Effect of Particle Porosity on Hysteresis in Trickle-Bed Reactors

Hydrodynamics in trickle-bed reactors (TBRs) is quite complex because of the coexistence of gas−liquid−solid phases. Recent past hysteresis have been the subject of investigation to improve the understanding of the flow features at the microlevel, aiming to demystify the complex hydrodynamics. The p...

Full description

Saved in:
Bibliographic Details
Published inIndustrial & engineering chemistry research Vol. 47; no. 21; pp. 8126 - 8135
Main Authors Maiti, Rabindranath, Atta, Arnab, Nigam, K. D. P
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 05.11.2008
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hydrodynamics in trickle-bed reactors (TBRs) is quite complex because of the coexistence of gas−liquid−solid phases. Recent past hysteresis have been the subject of investigation to improve the understanding of the flow features at the microlevel, aiming to demystify the complex hydrodynamics. The purpose of the present study is to identify the role of particle porosity on hysteresis by choosing particles of different pore density (nonporous, semiporous, porous) but prepared from same material with identical shape and sizes. Experiments were carried out with industrial relevant-sized alumina extrudates in a 150 mm ID column using both a dry- and a wet-bed startup procedure. Comprehensive pressure drop hysteresis data were generated in increasing and decreasing modes of water flow in the presence of a constant flow of air at ambient condition. Pronounced but different magnitudes of pressure drop hysteresis were observed with all three types of particles at first cycle as well at subsequent cycle of operation. A deviation in pressure drop up to 90% was found between increasing and decreasing modes of operation, even after prewetting the bed. The same amount of hysteresis was observed for all the subsequent cycles, but the value is higher for particles with higher porosity. This confirms that particle porosity plays a major role in the existence of different flow texture at the microlevel in the trickle flow regime. This observation is reported here for the first time, and we believe that there is no such experimental data available in the literature. The genesis of this different hysteretic behavior of porous particles lies in the different ways liquid spreads/retracts over porous and nonporous particles. A conceptual framework of hysteresis proposed by Maiti et al. (2005), which is based on the concept of participating and nonparticipating particles and principles of liquid spreading on porous and nonporous substrates, is found to explain successfully the various features of hysteresis observed with all three types of particles. This study is expected to be useful to the TBR researcher and practitioner in enhancing the understanding further to demystify the complex hydrodynamic phenomena in TBRs.
AbstractList Hydrodynamics in trickle-bed reactors (TBRs) is quite complex because of the coexistence of gas−liquid−solid phases. Recent past hysteresis have been the subject of investigation to improve the understanding of the flow features at the microlevel, aiming to demystify the complex hydrodynamics. The purpose of the present study is to identify the role of particle porosity on hysteresis by choosing particles of different pore density (nonporous, semiporous, porous) but prepared from same material with identical shape and sizes. Experiments were carried out with industrial relevant-sized alumina extrudates in a 150 mm ID column using both a dry- and a wet-bed startup procedure. Comprehensive pressure drop hysteresis data were generated in increasing and decreasing modes of water flow in the presence of a constant flow of air at ambient condition. Pronounced but different magnitudes of pressure drop hysteresis were observed with all three types of particles at first cycle as well at subsequent cycle of operation. A deviation in pressure drop up to 90% was found between increasing and decreasing modes of operation, even after prewetting the bed. The same amount of hysteresis was observed for all the subsequent cycles, but the value is higher for particles with higher porosity. This confirms that particle porosity plays a major role in the existence of different flow texture at the microlevel in the trickle flow regime. This observation is reported here for the first time, and we believe that there is no such experimental data available in the literature. The genesis of this different hysteretic behavior of porous particles lies in the different ways liquid spreads/retracts over porous and nonporous particles. A conceptual framework of hysteresis proposed by Maiti et al. (2005), which is based on the concept of participating and nonparticipating particles and principles of liquid spreading on porous and nonporous substrates, is found to explain successfully the various features of hysteresis observed with all three types of particles. This study is expected to be useful to the TBR researcher and practitioner in enhancing the understanding further to demystify the complex hydrodynamic phenomena in TBRs.
Hydrodynamics in trickle-bed reactors (TBRs) is quite complex because of the coexistence of gas-liquid-solid phases. Recent past hysteresis have been the subject of investigation to improve the understanding of the flow features at the microlevel, aiming to demystify the complex hydrodynamics. The purpose of the present study is to identify the role of particle porosity on hysteresis by choosing particles of different pore density (nonporous, semiporous, porous) but prepared from same material with identical shape and sizes. Experiments were carried out with industrial relevant-sized alumina extrudates in a 150 mm ID column using both a dry- and a wet-bed startup procedure. Comprehensive pressure drop hysteresis data were generated in increasing and decreasing modes of water flow in the presence of a constant flow of air at ambient condition. Pronounced but different magnitudes of pressure drop hysteresis were observed with all three types of particles at first cycle as well at subsequent cycle of operation. A deviation in pressure drop up to 90% was found between increasing and decreasing modes of operation, even after prewetting the bed. The same amount of hysteresis was observed for all the subsequent cycles, but the value is higher for particles with higher porosity. This confirms that particle porosity plays a major role in the existence of different flow texture at the microlevel in the trickle flow regime. This observation is reported here for the first time, and we believe that there is no such experimental data available in the literature. The genesis of this different hysteretic behavior of porous particles lies in the different ways liquid spreads/retracts over porous and nonporous particles. A conceptual framework of hysteresis proposed by Maiti et al. (2005), which is based on the concept of participating and nonparticipating particles and principles of liquid spreading on porous and nonporous substrates, is found to explain successfully the various features of hysteresis observed with all three types of particles. This study is expected to be useful to the TBR researcher and practitioner in enhancing the understanding further to demystify the complex hydrodynamic phenomena in TBRs.
Author Maiti, Rabindranath
Atta, Arnab
Nigam, K. D. P
Author_xml – sequence: 1
  givenname: Rabindranath
  surname: Maiti
  fullname: Maiti, Rabindranath
– sequence: 2
  givenname: Arnab
  surname: Atta
  fullname: Atta, Arnab
– sequence: 3
  givenname: K. D. P
  surname: Nigam
  fullname: Nigam, K. D. P
  email: drkdpn@gmail.com
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20825350$$DView record in Pascal Francis
BookMark eNptkE1rGzEURUVJoU7aRf_BbErpYpKnr5G0TELahAbqNt6LZ_kJlExGqSRD_O87xcGFktXbnHu57xyzoylPxNhHDqccBD9LZAGklu4NW3AtoNeg9BFbgLW219bqd-y41nsA0FqpBTu_ipFC63LsllhaCiN1y1xyTW3X5am73tVGhWqqXZq6VUnhYaT-gjbdL8LQcqnv2duIY6UPL_eErb5erS6v-9sf324uz297lG5ovXZuw8MgDUQIIkpnrRQKNgq5iUJwF8ENYo244ejWPEiuLK0HA-hIIckT9nlf-1Ty7y3V5h9TDTSOOFHeVm-0ssZw42by0wuJNeAYC04hVf9U0iOWnRdghZYaZu7Lngvzu7VQPCAc_F-Z_iBzZs_-Y0Nq2FKeWsE0vpro94k0C3w-VGN58IORRvvV8s6rO_7d_byQXv9bjaH6-7wt0yzzld4_KyOQ_w
CODEN IECRED
CitedBy_id crossref_primary_10_1016_j_jiec_2021_04_020
crossref_primary_10_1515_psr_2015_0018
crossref_primary_10_1002_aic_17649
crossref_primary_10_1007_s00723_023_01607_x
crossref_primary_10_1016_j_ceja_2021_100181
crossref_primary_10_1515_ijcre_2021_0274
crossref_primary_10_1016_j_coche_2016_07_002
crossref_primary_10_1002_cjce_20356
crossref_primary_10_1016_j_mineng_2012_05_007
Cites_doi 10.1002/aic.690400112
10.1016/S0009-2509(98)00059-1
10.1021/ie00054a030
10.1021/ie060238h
10.1021/i260072a027
10.1016/j.ces.2005.05.022
10.1002/cjce.5450770417
10.1002/aic.690320303
10.1016/S0009-2509(97)00057-2
10.1515/REVCE.2003.19.6.531
10.1021/ie9700829
10.1016/S0009-2509(02)00193-8
10.1016/j.ces.2005.05.069
10.1016/S0009-2509(02)00211-7
10.1016/0009-2509(92)85029-B
10.1002/aic.690350815
10.1021/ie00079a007
10.1016/0009-2509(94)E0068-2
10.1016/j.cej.2007.01.015
10.1016/0009-2509(95)00040-C
10.1021/ie9703088
10.1021/ie049347r
10.1021/i260068a016
10.1002/aic.690340615
10.1016/0009-2509(90)80063-K
10.1515/REVCE.2004.20.1-2.57
10.1515/REVCE.1996.12.3-4.207
10.1021/ie050216f
10.1002/aic.690321011
10.1002/aic.11360
10.1002/aic.690490904
10.1081/CR-120001460
10.1002/aic.11189
10.1021/ie0491037
10.1021/ie960903u
10.1002/aic.690320113
10.1016/S0009-2509(98)00367-4
10.1002/aic.690470622
10.1016/j.ces.2004.04.017
10.1021/ie00085a020
10.1016/j.ces.2006.08.042
10.2516/ogst:2000029
10.1002/aic.690210626
10.1016/S0920-5861(03)00006-3
10.1016/0009-2509(86)87168-8
10.1252/jcej.6.315
ContentType Journal Article
Copyright Copyright © 2008 American Chemical Society
2008 INIST-CNRS
Copyright_xml – notice: Copyright © 2008 American Chemical Society
– notice: 2008 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
7QH
7UA
C1K
DOI 10.1021/ie8003539
DatabaseName Istex
CrossRef
Pascal-Francis
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitle CrossRef
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aqualine
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1520-5045
EndPage 8135
ExternalDocumentID 20825350
10_1021_ie8003539
ark_67375_TPS_4S1K9QB3_5
a718466161
GroupedDBID 02
4.4
53G
55A
5GY
5VS
7~N
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACJ
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
ANTXH
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
F5P
GNL
IH9
JG
JG~
LG6
P2P
ROL
TAE
TN5
UI2
VF5
VG9
W1F
WH7
X
-~X
.DC
.K2
6TJ
ABQRX
ACGFO
ADHLV
AGXLV
AHGAQ
BSCLL
CUPRZ
GGK
~02
AAYXX
ABBLG
ABLBI
ACRPL
ADNMO
ANPPW
CITATION
1WB
ABHMW
AEYZD
AGQPQ
EJD
H~9
IHE
IQODW
RNS
XOL
YXE
ZY4
7QH
7UA
C1K
ID FETCH-LOGICAL-a396t-599d1c6370f0c2f39883240d4a17f2219f0962baad1a9b1c3148eb670a9e4ae3
IEDL.DBID ACS
ISSN 0888-5885
IngestDate Fri Jul 11 11:18:51 EDT 2025
Mon Jul 21 09:15:43 EDT 2025
Tue Jul 01 02:48:38 EDT 2025
Thu Apr 24 23:05:42 EDT 2025
Wed Oct 30 09:27:15 EDT 2024
Thu Aug 27 13:42:50 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords Hysteresis
Trickle bed reactor
Porosity
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a396t-599d1c6370f0c2f39883240d4a17f2219f0962baad1a9b1c3148eb670a9e4ae3
Notes ark:/67375/TPS-4S1K9QB3-5
istex:6006385348DC67978FEAA38F182FB2CB73CDFAB3
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 754877179
PQPubID 23462
PageCount 10
ParticipantIDs proquest_miscellaneous_754877179
pascalfrancis_primary_20825350
crossref_primary_10_1021_ie8003539
crossref_citationtrail_10_1021_ie8003539
istex_primary_ark_67375_TPS_4S1K9QB3_5
acs_journals_10_1021_ie8003539
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ANTXH
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-11-05
PublicationDateYYYYMMDD 2008-11-05
PublicationDate_xml – month: 11
  year: 2008
  text: 2008-11-05
  day: 05
PublicationDecade 2000
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
PublicationTitle Industrial & engineering chemistry research
PublicationTitleAlternate Ind. Eng. Chem. Res
PublicationYear 2008
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Ng K. M. (ref9/cit9) 1986; 32
Dudukovic M. P. (ref17/cit17) 1999; 54
Maiti R. N. (ref48/cit48) 2005; 44
Kan K. M. (ref22/cit22) 1979; 18
Lazzaroni C. L. (ref27/cit27) 1989; 28
Maiti R. N. (ref47/cit47) 2005; 60
Larachi F. (ref11/cit11) 1999; 77
van der Merwe W. (ref36/cit36) 2005; 44
Gunjal P. R. (ref37/cit37) 2005; 44
Maiti R. N. (ref39/cit39) 2006; 45
Gianetto A. (ref15/cit15) 1992; 47
Gladden L. F. (ref41/cit41) 2003; 79
Khanna R. (ref45/cit45) 2002; 57
Maiti R. N. (ref4/cit4) 2004; 20
Charpentier J. C. (ref8/cit8) 1975; 21
Reddy P. N. (ref29/cit29) 1990; 45
van der Merwe W. (ref44/cit44) 2007; 132
Lutran P. G. (ref30/cit30) 1991; 30
van der Merwe W. (ref38/cit38) 2008; 54
Sie S. T. (ref6/cit6) 1998; 14
Baussaron L. (ref5/cit5) 2007; 53
Kundu A. (ref13/cit13) 2003; 49
Boyer C. (ref19/cit19) 2002; 57
Kundu A. (ref3/cit3) 2003; 19
Nemec D. (ref35/cit35) 2005; 60
Loudon D. (ref49/cit49) 2006; 61
Levec J. (ref24/cit24) 1988; 34
Rode S. (ref31/cit31) 1994; 49
Zimmerman S. P. (ref12/cit12) 1986; 41
Kan K. M. (ref21/cit21) 1978; 17
Watson P. C. (ref32/cit32) 1994; 40
Marcandelli C. (ref18/cit18) 2000; 55
Sederman A. J. (ref42/cit42) 1997; 52
Chu C. F. (ref28/cit28) 1989; 35
Levec J. (ref23/cit23) 1986; 32
Saroha A. K. (ref1/cit1) 1996; 12
Zhukova T. B. (ref14/cit14) 1990; 30
Dudukovic M. P. (ref20/cit20) 2002; 44
Wang R. (ref33/cit33) 1995; 50
Marchot P. (ref40/cit40) 2001; 47
Ravindra P. V. (ref34/cit34) 1997; 36
Larachi F. (ref2/cit2) 1998; 37
Christensen G. (ref25/cit25) 1986; 32
Lazzaroni C. L. (ref26/cit26) 1988; 27
Ng K. M. (ref10/cit10) 1987; 83
Sederman A. J. (ref43/cit43) 1998; 53
Sato Y. (ref7/cit7) 1973; 6
Maiti R. N. (ref46/cit46) 2004; 59
Al-Dahhan M. H. (ref16/cit16) 1997; 36
References_xml – volume: 40
  start-page: 97
  year: 1994
  ident: ref32/cit32
  publication-title: AIChE J.
  doi: 10.1002/aic.690400112
– volume: 53
  start-page: 2117
  year: 1998
  ident: ref43/cit43
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/S0009-2509(98)00059-1
– volume: 30
  start-page: 1270
  year: 1991
  ident: ref30/cit30
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie00054a030
– volume: 45
  start-page: 5185
  year: 2006
  ident: ref39/cit39
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie060238h
– volume: 18
  start-page: 740
  year: 1979
  ident: ref22/cit22
  publication-title: Ind, Eng. Chem. Proc. Des. Dev.
  doi: 10.1021/i260072a027
– volume: 60
  start-page: 6235
  year: 2005
  ident: ref47/cit47
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2005.05.022
– volume: 77
  start-page: 751
  year: 1999
  ident: ref11/cit11
  publication-title: The Can. J. Chem. Eng.
  doi: 10.1002/cjce.5450770417
– volume: 32
  start-page: 369
  year: 1986
  ident: ref23/cit23
  publication-title: AIChE J.
  doi: 10.1002/aic.690320303
– volume: 52
  start-page: 2239
  year: 1997
  ident: ref42/cit42
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/S0009-2509(97)00057-2
– volume: 19
  start-page: 531
  year: 2003
  ident: ref3/cit3
  publication-title: Rev. Chem. Eng.
  doi: 10.1515/REVCE.2003.19.6.531
– volume: 36
  start-page: 3292
  year: 1997
  ident: ref16/cit16
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie9700829
– volume: 57
  start-page: 3185
  year: 2002
  ident: ref19/cit19
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/S0009-2509(02)00193-8
– volume: 60
  start-page: 6958
  year: 2005
  ident: ref35/cit35
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2005.05.069
– volume: 57
  start-page: 3401
  year: 2002
  ident: ref45/cit45
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/S0009-2509(02)00211-7
– volume: 47
  start-page: 3197
  year: 1992
  ident: ref15/cit15
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(92)85029-B
– volume: 30
  start-page: 57
  year: 1990
  ident: ref14/cit14
  publication-title: Int. Chem. Eng.
– volume: 35
  start-page: 1365
  year: 1989
  ident: ref28/cit28
  publication-title: AIChE J.
  doi: 10.1002/aic.690350815
– volume: 27
  start-page: 1132
  year: 1988
  ident: ref26/cit26
  publication-title: In. Eng. Chem. Res.
  doi: 10.1021/ie00079a007
– volume: 49
  start-page: 2535
  year: 1994
  ident: ref31/cit31
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(94)E0068-2
– volume: 132
  start-page: 47
  year: 2007
  ident: ref44/cit44
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2007.01.015
– volume: 50
  start-page: 2321
  year: 1995
  ident: ref33/cit33
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(95)00040-C
– volume: 83
  start-page: 55
  year: 1987
  ident: ref10/cit10
  publication-title: Chem. Eng. Progr.
– volume: 36
  start-page: 5133
  year: 1997
  ident: ref34/cit34
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie9703088
– volume: 44
  start-page: 6406
  year: 2005
  ident: ref48/cit48
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie049347r
– volume: 14
  start-page: 203
  year: 1998
  ident: ref6/cit6
  publication-title: Rev. Chem. Eng.
– volume: 17
  start-page: 482
  year: 1978
  ident: ref21/cit21
  publication-title: Ind, Eng. Chem. Proc. Des. Dev.
  doi: 10.1021/i260068a016
– volume: 34
  start-page: 1027
  year: 1988
  ident: ref24/cit24
  publication-title: AIChE J.
  doi: 10.1002/aic.690340615
– volume: 45
  start-page: 3193
  year: 1990
  ident: ref29/cit29
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(90)80063-K
– volume: 20
  start-page: 57
  year: 2004
  ident: ref4/cit4
  publication-title: Rev. Chem. Eng.
  doi: 10.1515/REVCE.2004.20.1-2.57
– volume: 12
  start-page: 207
  year: 1996
  ident: ref1/cit1
  publication-title: Rev. Chem. Eng.
  doi: 10.1515/REVCE.1996.12.3-4.207
– volume: 44
  start-page: 9446
  year: 2005
  ident: ref36/cit36
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie050216f
– volume: 32
  start-page: 1677
  year: 1986
  ident: ref25/cit25
  publication-title: AIChE J.
  doi: 10.1002/aic.690321011
– volume: 54
  start-page: 249
  year: 2008
  ident: ref38/cit38
  publication-title: AIChE J.
  doi: 10.1002/aic.11360
– volume: 49
  start-page: 2253
  year: 2003
  ident: ref13/cit13
  publication-title: AIChE J.
  doi: 10.1002/aic.690490904
– volume: 44
  start-page: 123
  year: 2002
  ident: ref20/cit20
  publication-title: Catal. Rev.
  doi: 10.1081/CR-120001460
– volume: 53
  start-page: 1850
  year: 2007
  ident: ref5/cit5
  publication-title: AIChE J.
  doi: 10.1002/aic.11189
– volume: 44
  start-page: 6278
  year: 2005
  ident: ref37/cit37
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie0491037
– volume: 37
  start-page: 718
  year: 1998
  ident: ref2/cit2
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie960903u
– volume: 32
  start-page: 115
  year: 1986
  ident: ref9/cit9
  publication-title: AIChE J.
  doi: 10.1002/aic.690320113
– volume: 54
  start-page: 1975
  year: 1999
  ident: ref17/cit17
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/S0009-2509(98)00367-4
– volume: 47
  start-page: 1471
  year: 2001
  ident: ref40/cit40
  publication-title: AIChE J.
  doi: 10.1002/aic.690470622
– volume: 59
  start-page: 2817
  year: 2004
  ident: ref46/cit46
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2004.04.017
– volume: 28
  start-page: 119
  year: 1989
  ident: ref27/cit27
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie00085a020
– volume: 61
  start-page: 7551
  year: 2006
  ident: ref49/cit49
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2006.08.042
– volume: 55
  start-page: 407
  year: 2000
  ident: ref18/cit18
  publication-title: Oil Gas Sci Technol. Rev. IFP
  doi: 10.2516/ogst:2000029
– volume: 21
  start-page: 1213
  year: 1975
  ident: ref8/cit8
  publication-title: AIChE J.
  doi: 10.1002/aic.690210626
– volume: 79
  start-page: 203
  year: 2003
  ident: ref41/cit41
  publication-title: Catal. Today.
  doi: 10.1016/S0920-5861(03)00006-3
– volume: 41
  start-page: 861
  year: 1986
  ident: ref12/cit12
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(86)87168-8
– volume: 6
  start-page: 315
  year: 1973
  ident: ref7/cit7
  publication-title: J. Chem. Eng. Jpn.
  doi: 10.1252/jcej.6.315
SSID ssj0005544
Score 1.9522551
Snippet Hydrodynamics in trickle-bed reactors (TBRs) is quite complex because of the coexistence of gas−liquid−solid phases. Recent past hysteresis have been the...
Hydrodynamics in trickle-bed reactors (TBRs) is quite complex because of the coexistence of gas-liquid-solid phases. Recent past hysteresis have been the...
SourceID proquest
pascalfrancis
crossref
istex
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8126
SubjectTerms Applied sciences
Chemical engineering
Exact sciences and technology
Kinetics, Catalysis, and Reaction Engineering
Reactors
Title Effect of Particle Porosity on Hysteresis in Trickle-Bed Reactors
URI http://dx.doi.org/10.1021/ie8003539
https://api.istex.fr/ark:/67375/TPS-4S1K9QB3-5/fulltext.pdf
https://www.proquest.com/docview/754877179
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3Pb9MwFH4a6wUOMH6Jjm2yACEuGXEcx_Gx65gqEKjQIu1m2bEtVZuSqWmljb8evyTtVq2DUy7PUvz8_OPz-_w9gA82S01mWBLp2OkoxYsmzQSPYpuH5RJfZjZkzO8_stHv9Os5P9-B9w9k8BP6eeZyTHcx-Qh6SZYLRFiD4eSWx8Gbiq1htuATopyv5IPuNsWtp6g3tp4eevEaqZC6Dt7wbRmLeytys82cPYPT1WOdll1ycbxcmOPiz33txn_1YA-edsdMMmjj4jnsuPIFPLkjPvgSBq1wMak8GXfxQ8bVHElcN6QqyQg1ngMYn9VkVpIpyudfuujEWfLLtUV6XsH07Mt0OIq6ggrB_zJbRFxKS4uMidjHReKZzHPU47OppsInYe3yAdAkRmtLtTS0YAErOZOJWEuXasdew25Zle4NEIvnROqcsVymVnjjvBW08EYXPA7fPhwFh6tuPtSqSXUnVK1d0YdPq7FQRadGjkUxLreZvlubXrUSHNuMPjYDurbQ8wvkrAmupuOJSif0m_x5whQPf7Yx4usGCYJlxuM-kFUIqDDVMH-iS1ctayUQ3QX4K_f_17u38LjhleD1Mz-A3cV86Q7D4WVhjprg_QtznuU1
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6V9gAc-EcsP8VCgLikxEmcxAcO20K1ZdtqYYPUm2XHjrRqlaDNrqC8Ca_C0zGTZNMWKnGqxCmXieOMZzwznvE3AC9tHJnYhIGnfae9iA6adJgIz7cpbpd0M7Mpxjw4jEdfoo9H4mgNfq7uwuAkahypbpL4Z-gC_O3MpZT1CmVXQDl2p98wPKvf7b3HtXwVBLsfsp2R13UQwA_KeOEJKS3P4zDxCz8PilCmKQHQ2UjzpAhQWQv04AOjteVaGp6HGBw4Eye-li7SLsRhr8EG-jwBxXXDnelZ9Yho-sSijtLFpVSsQIvOz5QMXl5fMHgbtHbfqQBT17gGRds84y870Bi33dvwq2dLU9NyvLVcmK38xx-Ikf8l3-7Arc6lZsNWB-7Cmivvwc1zQIv3YdiCNLOqYJNOV9ikmlPB2imrSjYiPOu5q2c1m5Uso1YBJ87bdpZ9dm1DogeQXcUvPIT1sirdI2CWfGLunLFCRjYpjCtswvPC6Fz4-BzAJjJedbpfqyatH3DVc34Ab1YSoPIOeZ0agJxcRvqiJ_3awo1cRvS6EaOeQs-PqT4vESqbTFU05WP5aTtUAmd2Qc76FwI6GAiFPwC2EjyF2wrlinTpqmWtEopkMdSXj__1d8_h-ig72Ff7e4fjJ3CjqaehY3fxFNYX86V7hk7bwmw26sNAXbHY_QaWbEW1
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VVkL0wD9iCxQLAeKSNonjJD5w2LastixUC7tIvVl2bEurVkm12RWUd-FVeDY8Tja0UIlTJU65TBxnPOOZ8Yy_AXip00SlisaBDI0MEjxokjRjQahzt13izUxfjPnxKB1-Sd4fs-M1-LG6C-MmUbuRap_ER60-07ZFGIh2ZybHzBflbRHlyJx_dSFa_fbwwK3nqzgevJvuD4O2i4D7KE8XAeNcR0VKs9CGRWwpz3MEodOJjDIbO4W1zouPlZQ6klxFBXUBglFpFkpuEmmoG_YGbGB2EGO7_v7kdwUJ871inZ7i5aWcrYCLLs4UjV5RXzJ6G7h-37AIU9ZuHWzTQOMvW-AN3OAO_OxY4-taTnaWC7VTfP8DNfK_5d1duN261qTf6MI9WDPlfdi8ALj4APoNWDOpLBm3OkPG1RwL185JVZIh4lrPTT2ryawkU2wZcGqCPaPJZ9M0JnoI0-v4hUewXlaleQxEo28cGaM044nOrDJWZ1FhlSxY6J492HbMF-0eUAuf3o8j0XG-B29WUiCKFoEdG4GcXkX6oiM9a2BHriJ67UWpo5DzE6zTy5iYjicimUQj_mmPCuZmdknWuhdiPCCgLOwBWQmfcNsL5oxkaaplLTKMaF3Iz7f-9XfP4eb4YCA-HB6NnsAtX1aDp-_sKawv5kvzzPluC7XtNYiAuGap-wWMBkg4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Particle+Porosity+on+Hysteresis+in+Trickle-Bed+Reactors&rft.jtitle=Industrial+%26+engineering+chemistry+research&rft.au=Maiti%2C+Rabindranath&rft.au=Atta%2C+Arnab&rft.au=Nigam%2C+K.+D.+P&rft.date=2008-11-05&rft.pub=American+Chemical+Society&rft.issn=0888-5885&rft.eissn=1520-5045&rft.volume=47&rft.issue=21&rft.spage=8126&rft.epage=8135&rft_id=info:doi/10.1021%2Fie8003539&rft.externalDocID=a718466161
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-5885&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-5885&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-5885&client=summon