Oleanolic Acid Inhibits Liver X Receptor Alpha and Pregnane X Receptor to Attenuate Ligand-Induced Lipogenesis

Liver X receptor α (LXRα) controls important biological and pathophysiological processes such as lipid homeostasis. Inhibiting LXRα transactivation may beneficial in the treatment of nonalcoholic fatty liver disease (NAFLD), which is one of the main causes of liver diseases and hyperlipidemia. Olean...

Full description

Saved in:
Bibliographic Details
Published inJournal of agricultural and food chemistry Vol. 66; no. 42; pp. 10964 - 10976
Main Authors Lin, Yen-Ning, Chang, Hsiao-Yun, Wang, Charles C. N, Chu, Fang-Yi, Shen, Hsin-Yi, Chen, Chao-Jung, Lim, Yun-Ping
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 24.10.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Liver X receptor α (LXRα) controls important biological and pathophysiological processes such as lipid homeostasis. Inhibiting LXRα transactivation may beneficial in the treatment of nonalcoholic fatty liver disease (NAFLD), which is one of the main causes of liver diseases and hyperlipidemia. Oleanolic acid (OA) is a naturally occurring triterpenoid found in many plants. It has several beneficial effects on biological pathways; however, the mechanisms underlying its effects on LXRα are unclear. Therefore, we evaluated the effects of OA on T0901317-induced LXRα activation and explored whether OA can attenuate hepatic lipogenesis. The results showed that OA significantly decreased the promoter activities of LXR response element and sterol regulatory element binding protein-1c (SREBP-1c). It also decreased the mRNA and protein expression of LXRα target genes. These resulted in reduced hepatocellular lipid content. Our results also revealed that the overall binding pose of OA is similar to the X-ray pose of T0901317. Furthermore, OA stimulated AMP-activated protein kinase phosphorylation in hepatic cells. Additionally, it increased small heterodimer partner-interacting leucine zipper protein (SMILE) but decreased steroid receptor coactivator-1 (SRC-1) recruitment to the SREBP-1c promoter region. OA also enhanced LXRα-mediated induction of reverse cholesterol transport (RCT)-related gene, ATP-binding cassette transporter (ABC) A1, and ABCG1 expression in intestinal cells. It was found that OA increased the binding of SRC-1 but decreased SMILE recruitment to the ABCG1 gene promoter region. Furthermore, it reduced valproate- and rifampin-induced LXRα- and pregnane X receptor-mediated lipogenesis, respectively, which indicates its potential benefit in treating drug-induced hepatic steatosis. The results also show that OA is liver-specific and can be selectively repressed of lipogenesis. Moreover, it preserves and enhances LXRα-induced RCT stimulation. The results show that OA may be a promising treatment for NAFLD. Additionally, it can be used in the development of LXRα agonists to prevent atherosclerosis.
AbstractList Liver X receptor α (LXRα) controls important biological and pathophysiological processes such as lipid homeostasis. Inhibiting LXRα transactivation may beneficial in the treatment of nonalcoholic fatty liver disease (NAFLD), which is one of the main causes of liver diseases and hyperlipidemia. Oleanolic acid (OA) is a naturally occurring triterpenoid found in many plants. It has several beneficial effects on biological pathways; however, the mechanisms underlying its effects on LXRα are unclear. Therefore, we evaluated the effects of OA on T0901317-induced LXRα activation and explored whether OA can attenuate hepatic lipogenesis. The results showed that OA significantly decreased the promoter activities of LXR response element and sterol regulatory element binding protein-1c (SREBP-1c). It also decreased the mRNA and protein expression of LXRα target genes. These resulted in reduced hepatocellular lipid content. Our results also revealed that the overall binding pose of OA is similar to the X-ray pose of T0901317. Furthermore, OA stimulated AMP-activated protein kinase phosphorylation in hepatic cells. Additionally, it increased small heterodimer partner-interacting leucine zipper protein (SMILE) but decreased steroid receptor coactivator-1 (SRC-1) recruitment to the SREBP-1c promoter region. OA also enhanced LXRα-mediated induction of reverse cholesterol transport (RCT)-related gene, ATP-binding cassette transporter (ABC) A1, and ABCG1 expression in intestinal cells. It was found that OA increased the binding of SRC-1 but decreased SMILE recruitment to the ABCG1 gene promoter region. Furthermore, it reduced valproate- and rifampin-induced LXRα- and pregnane X receptor-mediated lipogenesis, respectively, which indicates its potential benefit in treating drug-induced hepatic steatosis. The results also show that OA is liver-specific and can be selectively repressed of lipogenesis. Moreover, it preserves and enhances LXRα-induced RCT stimulation. The results show that OA may be a promising treatment for NAFLD. Additionally, it can be used in the development of LXRα agonists to prevent atherosclerosis.
Liver X receptor α (LXRα) controls important biological and pathophysiological processes such as lipid homeostasis. Inhibiting LXRα transactivation may beneficial in the treatment of nonalcoholic fatty liver disease (NAFLD), which is one of the main causes of liver diseases and hyperlipidemia. Oleanolic acid (OA) is a naturally occurring triterpenoid found in many plants. It has several beneficial effects on biological pathways; however, the mechanisms underlying its effects on LXRα are unclear. Therefore, we evaluated the effects of OA on T0901317-induced LXRα activation and explored whether OA can attenuate hepatic lipogenesis. The results showed that OA significantly decreased the promoter activities of LXR response element and sterol regulatory element binding protein-1c (SREBP-1c). It also decreased the mRNA and protein expression of LXRα target genes. These resulted in reduced hepatocellular lipid content. Our results also revealed that the overall binding pose of OA is similar to the X-ray pose of T0901317. Furthermore, OA stimulated AMP-activated protein kinase phosphorylation in hepatic cells. Additionally, it increased small heterodimer partner-interacting leucine zipper protein (SMILE) but decreased steroid receptor coactivator-1 (SRC-1) recruitment to the SREBP-1c promoter region. OA also enhanced LXRα-mediated induction of reverse cholesterol transport (RCT)-related gene, ATP-binding cassette transporter (ABC) A1, and ABCG1 expression in intestinal cells. It was found that OA increased the binding of SRC-1 but decreased SMILE recruitment to the ABCG1 gene promoter region. Furthermore, it reduced valproate- and rifampin-induced LXRα- and pregnane X receptor-mediated lipogenesis, respectively, which indicates its potential benefit in treating drug-induced hepatic steatosis. The results also show that OA is liver-specific and can be selectively repressed of lipogenesis. Moreover, it preserves and enhances LXRα-induced RCT stimulation. The results show that OA may be a promising treatment for NAFLD. Additionally, it can be used in the development of LXRα agonists to prevent atherosclerosis.Liver X receptor α (LXRα) controls important biological and pathophysiological processes such as lipid homeostasis. Inhibiting LXRα transactivation may beneficial in the treatment of nonalcoholic fatty liver disease (NAFLD), which is one of the main causes of liver diseases and hyperlipidemia. Oleanolic acid (OA) is a naturally occurring triterpenoid found in many plants. It has several beneficial effects on biological pathways; however, the mechanisms underlying its effects on LXRα are unclear. Therefore, we evaluated the effects of OA on T0901317-induced LXRα activation and explored whether OA can attenuate hepatic lipogenesis. The results showed that OA significantly decreased the promoter activities of LXR response element and sterol regulatory element binding protein-1c (SREBP-1c). It also decreased the mRNA and protein expression of LXRα target genes. These resulted in reduced hepatocellular lipid content. Our results also revealed that the overall binding pose of OA is similar to the X-ray pose of T0901317. Furthermore, OA stimulated AMP-activated protein kinase phosphorylation in hepatic cells. Additionally, it increased small heterodimer partner-interacting leucine zipper protein (SMILE) but decreased steroid receptor coactivator-1 (SRC-1) recruitment to the SREBP-1c promoter region. OA also enhanced LXRα-mediated induction of reverse cholesterol transport (RCT)-related gene, ATP-binding cassette transporter (ABC) A1, and ABCG1 expression in intestinal cells. It was found that OA increased the binding of SRC-1 but decreased SMILE recruitment to the ABCG1 gene promoter region. Furthermore, it reduced valproate- and rifampin-induced LXRα- and pregnane X receptor-mediated lipogenesis, respectively, which indicates its potential benefit in treating drug-induced hepatic steatosis. The results also show that OA is liver-specific and can be selectively repressed of lipogenesis. Moreover, it preserves and enhances LXRα-induced RCT stimulation. The results show that OA may be a promising treatment for NAFLD. Additionally, it can be used in the development of LXRα agonists to prevent atherosclerosis.
Author Chang, Hsiao-Yun
Wang, Charles C. N
Lin, Yen-Ning
Lim, Yun-Ping
Shen, Hsin-Yi
Chu, Fang-Yi
Chen, Chao-Jung
AuthorAffiliation Asia University
Department of Medical Research
Proteomics Core Laboratory, Department of Medical Research
Department of Internal Medicine
Department of Biotechnology
China Medical University Hospital
Department of Bioinformatics and Medical Engineering
Department of Pharmacy, College of Pharmacy
AuthorAffiliation_xml – name: Department of Pharmacy, College of Pharmacy
– name: Proteomics Core Laboratory, Department of Medical Research
– name: Department of Biotechnology
– name: Department of Internal Medicine
– name: Asia University
– name: Department of Bioinformatics and Medical Engineering
– name: China Medical University Hospital
– name: Department of Medical Research
Author_xml – sequence: 1
  givenname: Yen-Ning
  surname: Lin
  fullname: Lin, Yen-Ning
  organization: Department of Pharmacy, College of Pharmacy
– sequence: 2
  givenname: Hsiao-Yun
  surname: Chang
  fullname: Chang, Hsiao-Yun
  organization: Department of Biotechnology
– sequence: 3
  givenname: Charles C. N
  surname: Wang
  fullname: Wang, Charles C. N
  organization: Asia University
– sequence: 4
  givenname: Fang-Yi
  surname: Chu
  fullname: Chu, Fang-Yi
  organization: Department of Pharmacy, College of Pharmacy
– sequence: 5
  givenname: Hsin-Yi
  surname: Shen
  fullname: Shen, Hsin-Yi
  organization: Department of Pharmacy, College of Pharmacy
– sequence: 6
  givenname: Chao-Jung
  surname: Chen
  fullname: Chen, Chao-Jung
  organization: China Medical University Hospital
– sequence: 7
  givenname: Yun-Ping
  orcidid: 0000-0001-9312-048X
  surname: Lim
  fullname: Lim, Yun-Ping
  email: limyp@mail2000.com.tw, limyp@mail.cmu.edu.tw
  organization: China Medical University Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30351048$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1r3DAQhkVJaTZp7z0VHXuItyPLtuzjEvqxsJBScujNjKXxRsEruZIc6L-vkt2WUmjpSQzzPIN43wt25rwjxl4LWAsoxTvUcX2Po163A0ipymdsJeoSilqI9oytIDNFWzfinF3EeA8Aba3gBTuXIGsBVbti7mYidH6ymm-0NXzr7uxgU-Q7-0CBf-VfSNOcfOCbab5Djs7wz4H2Dh39vk2eb1Iit2Ci7O4zV2ydWTSZPM5-T46ijS_Z8xGnSK9O7yW7_fD-9vpTsbv5uL3e7AqUXZOKSmmpJXSoO20MADam7MaBBgmq1YiNNroRo1AKK6UaUthCA6OpjarNgPKSvT2enYP_tlBM_cFGTdOUf-2X2Jei7eqcV1X9B6q6sqygbjL65oQuw4FMPwd7wPC9_5lmBuAI6OBjDDT-QgT0j4X1ubD-sbD-VFhWmj8UbRMm610KaKd_iVdH8Wnjl-Bynn_HfwBFpKta
CitedBy_id crossref_primary_10_3390_ijms24032907
crossref_primary_10_12998_wjcc_v8_i10_1767
crossref_primary_10_1038_s41374_021_00715_1
crossref_primary_10_1124_dmd_122_000862
crossref_primary_10_1152_ajpendo_00052_2019
crossref_primary_10_1155_2019_9401648
crossref_primary_10_1016_j_phrs_2021_105747
crossref_primary_10_1016_j_phymed_2020_153416
crossref_primary_10_3389_fcvm_2022_842980
crossref_primary_10_3389_fphar_2021_771459
crossref_primary_10_3390_molecules24061109
crossref_primary_10_1021_acs_jafc_1c02257
crossref_primary_10_3390_ijms23147740
crossref_primary_10_1007_s00210_024_02959_2
crossref_primary_10_3390_biomedicines11102845
crossref_primary_10_3390_molecules28010272
crossref_primary_10_1016_j_biopha_2021_111778
crossref_primary_10_1016_j_taap_2022_116037
crossref_primary_10_3390_molecules29040758
crossref_primary_10_29335_tals_2022_60_7
crossref_primary_10_3390_antibiotics12020403
crossref_primary_10_1016_j_livres_2020_03_001
crossref_primary_10_3389_fendo_2020_572729
crossref_primary_10_1002_mnfr_202200533
crossref_primary_10_1007_s00044_022_02982_z
crossref_primary_10_1055_a_2277_4805
crossref_primary_10_3390_biom13101465
Cites_doi 10.1021/acs.jafc.7b02696
10.1126/science.289.5484.1524
10.1371/journal.pone.0067959
10.3390/molecules22010088
10.1016/j.cmet.2005.01.002
10.1194/jlr.M800608-JLR200
10.1093/nar/gkp333
10.1016/j.tem.2014.08.001
10.1016/j.jep.2009.03.035
10.1016/j.cmet.2005.03.001
10.1021/jm500442z
10.2174/1389200211314030009
10.1002/jcb.22024
10.1021/jm3002394
10.1016/j.addr.2010.08.006
10.1016/j.cmet.2010.07.002
10.1155/2015/643102
10.1002/hep.1840020513
10.1016/j.mce.2013.06.014
10.1101/gad.850400
10.1074/jbc.M105711200
10.1016/j.febslet.2007.03.047
10.1371/journal.pone.0086795
10.1242/jcs.01540
10.1055/s-0034-1375960
10.1101/gad.844900
10.1016/j.fct.2012.02.026
10.1007/s00204-014-1230-x
10.1016/j.cld.2017.08.010
10.1007/s00204-018-2263-3
10.1021/jf500622p
10.1016/S0929-6441(09)60043-6
10.1113/jphysiol.2006.108506
10.1038/nrd4280
10.1128/MCB.23.16.5780-5789.2003
10.1007/s10620-014-3289-x
10.1002/hep.26272
10.1074/jbc.M113.491522
10.1194/jlr.M600282-JLR200
10.7150/ijbs.7.645
10.1016/0041-3879(74)90050-6
10.1074/jbc.M110.209973
10.1016/0378-8741(95)90032-2
10.1016/0016-5085(92)90335-V
10.1016/j.tem.2009.03.003
10.1021/jm901797p
10.1111/j.1365-2036.2010.04298.x
10.1155/2013/534084
10.1007/s12602-011-9086-3
10.1093/emboj/cdg456
10.1007/s12272-012-1013-y
10.1111/j.1872-034X.2008.00382.x
10.1016/j.phytochem.2011.12.022
10.1371/journal.pone.0118800
10.1021/jf8026217
10.1002/jcc.21287
10.3390/molecules22111915
10.1002/ptr.2603
10.1002/hep.22907
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1021/acs.jafc.8b03372
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1520-5118
EndPage 10976
ExternalDocumentID 30351048
10_1021_acs_jafc_8b03372
c413235040
Genre Journal Article
GroupedDBID -
55A
5GY
7~N
85S
AABXI
ABFLS
ABMVS
ABUCX
ACGFS
ACJ
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
GX1
IH9
JG
JG~
LG6
P2P
ROL
TWZ
UI2
VF5
VG9
W1F
WH7
X
---
-~X
.K2
4.4
5VS
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AGXLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a396t-47c3c309ac9cdd00a6d29fbeb3078caa6cdc61f177a4776e7a8060fd5d75dba3
IEDL.DBID ACS
ISSN 0021-8561
1520-5118
IngestDate Thu Jul 10 18:27:49 EDT 2025
Fri Jul 11 01:43:48 EDT 2025
Mon Apr 28 11:35:31 EDT 2025
Tue Jul 01 04:18:58 EDT 2025
Thu Apr 24 22:52:52 EDT 2025
Thu Aug 27 13:42:48 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 42
Keywords reverse cholesterol transport
pregnane X receptor
lipogenesis
liver X receptor α
oleanolic acid
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a396t-47c3c309ac9cdd00a6d29fbeb3078caa6cdc61f177a4776e7a8060fd5d75dba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9312-048X
PMID 30351048
PQID 2179224056
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_2189537244
proquest_miscellaneous_2179224056
pubmed_primary_30351048
crossref_primary_10_1021_acs_jafc_8b03372
crossref_citationtrail_10_1021_acs_jafc_8b03372
acs_journals_10_1021_acs_jafc_8b03372
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-24
PublicationDateYYYYMMDD 2018-10-24
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-24
  day: 24
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of agricultural and food chemistry
PublicationTitleAlternate J. Agric. Food Chem
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref24/cit24
  doi: 10.1021/acs.jafc.7b02696
– ident: ref32/cit32
  doi: 10.1126/science.289.5484.1524
– ident: ref10/cit10
  doi: 10.1371/journal.pone.0067959
– ident: ref48/cit48
  doi: 10.3390/molecules22010088
– ident: ref49/cit49
  doi: 10.1016/j.cmet.2005.01.002
– ident: ref15/cit15
  doi: 10.1194/jlr.M800608-JLR200
– ident: ref18/cit18
  doi: 10.1093/nar/gkp333
– ident: ref6/cit6
  doi: 10.1016/j.tem.2014.08.001
– ident: ref23/cit23
  doi: 10.1016/j.jep.2009.03.035
– ident: ref7/cit7
  doi: 10.1016/j.cmet.2005.03.001
– ident: ref5/cit5
  doi: 10.1021/jm500442z
– ident: ref11/cit11
  doi: 10.2174/1389200211314030009
– ident: ref37/cit37
  doi: 10.1002/jcb.22024
– ident: ref54/cit54
  doi: 10.1021/jm3002394
– ident: ref12/cit12
  doi: 10.1016/j.addr.2010.08.006
– ident: ref33/cit33
  doi: 10.1016/j.cmet.2010.07.002
– ident: ref42/cit42
  doi: 10.1155/2015/643102
– ident: ref39/cit39
  doi: 10.1002/hep.1840020513
– ident: ref43/cit43
  doi: 10.1016/j.mce.2013.06.014
– ident: ref2/cit2
  doi: 10.1101/gad.850400
– ident: ref3/cit3
  doi: 10.1074/jbc.M105711200
– ident: ref51/cit51
  doi: 10.1016/j.febslet.2007.03.047
– ident: ref38/cit38
  doi: 10.1371/journal.pone.0086795
– ident: ref16/cit16
  doi: 10.1242/jcs.01540
– ident: ref40/cit40
  doi: 10.1055/s-0034-1375960
– ident: ref1/cit1
  doi: 10.1101/gad.844900
– ident: ref47/cit47
  doi: 10.1016/j.fct.2012.02.026
– ident: ref26/cit26
  doi: 10.1007/s00204-014-1230-x
– ident: ref57/cit57
  doi: 10.1016/j.cld.2017.08.010
– ident: ref25/cit25
  doi: 10.1007/s00204-018-2263-3
– ident: ref35/cit35
  doi: 10.1021/jf500622p
– ident: ref59/cit59
  doi: 10.1016/S0929-6441(09)60043-6
– ident: ref17/cit17
  doi: 10.1113/jphysiol.2006.108506
– ident: ref8/cit8
  doi: 10.1038/nrd4280
– ident: ref34/cit34
  doi: 10.1128/MCB.23.16.5780-5789.2003
– ident: ref58/cit58
  doi: 10.1007/s10620-014-3289-x
– ident: ref28/cit28
  doi: 10.1002/hep.26272
– ident: ref19/cit19
  doi: 10.1074/jbc.M113.491522
– ident: ref31/cit31
  doi: 10.1194/jlr.M600282-JLR200
– ident: ref36/cit36
  doi: 10.7150/ijbs.7.645
– ident: ref13/cit13
  doi: 10.1016/0041-3879(74)90050-6
– ident: ref27/cit27
  doi: 10.1074/jbc.M110.209973
– ident: ref21/cit21
  doi: 10.1016/0378-8741(95)90032-2
– ident: ref14/cit14
  doi: 10.1016/0016-5085(92)90335-V
– ident: ref56/cit56
  doi: 10.1016/j.tem.2009.03.003
– ident: ref53/cit53
  doi: 10.1021/jm901797p
– ident: ref55/cit55
  doi: 10.1111/j.1365-2036.2010.04298.x
– ident: ref20/cit20
  doi: 10.1155/2013/534084
– ident: ref50/cit50
  doi: 10.1007/s12602-011-9086-3
– ident: ref52/cit52
  doi: 10.1093/emboj/cdg456
– ident: ref45/cit45
  doi: 10.1007/s12272-012-1013-y
– ident: ref4/cit4
  doi: 10.1111/j.1872-034X.2008.00382.x
– ident: ref41/cit41
  doi: 10.1016/j.phytochem.2011.12.022
– ident: ref44/cit44
  doi: 10.1371/journal.pone.0118800
– ident: ref22/cit22
  doi: 10.1021/jf8026217
– ident: ref29/cit29
  doi: 10.1002/jcc.21287
– ident: ref30/cit30
  doi: 10.3390/molecules22111915
– ident: ref46/cit46
  doi: 10.1002/ptr.2603
– ident: ref9/cit9
  doi: 10.1002/hep.22907
SSID ssj0008570
Score 2.409951
Snippet Liver X receptor α (LXRα) controls important biological and pathophysiological processes such as lipid homeostasis. Inhibiting LXRα transactivation may...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10964
SubjectTerms ABC transporters
agonists
AMP-activated protein kinase
AMP-Activated Protein Kinases - genetics
AMP-Activated Protein Kinases - metabolism
atherosclerosis
cholesterol
fatty liver
genes
Hepatocytes - cytology
Hepatocytes - drug effects
Hepatocytes - metabolism
homeostasis
Humans
Hydrocarbons, Fluorinated - pharmacology
hyperlipidemia
intestines
leucine zipper
Ligands
lipid content
lipogenesis
Lipogenesis - drug effects
liver
Liver X Receptors - genetics
Liver X Receptors - metabolism
messenger RNA
Nuclear Receptor Coactivator 1 - genetics
Nuclear Receptor Coactivator 1 - metabolism
oleanolic acid
Oleanolic Acid - pharmacology
phosphorylation
Pregnane X Receptor - genetics
Pregnane X Receptor - metabolism
pregnanes
promoter regions
protein synthesis
steroid receptors
Sterol Regulatory Element Binding Protein 1 - genetics
Sterol Regulatory Element Binding Protein 1 - metabolism
Sulfonamides - pharmacology
transcriptional activation
X-radiation
Title Oleanolic Acid Inhibits Liver X Receptor Alpha and Pregnane X Receptor to Attenuate Ligand-Induced Lipogenesis
URI http://dx.doi.org/10.1021/acs.jafc.8b03372
https://www.ncbi.nlm.nih.gov/pubmed/30351048
https://www.proquest.com/docview/2179224056
https://www.proquest.com/docview/2189537244
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLdQucCBzwGFgYzEDhzcOrFjx8doWjUQsEkbUm-R44-uMLlVk17463lOsg72UfWY5NmRn5-ffy_P-T2EPlU2EkuphGSOCcKV8yTnzBMFkZimnhpn4wf97z_E8U_-dZpNr2lybmbw02SsTT36pb0Z5RVlTIK7fZiKXMZAqzg823jdSNTeHedISA6goE9J3tVD3IhM_f9GdA-6bHeZydOuXFHdkhPGwyW_R-umGpk_t6kbdxjAM_SkB5u46KzjOXrgwgv0uJitesIN9xKFk0unQyQHxoWZW_wlXMyreVPjb_HABp5iwJVuCYE5LuJfuVgHi09XbhZ0cP8-bRa4aAB_rwG7QtsZyJFYFgRmAS6Xi1n0qfN6D51Pjs4Pj0lfg4FopkRDuDTMMKq0UcZaSrWwqfIVhOCALYzWwlgjEp9IqbmUwkmdU0G9zazMbKXZKzQIi-DeIMwc9VzDKvfWcYibNE9NZVNvqAevKekQHYCmyn4J1WWbHU-Tsr0J6it79Q3R-GreStPzmMdyGpdbWnzetFh2HB5bZD9emUIJCy1mT0Cfi3VdQuymIv7JxDaZXGXQC-dD9Lqzo80bWczZgr98u-M436FHAM5a7t2U76NBs1q79wCAmupDa_l_AXnoAL4
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLemcRgcgPExysYwEhw4uHNix46P0cTUQTcQFKm3yPFHKUxu1aQX_nqe07R8aKvGMY7t2M9-z7-XZ_-M0OvKRmIplZDMMUG4cp7knHmiwBPT1FPjbPyhf3EpBl_5-3E23kHJ-iwMNKKGmuo2iP-bXSA5iWnftTf9vKKMSbC6dwCLpNHfKk6_bIxv5Gtf7epISA7YoItMXldDXI9M_fd6dAPIbBebswfo86aZ7R6TH_1lU_XNz38YHP-rHw_R_Q564mI1V_bRjguP0L1isujoN9xjFD5eOR0iVTAuzNTi8_BtWk2bGg_j9g08xoAy3RzcdFzEM7pYB4s_Ldwk6OD-fNvMcNEAGl8CkoWyE8hH4iUhMCbwOJ9NooWd1k_Q6Ozd6HRAuhsZiGZKNIRLwwyjShtlrKVUC5sqX4FDDkjDaC2MNSLxiZSaSymc1DkV1NvMysxWmj1Fu2EW3DOEmaOea9B5bx0HL0rz1FQ29YZ6sKGS9tAbkFTZKVRdtrHyNCnbRBBf2Ymvh07Ww1eajtU8Xq5xtaXE202J-YrRY0veV-sZUYLaxVgKyHO2rEvw5FREQ5nYlidXGdTCeQ8drKbT5ossRnDBej6_ZT9for3B6GJYDs8vPxyiuwDbWlbelB-h3WaxdC8AGjXVcasMvwB_kwkf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLamISE4wDZgK7BhJDhwcOfEjh0fo23VBtuYxEC9RY5_dIXJrZr0wl_Pc5pWgLYKjnFsx372e_5env0ZoXeVjcRSKiGZY4Jw5TzJOfNEgSemqafG2fhD_-JSnH7lH4fZcANly7Mw0IgaaqrbIH7U6qn1HcNAchjTv2tv-nlFGZNgeR_EqF30uYqjLysDHDnbFzs7EpIDPuiik3fVENckU_-5Jt0DNNsFZ_AUfVs1td1n8qM_b6q--fkXi-N_92ULPekgKC4Wc2Ybbbiwgx4Xo1lHw-GeofD51ukQKYNxYcYWn4WbcTVuanwet3HgIQa06abgruMintXFOlh8NXOjoIP7_W0zwUUDqHwOiBbKjiAfiZeFwNjA43QyipZ2XD9H14OT66NT0t3MQDRToiFcGmYYVdooYy2lWthU-Qocc0AcRmthrBGJT6TUXErhpM6poN5mVma20uwF2gyT4PYQZo56rkH3vXUcvCnNU1PZ1BvqwZZK2kPvQVJlp1h12cbM06RsE0F8ZSe-HjpcDmFpOnbzeMnG7ZoSH1YlpgtmjzV53y5nRQnqF2MqIM_JvC7Bo1MRFWViXZ5cZVAL5z20u5hSqy-yGMkFK_ryH_v5Bj28Oh6U52eXn16hR4DeWnLelL9Gm81s7vYBITXVQasPvwANDgui
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oleanolic+Acid+Inhibits+Liver+X+Receptor+Alpha+and+Pregnane+X+Receptor+to+Attenuate+Ligand-Induced+Lipogenesis&rft.jtitle=Journal+of+agricultural+and+food+chemistry&rft.au=Lin%2C+Yen-Ning&rft.au=Zhang%2C+Xiaoyun&rft.au=Wang%2C+Charles+C+N&rft.au=Chu%2C+Fang-Yi&rft.date=2018-10-24&rft.issn=1520-5118&rft.volume=66&rft.issue=42+p.10964-10976&rft.spage=10964&rft.epage=10976&rft_id=info:doi/10.1021%2Facs.jafc.8b03372&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8561&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8561&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8561&client=summon