PEG-Detachable Polymeric Micelles Self-Assembled from Amphiphilic Copolymers for Tumor-Acidity-Triggered Drug Delivery and Controlled Release
The development of an intelligent biomaterial system that can efficiently accumulate at the tumor site and release a drug in a controlled way is very important for cancer chemotherapy. PEG is widely selected as a hydrophilic shell to acquire prolonged circulation time and enhanced accumulation at th...
Saved in:
Published in | ACS applied materials & interfaces Vol. 11; no. 6; pp. 5701 - 5713 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
13.02.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The development of an intelligent biomaterial system that can efficiently accumulate at the tumor site and release a drug in a controlled way is very important for cancer chemotherapy. PEG is widely selected as a hydrophilic shell to acquire prolonged circulation time and enhanced accumulation at the tumor site, but it also restrains the cellular transport and uptake and leads to insufficient therapeutic efficacy. In this work, a PEG-detachable pH-responsive polymer that forms micelles from copolymer cholesterol grafted poly(ethylene glycol) methyl ether-Dlabile -poly(β-amino ester)-Dlabile -poly(ethylene glycol) methyl ether (MPEG-Dlabile -PAE-g-Chol) is developed to overcome the aforementioned challenges based on pH value changes among normal physiological, extracellular (pHe), and intracellular (pHi) environments. PEGylated doxorubicin (DOX)-loaded polymeric micelles (DOX-PMs) can accumulate at the tumor site via an enhanced permeability and retention effect, and the PEG shell is detachable induced by cleavage of the pHe-labile linker between the PEG segment and the main chain. Meanwhile, the pHi-sensitive poly(β-amino ester) segment is protonated and has a high positive charge. The detachment of PEG and protonation of PAE facilitate cellular uptake of DOX-PMs by negatively charged tumor cells, along with the escape from endo-/lysosome due to the “proton-sponge” effect. The DOX molecules are controlled release from the carriers at specific pH values. The results demonstrate that DOX-PMs have the capability of showing high therapeutic efficacy and negligible cytotoxicity compared with free DOX in vitro and in vivo. Overall, we anticipate that this PEG-detachable and tumor-acidity-responsive polymeric micelle can mediate effective and biocompatible drug delivery “on demand” with clinical application potential. |
---|---|
AbstractList | The development of an intelligent biomaterial system that can efficiently accumulate at the tumor site and release a drug in a controlled way is very important for cancer chemotherapy. PEG is widely selected as a hydrophilic shell to acquire prolonged circulation time and enhanced accumulation at the tumor site, but it also restrains the cellular transport and uptake and leads to insufficient therapeutic efficacy. In this work, a PEG-detachable pH-responsive polymer that forms micelles from copolymer cholesterol grafted poly(ethylene glycol) methyl ether-Dlabile -poly(β-amino ester)-Dlabile -poly(ethylene glycol) methyl ether (MPEG-Dlabile -PAE-g-Chol) is developed to overcome the aforementioned challenges based on pH value changes among normal physiological, extracellular (pHe), and intracellular (pHi) environments. PEGylated doxorubicin (DOX)-loaded polymeric micelles (DOX-PMs) can accumulate at the tumor site via an enhanced permeability and retention effect, and the PEG shell is detachable induced by cleavage of the pHe-labile linker between the PEG segment and the main chain. Meanwhile, the pHi-sensitive poly(β-amino ester) segment is protonated and has a high positive charge. The detachment of PEG and protonation of PAE facilitate cellular uptake of DOX-PMs by negatively charged tumor cells, along with the escape from endo-/lysosome due to the “proton-sponge” effect. The DOX molecules are controlled release from the carriers at specific pH values. The results demonstrate that DOX-PMs have the capability of showing high therapeutic efficacy and negligible cytotoxicity compared with free DOX in vitro and in vivo. Overall, we anticipate that this PEG-detachable and tumor-acidity-responsive polymeric micelle can mediate effective and biocompatible drug delivery “on demand” with clinical application potential. The development of intelligent biomaterials system that can efficiently accumulate at the tumor site and release drug in a controlled way is very important for cancer chemotherapy. PEG is widely selected as hydrophilic shell to acquire prolonged circulation time and enhanced accumulation at tumor site, but it also restrains the cellular transport and uptake and leads to insufficient therapeutic efficacy. In this work, a PEG-detachable pH-responsive polymer form micelles from copolymer cholesterol grafted poly(ethylene glycol) methyl ether-Dlabile-poly(β-amino ester)-Dlabile-poly(ethylene glycol) methyl ether (MPEG-Dlabile-PAE-g-Chol) is developed to overcome aforementioned challenges based on pH value changes among normal physiological, extracellular (pHe) and intracellular (pHi) environment. PEGylated doxorubicin (DOX)-loaded polymeric micelles (DOX-PMs) can accumulate at the tumor site via enhanced permeability and retention (EPR) effect, and PEG shell is detachable induced by cleavage of pHe-labile linker between PEG segment and the main chain. Meanwhile, the pHi-sensitive poly(β-amino ester) (PAE) segment is protonated and has high positive charge. The detachment of PEG and protonation of PAE facilitate cellular uptake of DOX- polymeric micelles (PMs) by negatively charged tumor cells, along with the escape from endo/lysosome due to "proton-sponge" effect. The DOX molecules are controlled release from the carries at specific pH values. The results demonstrate that DOX-PMs have capability of show high therapeutic efficacy and negligible cytotoxicity compared with free DOX in vitro and in vivo. Overall, we anticipate that this PEG-detachable and tumor-acidity-responsive polymeric micelle can mediate effective and biocompatible drug delivery "on-demand" with clinical application potential. The development of an intelligent biomaterial system that can efficiently accumulate at the tumor site and release a drug in a controlled way is very important for cancer chemotherapy. PEG is widely selected as a hydrophilic shell to acquire prolonged circulation time and enhanced accumulation at the tumor site, but it also restrains the cellular transport and uptake and leads to insufficient therapeutic efficacy. In this work, a PEG-detachable pH-responsive polymer that forms micelles from copolymer cholesterol grafted poly(ethylene glycol) methyl ether- Dlabile-poly(β-amino ester)- Dlabile-poly(ethylene glycol) methyl ether (MPEG- Dlabile-PAE- g-Chol) is developed to overcome the aforementioned challenges based on pH value changes among normal physiological, extracellular (pHe), and intracellular (pHi) environments. PEGylated doxorubicin (DOX)-loaded polymeric micelles (DOX-PMs) can accumulate at the tumor site via an enhanced permeability and retention effect, and the PEG shell is detachable induced by cleavage of the pHe-labile linker between the PEG segment and the main chain. Meanwhile, the pHi-sensitive poly(β-amino ester) segment is protonated and has a high positive charge. The detachment of PEG and protonation of PAE facilitate cellular uptake of DOX-PMs by negatively charged tumor cells, along with the escape from endo-/lysosome due to the "proton-sponge" effect. The DOX molecules are controlled release from the carriers at specific pH values. The results demonstrate that DOX-PMs have the capability of showing high therapeutic efficacy and negligible cytotoxicity compared with free DOX in vitro and in vivo. Overall, we anticipate that this PEG-detachable and tumor-acidity-responsive polymeric micelle can mediate effective and biocompatible drug delivery "on demand" with clinical application potential. |
Author | Wu, Junguang Shen, Ziyi Liu, Ying Xu, Mengzhen Liu, Jing Zhang, Can Yang Deng, Fangling Bai, Ru Zhou, Huige |
AuthorAffiliation | Wuhan University The College of Life Sciences CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience Peking University Center for Nanoscale Science and Technology, Academy for Advanced Interdisciplinary Studies |
AuthorAffiliation_xml | – name: Peking University – name: CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience – name: The College of Life Sciences – name: Center for Nanoscale Science and Technology, Academy for Advanced Interdisciplinary Studies – name: Wuhan University |
Author_xml | – sequence: 1 givenname: Mengzhen surname: Xu fullname: Xu, Mengzhen organization: Peking University – sequence: 2 givenname: Can Yang surname: Zhang fullname: Zhang, Can Yang organization: CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience – sequence: 3 givenname: Junguang surname: Wu fullname: Wu, Junguang organization: CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience – sequence: 4 givenname: Huige surname: Zhou fullname: Zhou, Huige organization: CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience – sequence: 5 givenname: Ru surname: Bai fullname: Bai, Ru organization: CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience – sequence: 6 givenname: Ziyi surname: Shen fullname: Shen, Ziyi organization: The College of Life Sciences – sequence: 7 givenname: Fangling surname: Deng fullname: Deng, Fangling organization: Wuhan University – sequence: 8 givenname: Ying surname: Liu fullname: Liu, Ying email: liuy@nanoctr.cn organization: CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience – sequence: 9 givenname: Jing orcidid: 0000-0002-8740-4600 surname: Liu fullname: Liu, Jing email: jingliu@nwu.edu.cn organization: The College of Life Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30644711$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1qGzEUhUVJaBy32y6LlqUwjv7mb2nsxC0kJKTuetBorhwZaeRKMwU_RN65MuNmFxBcLb7vwL3nGl30vgeEvlCyoITRG6midGZRtZSTvP6AZrQWIqtYzi7e_kJcoesY94QUnJH8I7ripBCipHSGXp9uN9kaBqleZGsBP3l7dBCMwg9GgbUQ8S-wOlvGCC4BHdbBO7x0hxeTnk3gyh8mKWLtA96OzodsqUxnhmO2DWa3g5C8dRh3eA3W_IVwxLLvktgPwdtT6DNYkBE-oUstbYTP5zlHv-9ut6sf2f3j5udqeZ9JXhdDxlUnOVQ1FEQxXcqukkRVZanzrmxZrjUtatmSktZFWSjWUV4IXkkmakYkrwSfo29T7iH4PyPEoXEmntaVPfgxNoyWdToVFSd0MaEq-BgD6OYQjJPh2FDSnCpopgqacwVJ-HrOHlsH3Rv-_-YJ-D4BSWz2fgx9WvW9tH-4-JQ_ |
CitedBy_id | crossref_primary_10_1039_D0TB02192J crossref_primary_10_3390_polym13122022 crossref_primary_10_1002_adtp_201900061 crossref_primary_10_1039_D2TB00003B crossref_primary_10_1088_1361_6528_ad42a3 crossref_primary_10_1016_j_eng_2022_11_006 crossref_primary_10_1016_j_polymer_2021_124024 crossref_primary_10_1016_j_polymer_2024_127299 crossref_primary_10_1016_j_jcis_2023_02_117 crossref_primary_10_1016_j_jddst_2023_104958 crossref_primary_10_1021_acs_nanolett_1c00175 crossref_primary_10_1016_j_gce_2022_07_010 crossref_primary_10_1021_acsami_9b18427 crossref_primary_10_1007_s12274_024_6438_3 crossref_primary_10_1016_j_carbpol_2020_117368 crossref_primary_10_1007_s10118_020_2401_2 crossref_primary_10_1080_10717544_2020_1797243 crossref_primary_10_1039_D1TB01771C crossref_primary_10_3390_pharmaceutics16040451 crossref_primary_10_1021_acsami_9b12140 crossref_primary_10_1039_D0TB01018A crossref_primary_10_3389_fbioe_2020_575365 crossref_primary_10_3389_fmolb_2021_683519 crossref_primary_10_1038_s41392_022_01298_z crossref_primary_10_3390_ma15186476 crossref_primary_10_2217_nnm_2019_0440 crossref_primary_10_1039_C9MH01824G crossref_primary_10_1021_acs_biomac_3c00235 crossref_primary_10_1039_D2NR02050E crossref_primary_10_1039_D1BM01422F crossref_primary_10_1039_D0RA01241F crossref_primary_10_3390_cancers15072116 crossref_primary_10_1021_acs_macromol_1c00835 crossref_primary_10_3389_fnano_2021_753947 crossref_primary_10_1021_acsomega_1c04330 crossref_primary_10_1016_j_molliq_2021_117552 crossref_primary_10_1021_acsanm_0c03356 crossref_primary_10_1016_j_jconrel_2021_09_038 crossref_primary_10_1039_C9TB01527B crossref_primary_10_1021_acsbiomaterials_0c00090 crossref_primary_10_1021_acsami_1c25180 crossref_primary_10_1039_D3DT03654E crossref_primary_10_1016_j_ajps_2019_10_001 crossref_primary_10_1080_00914037_2021_1963723 crossref_primary_10_3390_pharmaceutics11120620 crossref_primary_10_1039_D2TB00695B crossref_primary_10_1016_j_jare_2021_06_014 crossref_primary_10_1002_advs_202104165 crossref_primary_10_1039_C9BM01692A crossref_primary_10_1016_j_carbpol_2023_121210 crossref_primary_10_1002_marc_202000394 crossref_primary_10_1039_D2TB01061E crossref_primary_10_1080_09205063_2020_1760698 crossref_primary_10_1039_D1CC05056G crossref_primary_10_1016_j_ijpharm_2021_121094 crossref_primary_10_1002_app_47854 crossref_primary_10_1080_03639045_2021_1934869 crossref_primary_10_1016_j_jconrel_2023_01_002 crossref_primary_10_1002_pat_5478 crossref_primary_10_1016_j_addr_2023_115137 crossref_primary_10_2147_IJN_S289310 crossref_primary_10_1002_app_49273 crossref_primary_10_1039_C9TB02890K crossref_primary_10_2147_IJN_S249144 crossref_primary_10_1016_j_jddst_2023_104562 crossref_primary_10_1039_D3BM01101A crossref_primary_10_1016_j_xphs_2021_08_015 crossref_primary_10_1142_S179329202050040X crossref_primary_10_1002_cmdc_201900335 crossref_primary_10_1021_acs_orglett_9b03258 crossref_primary_10_1016_j_cclet_2024_109562 crossref_primary_10_1016_j_jconrel_2022_08_032 crossref_primary_10_1016_j_surfin_2020_100523 crossref_primary_10_1039_D2TC03749A crossref_primary_10_1016_j_jddst_2022_103219 crossref_primary_10_3390_polym12112620 crossref_primary_10_1002_advs_202302875 crossref_primary_10_1002_macp_202000121 crossref_primary_10_1002_marc_202400097 crossref_primary_10_3389_fbioe_2021_798882 |
Cites_doi | 10.1039/C4PY00575A 10.1002/adma.201605357 10.1016/j.jconrel.2016.06.009 10.3109/1061186X.2015.1020428 10.1002/smll.201402865 10.1002/adfm.201102756 10.1002/adma.201705436 10.1021/jacs.5b09602 10.1016/j.jconrel.2016.06.003 10.1016/j.addr.2006.09.020 10.2147/IJN.S69493 10.1021/acsnano.5b02017 10.1080/10611860500376741 10.1016/j.colsurfb.2016.02.025 10.1016/j.colsurfb.2016.02.045 10.1002/aic.12119 10.1016/j.cej.2009.03.049 10.1021/acs.jpcb.5b11125 10.1007/s11705-016-1582-2 10.1002/adfm.201505252 10.1002/adma.201000165 10.2174/156720105774370267 10.1021/nn301148e 10.1039/C5NR01084E 10.1016/j.ab.2004.12.026 10.1016/j.nano.2010.05.005 10.1039/C4RA06413E 10.1016/j.addr.2012.09.008 10.1021/acs.macromol.5b00423 10.1021/jacs.6b04831 10.1038/nmat3776 10.1002/1521-3773(20010504)40:9<1707::AID-ANIE17070>3.0.CO;2-F 10.1016/j.biomaterials.2008.11.027 10.1002/ange.201509507 10.1002/adma.201501578 10.1002/anie.200902672 10.1016/j.biomaterials.2013.02.071 10.1016/j.nano.2008.09.003 10.1126/science.1083625 10.7326/0003-4819-125-1-199607010-00008 10.1016/j.semcancer.2018.04.007 10.1016/j.addr.2012.10.002 10.1016/S0169-409X(01)00112-0 10.1021/ja0015388 10.1016/j.biomaterials.2015.05.007 10.1016/j.jconrel.2014.03.057 10.1002/adma.201200832 10.1038/natrevmats.2016.14 10.1016/j.jconrel.2010.09.003 10.1016/j.biomaterials.2012.05.025 10.1016/j.jmgm.2016.01.010 10.1016/j.ijpharm.2005.05.025 10.1016/j.addr.2012.01.020 10.1021/acsami.6b02006 10.1016/j.jconrel.2014.02.015 10.1021/acs.molpharmaceut.6b00004 10.1016/j.jconrel.2011.01.030 10.1002/adma.201104066 10.1177/1758834017742576 10.1021/bc800563g 10.1001/jamaoncol.2018.1209 10.1016/j.jconrel.2015.03.018 10.1016/S0169-409X(00)00124-1 10.7326/0003-4819-80-2-249 10.1016/j.eurpolymj.2008.08.017 10.1002/adma.201004658 10.1002/adma.201100351 10.1021/bm701084w 10.1021/acsami.6b04247 |
ContentType | Journal Article |
DBID | NPM AAYXX CITATION 7X8 |
DOI | 10.1021/acsami.8b13059 |
DatabaseName | PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 5713 |
ExternalDocumentID | 10_1021_acsami_8b13059 30644711 d257361781 |
Genre | Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ --- .K2 4.4 5VS 5ZA 6J9 AAHBH ABJNI ABQRX ADHLV AHGAQ BAANH CUPRZ GGK NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-a396t-3cda3e89e60c2f7ad8a0c877f5d7b25ff169ab0719676c2d136438a24920a3843 |
IEDL.DBID | ACS |
ISSN | 1944-8244 |
IngestDate | Sat Aug 17 03:27:07 EDT 2024 Fri Aug 23 02:36:29 EDT 2024 Wed Oct 16 00:50:12 EDT 2024 Thu Aug 27 13:44:03 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | pH-sensitive controlled release drug delivery micelles PEG-detached |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a396t-3cda3e89e60c2f7ad8a0c877f5d7b25ff169ab0719676c2d136438a24920a3843 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8740-4600 |
PMID | 30644711 |
PQID | 2179320144 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2179320144 crossref_primary_10_1021_acsami_8b13059 pubmed_primary_30644711 acs_journals_10_1021_acsami_8b13059 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2019-02-13 |
PublicationDateYYYYMMDD | 2019-02-13 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-13 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 Gabizon A. (ref31/cit31) 1994; 54 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref32/cit32 doi: 10.1039/C4PY00575A – ident: ref19/cit19 doi: 10.1002/adma.201605357 – ident: ref21/cit21 doi: 10.1016/j.jconrel.2016.06.009 – ident: ref47/cit47 doi: 10.3109/1061186X.2015.1020428 – ident: ref53/cit53 doi: 10.1002/smll.201402865 – ident: ref17/cit17 doi: 10.1002/adfm.201102756 – ident: ref18/cit18 doi: 10.1002/adma.201705436 – ident: ref43/cit43 doi: 10.1021/jacs.5b09602 – ident: ref12/cit12 doi: 10.1016/j.jconrel.2016.06.003 – ident: ref22/cit22 doi: 10.1016/j.addr.2006.09.020 – ident: ref59/cit59 doi: 10.2147/IJN.S69493 – ident: ref8/cit8 doi: 10.1021/acsnano.5b02017 – ident: ref30/cit30 doi: 10.1080/10611860500376741 – ident: ref56/cit56 doi: 10.1016/j.colsurfb.2016.02.025 – ident: ref23/cit23 doi: 10.1016/j.colsurfb.2016.02.045 – ident: ref64/cit64 doi: 10.1002/aic.12119 – ident: ref67/cit67 doi: 10.1016/j.cej.2009.03.049 – volume: 54 start-page: 987 year: 1994 ident: ref31/cit31 publication-title: Cancer Res. contributor: fullname: Gabizon A. – ident: ref48/cit48 doi: 10.1021/acs.jpcb.5b11125 – ident: ref36/cit36 doi: 10.1007/s11705-016-1582-2 – ident: ref51/cit51 doi: 10.1002/adfm.201505252 – ident: ref16/cit16 doi: 10.1002/adma.201000165 – ident: ref33/cit33 doi: 10.2174/156720105774370267 – ident: ref45/cit45 doi: 10.1021/nn301148e – ident: ref61/cit61 doi: 10.1039/C5NR01084E – ident: ref52/cit52 doi: 10.1016/j.ab.2004.12.026 – ident: ref34/cit34 doi: 10.1016/j.nano.2010.05.005 – ident: ref62/cit62 doi: 10.1039/C4RA06413E – ident: ref41/cit41 doi: 10.1016/j.addr.2012.09.008 – ident: ref39/cit39 doi: 10.1021/acs.macromol.5b00423 – ident: ref49/cit49 doi: 10.1021/jacs.6b04831 – ident: ref13/cit13 doi: 10.1038/nmat3776 – ident: ref58/cit58 doi: 10.1002/1521-3773(20010504)40:9<1707::AID-ANIE17070>3.0.CO;2-F – ident: ref60/cit60 doi: 10.1016/j.biomaterials.2008.11.027 – ident: ref42/cit42 doi: 10.1002/ange.201509507 – ident: ref15/cit15 doi: 10.1002/adma.201501578 – ident: ref44/cit44 doi: 10.1002/anie.200902672 – ident: ref20/cit20 doi: 10.1016/j.biomaterials.2013.02.071 – ident: ref63/cit63 doi: 10.1016/j.nano.2008.09.003 – ident: ref27/cit27 doi: 10.1126/science.1083625 – ident: ref11/cit11 doi: 10.7326/0003-4819-125-1-199607010-00008 – ident: ref5/cit5 doi: 10.1016/j.semcancer.2018.04.007 – ident: ref69/cit69 doi: 10.1016/j.addr.2012.10.002 – ident: ref65/cit65 doi: 10.1016/S0169-409X(01)00112-0 – ident: ref55/cit55 doi: 10.1021/ja0015388 – ident: ref3/cit3 doi: 10.1016/j.biomaterials.2015.05.007 – ident: ref70/cit70 doi: 10.1016/j.jconrel.2014.03.057 – ident: ref4/cit4 doi: 10.1002/adma.201200832 – ident: ref35/cit35 doi: 10.1038/natrevmats.2016.14 – ident: ref29/cit29 doi: 10.1016/j.jconrel.2010.09.003 – ident: ref37/cit37 doi: 10.1016/j.biomaterials.2012.05.025 – ident: ref38/cit38 doi: 10.1016/j.jmgm.2016.01.010 – ident: ref66/cit66 doi: 10.1016/j.ijpharm.2005.05.025 – ident: ref28/cit28 doi: 10.1016/j.addr.2012.01.020 – ident: ref24/cit24 doi: 10.1021/acsami.6b02006 – ident: ref46/cit46 doi: 10.1016/j.jconrel.2014.02.015 – ident: ref50/cit50 doi: 10.1021/acs.molpharmaceut.6b00004 – ident: ref1/cit1 doi: 10.1016/j.jconrel.2011.01.030 – ident: ref25/cit25 doi: 10.1002/adma.201104066 – ident: ref7/cit7 doi: 10.1177/1758834017742576 – ident: ref57/cit57 doi: 10.1021/bc800563g – ident: ref6/cit6 doi: 10.1001/jamaoncol.2018.1209 – ident: ref2/cit2 doi: 10.1016/j.jconrel.2015.03.018 – ident: ref9/cit9 doi: 10.1016/S0169-409X(00)00124-1 – ident: ref10/cit10 doi: 10.7326/0003-4819-80-2-249 – ident: ref40/cit40 doi: 10.1016/j.eurpolymj.2008.08.017 – ident: ref14/cit14 doi: 10.1002/adma.201004658 – ident: ref26/cit26 doi: 10.1002/adma.201100351 – ident: ref54/cit54 doi: 10.1021/bm701084w – ident: ref68/cit68 doi: 10.1021/acsami.6b04247 |
SSID | ssj0063205 |
Score | 2.5814455 |
Snippet | The development of an intelligent biomaterial system that can efficiently accumulate at the tumor site and release a drug in a controlled way is very important... The development of intelligent biomaterials system that can efficiently accumulate at the tumor site and release drug in a controlled way is very important for... |
SourceID | proquest crossref pubmed acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 5701 |
Title | PEG-Detachable Polymeric Micelles Self-Assembled from Amphiphilic Copolymers for Tumor-Acidity-Triggered Drug Delivery and Controlled Release |
URI | http://dx.doi.org/10.1021/acsami.8b13059 https://www.ncbi.nlm.nih.gov/pubmed/30644711 https://search.proquest.com/docview/2179320144 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYovbSHvksXCnLVSj2ZJrY3do6rXR6qRIXKInGLJrYDK5Ys2iQH-A_9z8wku6WAUFGujmXN2PPNeMbfMPZN5rLvEdqECVoL7awSuddKJADBgTI2bik2Dn4l-8f650n_5Pa-434GX8Y_wFXUCsfmaG376TP2XBo8GeQEDY-WNjdRsi1WxIhcC4uItaRnfPA_gZCr7oLQI55lizC7rzu6o6olJqTCkvPtps633fVD2sb_Lv4Ne7VwM_mg2xdv2Uoo37GX_5APvmd_Dnf2xCjU4M7o-RQ_nE2v2vQNP5i01_kVPwrTQlBa-AIHeE5PUfgA1T-5pGsYx4fUYYF-qjj6vnzcXMzmYuAmHl17Mca4_5Q6gfLRvDnlozClEpArDqXnw65Anib9jbiHSPqBHe_ujIf7YtGcQYBKk1oo50EFm4YkcrIw4C1EzhpT9L1B_RdFnKSQowOTJiZx0scKfR8LRFAYgbJafWSr5awMnxjPvQEEU4i8QnsSFHj6Ih1rGdIi9z32FeWYLQ5XlbV5cxlnnXCzhXB77PtSp9llx9Tx6MgvS5VneJhIpFCGWVNlksyVpCCzx9a6vfB3LgrVEMnj9SetZoO9wHlSqu-O1We2Ws-bsInuS51vtTv3BmcO62s |
link.rule.ids | 315,783,787,2772,27088,27936,27937,57066,57116 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9swDBa67rDtsPfWrHto2ICd1NqSbMvHIGmXbU0RrCnQmyFLchY0dYrYPrT_of-5pBx3LxTY4JthETJF6fskUiQhH3nOIwvQxhInJZNGCZZbKVistTNaJCr0KTbGh_HoWH49iU42yG53FwY6UYGkyjvxf2YXCHfhHVbEUTksulF6h9yNEkBL5EKDo27pjQX3MYuwMZdMAXB1WRr_ao9YZKrfsegWgumBZv8Rmdx00ceXnO40db5jLv_I3vgf__CYPFyTTtpvreQJ2XDlU_Lgl1SEz8jVZO8zG7pamx94mYpOlosL78yh47k_3K_okVsUDJ3EZ_CBpXgxhfbBGObneChj6ADrLWCjigITptPmbLlifTO3QPTZdDWfzbAuKB2umhkdugUGhFxQXVo6aMPlUeh3QEHA1efkeH9vOhixdakGpkUa10wYq4VTqYsDw4tEW6UDo5KkiGwC1lAUYZzqHOhMGiex4TYUwISUxnSFgRZKihdks1yWbovQ3CYaoFUHVsDq4oS2-AQylNylRW575APoMVtPtSrzXnQeZq1ys7Vye-RTN7TZeZu349Yv33cjn8HUQpXq0i2bKuO4eHHccvbIy9YkbmThxg1wPXz1T715R-6NpuOD7ODL4bdtch9kphj5HYrXZLNeNe4NEJs6f-uN-RoS0PPQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JbtswECXaFCiaQ_fFXVm0QE9MxUWidDTsuOmSwGgcIDeBIinXiCMblnRI_6H_3BlKDrogQAvdBHFADYfzhpyNkLeiELEDaGPaK8WUTSUrnJIsMcZbI3XKQ4mNw6Pk4ER9Oo1P-zxuzIWBSdRAqQ5OfNzVa1f2FQb4e3iPXXHSAhRvnF0nN2LNg292ODreqt9EihC3CIdzxVIAr22lxr_GIx7Z-nc8usLIDGAzuUNml9MMMSZne21T7Nnvf1Rw_M__uEtu98YnHXbSco9c89V9svtLScIH5Md0_wMb-8bYb5hURaer5UVw6tDDRbjkr-mxX5YMncXn8IGjmKBChyAUizVezlg6wr4LOKimYBHTWXu-2rChXTgw-Nlss5jPsT8oHW_aOR37JQaGXFBTOTrqwuaR6FdAQ8DXh-Rksj8bHbC-ZQMzMksaJq0z0qeZTyIrSm1caiKbal3GToNUlCVPMlOAWZMlOrHCcQkWUWqwbGFkZKrkI7JTrSr_hNDCaQMQayInQct4aRw-keJK-Kws3IC8AT7m_Zar8-BNFzzvmJv3zB2Qd9vlzddd_Y4rv3y9Xf0cthiy1FR-1da5QCUm8Og5II87sbikhQc4wHf-9J9m84rcnI4n-ZePR5-fkVtAMsMAcC6fk51m0_oXYN80xcsgzz8B33b2Sg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PEG-Detachable+Polymeric+Micelles+Self-Assembled+from+Amphiphilic+Copolymers+for+Tumor-Acidity-Triggered+Drug+Delivery+and+Controlled+Release&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Xu%2C+Mengzhen&rft.au=Zhang%2C+Can+Yang&rft.au=Wu%2C+Junguang&rft.au=Zhou%2C+Huige&rft.date=2019-02-13&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=11&rft.issue=6&rft.spage=5701&rft.epage=5713&rft_id=info:doi/10.1021%2Facsami.8b13059&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsami_8b13059 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |