Three-Dimensional Honeycomb-Like Carbon as Sulfur Host for Sodium–Sulfur Batteries without the Shuttle Effect

Sodium-sulfur batteries operating at ambient temperature are being extensively studied because of the high theoretical capacity and abundant resources, yet the long-chain polysulfides’ shuttle effect causes poor cycling performance of Na–S batteries. We report an annealing/etching method to converse...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 14; no. 49; pp. 54662 - 54669
Main Authors Zhao, Decheng, Ge-Zhang, Shangjie, Zhang, Zhen, Tang, Hao, Xu, Yuanyuan, Gao, Fei, Xu, Xiangyu, Liu, Shupei, Zhou, Jian, Wang, Zhoulu, Wu, Yutong, Liu, Xiang, Zhang, Yi
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 14.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sodium-sulfur batteries operating at ambient temperature are being extensively studied because of the high theoretical capacity and abundant resources, yet the long-chain polysulfides’ shuttle effect causes poor cycling performance of Na–S batteries. We report an annealing/etching method to converse low-cost wheat bran to a 3D honeycomb-like carbon with abundant micropores (WBMC), which is smaller than S8 molecular size (∼0.7 nm). Thus, the microporous structure could only fill small molecular sulfur (S2–4). The micropores made sulfur a one-step reaction without the shuttle effect due to the formed short-chain polysulfides being insoluble. The WBMC@S exhibits an excellent initial capacity (1413 mAh g–1) at 0.2 C, outstanding cycling performance (822 mAh g–1 after 100 cycles at 0.2 C), and high rate performance (483 mAh g–1 at 3.0 C). The electrochemical performance proves that the steric confinement of micropores effectively terminates the shuttle effect.
AbstractList Sodium-sulfur batteries operating at ambient temperature are being extensively studied because of the high theoretical capacity and abundant resources, yet the long-chain polysulfides' shuttle effect causes poor cycling performance of Na-S batteries. We report an annealing/etching method to converse low-cost wheat bran to a 3D honeycomb-like carbon with abundant micropores (WBMC), which is smaller than S molecular size (∼0.7 nm). Thus, the microporous structure could only fill small molecular sulfur (S ). The micropores made sulfur a one-step reaction without the shuttle effect due to the formed short-chain polysulfides being insoluble. The WBMC@S exhibits an excellent initial capacity (1413 mAh g ) at 0.2 C, outstanding cycling performance (822 mAh g after 100 cycles at 0.2 C), and high rate performance (483 mAh g at 3.0 C). The electrochemical performance proves that the steric confinement of micropores effectively terminates the shuttle effect.
Sodium-sulfur batteries operating at ambient temperature are being extensively studied because of the high theoretical capacity and abundant resources, yet the long-chain polysulfides’ shuttle effect causes poor cycling performance of Na–S batteries. We report an annealing/etching method to converse low-cost wheat bran to a 3D honeycomb-like carbon with abundant micropores (WBMC), which is smaller than S8 molecular size (∼0.7 nm). Thus, the microporous structure could only fill small molecular sulfur (S2–4). The micropores made sulfur a one-step reaction without the shuttle effect due to the formed short-chain polysulfides being insoluble. The WBMC@S exhibits an excellent initial capacity (1413 mAh g–1) at 0.2 C, outstanding cycling performance (822 mAh g–1 after 100 cycles at 0.2 C), and high rate performance (483 mAh g–1 at 3.0 C). The electrochemical performance proves that the steric confinement of micropores effectively terminates the shuttle effect.
Sodium-sulfur batteries operating at ambient temperature are being extensively studied because of the high theoretical capacity and abundant resources, yet the long-chain polysulfides' shuttle effect causes poor cycling performance of Na-S batteries. We report an annealing/etching method to converse low-cost wheat bran to a 3D honeycomb-like carbon with abundant micropores (WBMC), which is smaller than S8 molecular size (∼0.7 nm). Thus, the microporous structure could only fill small molecular sulfur (S2-4). The micropores made sulfur a one-step reaction without the shuttle effect due to the formed short-chain polysulfides being insoluble. The WBMC@S exhibits an excellent initial capacity (1413 mAh g-1) at 0.2 C, outstanding cycling performance (822 mAh g-1 after 100 cycles at 0.2 C), and high rate performance (483 mAh g-1 at 3.0 C). The electrochemical performance proves that the steric confinement of micropores effectively terminates the shuttle effect.Sodium-sulfur batteries operating at ambient temperature are being extensively studied because of the high theoretical capacity and abundant resources, yet the long-chain polysulfides' shuttle effect causes poor cycling performance of Na-S batteries. We report an annealing/etching method to converse low-cost wheat bran to a 3D honeycomb-like carbon with abundant micropores (WBMC), which is smaller than S8 molecular size (∼0.7 nm). Thus, the microporous structure could only fill small molecular sulfur (S2-4). The micropores made sulfur a one-step reaction without the shuttle effect due to the formed short-chain polysulfides being insoluble. The WBMC@S exhibits an excellent initial capacity (1413 mAh g-1) at 0.2 C, outstanding cycling performance (822 mAh g-1 after 100 cycles at 0.2 C), and high rate performance (483 mAh g-1 at 3.0 C). The electrochemical performance proves that the steric confinement of micropores effectively terminates the shuttle effect.
Author Zhao, Decheng
Zhou, Jian
Liu, Xiang
Xu, Xiangyu
Ge-Zhang, Shangjie
Zhang, Zhen
Zhang, Yi
Tang, Hao
Wang, Zhoulu
Xu, Yuanyuan
Gao, Fei
Liu, Shupei
Wu, Yutong
AuthorAffiliation College of Science
Northeast Forestry University
School of Energy Sciences and Engineering
AuthorAffiliation_xml – name: College of Science
– name: Northeast Forestry University
– name: School of Energy Sciences and Engineering
Author_xml – sequence: 1
  givenname: Decheng
  surname: Zhao
  fullname: Zhao, Decheng
  organization: School of Energy Sciences and Engineering
– sequence: 2
  givenname: Shangjie
  surname: Ge-Zhang
  fullname: Ge-Zhang, Shangjie
  organization: Northeast Forestry University
– sequence: 3
  givenname: Zhen
  surname: Zhang
  fullname: Zhang, Zhen
  organization: School of Energy Sciences and Engineering
– sequence: 4
  givenname: Hao
  surname: Tang
  fullname: Tang, Hao
  organization: School of Energy Sciences and Engineering
– sequence: 5
  givenname: Yuanyuan
  surname: Xu
  fullname: Xu, Yuanyuan
  organization: School of Energy Sciences and Engineering
– sequence: 6
  givenname: Fei
  surname: Gao
  fullname: Gao, Fei
  organization: School of Energy Sciences and Engineering
– sequence: 7
  givenname: Xiangyu
  surname: Xu
  fullname: Xu, Xiangyu
  organization: School of Energy Sciences and Engineering
– sequence: 8
  givenname: Shupei
  surname: Liu
  fullname: Liu, Shupei
  organization: School of Energy Sciences and Engineering
– sequence: 9
  givenname: Jian
  surname: Zhou
  fullname: Zhou, Jian
  organization: School of Energy Sciences and Engineering
– sequence: 10
  givenname: Zhoulu
  surname: Wang
  fullname: Wang, Zhoulu
  organization: School of Energy Sciences and Engineering
– sequence: 11
  givenname: Yutong
  orcidid: 0000-0003-1214-9147
  surname: Wu
  fullname: Wu, Yutong
  organization: School of Energy Sciences and Engineering
– sequence: 12
  givenname: Xiang
  surname: Liu
  fullname: Liu, Xiang
  email: iamxliu@njtech.edu.cn
  organization: School of Energy Sciences and Engineering
– sequence: 13
  givenname: Yi
  orcidid: 0000-0002-1603-8623
  surname: Zhang
  fullname: Zhang, Yi
  email: zhangy@njtech.edu.cn
  organization: School of Energy Sciences and Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36459617$$D View this record in MEDLINE/PubMed
BookMark eNp1kctuFDEQRS0URB6wZYm8RJF6cLv9aC9hEkikkbKYZG3Z7rLGobsd_BDKjn_gD_kSGs2ERaSsqlT33Cqp7ik6muMMCL1vyaoltP1kXDZTWFHXdr2gr9BJqxhresrp0f-esWN0mvM9IaKjhL9Bx51gXIlWnqB4u0sAzUWYYM4hzmbEV8uFRxcn22zCd8Brk2ycscl4W0df06Lngn1MeBuHUKc_v34fhC-mFEgBMv4Zyi7WgssO8HZXSxkBX3oPrrxFr70ZM7w71DN09_Xydn3VbG6-Xa8_bxrTKVEaZawgnnhJe0u5l5YpRZTsiBs8abkQvJfCyr4T1CouvVBceBhgkEo5sNCdoY_7vQ8p_qiQi55CdjCOZoZYs6aSiU5xJsiCfjig1U4w6IcUJpMe9dOTFoDtAZdizgm8dqGYsnyrJBNG3RL9Lwu9z0Ifslhsq2e2p80vGs73hmWu72NNSxr5Jfgv7pGcfQ
CitedBy_id crossref_primary_10_1002_cssc_202400757
crossref_primary_10_1016_j_jpowsour_2025_236682
crossref_primary_10_3390_jcs7030127
crossref_primary_10_1007_s12598_024_03044_6
crossref_primary_10_1002_app_56070
crossref_primary_10_1007_s11426_023_1711_x
crossref_primary_10_1016_j_cej_2024_155230
crossref_primary_10_1002_adsu_202400268
crossref_primary_10_1016_j_matlet_2023_134648
crossref_primary_10_1016_j_jpowsour_2024_235787
crossref_primary_10_1002_ange_202320060
crossref_primary_10_1007_s12598_023_02273_5
crossref_primary_10_1039_D4TA05076B
crossref_primary_10_3390_molecules28073134
crossref_primary_10_1039_D4NJ02230K
crossref_primary_10_1515_ntrev_2023_0122
crossref_primary_10_1016_j_jallcom_2024_176754
crossref_primary_10_1016_j_mtener_2024_101543
crossref_primary_10_1007_s40820_023_01177_4
crossref_primary_10_1016_j_surfin_2024_104223
crossref_primary_10_1016_j_carbon_2024_119615
crossref_primary_10_1016_j_jcis_2025_137312
crossref_primary_10_1088_1361_6528_acee85
crossref_primary_10_1016_j_carbpol_2024_123041
crossref_primary_10_1016_j_mtchem_2024_102492
crossref_primary_10_1016_j_cej_2024_150187
crossref_primary_10_3390_nano13111744
crossref_primary_10_7209_carbon_030102
crossref_primary_10_3390_polym15132920
crossref_primary_10_1007_s10965_024_03868_x
crossref_primary_10_1016_j_inoche_2024_113434
crossref_primary_10_1515_ntrev_2023_0130
crossref_primary_10_1002_adsu_202300101
crossref_primary_10_1016_j_compositesa_2024_108129
crossref_primary_10_1016_j_mtchem_2025_102644
crossref_primary_10_3390_nano13172416
crossref_primary_10_1002_adfm_202504272
crossref_primary_10_3390_ijms25094743
crossref_primary_10_1007_s12598_024_02708_7
crossref_primary_10_1520_JTE20230005
crossref_primary_10_1002_batt_202200549
crossref_primary_10_1007_s12598_023_02490_y
crossref_primary_10_1016_j_carbon_2023_118377
crossref_primary_10_1002_anie_202320060
crossref_primary_10_1007_s12598_024_03109_6
crossref_primary_10_3390_nano13010043
crossref_primary_10_26599_JAC_2024_9220895
crossref_primary_10_1021_acs_energyfuels_3c00220
crossref_primary_10_1016_j_cej_2024_150708
crossref_primary_10_1039_D4CC04806G
crossref_primary_10_1039_D4CC06120A
crossref_primary_10_1039_D5TA00458F
crossref_primary_10_1016_j_ceramint_2024_03_145
crossref_primary_10_1002_batt_202300022
crossref_primary_10_3390_en16031416
crossref_primary_10_1016_j_arabjc_2024_106077
crossref_primary_10_1039_D3CS01043K
crossref_primary_10_1007_s12598_024_02815_5
crossref_primary_10_3390_c10030067
crossref_primary_10_1016_j_recm_2023_12_002
crossref_primary_10_1016_j_carbon_2025_120245
crossref_primary_10_1016_j_matchemphys_2024_129153
Cites_doi 10.4236/epe.2011.33040
10.1039/D0TA08876E
10.1186/s42834-019-0011-x
10.1021/ja308170k
10.1016/j.jallcom.2021.159341
10.1021/acsami.7b01387
10.1016/j.nanoen.2017.09.041
10.1038/s41467-021-26631-y
10.1021/acsenergylett.0c02488
10.1002/adma.201304126
10.26599/NRE.2022.9120012
10.1038/s41598-019-41769-y
10.1016/j.nanoen.2016.02.049
10.1016/j.ensm.2022.07.028
10.1021/acs.nanolett.1c04182
10.26599/NRE.2022.9120007
10.1039/D0EE02203A
10.1002/cey2.40
10.1002/adfm.201503918
10.1016/j.ensm.2022.01.021
10.1002/adfm.202110313
10.1016/j.mattod.2021.10.026
10.1038/s41560-022-01001-0
10.1021/acsami.1c16035
10.1016/j.jallcom.2020.157316
10.1016/j.cej.2022.137742
10.1109/TDMR.2021.3051840
10.1038/ncomms11722
10.1002/adfm.201705537
10.1039/C6TA00483K
10.1002/adfm.201805371
10.1002/advs.201903246
10.1002/eom2.12019
10.1016/j.electacta.2019.135486
10.1007/s40820-021-00758-5
10.1002/cey2.86
10.26599/NRE.2022.9120008
10.1002/anie.202016233
10.26599/NRE.2022.9120009
10.1016/j.chempr.2022.01.002
10.1021/acs.nanolett.2c01779
10.1021/acsnano.1c09402
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acsami.2c13862
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 54669
ExternalDocumentID 36459617
10_1021_acsami_2c13862
a002026698
Genre Journal Article
GroupedDBID ---
.K2
23M
4.4
53G
55A
5GY
5VS
5ZA
6J9
7~N
AABXI
ABFRP
ABMVS
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED~
F5P
GGK
GNL
IH9
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
BAANH
CITATION
CUPRZ
NPM
7X8
ID FETCH-LOGICAL-a396t-9ab60f0f728b25f7b49909730cdf015665876b78362b957f6956feded799cebe3
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Fri Jul 11 01:19:01 EDT 2025
Thu Jan 02 22:53:20 EST 2025
Thu Apr 24 22:57:49 EDT 2025
Tue Jul 01 00:55:31 EDT 2025
Fri Dec 16 03:10:29 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 49
Keywords shuttle effect
microporous carbon
3D honeycomb-like
cathode
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a396t-9ab60f0f728b25f7b49909730cdf015665876b78362b957f6956feded799cebe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1214-9147
0000-0002-1603-8623
PMID 36459617
PQID 2746395460
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2746395460
pubmed_primary_36459617
crossref_citationtrail_10_1021_acsami_2c13862
crossref_primary_10_1021_acsami_2c13862
acs_journals_10_1021_acsami_2c13862
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-14
PublicationDateYYYYMMDD 2022-12-14
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-14
  day: 14
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref24/cit24
  doi: 10.4236/epe.2011.33040
– ident: ref40/cit40
  doi: 10.1039/D0TA08876E
– ident: ref21/cit21
  doi: 10.1186/s42834-019-0011-x
– ident: ref28/cit28
  doi: 10.1021/ja308170k
– ident: ref13/cit13
  doi: 10.1016/j.jallcom.2021.159341
– ident: ref37/cit37
  doi: 10.1021/acsami.7b01387
– ident: ref30/cit30
  doi: 10.1016/j.nanoen.2017.09.041
– ident: ref17/cit17
  doi: 10.1038/s41467-021-26631-y
– ident: ref11/cit11
  doi: 10.1021/acsenergylett.0c02488
– ident: ref8/cit8
  doi: 10.1002/adma.201304126
– ident: ref6/cit6
  doi: 10.26599/NRE.2022.9120012
– ident: ref10/cit10
  doi: 10.1038/s41598-019-41769-y
– ident: ref35/cit35
  doi: 10.1016/j.nanoen.2016.02.049
– ident: ref27/cit27
  doi: 10.1016/j.ensm.2022.07.028
– ident: ref41/cit41
  doi: 10.1021/acs.nanolett.1c04182
– ident: ref29/cit29
  doi: 10.26599/NRE.2022.9120007
– ident: ref7/cit7
  doi: 10.1039/D0EE02203A
– ident: ref22/cit22
  doi: 10.1002/cey2.40
– ident: ref38/cit38
  doi: 10.1002/adfm.201503918
– ident: ref1/cit1
  doi: 10.1016/j.ensm.2022.01.021
– ident: ref25/cit25
  doi: 10.1002/adfm.202110313
– ident: ref31/cit31
  doi: 10.1016/j.mattod.2021.10.026
– ident: ref5/cit5
  doi: 10.1038/s41560-022-01001-0
– ident: ref33/cit33
  doi: 10.1021/acsami.1c16035
– ident: ref19/cit19
  doi: 10.1016/j.jallcom.2020.157316
– ident: ref2/cit2
  doi: 10.1016/j.cej.2022.137742
– ident: ref18/cit18
  doi: 10.1109/TDMR.2021.3051840
– ident: ref36/cit36
  doi: 10.1038/ncomms11722
– ident: ref42/cit42
  doi: 10.1002/adfm.201705537
– ident: ref39/cit39
  doi: 10.1039/C6TA00483K
– ident: ref3/cit3
  doi: 10.1002/adfm.201805371
– ident: ref12/cit12
  doi: 10.1002/advs.201903246
– ident: ref20/cit20
  doi: 10.1002/eom2.12019
– ident: ref9/cit9
  doi: 10.1016/j.electacta.2019.135486
– ident: ref34/cit34
  doi: 10.1007/s40820-021-00758-5
– ident: ref15/cit15
  doi: 10.1002/cey2.86
– ident: ref23/cit23
  doi: 10.26599/NRE.2022.9120008
– ident: ref4/cit4
  doi: 10.1002/anie.202016233
– ident: ref26/cit26
  doi: 10.26599/NRE.2022.9120009
– ident: ref32/cit32
  doi: 10.1016/j.chempr.2022.01.002
– ident: ref16/cit16
  doi: 10.1021/acs.nanolett.2c01779
– ident: ref14/cit14
  doi: 10.1021/acsnano.1c09402
SSID ssj0063205
Score 2.5954208
Snippet Sodium-sulfur batteries operating at ambient temperature are being extensively studied because of the high theoretical capacity and abundant resources, yet the...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 54662
SubjectTerms Energy, Environmental, and Catalysis Applications
Title Three-Dimensional Honeycomb-Like Carbon as Sulfur Host for Sodium–Sulfur Batteries without the Shuttle Effect
URI http://dx.doi.org/10.1021/acsami.2c13862
https://www.ncbi.nlm.nih.gov/pubmed/36459617
https://www.proquest.com/docview/2746395460
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3JTsMwEIYtBBc4sC9lkxFInFxSJ3HiIypUFQIupVJvUbyJqiVBTXKAE-_AG_IkjJOUVRVIudmJLHvs-Sdjf0bohCo_Zp7gxIB3J-DxJBHC4STgobQOkpkSpXRzy7p972rgDz7_d_zM4NPWWSwzexUOlS03tIvtAmUwg60Iavemay5zablZESJyj4TgsaZ4xl_vWycks-9OaIayLD1MZ6XCHWUlmNBuLBk1i1w05fNvbOOfjV9Fy7XMxOeVXayhOZ2so6Uv8MENlN7BMGpyYfH-FZoDd9NEP4EJCnI9HGncjiciTXCc4V4xNsUEyrMcg8rFvVQNi4e3l9e6oKJ0QtCN7X_dtMgx6Ercuy8sIRlXhORN1O9c3rW7pL5-gcQuZznhsWCOcUxAQ0F9EwgIjizcx5HK2APYoF0CJuwpECq4HxgGoZbRSquAcwm24W6h-QTavYOwo2lAlRKu0hAO-oZ7vvYCqt1QOVrGpoGOoaeievpkUZkZp62o6r6o7r4GItNRi2RNMLcXaYxn1j_9qP9YsTtm1jyaGkEE08vmTOJEp0UWQdAOGs73mNNA25V1fHzLZnA5KMDdf7V-Dy1Se3SiBY-3j-bzSaEPQNDk4rC05Xf8tvFQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4heqAcaKEFtk-jVurJbNZJnPiItqBtWRDSLhK3KH4JBCRokxzaU_8D_5Bf0nEeC7RaCaScYsea2GPPNx7PZ4CvTIcpD6SgFq07RYunqJSeoJGIlTOQ3NZUSkfHfHQa_DwLz5ag3-XCoBAFtlTUQfx7doFBH9-5G3GYGvixW3NfIBJhTqX3hpNu6eU-q88somMe0BgNV8fS-N_3zhap4rEtWgAwa0Nz8ApO5iLW50sud6tS7qrf_7A3PuMfXsNaCzrJXqMl67Bksg1YfUBF-AbyKQ6qod8d2X9D1EFGeWZ-oUJKOr64NGSYzmSekbQgk-rKVjMsL0qCmJdMcn1RXd_9uW0LGs5OdMGJ2-XNq5IgyiST88rxJZOGL_ktnB7sT4cj2l7GQFNf8JKKVHLPejZisWShjSS6So7qx1PaunRsRDIRly4nhEkRRpaj42WNNjoSQqGm-JuwnKHc20A8wyKmtfS1QecwtCIITRAx48faMyq1PfiCPZW0k6lI6jg5GyRN9yVt9_WAdoOXqJbP3F2rcbWw_rd5_ZuGyWNhzZ1OFxKcbC6CkmYmr4oEXXhEdGHAvR5sNUoyb8vFcwXiwXdPkv4zrIymR-Nk_OP48D28ZC6pYoBP8AGWy1llPiLUKeWnWr3_AkLq-bE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYQlVA5tNBCuzyNQOJkyDqJEx_RwmppKULaReIWxS-BoAnaJAd66n_oP-wvYSbJrnhoJZByih1rYo8933g8nwnZ4yZMRaAkc2DdGVg8zZTyJItkrNFACldTKf06F4PL4MdVeNXmcWMuDAhRQEtFHcTHWX1vXMsw0D2E93grDtddP8Z19wPG7FCtj3rDyfIrfF6fWwTnPGAxGK8JU-Or79Ee6eK5PZoBMmtj0_9MRlMx6zMmtwdVqQ70nxcMju_8jyXyqQWf9KjRlmUyZ7MvZPEJJeFXko9gcC07RtL_hrCDDvLMPoBiKnZ2c2tpLx2rPKNpQYfVnavGUF6UFLAvHebmpvr9_--_tqDh7gRXnOJub16VFNAmHV5XyJtMG97kFXLZPxn1Bqy9lIGlvhQlk6kSnvNcxGPFQxcpcJmQ8sfTxmFaNiCaSCjMDeFKhpET4IA5a6yJpNSgMf4qmc9A7u-EepZH3BjlGwtOYuhkENog4taPjWd16jpkF3oqaSdVkdTxct5Nmu5L2u7rEDYZwES3vOZ4vcbdzPr70_r3DaPHzJo7E31IYNJhJCXNbF4VCbjygOzCQHgd8q1RlGlbGNeVgAvX3iT9Nlm4OO4nZ6fnP9fJR465FV14gg0yX44ruwmIp1RbtYY_AlTn_DQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-Dimensional+Honeycomb-Like+Carbon+as+Sulfur+Host+for+Sodium-Sulfur+Batteries+without+the+Shuttle+Effect&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Zhao%2C+Decheng&rft.au=Ge-Zhang%2C+Shangjie&rft.au=Zhang%2C+Zhen&rft.au=Tang%2C+Hao&rft.date=2022-12-14&rft.issn=1944-8252&rft.eissn=1944-8252&rft.volume=14&rft.issue=49&rft.spage=54662&rft_id=info:doi/10.1021%2Facsami.2c13862&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon