Effect of Particle Porosity on Hysteresis in Trickle-Bed Reactors
Hydrodynamics in trickle-bed reactors (TBRs) is quite complex because of the coexistence of gas−liquid−solid phases. Recent past hysteresis have been the subject of investigation to improve the understanding of the flow features at the microlevel, aiming to demystify the complex hydrodynamics. The p...
Saved in:
Published in | Industrial & engineering chemistry research Vol. 47; no. 21; pp. 8126 - 8135 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
05.11.2008
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hydrodynamics in trickle-bed reactors (TBRs) is quite complex because of the coexistence of gas−liquid−solid phases. Recent past hysteresis have been the subject of investigation to improve the understanding of the flow features at the microlevel, aiming to demystify the complex hydrodynamics. The purpose of the present study is to identify the role of particle porosity on hysteresis by choosing particles of different pore density (nonporous, semiporous, porous) but prepared from same material with identical shape and sizes. Experiments were carried out with industrial relevant-sized alumina extrudates in a 150 mm ID column using both a dry- and a wet-bed startup procedure. Comprehensive pressure drop hysteresis data were generated in increasing and decreasing modes of water flow in the presence of a constant flow of air at ambient condition. Pronounced but different magnitudes of pressure drop hysteresis were observed with all three types of particles at first cycle as well at subsequent cycle of operation. A deviation in pressure drop up to 90% was found between increasing and decreasing modes of operation, even after prewetting the bed. The same amount of hysteresis was observed for all the subsequent cycles, but the value is higher for particles with higher porosity. This confirms that particle porosity plays a major role in the existence of different flow texture at the microlevel in the trickle flow regime. This observation is reported here for the first time, and we believe that there is no such experimental data available in the literature. The genesis of this different hysteretic behavior of porous particles lies in the different ways liquid spreads/retracts over porous and nonporous particles. A conceptual framework of hysteresis proposed by Maiti et al. (2005), which is based on the concept of participating and nonparticipating particles and principles of liquid spreading on porous and nonporous substrates, is found to explain successfully the various features of hysteresis observed with all three types of particles. This study is expected to be useful to the TBR researcher and practitioner in enhancing the understanding further to demystify the complex hydrodynamic phenomena in TBRs. |
---|---|
AbstractList | Hydrodynamics in trickle-bed reactors (TBRs) is quite complex because of the coexistence of gas−liquid−solid phases. Recent past hysteresis have been the subject of investigation to improve the understanding of the flow features at the microlevel, aiming to demystify the complex hydrodynamics. The purpose of the present study is to identify the role of particle porosity on hysteresis by choosing particles of different pore density (nonporous, semiporous, porous) but prepared from same material with identical shape and sizes. Experiments were carried out with industrial relevant-sized alumina extrudates in a 150 mm ID column using both a dry- and a wet-bed startup procedure. Comprehensive pressure drop hysteresis data were generated in increasing and decreasing modes of water flow in the presence of a constant flow of air at ambient condition. Pronounced but different magnitudes of pressure drop hysteresis were observed with all three types of particles at first cycle as well at subsequent cycle of operation. A deviation in pressure drop up to 90% was found between increasing and decreasing modes of operation, even after prewetting the bed. The same amount of hysteresis was observed for all the subsequent cycles, but the value is higher for particles with higher porosity. This confirms that particle porosity plays a major role in the existence of different flow texture at the microlevel in the trickle flow regime. This observation is reported here for the first time, and we believe that there is no such experimental data available in the literature. The genesis of this different hysteretic behavior of porous particles lies in the different ways liquid spreads/retracts over porous and nonporous particles. A conceptual framework of hysteresis proposed by Maiti et al. (2005), which is based on the concept of participating and nonparticipating particles and principles of liquid spreading on porous and nonporous substrates, is found to explain successfully the various features of hysteresis observed with all three types of particles. This study is expected to be useful to the TBR researcher and practitioner in enhancing the understanding further to demystify the complex hydrodynamic phenomena in TBRs. Hydrodynamics in trickle-bed reactors (TBRs) is quite complex because of the coexistence of gas-liquid-solid phases. Recent past hysteresis have been the subject of investigation to improve the understanding of the flow features at the microlevel, aiming to demystify the complex hydrodynamics. The purpose of the present study is to identify the role of particle porosity on hysteresis by choosing particles of different pore density (nonporous, semiporous, porous) but prepared from same material with identical shape and sizes. Experiments were carried out with industrial relevant-sized alumina extrudates in a 150 mm ID column using both a dry- and a wet-bed startup procedure. Comprehensive pressure drop hysteresis data were generated in increasing and decreasing modes of water flow in the presence of a constant flow of air at ambient condition. Pronounced but different magnitudes of pressure drop hysteresis were observed with all three types of particles at first cycle as well at subsequent cycle of operation. A deviation in pressure drop up to 90% was found between increasing and decreasing modes of operation, even after prewetting the bed. The same amount of hysteresis was observed for all the subsequent cycles, but the value is higher for particles with higher porosity. This confirms that particle porosity plays a major role in the existence of different flow texture at the microlevel in the trickle flow regime. This observation is reported here for the first time, and we believe that there is no such experimental data available in the literature. The genesis of this different hysteretic behavior of porous particles lies in the different ways liquid spreads/retracts over porous and nonporous particles. A conceptual framework of hysteresis proposed by Maiti et al. (2005), which is based on the concept of participating and nonparticipating particles and principles of liquid spreading on porous and nonporous substrates, is found to explain successfully the various features of hysteresis observed with all three types of particles. This study is expected to be useful to the TBR researcher and practitioner in enhancing the understanding further to demystify the complex hydrodynamic phenomena in TBRs. |
Author | Maiti, Rabindranath Atta, Arnab Nigam, K. D. P |
Author_xml | – sequence: 1 givenname: Rabindranath surname: Maiti fullname: Maiti, Rabindranath – sequence: 2 givenname: Arnab surname: Atta fullname: Atta, Arnab – sequence: 3 givenname: K. D. P surname: Nigam fullname: Nigam, K. D. P email: drkdpn@gmail.com |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20825350$$DView record in Pascal Francis |
BookMark | eNptkE1rGzEURUVJoU7aRf_BbErpYpKnr5G0TELahAbqNt6LZ_kJlExGqSRD_O87xcGFktXbnHu57xyzoylPxNhHDqccBD9LZAGklu4NW3AtoNeg9BFbgLW219bqd-y41nsA0FqpBTu_ipFC63LsllhaCiN1y1xyTW3X5am73tVGhWqqXZq6VUnhYaT-gjbdL8LQcqnv2duIY6UPL_eErb5erS6v-9sf324uz297lG5ovXZuw8MgDUQIIkpnrRQKNgq5iUJwF8ENYo244ejWPEiuLK0HA-hIIckT9nlf-1Ty7y3V5h9TDTSOOFHeVm-0ssZw42by0wuJNeAYC04hVf9U0iOWnRdghZYaZu7Lngvzu7VQPCAc_F-Z_iBzZs_-Y0Nq2FKeWsE0vpro94k0C3w-VGN58IORRvvV8s6rO_7d_byQXv9bjaH6-7wt0yzzld4_KyOQ_w |
CODEN | IECRED |
CitedBy_id | crossref_primary_10_1016_j_jiec_2021_04_020 crossref_primary_10_1515_psr_2015_0018 crossref_primary_10_1002_aic_17649 crossref_primary_10_1007_s00723_023_01607_x crossref_primary_10_1016_j_ceja_2021_100181 crossref_primary_10_1515_ijcre_2021_0274 crossref_primary_10_1016_j_coche_2016_07_002 crossref_primary_10_1002_cjce_20356 crossref_primary_10_1016_j_mineng_2012_05_007 |
Cites_doi | 10.1002/aic.690400112 10.1016/S0009-2509(98)00059-1 10.1021/ie00054a030 10.1021/ie060238h 10.1021/i260072a027 10.1016/j.ces.2005.05.022 10.1002/cjce.5450770417 10.1002/aic.690320303 10.1016/S0009-2509(97)00057-2 10.1515/REVCE.2003.19.6.531 10.1021/ie9700829 10.1016/S0009-2509(02)00193-8 10.1016/j.ces.2005.05.069 10.1016/S0009-2509(02)00211-7 10.1016/0009-2509(92)85029-B 10.1002/aic.690350815 10.1021/ie00079a007 10.1016/0009-2509(94)E0068-2 10.1016/j.cej.2007.01.015 10.1016/0009-2509(95)00040-C 10.1021/ie9703088 10.1021/ie049347r 10.1021/i260068a016 10.1002/aic.690340615 10.1016/0009-2509(90)80063-K 10.1515/REVCE.2004.20.1-2.57 10.1515/REVCE.1996.12.3-4.207 10.1021/ie050216f 10.1002/aic.690321011 10.1002/aic.11360 10.1002/aic.690490904 10.1081/CR-120001460 10.1002/aic.11189 10.1021/ie0491037 10.1021/ie960903u 10.1002/aic.690320113 10.1016/S0009-2509(98)00367-4 10.1002/aic.690470622 10.1016/j.ces.2004.04.017 10.1021/ie00085a020 10.1016/j.ces.2006.08.042 10.2516/ogst:2000029 10.1002/aic.690210626 10.1016/S0920-5861(03)00006-3 10.1016/0009-2509(86)87168-8 10.1252/jcej.6.315 |
ContentType | Journal Article |
Copyright | Copyright © 2008 American Chemical Society 2008 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2008 American Chemical Society – notice: 2008 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW 7QH 7UA C1K |
DOI | 10.1021/ie8003539 |
DatabaseName | Istex CrossRef Pascal-Francis Aqualine Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitle | CrossRef Aqualine Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aqualine |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1520-5045 |
EndPage | 8135 |
ExternalDocumentID | 20825350 10_1021_ie8003539 ark_67375_TPS_4S1K9QB3_5 a718466161 |
GroupedDBID | 02 4.4 53G 55A 5GY 5VS 7~N AABXI ABFLS ABMVS ABPTK ABUCX ACJ ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS ANTXH AQSVZ BAANH CS3 DU5 EBS ED ED~ F5P GNL IH9 JG JG~ LG6 P2P ROL TAE TN5 UI2 VF5 VG9 W1F WH7 X -~X .DC .K2 6TJ ABQRX ACGFO ADHLV AGXLV AHGAQ BSCLL CUPRZ GGK ~02 AAYXX ABBLG ABLBI ACRPL ADNMO ANPPW CITATION 1WB ABHMW AEYZD AGQPQ EJD H~9 IHE IQODW RNS XOL YXE ZY4 7QH 7UA C1K |
ID | FETCH-LOGICAL-a396t-599d1c6370f0c2f39883240d4a17f2219f0962baad1a9b1c3148eb670a9e4ae3 |
IEDL.DBID | ACS |
ISSN | 0888-5885 |
IngestDate | Fri Jul 11 11:18:51 EDT 2025 Mon Jul 21 09:15:43 EDT 2025 Tue Jul 01 02:48:38 EDT 2025 Thu Apr 24 23:05:42 EDT 2025 Wed Oct 30 09:27:15 EDT 2024 Thu Aug 27 13:42:50 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | Hysteresis Trickle bed reactor Porosity |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a396t-599d1c6370f0c2f39883240d4a17f2219f0962baad1a9b1c3148eb670a9e4ae3 |
Notes | ark:/67375/TPS-4S1K9QB3-5 istex:6006385348DC67978FEAA38F182FB2CB73CDFAB3 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 754877179 |
PQPubID | 23462 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_754877179 pascalfrancis_primary_20825350 crossref_primary_10_1021_ie8003539 crossref_citationtrail_10_1021_ie8003539 istex_primary_ark_67375_TPS_4S1K9QB3_5 acs_journals_10_1021_ie8003539 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ANTXH ACS AEESW AFEFF ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-11-05 |
PublicationDateYYYYMMDD | 2008-11-05 |
PublicationDate_xml | – month: 11 year: 2008 text: 2008-11-05 day: 05 |
PublicationDecade | 2000 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC |
PublicationTitle | Industrial & engineering chemistry research |
PublicationTitleAlternate | Ind. Eng. Chem. Res |
PublicationYear | 2008 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Ng K. M. (ref9/cit9) 1986; 32 Dudukovic M. P. (ref17/cit17) 1999; 54 Maiti R. N. (ref48/cit48) 2005; 44 Kan K. M. (ref22/cit22) 1979; 18 Lazzaroni C. L. (ref27/cit27) 1989; 28 Maiti R. N. (ref47/cit47) 2005; 60 Larachi F. (ref11/cit11) 1999; 77 van der Merwe W. (ref36/cit36) 2005; 44 Gunjal P. R. (ref37/cit37) 2005; 44 Maiti R. N. (ref39/cit39) 2006; 45 Gianetto A. (ref15/cit15) 1992; 47 Gladden L. F. (ref41/cit41) 2003; 79 Khanna R. (ref45/cit45) 2002; 57 Maiti R. N. (ref4/cit4) 2004; 20 Charpentier J. C. (ref8/cit8) 1975; 21 Reddy P. N. (ref29/cit29) 1990; 45 van der Merwe W. (ref44/cit44) 2007; 132 Lutran P. G. (ref30/cit30) 1991; 30 van der Merwe W. (ref38/cit38) 2008; 54 Sie S. T. (ref6/cit6) 1998; 14 Baussaron L. (ref5/cit5) 2007; 53 Kundu A. (ref13/cit13) 2003; 49 Boyer C. (ref19/cit19) 2002; 57 Kundu A. (ref3/cit3) 2003; 19 Nemec D. (ref35/cit35) 2005; 60 Loudon D. (ref49/cit49) 2006; 61 Levec J. (ref24/cit24) 1988; 34 Rode S. (ref31/cit31) 1994; 49 Zimmerman S. P. (ref12/cit12) 1986; 41 Kan K. M. (ref21/cit21) 1978; 17 Watson P. C. (ref32/cit32) 1994; 40 Marcandelli C. (ref18/cit18) 2000; 55 Sederman A. J. (ref42/cit42) 1997; 52 Chu C. F. (ref28/cit28) 1989; 35 Levec J. (ref23/cit23) 1986; 32 Saroha A. K. (ref1/cit1) 1996; 12 Zhukova T. B. (ref14/cit14) 1990; 30 Dudukovic M. P. (ref20/cit20) 2002; 44 Wang R. (ref33/cit33) 1995; 50 Marchot P. (ref40/cit40) 2001; 47 Ravindra P. V. (ref34/cit34) 1997; 36 Larachi F. (ref2/cit2) 1998; 37 Christensen G. (ref25/cit25) 1986; 32 Lazzaroni C. L. (ref26/cit26) 1988; 27 Ng K. M. (ref10/cit10) 1987; 83 Sederman A. J. (ref43/cit43) 1998; 53 Sato Y. (ref7/cit7) 1973; 6 Maiti R. N. (ref46/cit46) 2004; 59 Al-Dahhan M. H. (ref16/cit16) 1997; 36 |
References_xml | – volume: 40 start-page: 97 year: 1994 ident: ref32/cit32 publication-title: AIChE J. doi: 10.1002/aic.690400112 – volume: 53 start-page: 2117 year: 1998 ident: ref43/cit43 publication-title: Chem. Eng. Sci. doi: 10.1016/S0009-2509(98)00059-1 – volume: 30 start-page: 1270 year: 1991 ident: ref30/cit30 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie00054a030 – volume: 45 start-page: 5185 year: 2006 ident: ref39/cit39 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie060238h – volume: 18 start-page: 740 year: 1979 ident: ref22/cit22 publication-title: Ind, Eng. Chem. Proc. Des. Dev. doi: 10.1021/i260072a027 – volume: 60 start-page: 6235 year: 2005 ident: ref47/cit47 publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2005.05.022 – volume: 77 start-page: 751 year: 1999 ident: ref11/cit11 publication-title: The Can. J. Chem. Eng. doi: 10.1002/cjce.5450770417 – volume: 32 start-page: 369 year: 1986 ident: ref23/cit23 publication-title: AIChE J. doi: 10.1002/aic.690320303 – volume: 52 start-page: 2239 year: 1997 ident: ref42/cit42 publication-title: Chem. Eng. Sci. doi: 10.1016/S0009-2509(97)00057-2 – volume: 19 start-page: 531 year: 2003 ident: ref3/cit3 publication-title: Rev. Chem. Eng. doi: 10.1515/REVCE.2003.19.6.531 – volume: 36 start-page: 3292 year: 1997 ident: ref16/cit16 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie9700829 – volume: 57 start-page: 3185 year: 2002 ident: ref19/cit19 publication-title: Chem. Eng. Sci. doi: 10.1016/S0009-2509(02)00193-8 – volume: 60 start-page: 6958 year: 2005 ident: ref35/cit35 publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2005.05.069 – volume: 57 start-page: 3401 year: 2002 ident: ref45/cit45 publication-title: Chem. Eng. Sci. doi: 10.1016/S0009-2509(02)00211-7 – volume: 47 start-page: 3197 year: 1992 ident: ref15/cit15 publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(92)85029-B – volume: 30 start-page: 57 year: 1990 ident: ref14/cit14 publication-title: Int. Chem. Eng. – volume: 35 start-page: 1365 year: 1989 ident: ref28/cit28 publication-title: AIChE J. doi: 10.1002/aic.690350815 – volume: 27 start-page: 1132 year: 1988 ident: ref26/cit26 publication-title: In. Eng. Chem. Res. doi: 10.1021/ie00079a007 – volume: 49 start-page: 2535 year: 1994 ident: ref31/cit31 publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(94)E0068-2 – volume: 132 start-page: 47 year: 2007 ident: ref44/cit44 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2007.01.015 – volume: 50 start-page: 2321 year: 1995 ident: ref33/cit33 publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(95)00040-C – volume: 83 start-page: 55 year: 1987 ident: ref10/cit10 publication-title: Chem. Eng. Progr. – volume: 36 start-page: 5133 year: 1997 ident: ref34/cit34 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie9703088 – volume: 44 start-page: 6406 year: 2005 ident: ref48/cit48 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie049347r – volume: 14 start-page: 203 year: 1998 ident: ref6/cit6 publication-title: Rev. Chem. Eng. – volume: 17 start-page: 482 year: 1978 ident: ref21/cit21 publication-title: Ind, Eng. Chem. Proc. Des. Dev. doi: 10.1021/i260068a016 – volume: 34 start-page: 1027 year: 1988 ident: ref24/cit24 publication-title: AIChE J. doi: 10.1002/aic.690340615 – volume: 45 start-page: 3193 year: 1990 ident: ref29/cit29 publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(90)80063-K – volume: 20 start-page: 57 year: 2004 ident: ref4/cit4 publication-title: Rev. Chem. Eng. doi: 10.1515/REVCE.2004.20.1-2.57 – volume: 12 start-page: 207 year: 1996 ident: ref1/cit1 publication-title: Rev. Chem. Eng. doi: 10.1515/REVCE.1996.12.3-4.207 – volume: 44 start-page: 9446 year: 2005 ident: ref36/cit36 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie050216f – volume: 32 start-page: 1677 year: 1986 ident: ref25/cit25 publication-title: AIChE J. doi: 10.1002/aic.690321011 – volume: 54 start-page: 249 year: 2008 ident: ref38/cit38 publication-title: AIChE J. doi: 10.1002/aic.11360 – volume: 49 start-page: 2253 year: 2003 ident: ref13/cit13 publication-title: AIChE J. doi: 10.1002/aic.690490904 – volume: 44 start-page: 123 year: 2002 ident: ref20/cit20 publication-title: Catal. Rev. doi: 10.1081/CR-120001460 – volume: 53 start-page: 1850 year: 2007 ident: ref5/cit5 publication-title: AIChE J. doi: 10.1002/aic.11189 – volume: 44 start-page: 6278 year: 2005 ident: ref37/cit37 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie0491037 – volume: 37 start-page: 718 year: 1998 ident: ref2/cit2 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie960903u – volume: 32 start-page: 115 year: 1986 ident: ref9/cit9 publication-title: AIChE J. doi: 10.1002/aic.690320113 – volume: 54 start-page: 1975 year: 1999 ident: ref17/cit17 publication-title: Chem. Eng. Sci. doi: 10.1016/S0009-2509(98)00367-4 – volume: 47 start-page: 1471 year: 2001 ident: ref40/cit40 publication-title: AIChE J. doi: 10.1002/aic.690470622 – volume: 59 start-page: 2817 year: 2004 ident: ref46/cit46 publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2004.04.017 – volume: 28 start-page: 119 year: 1989 ident: ref27/cit27 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie00085a020 – volume: 61 start-page: 7551 year: 2006 ident: ref49/cit49 publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2006.08.042 – volume: 55 start-page: 407 year: 2000 ident: ref18/cit18 publication-title: Oil Gas Sci Technol. Rev. IFP doi: 10.2516/ogst:2000029 – volume: 21 start-page: 1213 year: 1975 ident: ref8/cit8 publication-title: AIChE J. doi: 10.1002/aic.690210626 – volume: 79 start-page: 203 year: 2003 ident: ref41/cit41 publication-title: Catal. Today. doi: 10.1016/S0920-5861(03)00006-3 – volume: 41 start-page: 861 year: 1986 ident: ref12/cit12 publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(86)87168-8 – volume: 6 start-page: 315 year: 1973 ident: ref7/cit7 publication-title: J. Chem. Eng. Jpn. doi: 10.1252/jcej.6.315 |
SSID | ssj0005544 |
Score | 1.9522551 |
Snippet | Hydrodynamics in trickle-bed reactors (TBRs) is quite complex because of the coexistence of gas−liquid−solid phases. Recent past hysteresis have been the... Hydrodynamics in trickle-bed reactors (TBRs) is quite complex because of the coexistence of gas-liquid-solid phases. Recent past hysteresis have been the... |
SourceID | proquest pascalfrancis crossref istex acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8126 |
SubjectTerms | Applied sciences Chemical engineering Exact sciences and technology Kinetics, Catalysis, and Reaction Engineering Reactors |
Title | Effect of Particle Porosity on Hysteresis in Trickle-Bed Reactors |
URI | http://dx.doi.org/10.1021/ie8003539 https://api.istex.fr/ark:/67375/TPS-4S1K9QB3-5/fulltext.pdf https://www.proquest.com/docview/754877179 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3Pb9MwFH4a6wUOMH6Jjm2yACEuGXEcx_Gx65gqEKjQIu1m2bEtVZuSqWmljb8evyTtVq2DUy7PUvz8_OPz-_w9gA82S01mWBLp2OkoxYsmzQSPYpuH5RJfZjZkzO8_stHv9Os5P9-B9w9k8BP6eeZyTHcx-Qh6SZYLRFiD4eSWx8Gbiq1htuATopyv5IPuNsWtp6g3tp4eevEaqZC6Dt7wbRmLeytys82cPYPT1WOdll1ycbxcmOPiz33txn_1YA-edsdMMmjj4jnsuPIFPLkjPvgSBq1wMak8GXfxQ8bVHElcN6QqyQg1ngMYn9VkVpIpyudfuujEWfLLtUV6XsH07Mt0OIq6ggrB_zJbRFxKS4uMidjHReKZzHPU47OppsInYe3yAdAkRmtLtTS0YAErOZOJWEuXasdew25Zle4NEIvnROqcsVymVnjjvBW08EYXPA7fPhwFh6tuPtSqSXUnVK1d0YdPq7FQRadGjkUxLreZvlubXrUSHNuMPjYDurbQ8wvkrAmupuOJSif0m_x5whQPf7Yx4usGCYJlxuM-kFUIqDDVMH-iS1ctayUQ3QX4K_f_17u38LjhleD1Mz-A3cV86Q7D4WVhjprg_QtznuU1 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6V9gAc-EcsP8VCgLikxEmcxAcO20K1ZdtqYYPUm2XHjrRqlaDNrqC8Ca_C0zGTZNMWKnGqxCmXieOMZzwznvE3AC9tHJnYhIGnfae9iA6adJgIz7cpbpd0M7Mpxjw4jEdfoo9H4mgNfq7uwuAkahypbpL4Z-gC_O3MpZT1CmVXQDl2p98wPKvf7b3HtXwVBLsfsp2R13UQwA_KeOEJKS3P4zDxCz8PilCmKQHQ2UjzpAhQWQv04AOjteVaGp6HGBw4Eye-li7SLsRhr8EG-jwBxXXDnelZ9Yho-sSijtLFpVSsQIvOz5QMXl5fMHgbtHbfqQBT17gGRds84y870Bi33dvwq2dLU9NyvLVcmK38xx-Ikf8l3-7Arc6lZsNWB-7Cmivvwc1zQIv3YdiCNLOqYJNOV9ikmlPB2imrSjYiPOu5q2c1m5Uso1YBJ87bdpZ9dm1DogeQXcUvPIT1sirdI2CWfGLunLFCRjYpjCtswvPC6Fz4-BzAJjJedbpfqyatH3DVc34Ab1YSoPIOeZ0agJxcRvqiJ_3awo1cRvS6EaOeQs-PqT4vESqbTFU05WP5aTtUAmd2Qc76FwI6GAiFPwC2EjyF2wrlinTpqmWtEopkMdSXj__1d8_h-ig72Ff7e4fjJ3CjqaehY3fxFNYX86V7hk7bwmw26sNAXbHY_QaWbEW1 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VVkL0wD9iCxQLAeKSNonjJD5w2LastixUC7tIvVl2bEurVkm12RWUd-FVeDY8Tja0UIlTJU65TBxnPOOZ8Yy_AXip00SlisaBDI0MEjxokjRjQahzt13izUxfjPnxKB1-Sd4fs-M1-LG6C-MmUbuRap_ER60-07ZFGIh2ZybHzBflbRHlyJx_dSFa_fbwwK3nqzgevJvuD4O2i4D7KE8XAeNcR0VKs9CGRWwpz3MEodOJjDIbO4W1zouPlZQ6klxFBXUBglFpFkpuEmmoG_YGbGB2EGO7_v7kdwUJ871inZ7i5aWcrYCLLs4UjV5RXzJ6G7h-37AIU9ZuHWzTQOMvW-AN3OAO_OxY4-taTnaWC7VTfP8DNfK_5d1duN261qTf6MI9WDPlfdi8ALj4APoNWDOpLBm3OkPG1RwL185JVZIh4lrPTT2ryawkU2wZcGqCPaPJZ9M0JnoI0-v4hUewXlaleQxEo28cGaM044nOrDJWZ1FhlSxY6J492HbMF-0eUAuf3o8j0XG-B29WUiCKFoEdG4GcXkX6oiM9a2BHriJ67UWpo5DzE6zTy5iYjicimUQj_mmPCuZmdknWuhdiPCCgLOwBWQmfcNsL5oxkaaplLTKMaF3Iz7f-9XfP4eb4YCA-HB6NnsAtX1aDp-_sKawv5kvzzPluC7XtNYiAuGap-wWMBkg4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Particle+Porosity+on+Hysteresis+in+Trickle-Bed+Reactors&rft.jtitle=Industrial+%26+engineering+chemistry+research&rft.au=Maiti%2C+Rabindranath&rft.au=Atta%2C+Arnab&rft.au=Nigam%2C+K.+D.+P&rft.date=2008-11-05&rft.pub=American+Chemical+Society&rft.issn=0888-5885&rft.eissn=1520-5045&rft.volume=47&rft.issue=21&rft.spage=8126&rft.epage=8135&rft_id=info:doi/10.1021%2Fie8003539&rft.externalDocID=a718466161 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-5885&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-5885&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-5885&client=summon |