Protein and Bacterial Antifouling Behavior of Melt-Coextruded Nanofiber Mats

Antifouling surfaces are important for biomedical devices to prevent secondary infections and mitigate the effects of the foreign body response. Herein, we describe melt-coextruded poly­(ε-caprolactone) (PCL) nanofiber mats grafted with antifouling polymers. Nonwoven PCL fiber mats are produced usin...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 8; no. 14; pp. 8928 - 8938
Main Authors Kim, Si-Eun, Zhang, Cong, Advincula, Abigail A, Baer, Eric, Pokorski, Jonathan K
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 13.04.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Antifouling surfaces are important for biomedical devices to prevent secondary infections and mitigate the effects of the foreign body response. Herein, we describe melt-coextruded poly­(ε-caprolactone) (PCL) nanofiber mats grafted with antifouling polymers. Nonwoven PCL fiber mats are produced using a multilayered melt coextrusion process followed by high-pressure hydroentanglement to yield porous patches. The resulting fiber mats show submicrometer cross-sectional fiber dimensions and yield pore sizes that were nearly uniform, with a mean pore size of 1.6 ± 0.9 μm. Several antifouling polymers, including hydrophilic, zwitterionic, and amphipathic molecules, are grafted to the surface of the mats using a two-step procedure that includes photochemistry followed by the copper-catalyzed azide–alkyne cycloaddition reaction. Fiber mats are evaluated using separate adsorption tests for serum proteins and E. coli. The results indicate that poly­(oligo­(ethylene glycol) methyl ether methacrylate)-co-(trifluoroethyl methacrylate) (poly­(OEGMEMA-co-TFEMA)) grafted mats exhibit approximately 85% less protein adhesion and 97% less E. coli adsorption when compared to unmodified PCL fibermats. In dynamic antifouling testing, the amphiphilic fluorous polymer surface shows the highest flux and highest rejection value of foulants. The work presented within has implications on the high-throughput production of antifouling microporous patches for medical applications.
AbstractList Antifouling surfaces are important for biomedical devices to prevent secondary infections and mitigate the effects of the foreign body response. Herein, we describe melt-coextruded poly­(ε-caprolactone) (PCL) nanofiber mats grafted with antifouling polymers. Nonwoven PCL fiber mats are produced using a multilayered melt coextrusion process followed by high-pressure hydroentanglement to yield porous patches. The resulting fiber mats show submicrometer cross-sectional fiber dimensions and yield pore sizes that were nearly uniform, with a mean pore size of 1.6 ± 0.9 μm. Several antifouling polymers, including hydrophilic, zwitterionic, and amphipathic molecules, are grafted to the surface of the mats using a two-step procedure that includes photochemistry followed by the copper-catalyzed azide–alkyne cycloaddition reaction. Fiber mats are evaluated using separate adsorption tests for serum proteins and E. coli. The results indicate that poly­(oligo­(ethylene glycol) methyl ether methacrylate)-co-(trifluoroethyl methacrylate) (poly­(OEGMEMA-co-TFEMA)) grafted mats exhibit approximately 85% less protein adhesion and 97% less E. coli adsorption when compared to unmodified PCL fibermats. In dynamic antifouling testing, the amphiphilic fluorous polymer surface shows the highest flux and highest rejection value of foulants. The work presented within has implications on the high-throughput production of antifouling microporous patches for medical applications.
Antifouling surfaces are important for biomedical devices to prevent secondary infections and mitigate the effects of the foreign body response. Herein, we describe melt-coextruded poly(ε-caprolactone) (PCL) nanofiber mats grafted with antifouling polymers. Nonwoven PCL fiber mats are produced using a multilayered melt coextrusion process followed by high-pressure hydroentanglement to yield porous patches. The resulting fiber mats show submicrometer cross-sectional fiber dimensions and yield pore sizes that were nearly uniform, with a mean pore size of 1.6 ± 0.9 μm. Several antifouling polymers, including hydrophilic, zwitterionic, and amphipathic molecules, are grafted to the surface of the mats using a two-step procedure that includes photochemistry followed by the copper-catalyzed azide-alkyne cycloaddition reaction. Fiber mats are evaluated using separate adsorption tests for serum proteins and E. coli. The results indicate that poly(oligo(ethylene glycol) methyl ether methacrylate)-co-(trifluoroethyl methacrylate) (poly(OEGMEMA-co-TFEMA)) grafted mats exhibit approximately 85% less protein adhesion and 97% less E. coli adsorption when compared to unmodified PCL fibermats. In dynamic antifouling testing, the amphiphilic fluorous polymer surface shows the highest flux and highest rejection value of foulants. The work presented within has implications on the high-throughput production of antifouling microporous patches for medical applications.
Author Zhang, Cong
Baer, Eric
Pokorski, Jonathan K
Kim, Si-Eun
Advincula, Abigail A
AuthorAffiliation Case Western Reserve University
Department of Macromolecular Science & Engineering
AuthorAffiliation_xml – name: Case Western Reserve University
– name: Department of Macromolecular Science & Engineering
Author_xml – sequence: 1
  givenname: Si-Eun
  surname: Kim
  fullname: Kim, Si-Eun
– sequence: 2
  givenname: Cong
  surname: Zhang
  fullname: Zhang, Cong
– sequence: 3
  givenname: Abigail A
  surname: Advincula
  fullname: Advincula, Abigail A
– sequence: 4
  givenname: Eric
  surname: Baer
  fullname: Baer, Eric
– sequence: 5
  givenname: Jonathan K
  surname: Pokorski
  fullname: Pokorski, Jonathan K
  email: jon.pokorski@case.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27043205$$D View this record in MEDLINE/PubMed
BookMark eNp1kDtPwzAUhS0Eog9YGVFGhJTiV-JkbCteUgsMMEeOcw2uErvYCYJ_T6qUbkz3DN_5pHsm6Ng6CwhdEDwjmJIbqYJszCwtMcY5O0JjknMeZzShx4fM-QhNQthgnDKKk1M0ogLzXRyj1Yt3LRgbSVtFC6la8EbW0dy2RruuNvY9WsCH_DLOR05Ha6jbeOngu_VdBVX0JK3TpgQfrWUbztCJlnWA8_2dore729flQ7x6vn9czlexZHnaxizJMp2zlCoGGjNNs1IkQqSMl4qUVBGRKaBJWlEOvMqpSHguVCV6qqy4yNkUXQ3erXefHYS2aExQUNfSgutC0QsISTjBpEdnA6q8C8GDLrbeNNL_FAQXuwWLYcFiv2BfuNy7u7KB6oD_TdYD1wPQF4uN67ztX_3P9gs4-XvC
CitedBy_id crossref_primary_10_1016_j_progpolymsci_2020_101210
crossref_primary_10_1039_C6TB02817A
crossref_primary_10_1039_D1TB00657F
crossref_primary_10_1111_1541_4337_13209
crossref_primary_10_1039_D2PY01389D
crossref_primary_10_1002_mabi_202200292
crossref_primary_10_1016_j_jmst_2020_08_053
crossref_primary_10_1021_acsbiomaterials_7b00229
crossref_primary_10_1039_C6TB01303A
crossref_primary_10_1021_acsami_6b09343
crossref_primary_10_1002_mame_201600304
crossref_primary_10_1016_j_jconrel_2023_07_036
crossref_primary_10_1021_acsami_6b09839
crossref_primary_10_1021_acsbiomaterials_7b00732
crossref_primary_10_3390_polym12061403
crossref_primary_10_1021_acsapm_1c01264
crossref_primary_10_3389_fbioe_2021_807357
crossref_primary_10_1039_C7TB00096K
crossref_primary_10_1021_acsami_4c05685
crossref_primary_10_1039_D0BM00788A
crossref_primary_10_1039_C9TB01313J
crossref_primary_10_3390_app11041808
crossref_primary_10_1021_acsmacrolett_7b00212
crossref_primary_10_1016_j_compositesb_2022_110164
crossref_primary_10_1002_app_47580
crossref_primary_10_1016_j_msec_2018_11_011
crossref_primary_10_1016_j_xpro_2021_100738
crossref_primary_10_1016_j_polymer_2016_09_060
crossref_primary_10_1021_acsabm_9b01041
Cites_doi 10.1021/acsami.5b01304
10.1021/acs.langmuir.5b04303
10.1016/j.smim.2007.11.004
10.1007/s10853-015-9380-7
10.1021/am405017h
10.1021/mz500090n
10.1021/bm301223b
10.1039/C5PY00762C
10.1002/anie.201310692
10.1038/pj.2011.80
10.1208/s12248-010-9175-3
10.1016/j.actbio.2015.05.037
10.1016/j.biomaterials.2015.02.039
10.1002/pen.10274
10.1002/app.41144
10.1038/srep08287
10.1021/acs.iecr.5b02864
10.1016/j.memsci.2010.11.001
10.1021/ja203286n
10.1007/978-94-015-8571-2_13
10.1002/pen.23389
10.1021/acsami.5b04648
10.1016/j.jcis.2015.01.084
10.1021/am507371a
10.1039/C5TB00597C
10.1080/08927014.2011.629344
10.1021/acs.macromol.5b00370
10.1021/am404780w
10.1021/bm060276k
10.1002/adma.201001215
10.1021/mz500112d
10.1039/C5SC03887A
10.1021/acsami.5b01426
10.1002/anie.200905087
10.1021/mz500818c
10.1038/pj.2011.93
10.1172/JCI200320365
10.1021/ma5022488
10.1126/scitranslmed.3004528
10.1021/am300292v
10.1039/b801491d
10.1021/la5043712
10.1016/j.actbio.2014.11.023
10.3390/membranes3030226
10.1039/C5PY00282F
10.1021/bm501767x
10.1016/j.polymer.2013.12.025
10.1002/adfm.201501277
10.1021/la301033h
10.1039/C5TB02138C
10.1016/j.memsci.2013.07.025
10.1007/s40846-015-0029-4
10.1021/ma901227k
10.1007/s10853-006-1164-7
ContentType Journal Article
Copyright Copyright © 2016 American Chemical Society
Copyright_xml – notice: Copyright © 2016 American Chemical Society
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1021/acsami.6b00093
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 8938
ExternalDocumentID 10_1021_acsami_6b00093
27043205
e17626933
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
4.4
5VS
5ZA
6J9
ABFRP
ABJNI
ABQRX
ADHLV
AHGAQ
BAANH
CGR
CUPRZ
CUY
CVF
ECM
EIF
GGK
NPM
AAHBH
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-a396t-3588f9362c3ef03f28b7577634bc1b2c178ce256d24e4d9275497cd7b75bd4793
IEDL.DBID ACS
ISSN 1944-8244
IngestDate Fri Aug 16 07:50:10 EDT 2024
Fri Aug 23 01:28:59 EDT 2024
Thu May 23 23:23:49 EDT 2024
Thu Aug 27 13:42:11 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords zwitterionic polymers
coextrusion
antifouling
nanofibers
polymer brushes
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a396t-3588f9362c3ef03f28b7577634bc1b2c178ce256d24e4d9275497cd7b75bd4793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27043205
PQID 1781154101
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_1781154101
crossref_primary_10_1021_acsami_6b00093
pubmed_primary_27043205
acs_journals_10_1021_acsami_6b00093
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2016-04-13
PublicationDateYYYYMMDD 2016-04-13
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04-13
  day: 13
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2016
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
Karagiannis A. (ref48/cit48) 1995
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref13/cit13
  doi: 10.1021/acsami.5b01304
– ident: ref36/cit36
  doi: 10.1021/acs.langmuir.5b04303
– ident: ref5/cit5
  doi: 10.1016/j.smim.2007.11.004
– ident: ref43/cit43
  doi: 10.1007/s10853-015-9380-7
– ident: ref23/cit23
  doi: 10.1021/am405017h
– ident: ref38/cit38
  doi: 10.1021/mz500090n
– ident: ref24/cit24
  doi: 10.1021/bm301223b
– ident: ref34/cit34
  doi: 10.1039/C5PY00762C
– ident: ref27/cit27
  doi: 10.1002/anie.201310692
– ident: ref29/cit29
  doi: 10.1038/pj.2011.80
– ident: ref4/cit4
  doi: 10.1208/s12248-010-9175-3
– ident: ref32/cit32
  doi: 10.1016/j.actbio.2015.05.037
– ident: ref10/cit10
  doi: 10.1016/j.biomaterials.2015.02.039
– ident: ref49/cit49
  doi: 10.1002/pen.10274
– ident: ref22/cit22
  doi: 10.1002/app.41144
– ident: ref1/cit1
  doi: 10.1038/srep08287
– ident: ref31/cit31
  doi: 10.1021/acs.iecr.5b02864
– ident: ref18/cit18
  doi: 10.1016/j.memsci.2010.11.001
– ident: ref54/cit54
  doi: 10.1021/ja203286n
– start-page: 265
  volume-title: Rheological Fundamentals of Polymer Processing
  year: 1995
  ident: ref48/cit48
  doi: 10.1007/978-94-015-8571-2_13
  contributor:
    fullname: Karagiannis A.
– ident: ref51/cit51
  doi: 10.1002/pen.23389
– ident: ref15/cit15
  doi: 10.1021/acsami.5b04648
– ident: ref28/cit28
  doi: 10.1016/j.jcis.2015.01.084
– ident: ref14/cit14
  doi: 10.1021/am507371a
– ident: ref35/cit35
  doi: 10.1039/C5TB00597C
– ident: ref40/cit40
  doi: 10.1080/08927014.2011.629344
– ident: ref44/cit44
  doi: 10.1021/acs.macromol.5b00370
– ident: ref12/cit12
  doi: 10.1021/am404780w
– ident: ref52/cit52
  doi: 10.1021/bm060276k
– ident: ref9/cit9
  doi: 10.1002/adma.201001215
– ident: ref47/cit47
  doi: 10.1021/mz500112d
– ident: ref7/cit7
  doi: 10.1039/C5SC03887A
– ident: ref16/cit16
  doi: 10.1021/acsami.5b01426
– ident: ref21/cit21
– ident: ref55/cit55
  doi: 10.1002/anie.200905087
– ident: ref41/cit41
  doi: 10.1021/mz500818c
– ident: ref53/cit53
  doi: 10.1038/pj.2011.93
– ident: ref2/cit2
  doi: 10.1172/JCI200320365
– ident: ref20/cit20
  doi: 10.1021/ma5022488
– ident: ref8/cit8
  doi: 10.1126/scitranslmed.3004528
– ident: ref42/cit42
  doi: 10.1021/am300292v
– ident: ref11/cit11
  doi: 10.1039/b801491d
– ident: ref39/cit39
  doi: 10.1021/la5043712
– ident: ref3/cit3
  doi: 10.1016/j.actbio.2014.11.023
– ident: ref17/cit17
  doi: 10.3390/membranes3030226
– ident: ref26/cit26
  doi: 10.1039/C5PY00282F
– ident: ref46/cit46
  doi: 10.1021/bm501767x
– ident: ref45/cit45
  doi: 10.1016/j.polymer.2013.12.025
– ident: ref30/cit30
  doi: 10.1002/adfm.201501277
– ident: ref37/cit37
  doi: 10.1021/la301033h
– ident: ref6/cit6
  doi: 10.1039/C5TB02138C
– ident: ref19/cit19
  doi: 10.1016/j.memsci.2013.07.025
– ident: ref33/cit33
  doi: 10.1007/s40846-015-0029-4
– ident: ref25/cit25
  doi: 10.1021/ma901227k
– ident: ref50/cit50
  doi: 10.1007/s10853-006-1164-7
SSID ssj0063205
Score 2.3586893
Snippet Antifouling surfaces are important for biomedical devices to prevent secondary infections and mitigate the effects of the foreign body response. Herein, we...
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 8928
SubjectTerms Adsorption
Blood Proteins - chemistry
Cell Adhesion - drug effects
Coinfection - microbiology
Coinfection - therapy
Escherichia coli - drug effects
Humans
Hydrophobic and Hydrophilic Interactions - drug effects
Methacrylates - chemistry
Methacrylates - therapeutic use
Nanofibers - chemistry
Nanofibers - therapeutic use
Polyesters - chemistry
Polyesters - therapeutic use
Polyethylene Glycols - chemistry
Polyethylene Glycols - therapeutic use
Porosity
Title Protein and Bacterial Antifouling Behavior of Melt-Coextruded Nanofiber Mats
URI http://dx.doi.org/10.1021/acsami.6b00093
https://www.ncbi.nlm.nih.gov/pubmed/27043205
https://search.proquest.com/docview/1781154101
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gXODA-zFeCgKJU8eSpk17hIlpQgwhwaTdqiRNEQK1aO0u_HrsPnhNE9yTKLIT-3NsfyHkjGttEoktyuCbHaE0c8JQG8dTSegyK4VOsDl5eOcPRuJm7I2_3jt-Z_A5u1Amx69w_Cr6XiRLHMsHEQT1Hhqb67u8LFaEiFw4AXishp5xZj46IZP_dEJzkGXpYfprFd1RXhITYmHJS2da6I55n6Vt_HPz62S1hpn0sjoXG2TBpptk5Rv54Ba5vUeKhueUqjSmVxVpM07B6iH8Jj19ojV54oRmCR3a18LpZWDLJ9PYxhTMMpxLbSd0qIp8m4z614-9gVP_reAoN_QLx_WCALThc-PapOsmPNDSk2BshDZMc8NkYCzAoZgLK-KQS4gjpYkljNIxvsbtkFaapXaPUABwsmuVxxLrCyNA-yyRgFq0wrhbx21yCmKI6ruRR2Xam7Ookk1Uy6ZNzhuVRG8V0cbckSeNxiK4C5jgUKnNprAyts16AqxMm-xWqvxci0skH-x6-__azQFZBmTkY9qIuYekBaK1R4A-Cn1cHrwPwLPStA
link.rule.ids 315,786,790,2782,27109,27957,27958,57093,57143
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5WPagH34_1GVHwVN2kadMedXFZdbsIKuytNGkqorSy7V789U768Imgp0JJQjozmfnSyXwBOGJSqkSYEmWMzRaPJLV8XyrLiRLfplpwmZji5GDo9u_51cgZteC0qYXBSeQ4Ul4m8T_YBegpvjM34rjVJnwKZhyBT4OFureN63VtVp5ZxI05tzwMXA1L44_-Jhap_Gss-gVgloGmtwg371Msz5c8nUwKeaJev7E3_uMblmChBp3krLKSZWjpdAXmP1ERrsLgxhA2PKYkSmNyXlE4my7mLJG5ND19IDWV4phkCQn0c2F1M_Ts40msY4JOGq1U6jEJoiJfg_vexV23b9U3LViR7buFZTueh7pxmbJ10rET5knhCHQ9XCoqmaLCUxrBUcy45rHPBO4qhYoFtpKx-Te3DtNplupNIAjnREdHDk20yxVHW6CJQAwjI7MLl3EbDlEMYb1S8rBMgjMaVrIJa9m04bjRTPhS0W782vKgUVyIK8OkO6JUZxMc2RTROhx9Ths2Ko2-j8WEoSLsOFt_ms0-zPbvgkE4uBxeb8McYibXJJSovQPTKGa9i7ikkHulLb4B9rbbHw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED-xIk3sAdgGozA2T5vEU6B2nDh5ZIWKbbSqtFbiLYq_0DSUVk36sr-euySt9qFK7DVyLMd3vvtdzvc7gE9Ca-MVlSijbw5krnmQptoEUe7TkDsltafi5OEovpnKr3fRXVvHTbUwuIgSZyrrJD6d6rn1LcMAv8Dn1BUnbgLxZ7AdUfduwkP97yvzG4eivreIwbkMEnReK6bGf94nf2TKP_3RBpBZO5vBHkzWy6zvmPw8X1b63Pz6i8HxP79jH3Zb8MkuG215CVuueAUvfqMkfA23YyJu-FGwvLDsc0PlTK_QnSJqnl7cs5ZSccFmng3dQxX0Z2jhF0vrLENjjdqq3YIN86o8gOngetK_CdqOC0EepnEVhFGSoIxiYULne6EXiVaRQhMkteFaGK4S4xAkWSGdtKlQGF0qYxWO0pb-0R1Cp5gV7ggYwjrVc3nEvYulkagT3CvEMjqnaFzbLnzEbcjaE1NmdTJc8KzZm6zdmy6craSTzRv6jY0jP6yEl-EJobRHXrjZEmemYtpIou3pwptGquu5hCJKwl50_KTVvIfn46tBdvtl9O0EdhA6xZRX4uFb6OAuu1OEJ5V-V6vjIyhF3Zk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protein+and+Bacterial+Antifouling+Behavior+of+Melt-Coextruded+Nanofiber+Mats&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Kim%2C+Si-Eun&rft.au=Zhang%2C+Cong&rft.au=Advincula%2C+Abigail+A&rft.au=Baer%2C+Eric&rft.date=2016-04-13&rft.eissn=1944-8252&rft.volume=8&rft.issue=14&rft.spage=8928&rft_id=info:doi/10.1021%2Facsami.6b00093&rft_id=info%3Apmid%2F27043205&rft.externalDocID=27043205
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon