_9MRlMx6zMmtwdVqQ70nxcMju_8jyXyqQWf9KjRlmUyZ7MvZPEJJeFXko9gcC07RtL_hrCDDvLMPoBiKnZ2c2tpLx2rPKNpQYfVnavGUF6UFLAvHebmpvr9_--_tqDh7gRXnOJub16VFNAmHV5XyJtMG97kFXLZPxn1Bqy9lIGlvhQlk6kSnvNcxGPFQxcpcJmQ8sfTxmFaNiCaSCjMDeFKhpET4IA5a6yJpNSgMf4qmc9A7u-EepZH3BjlGwtOYuhkENog4taPjWd16jpkF3oqaSdVkdTxct5Nmu5L2u7rEDYZwES3vOZ4vcbdzPr70_r3DaPHzJo7E31IYNJhJCXNbF4VCbjygOzCQHgd8q1RlGlbGNeVgAvX3iT9Nlm4OO4nZ6fnP9fJR465FV14gg0yX44ruwmIp1RbtYY_AlTn_DQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-Dimensional+Honeycomb-Like+Carbon+as+Sulfur+Host+for+Sodium-Sulfur+Batteries+without+the+Shuttle+Effect&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Zhao%2C+Decheng&rft.au=Ge-Zhang%2C+Shangjie&rft.au=Zhang%2C+Zhen&rft.au=Tang%2C+Hao&rft.date=2022-12-14&rft.issn=1944-8252&rft.eissn=1944-8252&rft.volume=14&rft.issue=49&rft.spage=54662&rft_id=info:doi/10.1021%2Facsami.2c13862&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |