Optimization of Pore Structure of Cathodic Carbon Supports for Solvate Ionic Liquid Electrolytes Based Lithium–Sulfur Batteries
Lithium–sulfur (Li–S) batteries are a promising energy-storage technology owing to their high theoretical capacity and energy density. However, their practical application remains a challenge because of the serve shuttle effect caused by the dissolution of polysulfides in common organic electrolytes...
Saved in:
Published in | ACS applied materials & interfaces Vol. 8; no. 41; pp. 27803 - 27813 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
19.10.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium–sulfur (Li–S) batteries are a promising energy-storage technology owing to their high theoretical capacity and energy density. However, their practical application remains a challenge because of the serve shuttle effect caused by the dissolution of polysulfides in common organic electrolytes. Polysulfide-insoluble electrolytes, such as solvate ionic liquids (ILs), have recently emerged as alternative candidates and shown great potential in suppressing the shuttle effect and improving the cycle stability of Li–S batteries. Redox electrochemical reactions in polysulfide-insoluble electrolytes occur via a solid-state process at the interphase between the electrolyte and the composite cathode; therefore, creating an appropriate interface between sulfur and a carbon support is of great importance. Nevertheless, the porous carbon supports established for conventional organic electrolytes may not be suitable for polysulfide-insoluble electrolytes. In this work, we investigated the effect of the porous structure of carbon materials on the Li–S battery performance in polysulfide-insoluble electrolytes using solvate ILs as a model electrolyte. We determined that the pore volume (rather than the surface area) exerts a major influence on the discharge capacity of S composite cathodes. In particular, inverse opal carbons with three-dimensionally ordered interconnected macropores and a large pore volume deliver the highest discharge capacity. The battery performance in both polysulfide-soluble electrolytes and solvate ILs was used to study the effect of electrolytes. We propose a plausible mechanism to explain the different porous structure requirements in polysulfide-soluble and polysulfide-insoluble electrolytes. |
---|---|
AbstractList | Lithium-sulfur (Li-S) batteries are a promising energy-storage technology owing to their high theoretical capacity and energy density. However, their practical application remains a challenge because of the serve shuttle effect caused by the dissolution of polysulfides in common organic electrolytes. Polysulfide-insoluble electrolytes, such as solvate ionic liquids (ILs), have recently emerged as alternative candidates and shown great potential in suppressing the shuttle effect and improving the cycle stability of Li-S batteries. Redox electrochemical reactions in polysulfide-insoluble electrolytes occur via a solid-state process at the interphase between the electrolyte and the composite cathode; therefore, creating an appropriate interface between sulfur and a carbon support is of great importance. Nevertheless, the porous carbon supports established for conventional organic electrolytes may not be suitable for polysulfide-insoluble electrolytes. In this work, we investigated the effect of the porous structure of carbon materials on the Li-S battery performance in polysulfide-insoluble electrolytes using solvate ILs as a model electrolyte. We determined that the pore volume (rather than the surface area) exerts a major influence on the discharge capacity of S composite cathodes. In particular, inverse opal carbons with three-dimensionally ordered interconnected macropores and a large pore volume deliver the highest discharge capacity. The battery performance in both polysulfide-soluble electrolytes and solvate ILs was used to study the effect of electrolytes. We propose a plausible mechanism to explain the different porous structure requirements in polysulfide-soluble and polysulfide-insoluble electrolytes. |
Author | Dokko, Kaoru Li, Zhe Ma, Xiaofeng Watanabe, Masayoshi Ikoma, Ai Ueno, Kazuhide Zhang, Shiguo |
AuthorAffiliation | Yokohama National University Department of Chemistry and Biotechnology |
AuthorAffiliation_xml | – name: Department of Chemistry and Biotechnology – name: Yokohama National University |
Author_xml | – sequence: 1 givenname: Shiguo surname: Zhang fullname: Zhang, Shiguo – sequence: 2 givenname: Ai surname: Ikoma fullname: Ikoma, Ai – sequence: 3 givenname: Zhe surname: Li fullname: Li, Zhe – sequence: 4 givenname: Kazuhide surname: Ueno fullname: Ueno, Kazuhide – sequence: 5 givenname: Xiaofeng surname: Ma fullname: Ma, Xiaofeng – sequence: 6 givenname: Kaoru surname: Dokko fullname: Dokko, Kaoru – sequence: 7 givenname: Masayoshi surname: Watanabe fullname: Watanabe, Masayoshi email: mwatanab@ynu.ac.jp |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27668510$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kEtLAzEUhYNUtFa3LmWWIrQmk0w6WWrxBQWF6nrIa2hkZjLNQ6gr_Q3-Q3-JkdbuXN3Dvd85cM8RGHS20wCcIjhBMEeXXHremgkVkLGS7YEhYoSMy7zIBztNyCE48v4VQopzWByAw3xKaVkgOASfj30wrXnnwdgus3X2ZJ3OFsFFGWJSaTPjYWmVkUk4kaBF7Hvrgs9q67KFbd540NmD7RIxN6toVHbTaBmcbdZB--yae63SJSxNbL8_vhaxqaNL6xC0M9ofg_2aN16fbOcIvNzePM_ux_PHu4fZ1XzMMaNhPKWSCYZKLmutGCSY17mEORZIKoIlQVOmBOGYo6lilMiCQiFypQgVmCqG8Qicb3J7Z1dR-1C1xkvdNLzTNvoKlbjABSnLX3SyQaWz3jtdV70zLXfrCsHqt_ZqU3u1rT0ZzrbZUbRa7fC_nhNwsQGSsXq10XXp1f_SfgCR8pJm |
CitedBy_id | crossref_primary_10_1039_C9TA02743B crossref_primary_10_1016_j_jcis_2024_03_128 crossref_primary_10_1016_j_jtice_2020_11_018 crossref_primary_10_5796_electrochemistry_22_00090 crossref_primary_10_1002_batt_202000273 crossref_primary_10_1002_slct_201703112 crossref_primary_10_1016_j_joule_2021_06_009 crossref_primary_10_1016_j_enchem_2022_100081 crossref_primary_10_1016_j_electacta_2017_09_149 crossref_primary_10_1039_D3NR02699J crossref_primary_10_1149_1945_7111_ac384f crossref_primary_10_3389_fchem_2020_00484 crossref_primary_10_1002_eem2_12170 crossref_primary_10_1038_s41427_019_0112_3 crossref_primary_10_1007_s12274_022_5364_5 crossref_primary_10_1039_C7CS00464H crossref_primary_10_1021_acsami_7b11065 crossref_primary_10_1002_ente_201900625 crossref_primary_10_1016_j_electacta_2019_135458 crossref_primary_10_1039_D2TA07393E crossref_primary_10_1016_j_cej_2019_03_145 crossref_primary_10_1002_er_8611 |
Cites_doi | 10.1149/2.050207jes 10.1002/adma.200401006 10.1149/1.1503076 10.1149/2.002207jes 10.1016/j.jpowsour.2007.06.108 10.1021/ja411981c 10.1016/j.elecom.2006.02.007 10.1021/jp408037e 10.1038/nmat3191 10.1038/ncomms2327 10.1021/jp400153m 10.1021/am4000535 10.1039/C4CC05109B 10.1246/cl.2010.753 10.1021/ja308170k 10.1039/C1FD00112D 10.1016/j.electacta.2006.03.016 10.1016/j.jpowsour.2012.12.102 10.1016/j.nanoen.2015.03.006 10.1016/j.electacta.2012.03.081 10.1039/C4EE00372A 10.1021/jp206881t 10.1039/c0ee00505c 10.1039/c3cc46131a 10.1016/j.jpowsour.2014.05.111 10.1039/c1cc12415c 10.1149/1.2826266 10.1021/cm0101069 10.1039/c2cs35256g 10.1021/ja304352n 10.1002/smll.201402354 10.1039/C4MH00141A 10.1021/cm902050j 10.1351/pac198557040603 10.1002/aenm.201500118 10.1021/ja203983r 10.1038/ncomms2513 10.1039/c2nr33044j 10.1021/jp407158y 10.1557/mrs.2014.86 10.1021/ar300179v 10.1021/jp307378j 10.1351/pac198254112201 10.1021/cr500062v 10.1016/j.jpowsour.2009.06.089 10.1016/0022-1902(77)80198-X 10.1007/s10934-007-9139-x 10.1002/aenm.201500117 10.1039/C2CC36986A 10.1021/nn501284q 10.1021/nl2027684 10.1002/chem.201301689 10.1149/1.3148721 10.1002/celc.201500129 10.1149/1.2129079 10.1002/anie.201107817 10.1039/C4EE02192D 10.1002/cssc.201403320 10.1021/ar3001348 10.1038/nmat2460 10.1002/adma.201402569 10.1039/c3ta11045a 10.1002/anie.201304762 10.1039/b925751a 10.1021/am400958x 10.1016/j.jpowsour.2014.01.023 10.1149/2.111308jes 10.1021/cm5006168 10.1002/adfm.201302631 10.1002/adma.201204051 |
ContentType | Journal Article |
Copyright | Copyright © 2016 American Chemical Society |
Copyright_xml | – notice: Copyright © 2016 American Chemical Society |
DBID | NPM AAYXX CITATION 7X8 |
DOI | 10.1021/acsami.6b09989 |
DatabaseName | PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 27813 |
ExternalDocumentID | 10_1021_acsami_6b09989 27668510 e94287460 |
Genre | Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 5VS 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ --- .K2 4.4 5ZA 6J9 AAHBH ABJNI ABQRX ADHLV AHGAQ BAANH CUPRZ GGK NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-a396t-76c9b918acfed9043af2c023b1cd43c4179db4a3a17d964c560bb2dd46b36d933 |
IEDL.DBID | ACS |
ISSN | 1944-8244 |
IngestDate | Fri Aug 16 02:14:52 EDT 2024 Fri Aug 23 00:53:29 EDT 2024 Sat Sep 28 08:39:35 EDT 2024 Fri Feb 05 20:53:48 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 41 |
Keywords | lithium−sulfur battery pore volume porous carbon polysulfide-insoluble solvate ionic liquids electrolyte |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a396t-76c9b918acfed9043af2c023b1cd43c4179db4a3a17d964c560bb2dd46b36d933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 27668510 |
PQID | 1835354883 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1835354883 crossref_primary_10_1021_acsami_6b09989 pubmed_primary_27668510 acs_journals_10_1021_acsami_6b09989 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2016-10-19 |
PublicationDateYYYYMMDD | 2016-10-19 |
PublicationDate_xml | – month: 10 year: 2016 text: 2016-10-19 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2016 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref44/cit44 doi: 10.1149/2.050207jes – ident: ref58/cit58 doi: 10.1002/adma.200401006 – ident: ref26/cit26 doi: 10.1149/1.1503076 – ident: ref31/cit31 doi: 10.1149/2.002207jes – ident: ref61/cit61 doi: 10.1016/j.jpowsour.2007.06.108 – ident: ref48/cit48 doi: 10.1021/ja411981c – ident: ref23/cit23 doi: 10.1016/j.elecom.2006.02.007 – ident: ref35/cit35 doi: 10.1021/jp408037e – ident: ref1/cit1 doi: 10.1038/nmat3191 – ident: ref12/cit12 doi: 10.1038/ncomms2327 – ident: ref28/cit28 doi: 10.1021/jp400153m – ident: ref70/cit70 doi: 10.1021/am4000535 – ident: ref8/cit8 doi: 10.1039/C4CC05109B – ident: ref32/cit32 doi: 10.1246/cl.2010.753 – ident: ref68/cit68 doi: 10.1021/ja308170k – ident: ref39/cit39 doi: 10.1039/C1FD00112D – ident: ref36/cit36 doi: 10.1016/j.electacta.2006.03.016 – ident: ref20/cit20 doi: 10.1016/j.jpowsour.2012.12.102 – ident: ref60/cit60 doi: 10.1016/j.nanoen.2015.03.006 – ident: ref30/cit30 doi: 10.1016/j.electacta.2012.03.081 – ident: ref24/cit24 doi: 10.1039/C4EE00372A – ident: ref42/cit42 doi: 10.1021/jp206881t – ident: ref66/cit66 doi: 10.1039/c0ee00505c – ident: ref5/cit5 doi: 10.1039/c3cc46131a – ident: ref7/cit7 doi: 10.1016/j.jpowsour.2014.05.111 – ident: ref40/cit40 doi: 10.1039/c1cc12415c – ident: ref46/cit46 doi: 10.1149/1.2826266 – ident: ref54/cit54 doi: 10.1021/cm0101069 – ident: ref14/cit14 doi: 10.1039/c2cs35256g – ident: ref59/cit59 doi: 10.1021/ja304352n – ident: ref17/cit17 doi: 10.1002/smll.201402354 – ident: ref50/cit50 doi: 10.1039/C4MH00141A – ident: ref56/cit56 doi: 10.1021/cm902050j – ident: ref53/cit53 doi: 10.1351/pac198557040603 – ident: ref69/cit69 doi: 10.1002/aenm.201500118 – ident: ref43/cit43 doi: 10.1021/ja203983r – ident: ref25/cit25 doi: 10.1038/ncomms2513 – ident: ref4/cit4 doi: 10.1039/c2nr33044j – ident: ref45/cit45 doi: 10.1021/jp407158y – ident: ref6/cit6 doi: 10.1557/mrs.2014.86 – ident: ref10/cit10 doi: 10.1021/ar300179v – ident: ref41/cit41 doi: 10.1021/jp307378j – ident: ref55/cit55 doi: 10.1351/pac198254112201 – ident: ref2/cit2 doi: 10.1021/cr500062v – ident: ref37/cit37 doi: 10.1016/j.jpowsour.2009.06.089 – ident: ref27/cit27 doi: 10.1016/0022-1902(77)80198-X – ident: ref52/cit52 doi: 10.1007/s10934-007-9139-x – ident: ref19/cit19 doi: 10.1002/aenm.201500117 – ident: ref38/cit38 doi: 10.1039/C2CC36986A – ident: ref57/cit57 doi: 10.1021/nn501284q – ident: ref11/cit11 doi: 10.1021/nl2027684 – ident: ref67/cit67 doi: 10.1002/chem.201301689 – ident: ref29/cit29 doi: 10.1149/1.3148721 – ident: ref47/cit47 doi: 10.1002/celc.201500129 – ident: ref34/cit34 doi: 10.1149/1.2129079 – ident: ref65/cit65 doi: 10.1002/anie.201107817 – ident: ref22/cit22 doi: 10.1039/C4EE02192D – ident: ref51/cit51 doi: 10.1002/cssc.201403320 – ident: ref16/cit16 doi: 10.1021/ar3001348 – ident: ref9/cit9 doi: 10.1038/nmat2460 – ident: ref15/cit15 doi: 10.1002/adma.201402569 – ident: ref13/cit13 doi: 10.1039/c3ta11045a – ident: ref3/cit3 doi: 10.1002/anie.201304762 – ident: ref18/cit18 doi: 10.1039/b925751a – ident: ref62/cit62 doi: 10.1021/am400958x – ident: ref21/cit21 doi: 10.1016/j.jpowsour.2014.01.023 – ident: ref33/cit33 doi: 10.1149/2.111308jes – ident: ref49/cit49 doi: 10.1021/cm5006168 – ident: ref64/cit64 doi: 10.1002/adfm.201302631 – ident: ref63/cit63 doi: 10.1002/adma.201204051 |
SSID | ssj0063205 |
Score | 2.3633733 |
Snippet | Lithium–sulfur (Li–S) batteries are a promising energy-storage technology owing to their high theoretical capacity and energy density. However, their practical... Lithium-sulfur (Li-S) batteries are a promising energy-storage technology owing to their high theoretical capacity and energy density. However, their practical... |
SourceID | proquest crossref pubmed acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 27803 |
Title | Optimization of Pore Structure of Cathodic Carbon Supports for Solvate Ionic Liquid Electrolytes Based Lithium–Sulfur Batteries |
URI | http://dx.doi.org/10.1021/acsami.6b09989 https://www.ncbi.nlm.nih.gov/pubmed/27668510 https://search.proquest.com/docview/1835354883 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dTtswGLVYudku2GDAug1kxCSuUprYdeJLqKjKNH6kDom7yD-JiNY2rG0mbVfwDHtDnoTjJAW2Cm13VuI4lj_b59iffT5CPinFJLNRx-v4zHroIaknNZNeGkWAK6XDIHUXhU9ORf-Cf77sXD7ud_ztwQ_8fWWmLhSO0OAykXxBloMQI8ORoO5gPucKFpSHFbEi514ExJrLMy5870DITP8EoWeYZYkwvdeV3NG0FCZ0B0u-tYqZbplfi7KN_6z8G7JS00x6UPWLVbKUjNfIqyfig2_J7Rlmi1F9DZPmKT3PJwkdlHqyBVJ44q4H5jYzSEw0MrkQoM7DQMF06SAf_gBRpcdOXJd-yb4XmaVHVVSd4U8wWHoIhLR4M7vKitHdze9BMUyLCa0kPbFCXycXvaOv3b5XB2TwYFEx80JhpJZ-pEyaWNnmTKWBAehr31jOjAtmZjVXTPmhlYIbsCmtA2u50ExYydgGaYzzcfKO0MQ4ptHWBmVwzClSgAeGhoPACGENa5JdtF1cD6hpXPrKAz-uGjSuG7RJ9uZ2jK8rdY5nc-7MzRxjADmviBoneYGSwUEZ1m0R_rlZ2f-hrCAUApS0_f6_avOBvASdEg7ZfPmRNGCwZAuUZaa3y956DxTB6Jw |
link.rule.ids | 315,783,787,2772,27088,27936,27937,57066,57116 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB1ROFAOhVKg0NK6AqmnwCb2OvGRItDSLh_SgsQtiu1EXXXZtLubSuUEv6H_kF_Ccz6gpUKiN8txHMcz9jxrPG-INpOEK26jttf2ufWgIZmnNFdeFkUwV4kOg8wFCh8eyc6Z-HzePp-i7SYWBoMYo6dx6cS_Zxfwt1HnMuJIDUgTqWc00w5hLR0W2u01W6_kQXlnEQdz4UUwXA1L4z_vO1tkxn_bokcAZmlo9ufp5G6I5f2Sb1vFRG-Zywfsjf_xDwv0ogadbKfSkpc0lQ4Xae4PKsJXdH2MveOiDspkecZO8lHKeiW7bIESalywYG77BoWRRiOXENT5GxhwL-vlg5-ArezAUe2ybv9H0bdsr8qxM_gFPMs-wV5aPJl87RcXN1e_e8UgK0asIvjEeX2Jzvb3Tnc7Xp2ewYN85cQLpVFa-VFistSqluBJFhhAAO0bK7hxqc2sFglP_NAqKQywldaBtUJqLq3ifJmmh_kwfU0sNQ53tLRBHwI7jJJAhaERgDNSWsNXaQNzF9fLaxyXnvPAj6sJjesJXaWPjTjj7xVXx6MtPzTSjrGcnI8kGaZ5gZ6BSDlOcRG-uVKpwV1fQSglAGpr7UmjeU-zndPDbtw9OPryhp4DaEln83z1lqYhvHQdYGai35UKfAtfPvEB |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dT9swFLVGJ03jgY1tsO7TE0h7CjSx68SPXdeqfBWktlLfothOREVpurZBGk_sN-wf8ks4TlK0MVUab5bjOI7vte-xru-5hOxGEZPMBHWn7jLjQEMSRyomnSQIYK4i5XuJDRQ-6YrOgB8O68MyjtvGwmAQc_Q0z534dlVPTVIyDLj7qLdZcYQCrAnkGnla993cN9to9pbbr2Befm8Rh3PuBDBeS6bGf9639kjP_7ZHK0BmbmzaL0j_fpj5HZOLvWyh9vT1AwbHR_7HS7JRgk_aKLRlkzyJJ6_I-h-UhK_Jr1PsIZdlcCZNE3qWzmLay1lmM5RQY4MGUzPSKMwUGtnEoNbvQIF_aS8dXwG-0gNLuUuPRz-ykaGtItfO-CdwLf0Gu2nwZHE-yi5vb373snGSzWhB9Ilz-xsyaLf6zY5TpmlwIGexcHyhpZJuEOkkNrLGWZR4GlBAudpwpm2KM6N4xCLXN1JwDYyllGcMF4oJIxnbIpVJOonfEhpriz9qSqMPjp1GCqBDX3PAGiGMZlWyg7kLy2U2D3MPuueGxYSG5YRWydelSMNpwdmxsuWXpcRDLCvrK4kmcZqhZyBThtNcgG9uF6pw35fnCwGgWnv3X6P5TJ6dfW-Hxwfdo_fkOfCWsKbPlR9IBbKLPwLTLNSnXIfvAA4U83s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+Pore+Structure+of+Cathodic+Carbon+Supports+for+Solvate+Ionic+Liquid+Electrolytes+Based+Lithium%E2%80%93Sulfur+Batteries&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Zhang%2C+Shiguo&rft.au=Ikoma%2C+Ai&rft.au=Li%2C+Zhe&rft.au=Ueno%2C+Kazuhide&rft.date=2016-10-19&rft.pub=American+Chemical+Society&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=8&rft.issue=41&rft.spage=27803&rft.epage=27813&rft_id=info:doi/10.1021%2Facsami.6b09989&rft.externalDocID=e94287460 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |