Oleanolic Acid Inhibits Liver X Receptor Alpha and Pregnane X Receptor to Attenuate Ligand-Induced Lipogenesis
Liver X receptor α (LXRα) controls important biological and pathophysiological processes such as lipid homeostasis. Inhibiting LXRα transactivation may beneficial in the treatment of nonalcoholic fatty liver disease (NAFLD), which is one of the main causes of liver diseases and hyperlipidemia. Olean...
Saved in:
Published in | Journal of agricultural and food chemistry Vol. 66; no. 42; pp. 10964 - 10976 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
24.10.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Liver X receptor α (LXRα) controls important biological and pathophysiological processes such as lipid homeostasis. Inhibiting LXRα transactivation may beneficial in the treatment of nonalcoholic fatty liver disease (NAFLD), which is one of the main causes of liver diseases and hyperlipidemia. Oleanolic acid (OA) is a naturally occurring triterpenoid found in many plants. It has several beneficial effects on biological pathways; however, the mechanisms underlying its effects on LXRα are unclear. Therefore, we evaluated the effects of OA on T0901317-induced LXRα activation and explored whether OA can attenuate hepatic lipogenesis. The results showed that OA significantly decreased the promoter activities of LXR response element and sterol regulatory element binding protein-1c (SREBP-1c). It also decreased the mRNA and protein expression of LXRα target genes. These resulted in reduced hepatocellular lipid content. Our results also revealed that the overall binding pose of OA is similar to the X-ray pose of T0901317. Furthermore, OA stimulated AMP-activated protein kinase phosphorylation in hepatic cells. Additionally, it increased small heterodimer partner-interacting leucine zipper protein (SMILE) but decreased steroid receptor coactivator-1 (SRC-1) recruitment to the SREBP-1c promoter region. OA also enhanced LXRα-mediated induction of reverse cholesterol transport (RCT)-related gene, ATP-binding cassette transporter (ABC) A1, and ABCG1 expression in intestinal cells. It was found that OA increased the binding of SRC-1 but decreased SMILE recruitment to the ABCG1 gene promoter region. Furthermore, it reduced valproate- and rifampin-induced LXRα- and pregnane X receptor-mediated lipogenesis, respectively, which indicates its potential benefit in treating drug-induced hepatic steatosis. The results also show that OA is liver-specific and can be selectively repressed of lipogenesis. Moreover, it preserves and enhances LXRα-induced RCT stimulation. The results show that OA may be a promising treatment for NAFLD. Additionally, it can be used in the development of LXRα agonists to prevent atherosclerosis. |
---|---|
AbstractList | Liver X receptor α (LXRα) controls important biological and pathophysiological processes such as lipid homeostasis. Inhibiting LXRα transactivation may beneficial in the treatment of nonalcoholic fatty liver disease (NAFLD), which is one of the main causes of liver diseases and hyperlipidemia. Oleanolic acid (OA) is a naturally occurring triterpenoid found in many plants. It has several beneficial effects on biological pathways; however, the mechanisms underlying its effects on LXRα are unclear. Therefore, we evaluated the effects of OA on T0901317-induced LXRα activation and explored whether OA can attenuate hepatic lipogenesis. The results showed that OA significantly decreased the promoter activities of LXR response element and sterol regulatory element binding protein-1c (SREBP-1c). It also decreased the mRNA and protein expression of LXRα target genes. These resulted in reduced hepatocellular lipid content. Our results also revealed that the overall binding pose of OA is similar to the X-ray pose of T0901317. Furthermore, OA stimulated AMP-activated protein kinase phosphorylation in hepatic cells. Additionally, it increased small heterodimer partner-interacting leucine zipper protein (SMILE) but decreased steroid receptor coactivator-1 (SRC-1) recruitment to the SREBP-1c promoter region. OA also enhanced LXRα-mediated induction of reverse cholesterol transport (RCT)-related gene, ATP-binding cassette transporter (ABC) A1, and ABCG1 expression in intestinal cells. It was found that OA increased the binding of SRC-1 but decreased SMILE recruitment to the ABCG1 gene promoter region. Furthermore, it reduced valproate- and rifampin-induced LXRα- and pregnane X receptor-mediated lipogenesis, respectively, which indicates its potential benefit in treating drug-induced hepatic steatosis. The results also show that OA is liver-specific and can be selectively repressed of lipogenesis. Moreover, it preserves and enhances LXRα-induced RCT stimulation. The results show that OA may be a promising treatment for NAFLD. Additionally, it can be used in the development of LXRα agonists to prevent atherosclerosis. Liver X receptor α (LXRα) controls important biological and pathophysiological processes such as lipid homeostasis. Inhibiting LXRα transactivation may beneficial in the treatment of nonalcoholic fatty liver disease (NAFLD), which is one of the main causes of liver diseases and hyperlipidemia. Oleanolic acid (OA) is a naturally occurring triterpenoid found in many plants. It has several beneficial effects on biological pathways; however, the mechanisms underlying its effects on LXRα are unclear. Therefore, we evaluated the effects of OA on T0901317-induced LXRα activation and explored whether OA can attenuate hepatic lipogenesis. The results showed that OA significantly decreased the promoter activities of LXR response element and sterol regulatory element binding protein-1c (SREBP-1c). It also decreased the mRNA and protein expression of LXRα target genes. These resulted in reduced hepatocellular lipid content. Our results also revealed that the overall binding pose of OA is similar to the X-ray pose of T0901317. Furthermore, OA stimulated AMP-activated protein kinase phosphorylation in hepatic cells. Additionally, it increased small heterodimer partner-interacting leucine zipper protein (SMILE) but decreased steroid receptor coactivator-1 (SRC-1) recruitment to the SREBP-1c promoter region. OA also enhanced LXRα-mediated induction of reverse cholesterol transport (RCT)-related gene, ATP-binding cassette transporter (ABC) A1, and ABCG1 expression in intestinal cells. It was found that OA increased the binding of SRC-1 but decreased SMILE recruitment to the ABCG1 gene promoter region. Furthermore, it reduced valproate- and rifampin-induced LXRα- and pregnane X receptor-mediated lipogenesis, respectively, which indicates its potential benefit in treating drug-induced hepatic steatosis. The results also show that OA is liver-specific and can be selectively repressed of lipogenesis. Moreover, it preserves and enhances LXRα-induced RCT stimulation. The results show that OA may be a promising treatment for NAFLD. Additionally, it can be used in the development of LXRα agonists to prevent atherosclerosis.Liver X receptor α (LXRα) controls important biological and pathophysiological processes such as lipid homeostasis. Inhibiting LXRα transactivation may beneficial in the treatment of nonalcoholic fatty liver disease (NAFLD), which is one of the main causes of liver diseases and hyperlipidemia. Oleanolic acid (OA) is a naturally occurring triterpenoid found in many plants. It has several beneficial effects on biological pathways; however, the mechanisms underlying its effects on LXRα are unclear. Therefore, we evaluated the effects of OA on T0901317-induced LXRα activation and explored whether OA can attenuate hepatic lipogenesis. The results showed that OA significantly decreased the promoter activities of LXR response element and sterol regulatory element binding protein-1c (SREBP-1c). It also decreased the mRNA and protein expression of LXRα target genes. These resulted in reduced hepatocellular lipid content. Our results also revealed that the overall binding pose of OA is similar to the X-ray pose of T0901317. Furthermore, OA stimulated AMP-activated protein kinase phosphorylation in hepatic cells. Additionally, it increased small heterodimer partner-interacting leucine zipper protein (SMILE) but decreased steroid receptor coactivator-1 (SRC-1) recruitment to the SREBP-1c promoter region. OA also enhanced LXRα-mediated induction of reverse cholesterol transport (RCT)-related gene, ATP-binding cassette transporter (ABC) A1, and ABCG1 expression in intestinal cells. It was found that OA increased the binding of SRC-1 but decreased SMILE recruitment to the ABCG1 gene promoter region. Furthermore, it reduced valproate- and rifampin-induced LXRα- and pregnane X receptor-mediated lipogenesis, respectively, which indicates its potential benefit in treating drug-induced hepatic steatosis. The results also show that OA is liver-specific and can be selectively repressed of lipogenesis. Moreover, it preserves and enhances LXRα-induced RCT stimulation. The results show that OA may be a promising treatment for NAFLD. Additionally, it can be used in the development of LXRα agonists to prevent atherosclerosis. |
Author | Chang, Hsiao-Yun Wang, Charles C. N Lin, Yen-Ning Lim, Yun-Ping Shen, Hsin-Yi Chu, Fang-Yi Chen, Chao-Jung |
AuthorAffiliation | Asia University Department of Medical Research Proteomics Core Laboratory, Department of Medical Research Department of Internal Medicine Department of Biotechnology China Medical University Hospital Department of Bioinformatics and Medical Engineering Department of Pharmacy, College of Pharmacy |
AuthorAffiliation_xml | – name: Department of Pharmacy, College of Pharmacy – name: Proteomics Core Laboratory, Department of Medical Research – name: Department of Biotechnology – name: Department of Internal Medicine – name: Asia University – name: Department of Bioinformatics and Medical Engineering – name: China Medical University Hospital – name: Department of Medical Research |
Author_xml | – sequence: 1 givenname: Yen-Ning surname: Lin fullname: Lin, Yen-Ning organization: Department of Pharmacy, College of Pharmacy – sequence: 2 givenname: Hsiao-Yun surname: Chang fullname: Chang, Hsiao-Yun organization: Department of Biotechnology – sequence: 3 givenname: Charles C. N surname: Wang fullname: Wang, Charles C. N organization: Asia University – sequence: 4 givenname: Fang-Yi surname: Chu fullname: Chu, Fang-Yi organization: Department of Pharmacy, College of Pharmacy – sequence: 5 givenname: Hsin-Yi surname: Shen fullname: Shen, Hsin-Yi organization: Department of Pharmacy, College of Pharmacy – sequence: 6 givenname: Chao-Jung surname: Chen fullname: Chen, Chao-Jung organization: China Medical University Hospital – sequence: 7 givenname: Yun-Ping orcidid: 0000-0001-9312-048X surname: Lim fullname: Lim, Yun-Ping email: limyp@mail2000.com.tw, limyp@mail.cmu.edu.tw organization: China Medical University Hospital |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30351048$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1r3DAQhkVJaTZp7z0VHXuItyPLtuzjEvqxsJBScujNjKXxRsEruZIc6L-vkt2WUmjpSQzzPIN43wt25rwjxl4LWAsoxTvUcX2Po163A0ipymdsJeoSilqI9oytIDNFWzfinF3EeA8Aba3gBTuXIGsBVbti7mYidH6ymm-0NXzr7uxgU-Q7-0CBf-VfSNOcfOCbab5Djs7wz4H2Dh39vk2eb1Iit2Ci7O4zV2ydWTSZPM5-T46ijS_Z8xGnSK9O7yW7_fD-9vpTsbv5uL3e7AqUXZOKSmmpJXSoO20MADam7MaBBgmq1YiNNroRo1AKK6UaUthCA6OpjarNgPKSvT2enYP_tlBM_cFGTdOUf-2X2Jei7eqcV1X9B6q6sqygbjL65oQuw4FMPwd7wPC9_5lmBuAI6OBjDDT-QgT0j4X1ubD-sbD-VFhWmj8UbRMm610KaKd_iVdH8Wnjl-Bynn_HfwBFpKta |
CitedBy_id | crossref_primary_10_3390_ijms24032907 crossref_primary_10_12998_wjcc_v8_i10_1767 crossref_primary_10_1038_s41374_021_00715_1 crossref_primary_10_1124_dmd_122_000862 crossref_primary_10_1152_ajpendo_00052_2019 crossref_primary_10_1155_2019_9401648 crossref_primary_10_1016_j_phrs_2021_105747 crossref_primary_10_1016_j_phymed_2020_153416 crossref_primary_10_3389_fcvm_2022_842980 crossref_primary_10_3389_fphar_2021_771459 crossref_primary_10_3390_molecules24061109 crossref_primary_10_1021_acs_jafc_1c02257 crossref_primary_10_3390_ijms23147740 crossref_primary_10_1007_s00210_024_02959_2 crossref_primary_10_3390_biomedicines11102845 crossref_primary_10_3390_molecules28010272 crossref_primary_10_1016_j_biopha_2021_111778 crossref_primary_10_1016_j_taap_2022_116037 crossref_primary_10_3390_molecules29040758 crossref_primary_10_29335_tals_2022_60_7 crossref_primary_10_3390_antibiotics12020403 crossref_primary_10_1016_j_livres_2020_03_001 crossref_primary_10_3389_fendo_2020_572729 crossref_primary_10_1002_mnfr_202200533 crossref_primary_10_1007_s00044_022_02982_z crossref_primary_10_1055_a_2277_4805 crossref_primary_10_3390_biom13101465 |
Cites_doi | 10.1021/acs.jafc.7b02696 10.1126/science.289.5484.1524 10.1371/journal.pone.0067959 10.3390/molecules22010088 10.1016/j.cmet.2005.01.002 10.1194/jlr.M800608-JLR200 10.1093/nar/gkp333 10.1016/j.tem.2014.08.001 10.1016/j.jep.2009.03.035 10.1016/j.cmet.2005.03.001 10.1021/jm500442z 10.2174/1389200211314030009 10.1002/jcb.22024 10.1021/jm3002394 10.1016/j.addr.2010.08.006 10.1016/j.cmet.2010.07.002 10.1155/2015/643102 10.1002/hep.1840020513 10.1016/j.mce.2013.06.014 10.1101/gad.850400 10.1074/jbc.M105711200 10.1016/j.febslet.2007.03.047 10.1371/journal.pone.0086795 10.1242/jcs.01540 10.1055/s-0034-1375960 10.1101/gad.844900 10.1016/j.fct.2012.02.026 10.1007/s00204-014-1230-x 10.1016/j.cld.2017.08.010 10.1007/s00204-018-2263-3 10.1021/jf500622p 10.1016/S0929-6441(09)60043-6 10.1113/jphysiol.2006.108506 10.1038/nrd4280 10.1128/MCB.23.16.5780-5789.2003 10.1007/s10620-014-3289-x 10.1002/hep.26272 10.1074/jbc.M113.491522 10.1194/jlr.M600282-JLR200 10.7150/ijbs.7.645 10.1016/0041-3879(74)90050-6 10.1074/jbc.M110.209973 10.1016/0378-8741(95)90032-2 10.1016/0016-5085(92)90335-V 10.1016/j.tem.2009.03.003 10.1021/jm901797p 10.1111/j.1365-2036.2010.04298.x 10.1155/2013/534084 10.1007/s12602-011-9086-3 10.1093/emboj/cdg456 10.1007/s12272-012-1013-y 10.1111/j.1872-034X.2008.00382.x 10.1016/j.phytochem.2011.12.022 10.1371/journal.pone.0118800 10.1021/jf8026217 10.1002/jcc.21287 10.3390/molecules22111915 10.1002/ptr.2603 10.1002/hep.22907 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1021/acs.jafc.8b03372 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1520-5118 |
EndPage | 10976 |
ExternalDocumentID | 30351048 10_1021_acs_jafc_8b03372 c413235040 |
Genre | Journal Article |
GroupedDBID | - 55A 5GY 7~N 85S AABXI ABFLS ABMVS ABUCX ACGFS ACJ ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED ED~ EJD F5P GNL GX1 IH9 JG JG~ LG6 P2P ROL TWZ UI2 VF5 VG9 W1F WH7 X --- -~X .K2 4.4 5VS AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AGXLV AHGAQ BAANH CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a396t-47c3c309ac9cdd00a6d29fbeb3078caa6cdc61f177a4776e7a8060fd5d75dba3 |
IEDL.DBID | ACS |
ISSN | 0021-8561 1520-5118 |
IngestDate | Thu Jul 10 18:27:49 EDT 2025 Fri Jul 11 01:43:48 EDT 2025 Mon Apr 28 11:35:31 EDT 2025 Tue Jul 01 04:18:58 EDT 2025 Thu Apr 24 22:52:52 EDT 2025 Thu Aug 27 13:42:48 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 42 |
Keywords | reverse cholesterol transport pregnane X receptor lipogenesis liver X receptor α oleanolic acid |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a396t-47c3c309ac9cdd00a6d29fbeb3078caa6cdc61f177a4776e7a8060fd5d75dba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9312-048X |
PMID | 30351048 |
PQID | 2179224056 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2189537244 proquest_miscellaneous_2179224056 pubmed_primary_30351048 crossref_primary_10_1021_acs_jafc_8b03372 crossref_citationtrail_10_1021_acs_jafc_8b03372 acs_journals_10_1021_acs_jafc_8b03372 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-24 |
PublicationDateYYYYMMDD | 2018-10-24 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-24 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of agricultural and food chemistry |
PublicationTitleAlternate | J. Agric. Food Chem |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref24/cit24 doi: 10.1021/acs.jafc.7b02696 – ident: ref32/cit32 doi: 10.1126/science.289.5484.1524 – ident: ref10/cit10 doi: 10.1371/journal.pone.0067959 – ident: ref48/cit48 doi: 10.3390/molecules22010088 – ident: ref49/cit49 doi: 10.1016/j.cmet.2005.01.002 – ident: ref15/cit15 doi: 10.1194/jlr.M800608-JLR200 – ident: ref18/cit18 doi: 10.1093/nar/gkp333 – ident: ref6/cit6 doi: 10.1016/j.tem.2014.08.001 – ident: ref23/cit23 doi: 10.1016/j.jep.2009.03.035 – ident: ref7/cit7 doi: 10.1016/j.cmet.2005.03.001 – ident: ref5/cit5 doi: 10.1021/jm500442z – ident: ref11/cit11 doi: 10.2174/1389200211314030009 – ident: ref37/cit37 doi: 10.1002/jcb.22024 – ident: ref54/cit54 doi: 10.1021/jm3002394 – ident: ref12/cit12 doi: 10.1016/j.addr.2010.08.006 – ident: ref33/cit33 doi: 10.1016/j.cmet.2010.07.002 – ident: ref42/cit42 doi: 10.1155/2015/643102 – ident: ref39/cit39 doi: 10.1002/hep.1840020513 – ident: ref43/cit43 doi: 10.1016/j.mce.2013.06.014 – ident: ref2/cit2 doi: 10.1101/gad.850400 – ident: ref3/cit3 doi: 10.1074/jbc.M105711200 – ident: ref51/cit51 doi: 10.1016/j.febslet.2007.03.047 – ident: ref38/cit38 doi: 10.1371/journal.pone.0086795 – ident: ref16/cit16 doi: 10.1242/jcs.01540 – ident: ref40/cit40 doi: 10.1055/s-0034-1375960 – ident: ref1/cit1 doi: 10.1101/gad.844900 – ident: ref47/cit47 doi: 10.1016/j.fct.2012.02.026 – ident: ref26/cit26 doi: 10.1007/s00204-014-1230-x – ident: ref57/cit57 doi: 10.1016/j.cld.2017.08.010 – ident: ref25/cit25 doi: 10.1007/s00204-018-2263-3 – ident: ref35/cit35 doi: 10.1021/jf500622p – ident: ref59/cit59 doi: 10.1016/S0929-6441(09)60043-6 – ident: ref17/cit17 doi: 10.1113/jphysiol.2006.108506 – ident: ref8/cit8 doi: 10.1038/nrd4280 – ident: ref34/cit34 doi: 10.1128/MCB.23.16.5780-5789.2003 – ident: ref58/cit58 doi: 10.1007/s10620-014-3289-x – ident: ref28/cit28 doi: 10.1002/hep.26272 – ident: ref19/cit19 doi: 10.1074/jbc.M113.491522 – ident: ref31/cit31 doi: 10.1194/jlr.M600282-JLR200 – ident: ref36/cit36 doi: 10.7150/ijbs.7.645 – ident: ref13/cit13 doi: 10.1016/0041-3879(74)90050-6 – ident: ref27/cit27 doi: 10.1074/jbc.M110.209973 – ident: ref21/cit21 doi: 10.1016/0378-8741(95)90032-2 – ident: ref14/cit14 doi: 10.1016/0016-5085(92)90335-V – ident: ref56/cit56 doi: 10.1016/j.tem.2009.03.003 – ident: ref53/cit53 doi: 10.1021/jm901797p – ident: ref55/cit55 doi: 10.1111/j.1365-2036.2010.04298.x – ident: ref20/cit20 doi: 10.1155/2013/534084 – ident: ref50/cit50 doi: 10.1007/s12602-011-9086-3 – ident: ref52/cit52 doi: 10.1093/emboj/cdg456 – ident: ref45/cit45 doi: 10.1007/s12272-012-1013-y – ident: ref4/cit4 doi: 10.1111/j.1872-034X.2008.00382.x – ident: ref41/cit41 doi: 10.1016/j.phytochem.2011.12.022 – ident: ref44/cit44 doi: 10.1371/journal.pone.0118800 – ident: ref22/cit22 doi: 10.1021/jf8026217 – ident: ref29/cit29 doi: 10.1002/jcc.21287 – ident: ref30/cit30 doi: 10.3390/molecules22111915 – ident: ref46/cit46 doi: 10.1002/ptr.2603 – ident: ref9/cit9 doi: 10.1002/hep.22907 |
SSID | ssj0008570 |
Score | 2.409951 |
Snippet | Liver X receptor α (LXRα) controls important biological and pathophysiological processes such as lipid homeostasis. Inhibiting LXRα transactivation may... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10964 |
SubjectTerms | ABC transporters agonists AMP-activated protein kinase AMP-Activated Protein Kinases - genetics AMP-Activated Protein Kinases - metabolism atherosclerosis cholesterol fatty liver genes Hepatocytes - cytology Hepatocytes - drug effects Hepatocytes - metabolism homeostasis Humans Hydrocarbons, Fluorinated - pharmacology hyperlipidemia intestines leucine zipper Ligands lipid content lipogenesis Lipogenesis - drug effects liver Liver X Receptors - genetics Liver X Receptors - metabolism messenger RNA Nuclear Receptor Coactivator 1 - genetics Nuclear Receptor Coactivator 1 - metabolism oleanolic acid Oleanolic Acid - pharmacology phosphorylation Pregnane X Receptor - genetics Pregnane X Receptor - metabolism pregnanes promoter regions protein synthesis steroid receptors Sterol Regulatory Element Binding Protein 1 - genetics Sterol Regulatory Element Binding Protein 1 - metabolism Sulfonamides - pharmacology transcriptional activation X-radiation |
Title | Oleanolic Acid Inhibits Liver X Receptor Alpha and Pregnane X Receptor to Attenuate Ligand-Induced Lipogenesis |
URI | http://dx.doi.org/10.1021/acs.jafc.8b03372 https://www.ncbi.nlm.nih.gov/pubmed/30351048 https://www.proquest.com/docview/2179224056 https://www.proquest.com/docview/2189537244 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLdQucCBzwGFgYzEDhzcOrFjx8doWjUQsEkbUm-R44-uMLlVk17463lOsg72UfWY5NmRn5-ffy_P-T2EPlU2EkuphGSOCcKV8yTnzBMFkZimnhpn4wf97z_E8U_-dZpNr2lybmbw02SsTT36pb0Z5RVlTIK7fZiKXMZAqzg823jdSNTeHedISA6goE9J3tVD3IhM_f9GdA-6bHeZydOuXFHdkhPGwyW_R-umGpk_t6kbdxjAM_SkB5u46KzjOXrgwgv0uJitesIN9xKFk0unQyQHxoWZW_wlXMyreVPjb_HABp5iwJVuCYE5LuJfuVgHi09XbhZ0cP8-bRa4aAB_rwG7QtsZyJFYFgRmAS6Xi1n0qfN6D51Pjs4Pj0lfg4FopkRDuDTMMKq0UcZaSrWwqfIVhOCALYzWwlgjEp9IqbmUwkmdU0G9zazMbKXZKzQIi-DeIMwc9VzDKvfWcYibNE9NZVNvqAevKekQHYCmyn4J1WWbHU-Tsr0J6it79Q3R-GreStPzmMdyGpdbWnzetFh2HB5bZD9emUIJCy1mT0Cfi3VdQuymIv7JxDaZXGXQC-dD9Lqzo80bWczZgr98u-M436FHAM5a7t2U76NBs1q79wCAmupDa_l_AXnoAL4 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLemcRgcgPExysYwEhw4uHNix46P0cTUQTcQFKm3yPFHKUxu1aQX_nqe07R8aKvGMY7t2M9-z7-XZ_-M0OvKRmIplZDMMUG4cp7knHmiwBPT1FPjbPyhf3EpBl_5-3E23kHJ-iwMNKKGmuo2iP-bXSA5iWnftTf9vKKMSbC6dwCLpNHfKk6_bIxv5Gtf7epISA7YoItMXldDXI9M_fd6dAPIbBebswfo86aZ7R6TH_1lU_XNz38YHP-rHw_R_Q564mI1V_bRjguP0L1isujoN9xjFD5eOR0iVTAuzNTi8_BtWk2bGg_j9g08xoAy3RzcdFzEM7pYB4s_Ldwk6OD-fNvMcNEAGl8CkoWyE8hH4iUhMCbwOJ9NooWd1k_Q6Ozd6HRAuhsZiGZKNIRLwwyjShtlrKVUC5sqX4FDDkjDaC2MNSLxiZSaSymc1DkV1NvMysxWmj1Fu2EW3DOEmaOea9B5bx0HL0rz1FQ29YZ6sKGS9tAbkFTZKVRdtrHyNCnbRBBf2Ymvh07Ww1eajtU8Xq5xtaXE202J-YrRY0veV-sZUYLaxVgKyHO2rEvw5FREQ5nYlidXGdTCeQ8drKbT5ossRnDBej6_ZT9for3B6GJYDs8vPxyiuwDbWlbelB-h3WaxdC8AGjXVcasMvwB_kwkf |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLamISE4wDZgK7BhJDhwcOfEjh0fo23VBtuYxEC9RY5_dIXJrZr0wl_Pc5pWgLYKjnFsx372e_5env0ZoXeVjcRSKiGZY4Jw5TzJOfNEgSemqafG2fhD_-JSnH7lH4fZcANly7Mw0IgaaqrbIH7U6qn1HcNAchjTv2tv-nlFGZNgeR_EqF30uYqjLysDHDnbFzs7EpIDPuiik3fVENckU_-5Jt0DNNsFZ_AUfVs1td1n8qM_b6q--fkXi-N_92ULPekgKC4Wc2Ybbbiwgx4Xo1lHw-GeofD51ukQKYNxYcYWn4WbcTVuanwet3HgIQa06abgruMintXFOlh8NXOjoIP7_W0zwUUDqHwOiBbKjiAfiZeFwNjA43QyipZ2XD9H14OT66NT0t3MQDRToiFcGmYYVdooYy2lWthU-Qocc0AcRmthrBGJT6TUXErhpM6poN5mVma20uwF2gyT4PYQZo56rkH3vXUcvCnNU1PZ1BvqwZZK2kPvQVJlp1h12cbM06RsE0F8ZSe-HjpcDmFpOnbzeMnG7ZoSH1YlpgtmjzV53y5nRQnqF2MqIM_JvC7Bo1MRFWViXZ5cZVAL5z20u5hSqy-yGMkFK_ryH_v5Bj28Oh6U52eXn16hR4DeWnLelL9Gm81s7vYBITXVQasPvwANDgui |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oleanolic+Acid+Inhibits+Liver+X+Receptor+Alpha+and+Pregnane+X+Receptor+to+Attenuate+Ligand-Induced+Lipogenesis&rft.jtitle=Journal+of+agricultural+and+food+chemistry&rft.au=Lin%2C+Yen-Ning&rft.au=Zhang%2C+Xiaoyun&rft.au=Wang%2C+Charles+C+N&rft.au=Chu%2C+Fang-Yi&rft.date=2018-10-24&rft.issn=1520-5118&rft.volume=66&rft.issue=42+p.10964-10976&rft.spage=10964&rft.epage=10976&rft_id=info:doi/10.1021%2Facs.jafc.8b03372&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8561&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8561&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8561&client=summon |