Bioinspired l‑Proline Oligomers for the Cryopreservation of Oocytes via Controlling Ice Growth
Various types of cells are routinely cryopreserved in modern regenerative and cell-based medicines. For instance, the oocyte is one of the most demanding cells to be cryopreserved in genetic engineering and human-assisted reproductive technology (ART). However, the usage of cryopreserved oocytes in...
Saved in:
Published in | ACS applied materials & interfaces Vol. 12; no. 16; pp. 18352 - 18362 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
22.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Various types of cells are routinely cryopreserved in modern regenerative and cell-based medicines. For instance, the oocyte is one of the most demanding cells to be cryopreserved in genetic engineering and human-assisted reproductive technology (ART). However, the usage of cryopreserved oocytes in ART clinics is still limited mainly because of the unstable survival rate. This is due to the fact that oocytes are more prone to be damaged by ice crystals in comparison to other cells, as oocytes are larger in size and surface area. Meanwhile, oocytes contain more water, and thus, ice crystals are easier to form inside the cells. Currently, to avoid injury by the formed ice crystals, cryopreservation (CP) of oocytes has to use large amounts of small molecules as cryoprotectants such as dimethyl sulfoxide (DMSO) and ethylene glycol (EG), which can permeate into the cell and prevent ice formation inside. However, these molecules are chemically and epigenetically toxic to cells. Therefore, great efforts have been focused on reducing the amount of DMSO and EG used for oocyte CP. In nature, the antifreeze (glyco)proteins (AFGPs) locate extracellularly with the ability to protect living organisms from freezing damage via controlling ice growth. Inspired by this, biocompatible and nontoxic L-proline oligomers (L-Pro n ), which have the same polyproline II helix structure as that of AFGPs, are first employed for the CP of oocytes. The experimental results reveal that L-Pro8 has a profound activity in inhibiting ice growth as that of AFGP8. Also, by the addition of 50 mM L-Pro8, the amount of DMSO and EG can be greatly reduced by ca. 1.8 M for oocyte CP; moreover, the survival rate of the cryopreserved oocytes is increased up to 99.11%, and the coefficient of variance of the survival rate is decreased from 7.47 to 2.15%. These results mean that almost all oocytes can survive after CP with our method; importantly, the mitochondrial function as a critical criterion for the quality of the frozen–thawed oocytes is also improved. It is proposed that with the addition of L-Pro8, the extracellular ice growth is slowed down, which prevents the direct injuries of cells by large ice crystals and the accompanying osmotic pressure increase. As such, this work is not only significant for meeting the ever-increasing demand by the ART clinics but also gives guidance for designing materials in controlling ice growth during CP of other cells and tissues. |
---|---|
AbstractList | Various types of cells are routinely cryopreserved in modern regenerative and cell-based medicines. For instance, the oocyte is one of the most demanding cells to be cryopreserved in genetic engineering and human-assisted reproductive technology (ART). However, the usage of cryopreserved oocytes in ART clinics is still limited mainly because of the unstable survival rate. This is due to the fact that oocytes are more prone to be damaged by ice crystals in comparison to other cells, as oocytes are larger in size and surface area. Meanwhile, oocytes contain more water, and thus, ice crystals are easier to form inside the cells. Currently, to avoid injury by the formed ice crystals, cryopreservation (CP) of oocytes has to use large amounts of small molecules as cryoprotectants such as dimethyl sulfoxide (DMSO) and ethylene glycol (EG), which can permeate into the cell and prevent ice formation inside. However, these molecules are chemically and epigenetically toxic to cells. Therefore, great efforts have been focused on reducing the amount of DMSO and EG used for oocyte CP. In nature, the antifreeze (glyco)proteins (AFGPs) locate extracellularly with the ability to protect living organisms from freezing damage via controlling ice growth. Inspired by this, biocompatible and nontoxic L-proline oligomers (L-Pro n ), which have the same polyproline II helix structure as that of AFGPs, are first employed for the CP of oocytes. The experimental results reveal that L-Pro8 has a profound activity in inhibiting ice growth as that of AFGP8. Also, by the addition of 50 mM L-Pro8, the amount of DMSO and EG can be greatly reduced by ca. 1.8 M for oocyte CP; moreover, the survival rate of the cryopreserved oocytes is increased up to 99.11%, and the coefficient of variance of the survival rate is decreased from 7.47 to 2.15%. These results mean that almost all oocytes can survive after CP with our method; importantly, the mitochondrial function as a critical criterion for the quality of the frozen–thawed oocytes is also improved. It is proposed that with the addition of L-Pro8, the extracellular ice growth is slowed down, which prevents the direct injuries of cells by large ice crystals and the accompanying osmotic pressure increase. As such, this work is not only significant for meeting the ever-increasing demand by the ART clinics but also gives guidance for designing materials in controlling ice growth during CP of other cells and tissues. Various types of cells are routinely cryopreserved in modern regenerative and cell-based medicines. For instance, the oocyte is one of the most demanding cells to be cryopreserved in genetic engineering and human-assisted reproductive technology (ART). However, the usage of cryopreserved oocytes in ART clinics is still limited mainly because of the unstable survival rate. This is due to the fact that oocytes are more prone to be damaged by ice crystals in comparison to other cells, as oocytes are larger in size and surface area. Meanwhile, oocytes contain more water, and thus, ice crystals are easier to form inside the cells. Currently, to avoid injury by the formed ice crystals, cryopreservation (CP) of oocytes has to use large amounts of small molecules as cryoprotectants such as dimethyl sulfoxide (DMSO) and ethylene glycol (EG), which can permeate into the cell and prevent ice formation inside. However, these molecules are chemically and epigenetically toxic to cells. Therefore, great efforts have been focused on reducing the amount of DMSO and EG used for oocyte CP. In nature, the antifreeze (glyco)proteins (AFGPs) locate extracellularly with the ability to protect living organisms from freezing damage controlling ice growth. Inspired by this, biocompatible and nontoxic L-proline oligomers (L-Pro ), which have the same polyproline II helix structure as that of AFGPs, are first employed for the CP of oocytes. The experimental results reveal that L-Pro has a profound activity in inhibiting ice growth as that of AFGP8. Also, by the addition of 50 mM L-Pro , the amount of DMSO and EG can be greatly reduced by . 1.8 M for oocyte CP; moreover, the survival rate of the cryopreserved oocytes is increased up to 99.11%, and the coefficient of variance of the survival rate is decreased from 7.47 to 2.15%. These results mean that almost all oocytes can survive after CP with our method; importantly, the mitochondrial function as a critical criterion for the quality of the frozen-thawed oocytes is also improved. It is proposed that with the addition of L-Pro , the extracellular ice growth is slowed down, which prevents the direct injuries of cells by large ice crystals and the accompanying osmotic pressure increase. As such, this work is not only significant for meeting the ever-increasing demand by the ART clinics but also gives guidance for designing materials in controlling ice growth during CP of other cells and tissues. |
Author | Li, Rong Zhang, Xiaowei Wang, Jianjun Qu, Jiangxue Qiao, Jie Yan, Liying Yan, Jie Zhao, Lishan Liu, Zhang Jin, Shenglin Liu, Tao Qin, Qingyuan |
AuthorAffiliation | Chinese Academy of Sciences Ministry of Education Center for Reproductive Medicine, Department of Obstetrics and Gynecology Key Laboratory of Assisted Reproduction Key Laboratory of Green Printing, Institute of Chemistry Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction School of Chemistry and Chemical Engineering University of Chinese Academy of Sciences |
AuthorAffiliation_xml | – name: School of Chemistry and Chemical Engineering – name: Chinese Academy of Sciences – name: Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction – name: Ministry of Education – name: Center for Reproductive Medicine, Department of Obstetrics and Gynecology – name: Key Laboratory of Green Printing, Institute of Chemistry – name: University of Chinese Academy of Sciences – name: Key Laboratory of Assisted Reproduction |
Author_xml | – sequence: 1 givenname: Qingyuan surname: Qin fullname: Qin, Qingyuan organization: Ministry of Education – sequence: 2 givenname: Lishan surname: Zhao fullname: Zhao, Lishan organization: Chinese Academy of Sciences – sequence: 3 givenname: Zhang orcidid: 0000-0001-8433-6289 surname: Liu fullname: Liu, Zhang organization: Chinese Academy of Sciences – sequence: 4 givenname: Tao surname: Liu fullname: Liu, Tao organization: Ministry of Education – sequence: 5 givenname: Jiangxue surname: Qu fullname: Qu, Jiangxue organization: Ministry of Education – sequence: 6 givenname: Xiaowei surname: Zhang fullname: Zhang, Xiaowei organization: Ministry of Education – sequence: 7 givenname: Rong surname: Li fullname: Li, Rong organization: Ministry of Education – sequence: 8 givenname: Liying surname: Yan fullname: Yan, Liying organization: Ministry of Education – sequence: 9 givenname: Jie surname: Yan fullname: Yan, Jie email: yanjiebjmu@bjmu.edu.cn organization: Ministry of Education – sequence: 10 givenname: Shenglin surname: Jin fullname: Jin, Shenglin email: shenglinjin@iccas.ac.cn organization: Chinese Academy of Sciences – sequence: 11 givenname: Jianjun orcidid: 0000-0002-1704-9922 surname: Wang fullname: Wang, Jianjun email: wangj220@iccas.ac.cn organization: University of Chinese Academy of Sciences – sequence: 12 givenname: Jie surname: Qiao fullname: Qiao, Jie organization: Ministry of Education |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32227894$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kL1OwzAUhS1URH9gZUSekVJs588eIYJSqVIZYA6Oc9O6SuLITouy8Qq8Ik9CUEo3pnuG8x1dfVM0qk0NCF1TMqeE0TupnKz0nCjCYirO0ISKIPA4C9nolINgjKbO7QiJfEbCCzT2GWMxF8EEvT9oo2vXaAs5Lr8_v16sKXUNeF3qjanAOlwYi9st4MR2prHgwB5kq02NTYHXRnUtOHzQEiembnu4pzd4qQAvrPlot5fovJClg6vjnaG3p8fX5NlbrRfL5H7lSV9ErcdkEUJEfRFyxiHjklIhM5ZxWpA8hlwKEBJ4xJUSgkqlwlz4nMVxQDjJC-XP0HzYVdY4Z6FIG6srabuUkvRXVTqoSo-qeuBmAJp9VkF-qv-56Qu3Q6EH053Z27r__7-1H3lUeFc |
CitedBy_id | crossref_primary_10_1038_s41467_022_34549_2 crossref_primary_10_1016_j_foodhyd_2021_107243 crossref_primary_10_1021_acs_biomac_0c00591 crossref_primary_10_1039_D1MD00078K crossref_primary_10_1021_acs_analchem_2c01858 crossref_primary_10_1021_jacsau_2c00562 crossref_primary_10_1021_acs_langmuir_2c02032 crossref_primary_10_1021_acsnano_1c10221 crossref_primary_10_1016_j_tifs_2021_02_069 crossref_primary_10_6023_A23040185 crossref_primary_10_1021_acsami_3c11260 crossref_primary_10_1039_D1TB01449H crossref_primary_10_1002_adhm_202400981 crossref_primary_10_1016_j_ijbiomac_2024_131941 crossref_primary_10_1021_acs_biomac_1c01701 crossref_primary_10_1021_acs_jpclett_3c00577 crossref_primary_10_1016_j_actbio_2022_10_056 crossref_primary_10_1039_D3QM00902E crossref_primary_10_1021_acs_jafc_3c06155 crossref_primary_10_6023_A21020043 crossref_primary_10_1002_advs_202003387 crossref_primary_10_1016_j_molstruc_2024_138160 crossref_primary_10_1016_j_theriogenology_2022_04_028 crossref_primary_10_1021_acsabm_1c00105 crossref_primary_10_1021_jacs_2c00203 crossref_primary_10_1039_D2CC02531K crossref_primary_10_1016_j_jcrysgro_2021_126398 crossref_primary_10_1063_5_0186237 crossref_primary_10_1093_humrep_deae065 crossref_primary_10_1039_D3NR05019J crossref_primary_10_1021_acs_biomac_1c00700 crossref_primary_10_1021_acs_iecr_3c00690 crossref_primary_10_1021_acs_biomac_2c01487 crossref_primary_10_1021_acspolymersau_2c00028 crossref_primary_10_1021_acs_biomac_3c01462 crossref_primary_10_1021_acsanm_2c03469 crossref_primary_10_1002_adhm_202202516 crossref_primary_10_1016_j_physd_2023_133841 crossref_primary_10_3389_fcell_2021_728576 crossref_primary_10_1021_acsami_0c22308 crossref_primary_10_1016_j_physb_2021_412923 crossref_primary_10_1002_adfm_202402312 crossref_primary_10_1016_j_cryobiol_2021_09_002 crossref_primary_10_1021_acs_biomac_1c01201 crossref_primary_10_1002_adem_202200835 crossref_primary_10_1016_j_jbiosc_2021_03_010 crossref_primary_10_1002_advs_202002425 crossref_primary_10_52396_JUSTC_2023_0072 crossref_primary_10_1016_j_foodchem_2023_138259 crossref_primary_10_1021_acsapm_2c00174 crossref_primary_10_1038_s41570_022_00407_4 crossref_primary_10_1021_acs_jpclett_1c02601 crossref_primary_10_1021_acs_biomac_1c01372 crossref_primary_10_1021_acsmacrolett_2c00298 crossref_primary_10_1021_acs_nanolett_3c03059 crossref_primary_10_1021_acs_langmuir_1c01820 crossref_primary_10_1016_j_ijbiomac_2021_09_211 crossref_primary_10_1021_acsmacrolett_1c00584 |
Cites_doi | 10.1016/s1472-6483(10)62124-4 10.1073/pnas.74.6.2589 10.1093/humupd/dmw028 10.1021/jacs.7b13630 10.1016/j.fertnstert.2011.06.030 10.1093/molehr/gav013 10.1038/srep26326 10.1007/978-981-13-1244-1_18 10.1038/ncomms4244 10.1016/s0140-6736(86)90989-x 10.1093/humupd/dmw007 10.1016/s0015-0282(16)59879-3 10.1002/anie.201609230 10.1016/s0006-291x(05)80939-8 10.1016/j.anireprosci.2015.11.022 10.1093/humrep/dew130 10.1002/chem.201501190 10.1021/jp805726e 10.1007/978-1-4939-2272-7_3 10.7150/thno.21662 10.1126/science.163.3871.1073 10.1002/jcp.22171 10.1016/j.fertnstert.2010.01.019 10.1016/s1472-6483(10)62125-6 10.1016/j.theriogenology.2006.09.014 10.1006/cryo.1995.1002 10.1093/hmg/ddp319 10.22074/cellj.2019.5446 10.3390/biom9030110 10.1002/adfm.201503047 10.3390/biom9050181 10.1016/s1472-6483(10)60281-7 10.1021/cr950260c 10.1007/s11426-018-9428-4 10.1371/journal.pone.0027604 10.1097/gco.0000000000000164 10.1371/journal.pone.0059540 10.1039/c6ra25095e 10.1007/s11596-014-1238-8 10.1071/rd15553 10.1073/pnas.1213603110 10.1016/j.fertnstert.2010.11.015 10.1016/j.cryobiol.2006.06.006 10.1016/j.theriogenology.2013.09.011 10.1155/2014/307268 10.1242/jeb.116905 10.1093/humrep/deh313 10.1007/978-3-319-60855-6_16 10.1002/anie.201706703 10.1007/s10815-012-9848-1 10.1001/jama.2015.7556 10.1093/humrep/dev232 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION |
DOI | 10.1021/acsami.0c02719 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 18362 |
ExternalDocumentID | 10_1021_acsami_0c02719 32227894 a108946158 |
Genre | Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ F5P GNL IH9 JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ --- .K2 4.4 5VS 5ZA 6J9 AAHBH ABJNI ABQRX ADHLV AHGAQ BAANH CGR CUPRZ CUY CVF ECM EIF GGK NPM AAYXX CITATION |
ID | FETCH-LOGICAL-a396t-2af5e61395828eb8a119ab2b81f0d7eda9e9ae868cc991acc5d9382774080dfc3 |
IEDL.DBID | ACS |
ISSN | 1944-8244 |
IngestDate | Fri Aug 23 02:37:03 EDT 2024 Sat Sep 28 08:32:58 EDT 2024 Thu Aug 27 22:10:50 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | survival rate antifreeze (glyco)proteins ice recrystallization inhibition mitochondrial function cryopreservation of oocytes L-proline oligomers |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a396t-2af5e61395828eb8a119ab2b81f0d7eda9e9ae868cc991acc5d9382774080dfc3 |
ORCID | 0000-0001-8433-6289 0000-0002-1704-9922 |
PMID | 32227894 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1021_acsami_0c02719 pubmed_primary_32227894 acs_journals_10_1021_acsami_0c02719 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2020-04-22 |
PublicationDateYYYYMMDD | 2020-04-22 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | 33274911 - ACS Appl Mater Interfaces. 2020 Dec 16;12(50):56661 ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref7/cit7 doi: 10.1016/s1472-6483(10)62124-4 – ident: ref25/cit25 doi: 10.1073/pnas.74.6.2589 – ident: ref42/cit42 doi: 10.1093/humupd/dmw028 – ident: ref27/cit27 doi: 10.1021/jacs.7b13630 – ident: ref5/cit5 doi: 10.1016/j.fertnstert.2011.06.030 – ident: ref14/cit14 doi: 10.1093/molehr/gav013 – ident: ref15/cit15 doi: 10.1038/srep26326 – ident: ref35/cit35 doi: 10.1007/978-981-13-1244-1_18 – ident: ref30/cit30 doi: 10.1038/ncomms4244 – ident: ref4/cit4 doi: 10.1016/s0140-6736(86)90989-x – ident: ref1/cit1 doi: 10.1093/humupd/dmw007 – ident: ref49/cit49 doi: 10.1016/s0015-0282(16)59879-3 – ident: ref32/cit32 doi: 10.1002/anie.201609230 – ident: ref21/cit21 doi: 10.1016/s0006-291x(05)80939-8 – ident: ref52/cit52 doi: 10.1016/j.anireprosci.2015.11.022 – ident: ref43/cit43 doi: 10.1093/humrep/dew130 – ident: ref37/cit37 doi: 10.1002/chem.201501190 – ident: ref23/cit23 doi: 10.1021/jp805726e – ident: ref34/cit34 doi: 10.1007/978-1-4939-2272-7_3 – ident: ref48/cit48 doi: 10.7150/thno.21662 – ident: ref17/cit17 doi: 10.1126/science.163.3871.1073 – ident: ref46/cit46 doi: 10.1002/jcp.22171 – ident: ref13/cit13 doi: 10.1016/j.fertnstert.2010.01.019 – ident: ref9/cit9 doi: 10.1016/s1472-6483(10)62125-6 – ident: ref39/cit39 doi: 10.1016/j.theriogenology.2006.09.014 – ident: ref19/cit19 doi: 10.1006/cryo.1995.1002 – ident: ref51/cit51 doi: 10.1093/hmg/ddp319 – ident: ref11/cit11 doi: 10.22074/cellj.2019.5446 – ident: ref28/cit28 doi: 10.3390/biom9030110 – ident: ref38/cit38 doi: 10.1002/adfm.201503047 – ident: ref20/cit20 doi: 10.3390/biom9050181 – ident: ref50/cit50 doi: 10.1016/s1472-6483(10)60281-7 – ident: ref22/cit22 doi: 10.1021/cr950260c – ident: ref24/cit24 doi: 10.1007/s11426-018-9428-4 – ident: ref10/cit10 doi: 10.1371/journal.pone.0027604 – ident: ref41/cit41 doi: 10.1097/gco.0000000000000164 – ident: ref31/cit31 doi: 10.1371/journal.pone.0059540 – ident: ref36/cit36 doi: 10.1039/c6ra25095e – ident: ref12/cit12 doi: 10.1007/s11596-014-1238-8 – ident: ref47/cit47 doi: 10.1071/rd15553 – ident: ref26/cit26 doi: 10.1073/pnas.1213603110 – ident: ref8/cit8 doi: 10.1016/j.fertnstert.2010.11.015 – ident: ref18/cit18 doi: 10.1016/j.cryobiol.2006.06.006 – ident: ref2/cit2 doi: 10.1016/j.theriogenology.2013.09.011 – ident: ref3/cit3 doi: 10.1155/2014/307268 – ident: ref16/cit16 doi: 10.1242/jeb.116905 – ident: ref45/cit45 doi: 10.1093/humrep/deh313 – ident: ref40/cit40 doi: 10.1007/978-3-319-60855-6_16 – ident: ref29/cit29 doi: 10.1002/anie.201706703 – ident: ref44/cit44 doi: 10.1007/s10815-012-9848-1 – ident: ref6/cit6 doi: 10.1001/jama.2015.7556 – ident: ref33/cit33 doi: 10.1093/humrep/dev232 |
SSID | ssj0063205 |
Score | 2.5765054 |
Snippet | Various types of cells are routinely cryopreserved in modern regenerative and cell-based medicines. For instance, the oocyte is one of the most demanding cells... |
SourceID | crossref pubmed acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 18352 |
SubjectTerms | Animals Antifreeze Proteins - chemistry Antifreeze Proteins - pharmacology Cell Survival - drug effects Cryopreservation - methods Cryoprotective Agents - chemistry Cryoprotective Agents - pharmacology Embryonic Development - drug effects Female Ice Male Mice Oligopeptides - chemistry Oligopeptides - pharmacology Oocytes - cytology Oocytes - drug effects Proline - chemistry Proline - pharmacology Reproductive Techniques, Assisted |
Title | Bioinspired l‑Proline Oligomers for the Cryopreservation of Oocytes via Controlling Ice Growth |
URI | http://dx.doi.org/10.1021/acsami.0c02719 https://www.ncbi.nlm.nih.gov/pubmed/32227894 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA6iFz34fj8IKHiKNmlSm6MuPsEH6MLe6iRNdXHZilsFPfkX_Iv-EiftrrouoveUlsmk3zczmW8I2eBaGRlYxZxOFZMQBQwkCIa-w6XNOMTgG4VPz6KjujxpqMZXvuNnBV_wbbAdPwonsBhAeX3PEbGDJ8OToNpl758bhaK8rIgRuWQxIlZPnnHgeQ9CttMHQn10soSVg4lK46hTqhH62yR3W4-F2bIvg1qNf37xJBnvcku6WznDFBly7Wky9k1xcIZc7zXzZttX111KW--vbxfl1B5Hz1vNm9znsCmyWIqskNYenssJKb2sLc0zep7bZ-Sm9KkJtFZdcvft7PTYOnqIAX1xO0vqB_tXtSPWHbLAINRRwQRkyiGma18_cyYGzjUYYWKeBemOS0E7DS6OYmuRSoK1KtVhLJA1ItdMMxvOkeF23nYLhGaZAuQjikfOa8AYMAh8IjQ6zkBapRbJOpom6R6STlLWvwVPKnslXXstks3e3iT3leLGryvnq637XBdWnb1y6V9vWiajwkfPgWRCrJDh4uHRrSLFKMxa6V0fDDvM4A |
link.rule.ids | 315,783,787,2772,27088,27936,27937,57066,57116 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELUqOAAH9n2zBBInQ-zYaXyEilJ2JEDiFmzHgQrUoDZFKid-gV_kSxgnDauQ4Bo5yWjs5L3xeN4gtE6l0NwzglgZC8JV4BHFFSOwdig3CVWhcoXCxydB45IfXImrCtoqa2HAiA48qZMn8T_UBegWXHMdcTwDcZST-RwUVUBLx4Vq5-WvN_BZfmYRAnNOQgCuUqXxx_0Oi0znCxZ9YZU5utTH0Nm7XfmhkrvNbqY3zdM3ycZ_GD6ORvtME28XS2MCVWxrEo180h-cQtc7zbTZcrl2G-P71-eXs7yHj8Wn982b1O1oY-C0GDgirrV7eb-Ucg8Xpwk-TU0PmCp-bCpcK468u-J2vG8s3oPwPrudRpf13Ytag_RbLhDlyyAjTCXCAsJLl02zOlSUSqWZDmnixVUbK2mlsmEQGgPEUhkjYumHDDgkMM84Mf4MGmilLTuHcJIIBexE0MA6RRitNMAg87UME8WNEPNoDVwT9T-ZTpRnwxmNCn9FfX_No41yiqKHQn_j15GzxQy-j_OLOl--8Kc3raKhxsXxUXS0f3K4iIaZi6s9ThhbQgNZu2uXgXxkeiVfcG9X99VF |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYQSIgeKJQ-tjxqCaSeTGPHDvERFpbdFhakLhK31HbsdsVqg0hAghN_gb_IL2HsZBEPVWqvkeOM7HHmG8_MNwhtUCk0j4wgVuaCcJVERHHFCOgO5cZRlSpfKHzYT7on_PupOG3quH0tDAhRwkxlCOL7U32eu4ZhgH6D574rTmTAl_JUnzNii4bY7Hb75-T3m8Qs5C2Cc85JCsZrwtT46n1vj0z5zB49Q5bBwnTeosGjbCGx5GzzstKb5uYFbeN_Cr-A5hvEibdrFVlEU3b8Dr15wkO4hH7tDIvh2MfcbY5H97d3x6GXj8VHo-Hvwt9sY8C2GLAibl9ch74pk7tcXDh8VJhrQKz4aqhwu05990XuuGcs3gc3v_rzHp109gbtLmlaLxAVy6QiTDlhwdJLH1WzOlWUSqWZTqmL8i2bK2mlsmmSGgMAUxkjchmnDLAkINDcmfgDmh4XY_sJYeeEApQiaGI9M4xWGswhi7VMneJGiBZah6XJmqNTZiEqzmhWr1fWrFcLfZ1sU3Ze83D8deTHehcfx8V1vS___E9f-oJmj3c72UGv_2MZzTHvXkecMLaCpquLS7sKGKTSa0HnHgBAede_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bioinspired+l%E2%80%91Proline+Oligomers+for+the+Cryopreservation+of+Oocytes+via+Controlling+Ice+Growth&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Qin%2C+Qingyuan&rft.au=Zhao%2C+Lishan&rft.au=Liu%2C+Zhang&rft.au=Liu%2C+Tao&rft.date=2020-04-22&rft.pub=American+Chemical+Society&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=12&rft.issue=16&rft.spage=18352&rft.epage=18362&rft_id=info:doi/10.1021%2Facsami.0c02719&rft.externalDocID=a108946158 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |