PEG-Detachable Polymeric Micelles Self-Assembled from Amphiphilic Copolymers for Tumor-Acidity-Triggered Drug Delivery and Controlled Release

The development of an intelligent biomaterial system that can efficiently accumulate at the tumor site and release a drug in a controlled way is very important for cancer chemotherapy. PEG is widely selected as a hydrophilic shell to acquire prolonged circulation time and enhanced accumulation at th...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 11; no. 6; pp. 5701 - 5713
Main Authors Xu, Mengzhen, Zhang, Can Yang, Wu, Junguang, Zhou, Huige, Bai, Ru, Shen, Ziyi, Deng, Fangling, Liu, Ying, Liu, Jing
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 13.02.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The development of an intelligent biomaterial system that can efficiently accumulate at the tumor site and release a drug in a controlled way is very important for cancer chemotherapy. PEG is widely selected as a hydrophilic shell to acquire prolonged circulation time and enhanced accumulation at the tumor site, but it also restrains the cellular transport and uptake and leads to insufficient therapeutic efficacy. In this work, a PEG-detachable pH-responsive polymer that forms micelles from copolymer cholesterol grafted poly­(ethylene glycol) methyl ether-Dlabile -poly­(β-amino ester)-Dlabile -poly­(ethylene glycol) methyl ether (MPEG-Dlabile -PAE-g-Chol) is developed to overcome the aforementioned challenges based on pH value changes among normal physiological, extracellular (pHe), and intracellular (pHi) environments. PEGylated doxorubicin (DOX)-loaded polymeric micelles (DOX-PMs) can accumulate at the tumor site via an enhanced permeability and retention effect, and the PEG shell is detachable induced by cleavage of the pHe-labile linker between the PEG segment and the main chain. Meanwhile, the pHi-sensitive poly­(β-amino ester) segment is protonated and has a high positive charge. The detachment of PEG and protonation of PAE facilitate cellular uptake of DOX-PMs by negatively charged tumor cells, along with the escape from endo-/lysosome due to the “proton-sponge” effect. The DOX molecules are controlled release from the carriers at specific pH values. The results demonstrate that DOX-PMs have the capability of showing high therapeutic efficacy and negligible cytotoxicity compared with free DOX in vitro and in vivo. Overall, we anticipate that this PEG-detachable and tumor-acidity-responsive polymeric micelle can mediate effective and biocompatible drug delivery “on demand” with clinical application potential.
AbstractList The development of an intelligent biomaterial system that can efficiently accumulate at the tumor site and release a drug in a controlled way is very important for cancer chemotherapy. PEG is widely selected as a hydrophilic shell to acquire prolonged circulation time and enhanced accumulation at the tumor site, but it also restrains the cellular transport and uptake and leads to insufficient therapeutic efficacy. In this work, a PEG-detachable pH-responsive polymer that forms micelles from copolymer cholesterol grafted poly­(ethylene glycol) methyl ether-Dlabile -poly­(β-amino ester)-Dlabile -poly­(ethylene glycol) methyl ether (MPEG-Dlabile -PAE-g-Chol) is developed to overcome the aforementioned challenges based on pH value changes among normal physiological, extracellular (pHe), and intracellular (pHi) environments. PEGylated doxorubicin (DOX)-loaded polymeric micelles (DOX-PMs) can accumulate at the tumor site via an enhanced permeability and retention effect, and the PEG shell is detachable induced by cleavage of the pHe-labile linker between the PEG segment and the main chain. Meanwhile, the pHi-sensitive poly­(β-amino ester) segment is protonated and has a high positive charge. The detachment of PEG and protonation of PAE facilitate cellular uptake of DOX-PMs by negatively charged tumor cells, along with the escape from endo-/lysosome due to the “proton-sponge” effect. The DOX molecules are controlled release from the carriers at specific pH values. The results demonstrate that DOX-PMs have the capability of showing high therapeutic efficacy and negligible cytotoxicity compared with free DOX in vitro and in vivo. Overall, we anticipate that this PEG-detachable and tumor-acidity-responsive polymeric micelle can mediate effective and biocompatible drug delivery “on demand” with clinical application potential.
The development of intelligent biomaterials system that can efficiently accumulate at the tumor site and release drug in a controlled way is very important for cancer chemotherapy. PEG is widely selected as hydrophilic shell to acquire prolonged circulation time and enhanced accumulation at tumor site, but it also restrains the cellular transport and uptake and leads to insufficient therapeutic efficacy. In this work, a PEG-detachable pH-responsive polymer form micelles from copolymer cholesterol grafted poly(ethylene glycol) methyl ether-Dlabile-poly(β-amino ester)-Dlabile-poly(ethylene glycol) methyl ether (MPEG-Dlabile-PAE-g-Chol) is developed to overcome aforementioned challenges based on pH value changes among normal physiological, extracellular (pHe) and intracellular (pHi) environment. PEGylated doxorubicin (DOX)-loaded polymeric micelles (DOX-PMs) can accumulate at the tumor site via enhanced permeability and retention (EPR) effect, and PEG shell is detachable induced by cleavage of pHe-labile linker between PEG segment and the main chain. Meanwhile, the pHi-sensitive poly(β-amino ester) (PAE) segment is protonated and has high positive charge. The detachment of PEG and protonation of PAE facilitate cellular uptake of DOX- polymeric micelles (PMs) by negatively charged tumor cells, along with the escape from endo/lysosome due to "proton-sponge" effect. The DOX molecules are controlled release from the carries at specific pH values. The results demonstrate that DOX-PMs have capability of show high therapeutic efficacy and negligible cytotoxicity compared with free DOX in vitro and in vivo. Overall, we anticipate that this PEG-detachable and tumor-acidity-responsive polymeric micelle can mediate effective and biocompatible drug delivery "on-demand" with clinical application potential.
The development of an intelligent biomaterial system that can efficiently accumulate at the tumor site and release a drug in a controlled way is very important for cancer chemotherapy. PEG is widely selected as a hydrophilic shell to acquire prolonged circulation time and enhanced accumulation at the tumor site, but it also restrains the cellular transport and uptake and leads to insufficient therapeutic efficacy. In this work, a PEG-detachable pH-responsive polymer that forms micelles from copolymer cholesterol grafted poly(ethylene glycol) methyl ether- Dlabile-poly(β-amino ester)- Dlabile-poly(ethylene glycol) methyl ether (MPEG- Dlabile-PAE- g-Chol) is developed to overcome the aforementioned challenges based on pH value changes among normal physiological, extracellular (pHe), and intracellular (pHi) environments. PEGylated doxorubicin (DOX)-loaded polymeric micelles (DOX-PMs) can accumulate at the tumor site via an enhanced permeability and retention effect, and the PEG shell is detachable induced by cleavage of the pHe-labile linker between the PEG segment and the main chain. Meanwhile, the pHi-sensitive poly(β-amino ester) segment is protonated and has a high positive charge. The detachment of PEG and protonation of PAE facilitate cellular uptake of DOX-PMs by negatively charged tumor cells, along with the escape from endo-/lysosome due to the "proton-sponge" effect. The DOX molecules are controlled release from the carriers at specific pH values. The results demonstrate that DOX-PMs have the capability of showing high therapeutic efficacy and negligible cytotoxicity compared with free DOX in vitro and in vivo. Overall, we anticipate that this PEG-detachable and tumor-acidity-responsive polymeric micelle can mediate effective and biocompatible drug delivery "on demand" with clinical application potential.
Author Wu, Junguang
Shen, Ziyi
Liu, Ying
Xu, Mengzhen
Liu, Jing
Zhang, Can Yang
Deng, Fangling
Bai, Ru
Zhou, Huige
AuthorAffiliation Wuhan University
The College of Life Sciences
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience
Peking University
Center for Nanoscale Science and Technology, Academy for Advanced Interdisciplinary Studies
AuthorAffiliation_xml – name: Peking University
– name: CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience
– name: The College of Life Sciences
– name: Center for Nanoscale Science and Technology, Academy for Advanced Interdisciplinary Studies
– name: Wuhan University
Author_xml – sequence: 1
  givenname: Mengzhen
  surname: Xu
  fullname: Xu, Mengzhen
  organization: Peking University
– sequence: 2
  givenname: Can Yang
  surname: Zhang
  fullname: Zhang, Can Yang
  organization: CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience
– sequence: 3
  givenname: Junguang
  surname: Wu
  fullname: Wu, Junguang
  organization: CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience
– sequence: 4
  givenname: Huige
  surname: Zhou
  fullname: Zhou, Huige
  organization: CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience
– sequence: 5
  givenname: Ru
  surname: Bai
  fullname: Bai, Ru
  organization: CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience
– sequence: 6
  givenname: Ziyi
  surname: Shen
  fullname: Shen, Ziyi
  organization: The College of Life Sciences
– sequence: 7
  givenname: Fangling
  surname: Deng
  fullname: Deng, Fangling
  organization: Wuhan University
– sequence: 8
  givenname: Ying
  surname: Liu
  fullname: Liu, Ying
  email: liuy@nanoctr.cn
  organization: CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience
– sequence: 9
  givenname: Jing
  orcidid: 0000-0002-8740-4600
  surname: Liu
  fullname: Liu, Jing
  email: jingliu@nwu.edu.cn
  organization: The College of Life Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30644711$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1qGzEUhUVJaBy32y6LlqUwjv7mb2nsxC0kJKTuetBorhwZaeRKMwU_RN65MuNmFxBcLb7vwL3nGl30vgeEvlCyoITRG6midGZRtZSTvP6AZrQWIqtYzi7e_kJcoesY94QUnJH8I7ripBCipHSGXp9uN9kaBqleZGsBP3l7dBCMwg9GgbUQ8S-wOlvGCC4BHdbBO7x0hxeTnk3gyh8mKWLtA96OzodsqUxnhmO2DWa3g5C8dRh3eA3W_IVwxLLvktgPwdtT6DNYkBE-oUstbYTP5zlHv-9ut6sf2f3j5udqeZ9JXhdDxlUnOVQ1FEQxXcqukkRVZanzrmxZrjUtatmSktZFWSjWUV4IXkkmakYkrwSfo29T7iH4PyPEoXEmntaVPfgxNoyWdToVFSd0MaEq-BgD6OYQjJPh2FDSnCpopgqacwVJ-HrOHlsH3Rv-_-YJ-D4BSWz2fgx9WvW9tH-4-JQ_
CitedBy_id crossref_primary_10_1039_D0TB02192J
crossref_primary_10_3390_polym13122022
crossref_primary_10_1002_adtp_201900061
crossref_primary_10_1039_D2TB00003B
crossref_primary_10_1088_1361_6528_ad42a3
crossref_primary_10_1016_j_eng_2022_11_006
crossref_primary_10_1016_j_polymer_2021_124024
crossref_primary_10_1016_j_polymer_2024_127299
crossref_primary_10_1016_j_jcis_2023_02_117
crossref_primary_10_1016_j_jddst_2023_104958
crossref_primary_10_1021_acs_nanolett_1c00175
crossref_primary_10_1016_j_gce_2022_07_010
crossref_primary_10_1021_acsami_9b18427
crossref_primary_10_1007_s12274_024_6438_3
crossref_primary_10_1016_j_carbpol_2020_117368
crossref_primary_10_1007_s10118_020_2401_2
crossref_primary_10_1080_10717544_2020_1797243
crossref_primary_10_1039_D1TB01771C
crossref_primary_10_3390_pharmaceutics16040451
crossref_primary_10_1021_acsami_9b12140
crossref_primary_10_1039_D0TB01018A
crossref_primary_10_3389_fbioe_2020_575365
crossref_primary_10_3389_fmolb_2021_683519
crossref_primary_10_1038_s41392_022_01298_z
crossref_primary_10_3390_ma15186476
crossref_primary_10_2217_nnm_2019_0440
crossref_primary_10_1039_C9MH01824G
crossref_primary_10_1021_acs_biomac_3c00235
crossref_primary_10_1039_D2NR02050E
crossref_primary_10_1039_D1BM01422F
crossref_primary_10_1039_D0RA01241F
crossref_primary_10_3390_cancers15072116
crossref_primary_10_1021_acs_macromol_1c00835
crossref_primary_10_3389_fnano_2021_753947
crossref_primary_10_1021_acsomega_1c04330
crossref_primary_10_1016_j_molliq_2021_117552
crossref_primary_10_1021_acsanm_0c03356
crossref_primary_10_1016_j_jconrel_2021_09_038
crossref_primary_10_1039_C9TB01527B
crossref_primary_10_1021_acsbiomaterials_0c00090
crossref_primary_10_1021_acsami_1c25180
crossref_primary_10_1039_D3DT03654E
crossref_primary_10_1016_j_ajps_2019_10_001
crossref_primary_10_1080_00914037_2021_1963723
crossref_primary_10_3390_pharmaceutics11120620
crossref_primary_10_1039_D2TB00695B
crossref_primary_10_1016_j_jare_2021_06_014
crossref_primary_10_1002_advs_202104165
crossref_primary_10_1039_C9BM01692A
crossref_primary_10_1016_j_carbpol_2023_121210
crossref_primary_10_1002_marc_202000394
crossref_primary_10_1039_D2TB01061E
crossref_primary_10_1080_09205063_2020_1760698
crossref_primary_10_1039_D1CC05056G
crossref_primary_10_1016_j_ijpharm_2021_121094
crossref_primary_10_1002_app_47854
crossref_primary_10_1080_03639045_2021_1934869
crossref_primary_10_1016_j_jconrel_2023_01_002
crossref_primary_10_1002_pat_5478
crossref_primary_10_1016_j_addr_2023_115137
crossref_primary_10_2147_IJN_S289310
crossref_primary_10_1002_app_49273
crossref_primary_10_1039_C9TB02890K
crossref_primary_10_2147_IJN_S249144
crossref_primary_10_1016_j_jddst_2023_104562
crossref_primary_10_1039_D3BM01101A
crossref_primary_10_1016_j_xphs_2021_08_015
crossref_primary_10_1142_S179329202050040X
crossref_primary_10_1002_cmdc_201900335
crossref_primary_10_1021_acs_orglett_9b03258
crossref_primary_10_1016_j_cclet_2024_109562
crossref_primary_10_1016_j_jconrel_2022_08_032
crossref_primary_10_1016_j_surfin_2020_100523
crossref_primary_10_1039_D2TC03749A
crossref_primary_10_1016_j_jddst_2022_103219
crossref_primary_10_3390_polym12112620
crossref_primary_10_1002_advs_202302875
crossref_primary_10_1002_macp_202000121
crossref_primary_10_1002_marc_202400097
crossref_primary_10_3389_fbioe_2021_798882
Cites_doi 10.1039/C4PY00575A
10.1002/adma.201605357
10.1016/j.jconrel.2016.06.009
10.3109/1061186X.2015.1020428
10.1002/smll.201402865
10.1002/adfm.201102756
10.1002/adma.201705436
10.1021/jacs.5b09602
10.1016/j.jconrel.2016.06.003
10.1016/j.addr.2006.09.020
10.2147/IJN.S69493
10.1021/acsnano.5b02017
10.1080/10611860500376741
10.1016/j.colsurfb.2016.02.025
10.1016/j.colsurfb.2016.02.045
10.1002/aic.12119
10.1016/j.cej.2009.03.049
10.1021/acs.jpcb.5b11125
10.1007/s11705-016-1582-2
10.1002/adfm.201505252
10.1002/adma.201000165
10.2174/156720105774370267
10.1021/nn301148e
10.1039/C5NR01084E
10.1016/j.ab.2004.12.026
10.1016/j.nano.2010.05.005
10.1039/C4RA06413E
10.1016/j.addr.2012.09.008
10.1021/acs.macromol.5b00423
10.1021/jacs.6b04831
10.1038/nmat3776
10.1002/1521-3773(20010504)40:9<1707::AID-ANIE17070>3.0.CO;2-F
10.1016/j.biomaterials.2008.11.027
10.1002/ange.201509507
10.1002/adma.201501578
10.1002/anie.200902672
10.1016/j.biomaterials.2013.02.071
10.1016/j.nano.2008.09.003
10.1126/science.1083625
10.7326/0003-4819-125-1-199607010-00008
10.1016/j.semcancer.2018.04.007
10.1016/j.addr.2012.10.002
10.1016/S0169-409X(01)00112-0
10.1021/ja0015388
10.1016/j.biomaterials.2015.05.007
10.1016/j.jconrel.2014.03.057
10.1002/adma.201200832
10.1038/natrevmats.2016.14
10.1016/j.jconrel.2010.09.003
10.1016/j.biomaterials.2012.05.025
10.1016/j.jmgm.2016.01.010
10.1016/j.ijpharm.2005.05.025
10.1016/j.addr.2012.01.020
10.1021/acsami.6b02006
10.1016/j.jconrel.2014.02.015
10.1021/acs.molpharmaceut.6b00004
10.1016/j.jconrel.2011.01.030
10.1002/adma.201104066
10.1177/1758834017742576
10.1021/bc800563g
10.1001/jamaoncol.2018.1209
10.1016/j.jconrel.2015.03.018
10.1016/S0169-409X(00)00124-1
10.7326/0003-4819-80-2-249
10.1016/j.eurpolymj.2008.08.017
10.1002/adma.201004658
10.1002/adma.201100351
10.1021/bm701084w
10.1021/acsami.6b04247
ContentType Journal Article
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1021/acsami.8b13059
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 5713
ExternalDocumentID 10_1021_acsami_8b13059
30644711
d257361781
Genre Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
4.4
5VS
5ZA
6J9
AAHBH
ABJNI
ABQRX
ADHLV
AHGAQ
BAANH
CUPRZ
GGK
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-a396t-3cda3e89e60c2f7ad8a0c877f5d7b25ff169ab0719676c2d136438a24920a3843
IEDL.DBID ACS
ISSN 1944-8244
IngestDate Sat Aug 17 03:27:07 EDT 2024
Fri Aug 23 02:36:29 EDT 2024
Wed Oct 16 00:50:12 EDT 2024
Thu Aug 27 13:44:03 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords pH-sensitive
controlled release
drug delivery
micelles
PEG-detached
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a396t-3cda3e89e60c2f7ad8a0c877f5d7b25ff169ab0719676c2d136438a24920a3843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8740-4600
PMID 30644711
PQID 2179320144
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_2179320144
crossref_primary_10_1021_acsami_8b13059
pubmed_primary_30644711
acs_journals_10_1021_acsami_8b13059
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2019-02-13
PublicationDateYYYYMMDD 2019-02-13
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-13
  day: 13
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
Gabizon A. (ref31/cit31) 1994; 54
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref32/cit32
  doi: 10.1039/C4PY00575A
– ident: ref19/cit19
  doi: 10.1002/adma.201605357
– ident: ref21/cit21
  doi: 10.1016/j.jconrel.2016.06.009
– ident: ref47/cit47
  doi: 10.3109/1061186X.2015.1020428
– ident: ref53/cit53
  doi: 10.1002/smll.201402865
– ident: ref17/cit17
  doi: 10.1002/adfm.201102756
– ident: ref18/cit18
  doi: 10.1002/adma.201705436
– ident: ref43/cit43
  doi: 10.1021/jacs.5b09602
– ident: ref12/cit12
  doi: 10.1016/j.jconrel.2016.06.003
– ident: ref22/cit22
  doi: 10.1016/j.addr.2006.09.020
– ident: ref59/cit59
  doi: 10.2147/IJN.S69493
– ident: ref8/cit8
  doi: 10.1021/acsnano.5b02017
– ident: ref30/cit30
  doi: 10.1080/10611860500376741
– ident: ref56/cit56
  doi: 10.1016/j.colsurfb.2016.02.025
– ident: ref23/cit23
  doi: 10.1016/j.colsurfb.2016.02.045
– ident: ref64/cit64
  doi: 10.1002/aic.12119
– ident: ref67/cit67
  doi: 10.1016/j.cej.2009.03.049
– volume: 54
  start-page: 987
  year: 1994
  ident: ref31/cit31
  publication-title: Cancer Res.
  contributor:
    fullname: Gabizon A.
– ident: ref48/cit48
  doi: 10.1021/acs.jpcb.5b11125
– ident: ref36/cit36
  doi: 10.1007/s11705-016-1582-2
– ident: ref51/cit51
  doi: 10.1002/adfm.201505252
– ident: ref16/cit16
  doi: 10.1002/adma.201000165
– ident: ref33/cit33
  doi: 10.2174/156720105774370267
– ident: ref45/cit45
  doi: 10.1021/nn301148e
– ident: ref61/cit61
  doi: 10.1039/C5NR01084E
– ident: ref52/cit52
  doi: 10.1016/j.ab.2004.12.026
– ident: ref34/cit34
  doi: 10.1016/j.nano.2010.05.005
– ident: ref62/cit62
  doi: 10.1039/C4RA06413E
– ident: ref41/cit41
  doi: 10.1016/j.addr.2012.09.008
– ident: ref39/cit39
  doi: 10.1021/acs.macromol.5b00423
– ident: ref49/cit49
  doi: 10.1021/jacs.6b04831
– ident: ref13/cit13
  doi: 10.1038/nmat3776
– ident: ref58/cit58
  doi: 10.1002/1521-3773(20010504)40:9<1707::AID-ANIE17070>3.0.CO;2-F
– ident: ref60/cit60
  doi: 10.1016/j.biomaterials.2008.11.027
– ident: ref42/cit42
  doi: 10.1002/ange.201509507
– ident: ref15/cit15
  doi: 10.1002/adma.201501578
– ident: ref44/cit44
  doi: 10.1002/anie.200902672
– ident: ref20/cit20
  doi: 10.1016/j.biomaterials.2013.02.071
– ident: ref63/cit63
  doi: 10.1016/j.nano.2008.09.003
– ident: ref27/cit27
  doi: 10.1126/science.1083625
– ident: ref11/cit11
  doi: 10.7326/0003-4819-125-1-199607010-00008
– ident: ref5/cit5
  doi: 10.1016/j.semcancer.2018.04.007
– ident: ref69/cit69
  doi: 10.1016/j.addr.2012.10.002
– ident: ref65/cit65
  doi: 10.1016/S0169-409X(01)00112-0
– ident: ref55/cit55
  doi: 10.1021/ja0015388
– ident: ref3/cit3
  doi: 10.1016/j.biomaterials.2015.05.007
– ident: ref70/cit70
  doi: 10.1016/j.jconrel.2014.03.057
– ident: ref4/cit4
  doi: 10.1002/adma.201200832
– ident: ref35/cit35
  doi: 10.1038/natrevmats.2016.14
– ident: ref29/cit29
  doi: 10.1016/j.jconrel.2010.09.003
– ident: ref37/cit37
  doi: 10.1016/j.biomaterials.2012.05.025
– ident: ref38/cit38
  doi: 10.1016/j.jmgm.2016.01.010
– ident: ref66/cit66
  doi: 10.1016/j.ijpharm.2005.05.025
– ident: ref28/cit28
  doi: 10.1016/j.addr.2012.01.020
– ident: ref24/cit24
  doi: 10.1021/acsami.6b02006
– ident: ref46/cit46
  doi: 10.1016/j.jconrel.2014.02.015
– ident: ref50/cit50
  doi: 10.1021/acs.molpharmaceut.6b00004
– ident: ref1/cit1
  doi: 10.1016/j.jconrel.2011.01.030
– ident: ref25/cit25
  doi: 10.1002/adma.201104066
– ident: ref7/cit7
  doi: 10.1177/1758834017742576
– ident: ref57/cit57
  doi: 10.1021/bc800563g
– ident: ref6/cit6
  doi: 10.1001/jamaoncol.2018.1209
– ident: ref2/cit2
  doi: 10.1016/j.jconrel.2015.03.018
– ident: ref9/cit9
  doi: 10.1016/S0169-409X(00)00124-1
– ident: ref10/cit10
  doi: 10.7326/0003-4819-80-2-249
– ident: ref40/cit40
  doi: 10.1016/j.eurpolymj.2008.08.017
– ident: ref14/cit14
  doi: 10.1002/adma.201004658
– ident: ref26/cit26
  doi: 10.1002/adma.201100351
– ident: ref54/cit54
  doi: 10.1021/bm701084w
– ident: ref68/cit68
  doi: 10.1021/acsami.6b04247
SSID ssj0063205
Score 2.5814455
Snippet The development of an intelligent biomaterial system that can efficiently accumulate at the tumor site and release a drug in a controlled way is very important...
The development of intelligent biomaterials system that can efficiently accumulate at the tumor site and release drug in a controlled way is very important for...
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 5701
Title PEG-Detachable Polymeric Micelles Self-Assembled from Amphiphilic Copolymers for Tumor-Acidity-Triggered Drug Delivery and Controlled Release
URI http://dx.doi.org/10.1021/acsami.8b13059
https://www.ncbi.nlm.nih.gov/pubmed/30644711
https://search.proquest.com/docview/2179320144
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYovbSHvksXCnLVSj2ZJrY3do6rXR6qRIXKInGLJrYDK5Ys2iQH-A_9z8wku6WAUFGujmXN2PPNeMbfMPZN5rLvEdqECVoL7awSuddKJADBgTI2bik2Dn4l-8f650n_5Pa-434GX8Y_wFXUCsfmaG376TP2XBo8GeQEDY-WNjdRsi1WxIhcC4uItaRnfPA_gZCr7oLQI55lizC7rzu6o6olJqTCkvPtps633fVD2sb_Lv4Ne7VwM_mg2xdv2Uoo37GX_5APvmd_Dnf2xCjU4M7o-RQ_nE2v2vQNP5i01_kVPwrTQlBa-AIHeE5PUfgA1T-5pGsYx4fUYYF-qjj6vnzcXMzmYuAmHl17Mca4_5Q6gfLRvDnlozClEpArDqXnw65Anib9jbiHSPqBHe_ujIf7YtGcQYBKk1oo50EFm4YkcrIw4C1EzhpT9L1B_RdFnKSQowOTJiZx0scKfR8LRFAYgbJafWSr5awMnxjPvQEEU4i8QnsSFHj6Ih1rGdIi9z32FeWYLQ5XlbV5cxlnnXCzhXB77PtSp9llx9Tx6MgvS5VneJhIpFCGWVNlksyVpCCzx9a6vfB3LgrVEMnj9SetZoO9wHlSqu-O1We2Ws-bsInuS51vtTv3BmcO62s
link.rule.ids 315,783,787,2772,27088,27936,27937,57066,57116
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9swDBa67rDtsPfWrHto2ICd1NqSbMvHIGmXbU0RrCnQmyFLchY0dYrYPrT_of-5pBx3LxTY4JthETJF6fskUiQhH3nOIwvQxhInJZNGCZZbKVistTNaJCr0KTbGh_HoWH49iU42yG53FwY6UYGkyjvxf2YXCHfhHVbEUTksulF6h9yNEkBL5EKDo27pjQX3MYuwMZdMAXB1WRr_ao9YZKrfsegWgumBZv8Rmdx00ceXnO40db5jLv_I3vgf__CYPFyTTtpvreQJ2XDlU_Lgl1SEz8jVZO8zG7pamx94mYpOlosL78yh47k_3K_okVsUDJ3EZ_CBpXgxhfbBGObneChj6ADrLWCjigITptPmbLlifTO3QPTZdDWfzbAuKB2umhkdugUGhFxQXVo6aMPlUeh3QEHA1efkeH9vOhixdakGpkUa10wYq4VTqYsDw4tEW6UDo5KkiGwC1lAUYZzqHOhMGiex4TYUwISUxnSFgRZKihdks1yWbovQ3CYaoFUHVsDq4oS2-AQylNylRW575APoMVtPtSrzXnQeZq1ys7Vye-RTN7TZeZu349Yv33cjn8HUQpXq0i2bKuO4eHHccvbIy9YkbmThxg1wPXz1T715R-6NpuOD7ODL4bdtch9kphj5HYrXZLNeNe4NEJs6f-uN-RoS0PPQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JbtswECXaFCiaQ_fFXVm0QE9MxUWidDTsuOmSwGgcIDeBIinXiCMblnRI_6H_3BlKDrogQAvdBHFADYfzhpyNkLeiELEDaGPaK8WUTSUrnJIsMcZbI3XKQ4mNw6Pk4ER9Oo1P-zxuzIWBSdRAqQ5OfNzVa1f2FQb4e3iPXXHSAhRvnF0nN2LNg292ODreqt9EihC3CIdzxVIAr22lxr_GIx7Z-nc8usLIDGAzuUNml9MMMSZne21T7Nnvf1Rw_M__uEtu98YnHXbSco9c89V9svtLScIH5Md0_wMb-8bYb5hURaer5UVw6tDDRbjkr-mxX5YMncXn8IGjmKBChyAUizVezlg6wr4LOKimYBHTWXu-2rChXTgw-Nlss5jPsT8oHW_aOR37JQaGXFBTOTrqwuaR6FdAQ8DXh-Rksj8bHbC-ZQMzMksaJq0z0qeZTyIrSm1caiKbal3GToNUlCVPMlOAWZMlOrHCcQkWUWqwbGFkZKrkI7JTrSr_hNDCaQMQayInQct4aRw-keJK-Kws3IC8AT7m_Zar8-BNFzzvmJv3zB2Qd9vlzddd_Y4rv3y9Xf0cthiy1FR-1da5QCUm8Og5II87sbikhQc4wHf-9J9m84rcnI4n-ZePR5-fkVtAMsMAcC6fk51m0_oXYN80xcsgzz8B33b2Sg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PEG-Detachable+Polymeric+Micelles+Self-Assembled+from+Amphiphilic+Copolymers+for+Tumor-Acidity-Triggered+Drug+Delivery+and+Controlled+Release&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Xu%2C+Mengzhen&rft.au=Zhang%2C+Can+Yang&rft.au=Wu%2C+Junguang&rft.au=Zhou%2C+Huige&rft.date=2019-02-13&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=11&rft.issue=6&rft.spage=5701&rft.epage=5713&rft_id=info:doi/10.1021%2Facsami.8b13059&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsami_8b13059
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon