Optimization of Pore Structure of Cathodic Carbon Supports for Solvate Ionic Liquid Electrolytes Based Lithium–Sulfur Batteries

Lithium–sulfur (Li–S) batteries are a promising energy-storage technology owing to their high theoretical capacity and energy density. However, their practical application remains a challenge because of the serve shuttle effect caused by the dissolution of polysulfides in common organic electrolytes...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 8; no. 41; pp. 27803 - 27813
Main Authors Zhang, Shiguo, Ikoma, Ai, Li, Zhe, Ueno, Kazuhide, Ma, Xiaofeng, Dokko, Kaoru, Watanabe, Masayoshi
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 19.10.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithium–sulfur (Li–S) batteries are a promising energy-storage technology owing to their high theoretical capacity and energy density. However, their practical application remains a challenge because of the serve shuttle effect caused by the dissolution of polysulfides in common organic electrolytes. Polysulfide-insoluble electrolytes, such as solvate ionic liquids (ILs), have recently emerged as alternative candidates and shown great potential in suppressing the shuttle effect and improving the cycle stability of Li–S batteries. Redox electrochemical reactions in polysulfide-insoluble electrolytes occur via a solid-state process at the interphase between the electrolyte and the composite cathode; therefore, creating an appropriate interface between sulfur and a carbon support is of great importance. Nevertheless, the porous carbon supports established for conventional organic electrolytes may not be suitable for polysulfide-insoluble electrolytes. In this work, we investigated the effect of the porous structure of carbon materials on the Li–S battery performance in polysulfide-insoluble electrolytes using solvate ILs as a model electrolyte. We determined that the pore volume (rather than the surface area) exerts a major influence on the discharge capacity of S composite cathodes. In particular, inverse opal carbons with three-dimensionally ordered interconnected macropores and a large pore volume deliver the highest discharge capacity. The battery performance in both polysulfide-soluble electrolytes and solvate ILs was used to study the effect of electrolytes. We propose a plausible mechanism to explain the different porous structure requirements in polysulfide-soluble and polysulfide-insoluble electrolytes.
AbstractList Lithium-sulfur (Li-S) batteries are a promising energy-storage technology owing to their high theoretical capacity and energy density. However, their practical application remains a challenge because of the serve shuttle effect caused by the dissolution of polysulfides in common organic electrolytes. Polysulfide-insoluble electrolytes, such as solvate ionic liquids (ILs), have recently emerged as alternative candidates and shown great potential in suppressing the shuttle effect and improving the cycle stability of Li-S batteries. Redox electrochemical reactions in polysulfide-insoluble electrolytes occur via a solid-state process at the interphase between the electrolyte and the composite cathode; therefore, creating an appropriate interface between sulfur and a carbon support is of great importance. Nevertheless, the porous carbon supports established for conventional organic electrolytes may not be suitable for polysulfide-insoluble electrolytes. In this work, we investigated the effect of the porous structure of carbon materials on the Li-S battery performance in polysulfide-insoluble electrolytes using solvate ILs as a model electrolyte. We determined that the pore volume (rather than the surface area) exerts a major influence on the discharge capacity of S composite cathodes. In particular, inverse opal carbons with three-dimensionally ordered interconnected macropores and a large pore volume deliver the highest discharge capacity. The battery performance in both polysulfide-soluble electrolytes and solvate ILs was used to study the effect of electrolytes. We propose a plausible mechanism to explain the different porous structure requirements in polysulfide-soluble and polysulfide-insoluble electrolytes.
Author Dokko, Kaoru
Li, Zhe
Ma, Xiaofeng
Watanabe, Masayoshi
Ikoma, Ai
Ueno, Kazuhide
Zhang, Shiguo
AuthorAffiliation Yokohama National University
Department of Chemistry and Biotechnology
AuthorAffiliation_xml – name: Department of Chemistry and Biotechnology
– name: Yokohama National University
Author_xml – sequence: 1
  givenname: Shiguo
  surname: Zhang
  fullname: Zhang, Shiguo
– sequence: 2
  givenname: Ai
  surname: Ikoma
  fullname: Ikoma, Ai
– sequence: 3
  givenname: Zhe
  surname: Li
  fullname: Li, Zhe
– sequence: 4
  givenname: Kazuhide
  surname: Ueno
  fullname: Ueno, Kazuhide
– sequence: 5
  givenname: Xiaofeng
  surname: Ma
  fullname: Ma, Xiaofeng
– sequence: 6
  givenname: Kaoru
  surname: Dokko
  fullname: Dokko, Kaoru
– sequence: 7
  givenname: Masayoshi
  surname: Watanabe
  fullname: Watanabe, Masayoshi
  email: mwatanab@ynu.ac.jp
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27668510$$D View this record in MEDLINE/PubMed
BookMark eNp1kEtLAzEUhYNUtFa3LmWWIrQmk0w6WWrxBQWF6nrIa2hkZjLNQ6gr_Q3-Q3-JkdbuXN3Dvd85cM8RGHS20wCcIjhBMEeXXHremgkVkLGS7YEhYoSMy7zIBztNyCE48v4VQopzWByAw3xKaVkgOASfj30wrXnnwdgus3X2ZJ3OFsFFGWJSaTPjYWmVkUk4kaBF7Hvrgs9q67KFbd540NmD7RIxN6toVHbTaBmcbdZB--yae63SJSxNbL8_vhaxqaNL6xC0M9ofg_2aN16fbOcIvNzePM_ux_PHu4fZ1XzMMaNhPKWSCYZKLmutGCSY17mEORZIKoIlQVOmBOGYo6lilMiCQiFypQgVmCqG8Qicb3J7Z1dR-1C1xkvdNLzTNvoKlbjABSnLX3SyQaWz3jtdV70zLXfrCsHqt_ZqU3u1rT0ZzrbZUbRa7fC_nhNwsQGSsXq10XXp1f_SfgCR8pJm
CitedBy_id crossref_primary_10_1039_C9TA02743B
crossref_primary_10_1016_j_jcis_2024_03_128
crossref_primary_10_1016_j_jtice_2020_11_018
crossref_primary_10_5796_electrochemistry_22_00090
crossref_primary_10_1002_batt_202000273
crossref_primary_10_1002_slct_201703112
crossref_primary_10_1016_j_joule_2021_06_009
crossref_primary_10_1016_j_enchem_2022_100081
crossref_primary_10_1016_j_electacta_2017_09_149
crossref_primary_10_1039_D3NR02699J
crossref_primary_10_1149_1945_7111_ac384f
crossref_primary_10_3389_fchem_2020_00484
crossref_primary_10_1002_eem2_12170
crossref_primary_10_1038_s41427_019_0112_3
crossref_primary_10_1007_s12274_022_5364_5
crossref_primary_10_1039_C7CS00464H
crossref_primary_10_1021_acsami_7b11065
crossref_primary_10_1002_ente_201900625
crossref_primary_10_1016_j_electacta_2019_135458
crossref_primary_10_1039_D2TA07393E
crossref_primary_10_1016_j_cej_2019_03_145
crossref_primary_10_1002_er_8611
Cites_doi 10.1149/2.050207jes
10.1002/adma.200401006
10.1149/1.1503076
10.1149/2.002207jes
10.1016/j.jpowsour.2007.06.108
10.1021/ja411981c
10.1016/j.elecom.2006.02.007
10.1021/jp408037e
10.1038/nmat3191
10.1038/ncomms2327
10.1021/jp400153m
10.1021/am4000535
10.1039/C4CC05109B
10.1246/cl.2010.753
10.1021/ja308170k
10.1039/C1FD00112D
10.1016/j.electacta.2006.03.016
10.1016/j.jpowsour.2012.12.102
10.1016/j.nanoen.2015.03.006
10.1016/j.electacta.2012.03.081
10.1039/C4EE00372A
10.1021/jp206881t
10.1039/c0ee00505c
10.1039/c3cc46131a
10.1016/j.jpowsour.2014.05.111
10.1039/c1cc12415c
10.1149/1.2826266
10.1021/cm0101069
10.1039/c2cs35256g
10.1021/ja304352n
10.1002/smll.201402354
10.1039/C4MH00141A
10.1021/cm902050j
10.1351/pac198557040603
10.1002/aenm.201500118
10.1021/ja203983r
10.1038/ncomms2513
10.1039/c2nr33044j
10.1021/jp407158y
10.1557/mrs.2014.86
10.1021/ar300179v
10.1021/jp307378j
10.1351/pac198254112201
10.1021/cr500062v
10.1016/j.jpowsour.2009.06.089
10.1016/0022-1902(77)80198-X
10.1007/s10934-007-9139-x
10.1002/aenm.201500117
10.1039/C2CC36986A
10.1021/nn501284q
10.1021/nl2027684
10.1002/chem.201301689
10.1149/1.3148721
10.1002/celc.201500129
10.1149/1.2129079
10.1002/anie.201107817
10.1039/C4EE02192D
10.1002/cssc.201403320
10.1021/ar3001348
10.1038/nmat2460
10.1002/adma.201402569
10.1039/c3ta11045a
10.1002/anie.201304762
10.1039/b925751a
10.1021/am400958x
10.1016/j.jpowsour.2014.01.023
10.1149/2.111308jes
10.1021/cm5006168
10.1002/adfm.201302631
10.1002/adma.201204051
ContentType Journal Article
Copyright Copyright © 2016 American Chemical Society
Copyright_xml – notice: Copyright © 2016 American Chemical Society
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1021/acsami.6b09989
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 27813
ExternalDocumentID 10_1021_acsami_6b09989
27668510
e94287460
Genre Journal Article
GroupedDBID -
23M
53G
55A
5GY
5VS
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
4.4
5ZA
6J9
AAHBH
ABJNI
ABQRX
ADHLV
AHGAQ
BAANH
CUPRZ
GGK
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-a396t-76c9b918acfed9043af2c023b1cd43c4179db4a3a17d964c560bb2dd46b36d933
IEDL.DBID ACS
ISSN 1944-8244
IngestDate Fri Aug 16 02:14:52 EDT 2024
Fri Aug 23 00:53:29 EDT 2024
Sat Sep 28 08:39:35 EDT 2024
Fri Feb 05 20:53:48 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 41
Keywords lithium−sulfur battery
pore volume
porous carbon
polysulfide-insoluble
solvate ionic liquids
electrolyte
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a396t-76c9b918acfed9043af2c023b1cd43c4179db4a3a17d964c560bb2dd46b36d933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27668510
PQID 1835354883
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_1835354883
crossref_primary_10_1021_acsami_6b09989
pubmed_primary_27668510
acs_journals_10_1021_acsami_6b09989
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2016-10-19
PublicationDateYYYYMMDD 2016-10-19
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-19
  day: 19
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2016
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref44/cit44
  doi: 10.1149/2.050207jes
– ident: ref58/cit58
  doi: 10.1002/adma.200401006
– ident: ref26/cit26
  doi: 10.1149/1.1503076
– ident: ref31/cit31
  doi: 10.1149/2.002207jes
– ident: ref61/cit61
  doi: 10.1016/j.jpowsour.2007.06.108
– ident: ref48/cit48
  doi: 10.1021/ja411981c
– ident: ref23/cit23
  doi: 10.1016/j.elecom.2006.02.007
– ident: ref35/cit35
  doi: 10.1021/jp408037e
– ident: ref1/cit1
  doi: 10.1038/nmat3191
– ident: ref12/cit12
  doi: 10.1038/ncomms2327
– ident: ref28/cit28
  doi: 10.1021/jp400153m
– ident: ref70/cit70
  doi: 10.1021/am4000535
– ident: ref8/cit8
  doi: 10.1039/C4CC05109B
– ident: ref32/cit32
  doi: 10.1246/cl.2010.753
– ident: ref68/cit68
  doi: 10.1021/ja308170k
– ident: ref39/cit39
  doi: 10.1039/C1FD00112D
– ident: ref36/cit36
  doi: 10.1016/j.electacta.2006.03.016
– ident: ref20/cit20
  doi: 10.1016/j.jpowsour.2012.12.102
– ident: ref60/cit60
  doi: 10.1016/j.nanoen.2015.03.006
– ident: ref30/cit30
  doi: 10.1016/j.electacta.2012.03.081
– ident: ref24/cit24
  doi: 10.1039/C4EE00372A
– ident: ref42/cit42
  doi: 10.1021/jp206881t
– ident: ref66/cit66
  doi: 10.1039/c0ee00505c
– ident: ref5/cit5
  doi: 10.1039/c3cc46131a
– ident: ref7/cit7
  doi: 10.1016/j.jpowsour.2014.05.111
– ident: ref40/cit40
  doi: 10.1039/c1cc12415c
– ident: ref46/cit46
  doi: 10.1149/1.2826266
– ident: ref54/cit54
  doi: 10.1021/cm0101069
– ident: ref14/cit14
  doi: 10.1039/c2cs35256g
– ident: ref59/cit59
  doi: 10.1021/ja304352n
– ident: ref17/cit17
  doi: 10.1002/smll.201402354
– ident: ref50/cit50
  doi: 10.1039/C4MH00141A
– ident: ref56/cit56
  doi: 10.1021/cm902050j
– ident: ref53/cit53
  doi: 10.1351/pac198557040603
– ident: ref69/cit69
  doi: 10.1002/aenm.201500118
– ident: ref43/cit43
  doi: 10.1021/ja203983r
– ident: ref25/cit25
  doi: 10.1038/ncomms2513
– ident: ref4/cit4
  doi: 10.1039/c2nr33044j
– ident: ref45/cit45
  doi: 10.1021/jp407158y
– ident: ref6/cit6
  doi: 10.1557/mrs.2014.86
– ident: ref10/cit10
  doi: 10.1021/ar300179v
– ident: ref41/cit41
  doi: 10.1021/jp307378j
– ident: ref55/cit55
  doi: 10.1351/pac198254112201
– ident: ref2/cit2
  doi: 10.1021/cr500062v
– ident: ref37/cit37
  doi: 10.1016/j.jpowsour.2009.06.089
– ident: ref27/cit27
  doi: 10.1016/0022-1902(77)80198-X
– ident: ref52/cit52
  doi: 10.1007/s10934-007-9139-x
– ident: ref19/cit19
  doi: 10.1002/aenm.201500117
– ident: ref38/cit38
  doi: 10.1039/C2CC36986A
– ident: ref57/cit57
  doi: 10.1021/nn501284q
– ident: ref11/cit11
  doi: 10.1021/nl2027684
– ident: ref67/cit67
  doi: 10.1002/chem.201301689
– ident: ref29/cit29
  doi: 10.1149/1.3148721
– ident: ref47/cit47
  doi: 10.1002/celc.201500129
– ident: ref34/cit34
  doi: 10.1149/1.2129079
– ident: ref65/cit65
  doi: 10.1002/anie.201107817
– ident: ref22/cit22
  doi: 10.1039/C4EE02192D
– ident: ref51/cit51
  doi: 10.1002/cssc.201403320
– ident: ref16/cit16
  doi: 10.1021/ar3001348
– ident: ref9/cit9
  doi: 10.1038/nmat2460
– ident: ref15/cit15
  doi: 10.1002/adma.201402569
– ident: ref13/cit13
  doi: 10.1039/c3ta11045a
– ident: ref3/cit3
  doi: 10.1002/anie.201304762
– ident: ref18/cit18
  doi: 10.1039/b925751a
– ident: ref62/cit62
  doi: 10.1021/am400958x
– ident: ref21/cit21
  doi: 10.1016/j.jpowsour.2014.01.023
– ident: ref33/cit33
  doi: 10.1149/2.111308jes
– ident: ref49/cit49
  doi: 10.1021/cm5006168
– ident: ref64/cit64
  doi: 10.1002/adfm.201302631
– ident: ref63/cit63
  doi: 10.1002/adma.201204051
SSID ssj0063205
Score 2.3633733
Snippet Lithium–sulfur (Li–S) batteries are a promising energy-storage technology owing to their high theoretical capacity and energy density. However, their practical...
Lithium-sulfur (Li-S) batteries are a promising energy-storage technology owing to their high theoretical capacity and energy density. However, their practical...
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 27803
Title Optimization of Pore Structure of Cathodic Carbon Supports for Solvate Ionic Liquid Electrolytes Based Lithium–Sulfur Batteries
URI http://dx.doi.org/10.1021/acsami.6b09989
https://www.ncbi.nlm.nih.gov/pubmed/27668510
https://search.proquest.com/docview/1835354883
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dTtswGLVYudku2GDAug1kxCSuUprYdeJLqKjKNH6kDom7yD-JiNY2rG0mbVfwDHtDnoTjJAW2Cm13VuI4lj_b59iffT5CPinFJLNRx-v4zHroIaknNZNeGkWAK6XDIHUXhU9ORf-Cf77sXD7ud_ztwQ_8fWWmLhSO0OAykXxBloMQI8ORoO5gPucKFpSHFbEi514ExJrLMy5870DITP8EoWeYZYkwvdeV3NG0FCZ0B0u-tYqZbplfi7KN_6z8G7JS00x6UPWLVbKUjNfIqyfig2_J7Rlmi1F9DZPmKT3PJwkdlHqyBVJ44q4H5jYzSEw0MrkQoM7DQMF06SAf_gBRpcdOXJd-yb4XmaVHVVSd4U8wWHoIhLR4M7vKitHdze9BMUyLCa0kPbFCXycXvaOv3b5XB2TwYFEx80JhpJZ-pEyaWNnmTKWBAehr31jOjAtmZjVXTPmhlYIbsCmtA2u50ExYydgGaYzzcfKO0MQ4ptHWBmVwzClSgAeGhoPACGENa5JdtF1cD6hpXPrKAz-uGjSuG7RJ9uZ2jK8rdY5nc-7MzRxjADmviBoneYGSwUEZ1m0R_rlZ2f-hrCAUApS0_f6_avOBvASdEg7ZfPmRNGCwZAuUZaa3y956DxTB6Jw
link.rule.ids 315,783,787,2772,27088,27936,27937,57066,57116
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB1ROFAOhVKg0NK6AqmnwCb2OvGRItDSLh_SgsQtiu1EXXXZtLubSuUEv6H_kF_Ccz6gpUKiN8txHMcz9jxrPG-INpOEK26jttf2ufWgIZmnNFdeFkUwV4kOg8wFCh8eyc6Z-HzePp-i7SYWBoMYo6dx6cS_Zxfwt1HnMuJIDUgTqWc00w5hLR0W2u01W6_kQXlnEQdz4UUwXA1L4z_vO1tkxn_bokcAZmlo9ufp5G6I5f2Sb1vFRG-Zywfsjf_xDwv0ogadbKfSkpc0lQ4Xae4PKsJXdH2MveOiDspkecZO8lHKeiW7bIESalywYG77BoWRRiOXENT5GxhwL-vlg5-ArezAUe2ybv9H0bdsr8qxM_gFPMs-wV5aPJl87RcXN1e_e8UgK0asIvjEeX2Jzvb3Tnc7Xp2ewYN85cQLpVFa-VFistSqluBJFhhAAO0bK7hxqc2sFglP_NAqKQywldaBtUJqLq3ifJmmh_kwfU0sNQ53tLRBHwI7jJJAhaERgDNSWsNXaQNzF9fLaxyXnvPAj6sJjesJXaWPjTjj7xVXx6MtPzTSjrGcnI8kGaZ5gZ6BSDlOcRG-uVKpwV1fQSglAGpr7UmjeU-zndPDbtw9OPryhp4DaEln83z1lqYhvHQdYGai35UKfAtfPvEB
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dT9swFLVGJ03jgY1tsO7TE0h7CjSx68SPXdeqfBWktlLfothOREVpurZBGk_sN-wf8ks4TlK0MVUab5bjOI7vte-xru-5hOxGEZPMBHWn7jLjQEMSRyomnSQIYK4i5XuJDRQ-6YrOgB8O68MyjtvGwmAQc_Q0z534dlVPTVIyDLj7qLdZcYQCrAnkGnla993cN9to9pbbr2Befm8Rh3PuBDBeS6bGf9639kjP_7ZHK0BmbmzaL0j_fpj5HZOLvWyh9vT1AwbHR_7HS7JRgk_aKLRlkzyJJ6_I-h-UhK_Jr1PsIZdlcCZNE3qWzmLay1lmM5RQY4MGUzPSKMwUGtnEoNbvQIF_aS8dXwG-0gNLuUuPRz-ykaGtItfO-CdwLf0Gu2nwZHE-yi5vb373snGSzWhB9Ilz-xsyaLf6zY5TpmlwIGexcHyhpZJuEOkkNrLGWZR4GlBAudpwpm2KM6N4xCLXN1JwDYyllGcMF4oJIxnbIpVJOonfEhpriz9qSqMPjp1GCqBDX3PAGiGMZlWyg7kLy2U2D3MPuueGxYSG5YRWydelSMNpwdmxsuWXpcRDLCvrK4kmcZqhZyBThtNcgG9uF6pw35fnCwGgWnv3X6P5TJ6dfW-Hxwfdo_fkOfCWsKbPlR9IBbKLPwLTLNSnXIfvAA4U83s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+Pore+Structure+of+Cathodic+Carbon+Supports+for+Solvate+Ionic+Liquid+Electrolytes+Based+Lithium%E2%80%93Sulfur+Batteries&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Zhang%2C+Shiguo&rft.au=Ikoma%2C+Ai&rft.au=Li%2C+Zhe&rft.au=Ueno%2C+Kazuhide&rft.date=2016-10-19&rft.pub=American+Chemical+Society&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=8&rft.issue=41&rft.spage=27803&rft.epage=27813&rft_id=info:doi/10.1021%2Facsami.6b09989&rft.externalDocID=e94287460
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon