Pyrolysis temperature-dependent carbon retention and stability of biochar with participation of calcium: Implications to carbon sequestration

Converting biomass waste into biochar by slow pyrolysis with subsequent soil amendment is a prospective approach with multiple environmental benefits including soil contamination remediation, soil amelioration and carbon sequestration. This study selected cow manure as precursor to produce biochar u...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental pollution (1987) Vol. 287; p. 117566
Main Authors Nan, Hongyan, Yin, Jianxiang, Yang, Fan, Luo, Ying, Zhao, Ling, Cao, Xinde
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Converting biomass waste into biochar by slow pyrolysis with subsequent soil amendment is a prospective approach with multiple environmental benefits including soil contamination remediation, soil amelioration and carbon sequestration. This study selected cow manure as precursor to produce biochar under 300 °C, 400 °C, 500 °C and 600 °C, and a remarkable promotion of carbon (C) retention in biochar by incorporation of exogenous Ca was achieved at all investigated pyrolysis temperatures. The C retention was elevated from 49.2 to 68.3% of pristine biochars to 66.1–79.7% of Ca-composite biochars. It was interesting that extent of this improvement increased gradually with rising of pyrolysis temperature, i.e., doping Ca in biomass promoted pyrolytic C retention in biochar by 16.6%, 23.4%, 29.1% and 31.1% for 300 °C, 400 °C, 500 °C and 600 °C, respectively. Thermogravimetric-mass spectrometer (TG-MS) and X-ray photoelectron spectroscopy (XPS) showed that Ca catalyzed thermal-chemical reactions and simultaneously suppressed the release of small organic molecular substances (C2–C7) via physical blocking (CaO, CaCO3, and CaClOH) and chemical bonding (CO and OC–O). The catalyzation mainly occurred at 200–400 °C, while the suppression was more prominent at higher temperatures. Raman spectra and 2D FTIR analysis on biochar microstructure showed that presence of Ca had negative influence on carbon aromatization and thus weakened biochar's stability, while increasing pyrolysis temperature enhanced the stability of carbon structure. Finally, with integrating “C retention” during pyrolysis and “C stability” in biochar, the maximum C sequestration (56.3%) was achieved at 600 °C with the participation of Ca. The study highlights the importance of both Ca and pyrolysis temperature in enhancing biochar's capacity of sequestrating C. [Display omitted] •Exogenous mineral Ca in pyrolysis could promote more carbon retained in biochar.•Extent of this promotion increased gradually with rising of pyrolysis temperature.•Biochar stability was determined by interaction of Ca and pyrolysis temperature.•Ca suppressed release of small molecules via physical blocking/chemical bonding.•Optimal carbon sequestration (56.3%) was achieved at 600 °C with Ca participation.
AbstractList Converting biomass waste into biochar by slow pyrolysis with subsequent soil amendment is a prospective approach with multiple environmental benefits including soil contamination remediation, soil amelioration and carbon sequestration. This study selected cow manure as precursor to produce biochar under 300 °C, 400 °C, 500 °C and 600 °C, and a remarkable promotion of carbon (C) retention in biochar by incorporation of exogenous Ca was achieved at all investigated pyrolysis temperatures. The C retention was elevated from 49.2 to 68.3% of pristine biochars to 66.1–79.7% of Ca-composite biochars. It was interesting that extent of this improvement increased gradually with rising of pyrolysis temperature, i.e., doping Ca in biomass promoted pyrolytic C retention in biochar by 16.6%, 23.4%, 29.1% and 31.1% for 300 °C, 400 °C, 500 °C and 600 °C, respectively. Thermogravimetric-mass spectrometer (TG-MS) and X-ray photoelectron spectroscopy (XPS) showed that Ca catalyzed thermal-chemical reactions and simultaneously suppressed the release of small organic molecular substances (C₂–C₇) via physical blocking (CaO, CaCO₃, and CaClOH) and chemical bonding (CO and OC–O). The catalyzation mainly occurred at 200–400 °C, while the suppression was more prominent at higher temperatures. Raman spectra and 2D FTIR analysis on biochar microstructure showed that presence of Ca had negative influence on carbon aromatization and thus weakened biochar's stability, while increasing pyrolysis temperature enhanced the stability of carbon structure. Finally, with integrating “C retention” during pyrolysis and “C stability” in biochar, the maximum C sequestration (56.3%) was achieved at 600 °C with the participation of Ca. The study highlights the importance of both Ca and pyrolysis temperature in enhancing biochar's capacity of sequestrating C.
Converting biomass waste into biochar by slow pyrolysis with subsequent soil amendment is a prospective approach with multiple environmental benefits including soil contamination remediation, soil amelioration and carbon sequestration. This study selected cow manure as precursor to produce biochar under 300 °C, 400 °C, 500 °C and 600 °C, and a remarkable promotion of carbon (C) retention in biochar by incorporation of exogenous Ca was achieved at all investigated pyrolysis temperatures. The C retention was elevated from 49.2 to 68.3% of pristine biochars to 66.1-79.7% of Ca-composite biochars. It was interesting that extent of this improvement increased gradually with rising of pyrolysis temperature, i.e., doping Ca in biomass promoted pyrolytic C retention in biochar by 16.6%, 23.4%, 29.1% and 31.1% for 300 °C, 400 °C, 500 °C and 600 °C, respectively. Thermogravimetric-mass spectrometer (TG-MS) and X-ray photoelectron spectroscopy (XPS) showed that Ca catalyzed thermal-chemical reactions and simultaneously suppressed the release of small organic molecular substances (C2-C7) via physical blocking (CaO, CaCO3, and CaClOH) and chemical bonding (CO and OC-O). The catalyzation mainly occurred at 200-400 °C, while the suppression was more prominent at higher temperatures. Raman spectra and 2D FTIR analysis on biochar microstructure showed that presence of Ca had negative influence on carbon aromatization and thus weakened biochar's stability, while increasing pyrolysis temperature enhanced the stability of carbon structure. Finally, with integrating "C retention" during pyrolysis and "C stability" in biochar, the maximum C sequestration (56.3%) was achieved at 600 °C with the participation of Ca. The study highlights the importance of both Ca and pyrolysis temperature in enhancing biochar's capacity of sequestrating C.Converting biomass waste into biochar by slow pyrolysis with subsequent soil amendment is a prospective approach with multiple environmental benefits including soil contamination remediation, soil amelioration and carbon sequestration. This study selected cow manure as precursor to produce biochar under 300 °C, 400 °C, 500 °C and 600 °C, and a remarkable promotion of carbon (C) retention in biochar by incorporation of exogenous Ca was achieved at all investigated pyrolysis temperatures. The C retention was elevated from 49.2 to 68.3% of pristine biochars to 66.1-79.7% of Ca-composite biochars. It was interesting that extent of this improvement increased gradually with rising of pyrolysis temperature, i.e., doping Ca in biomass promoted pyrolytic C retention in biochar by 16.6%, 23.4%, 29.1% and 31.1% for 300 °C, 400 °C, 500 °C and 600 °C, respectively. Thermogravimetric-mass spectrometer (TG-MS) and X-ray photoelectron spectroscopy (XPS) showed that Ca catalyzed thermal-chemical reactions and simultaneously suppressed the release of small organic molecular substances (C2-C7) via physical blocking (CaO, CaCO3, and CaClOH) and chemical bonding (CO and OC-O). The catalyzation mainly occurred at 200-400 °C, while the suppression was more prominent at higher temperatures. Raman spectra and 2D FTIR analysis on biochar microstructure showed that presence of Ca had negative influence on carbon aromatization and thus weakened biochar's stability, while increasing pyrolysis temperature enhanced the stability of carbon structure. Finally, with integrating "C retention" during pyrolysis and "C stability" in biochar, the maximum C sequestration (56.3%) was achieved at 600 °C with the participation of Ca. The study highlights the importance of both Ca and pyrolysis temperature in enhancing biochar's capacity of sequestrating C.
Converting biomass waste into biochar by slow pyrolysis with subsequent soil amendment is a prospective approach with multiple environmental benefits including soil contamination remediation, soil amelioration and carbon sequestration. This study selected cow manure as precursor to produce biochar under 300 °C, 400 °C, 500 °C and 600 °C, and a remarkable promotion of carbon (C) retention in biochar by incorporation of exogenous Ca was achieved at all investigated pyrolysis temperatures. The C retention was elevated from 49.2 to 68.3% of pristine biochars to 66.1–79.7% of Ca-composite biochars. It was interesting that extent of this improvement increased gradually with rising of pyrolysis temperature, i.e., doping Ca in biomass promoted pyrolytic C retention in biochar by 16.6%, 23.4%, 29.1% and 31.1% for 300 °C, 400 °C, 500 °C and 600 °C, respectively. Thermogravimetric-mass spectrometer (TG-MS) and X-ray photoelectron spectroscopy (XPS) showed that Ca catalyzed thermal-chemical reactions and simultaneously suppressed the release of small organic molecular substances (C2–C7) via physical blocking (CaO, CaCO3, and CaClOH) and chemical bonding (CO and OC–O). The catalyzation mainly occurred at 200–400 °C, while the suppression was more prominent at higher temperatures. Raman spectra and 2D FTIR analysis on biochar microstructure showed that presence of Ca had negative influence on carbon aromatization and thus weakened biochar's stability, while increasing pyrolysis temperature enhanced the stability of carbon structure. Finally, with integrating “C retention” during pyrolysis and “C stability” in biochar, the maximum C sequestration (56.3%) was achieved at 600 °C with the participation of Ca. The study highlights the importance of both Ca and pyrolysis temperature in enhancing biochar's capacity of sequestrating C. [Display omitted] •Exogenous mineral Ca in pyrolysis could promote more carbon retained in biochar.•Extent of this promotion increased gradually with rising of pyrolysis temperature.•Biochar stability was determined by interaction of Ca and pyrolysis temperature.•Ca suppressed release of small molecules via physical blocking/chemical bonding.•Optimal carbon sequestration (56.3%) was achieved at 600 °C with Ca participation.
ArticleNumber 117566
Author Yin, Jianxiang
Luo, Ying
Yang, Fan
Zhao, Ling
Cao, Xinde
Nan, Hongyan
Author_xml – sequence: 1
  givenname: Hongyan
  surname: Nan
  fullname: Nan, Hongyan
  organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
– sequence: 2
  givenname: Jianxiang
  surname: Yin
  fullname: Yin, Jianxiang
  organization: China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China
– sequence: 3
  givenname: Fan
  surname: Yang
  fullname: Yang, Fan
  organization: School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
– sequence: 4
  givenname: Ying
  surname: Luo
  fullname: Luo, Ying
  organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
– sequence: 5
  givenname: Ling
  surname: Zhao
  fullname: Zhao, Ling
  email: wszhaoling@sjtu.edu.cn
  organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
– sequence: 6
  givenname: Xinde
  surname: Cao
  fullname: Cao, Xinde
  organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
BookMark eNqNUUtv1DAQtlCR2Bb-AYccuWSxEz-SHpBQxaNSJTjA2XLsiTorxw62t2h_BP-52YReOACSJXtmvofG3yW5CDEAIa8Z3TPK5NvDHsLDHP2-oQ3bM6aElM_IjnWqrSVv-AXZ0Ub2teI9e0Eucz5QSnnbtjvy6-spRX_KmKsC0wzJlGOC2sEMwUEolTVpiKFKUJYKl5cJrsrFDOixnKo4VgNGe29S9RPLfTWbVNDibFbsMrXGWzxO19XtNHu0a3_xik_CGX4cIZe0Dl6S56PxGV79vq_I948fvt18ru--fLq9eX9Xm7YXpR4Vt9yB480gqATqjHC8UxT6oR-tGrjixjFJpQIK5wMjb1oqm16a1kpor8ibTXdOcbXXE2YL3psA8Zh1IwTrleh49x9QzpnoOy4W6PUGtSnmnGDUFsu617Iees2oPselD3qLS5_j0ltcC5n_QZ4TTiad_kV7t9Fg-a4HhKSzRQgWHCawRbuIfxd4BHCkuBM
CitedBy_id crossref_primary_10_1016_j_chemosphere_2024_143204
crossref_primary_10_1016_j_energy_2023_130012
crossref_primary_10_1016_j_scitotenv_2022_161039
crossref_primary_10_1016_j_eti_2023_103413
crossref_primary_10_1007_s42773_024_00321_6
crossref_primary_10_1016_j_jece_2024_111959
crossref_primary_10_1016_j_conbuildmat_2023_131030
crossref_primary_10_1038_s43017_022_00306_8
crossref_primary_10_3390_agronomy13092361
crossref_primary_10_1016_j_scitotenv_2023_162210
crossref_primary_10_1016_j_cej_2024_152567
crossref_primary_10_1016_j_biteb_2025_102034
crossref_primary_10_1080_10643389_2023_2290947
crossref_primary_10_1016_j_energy_2024_133037
crossref_primary_10_1016_j_envpol_2024_125030
crossref_primary_10_1016_j_chemosphere_2021_133427
crossref_primary_10_3390_app14052061
crossref_primary_10_1007_s11270_023_06130_0
crossref_primary_10_1016_j_psep_2023_03_034
crossref_primary_10_3390_agriculture14122222
crossref_primary_10_1016_j_chemosphere_2024_143493
crossref_primary_10_35633_inmateh_72_03
crossref_primary_10_3390_agronomy13071676
crossref_primary_10_3390_agronomy15010144
crossref_primary_10_3390_ijerph20010867
crossref_primary_10_3390_molecules28093950
crossref_primary_10_1016_j_chemosphere_2024_141746
crossref_primary_10_1016_j_envres_2022_113974
crossref_primary_10_1016_j_isci_2025_111915
crossref_primary_10_1016_j_jenvman_2024_120165
crossref_primary_10_1016_j_jaap_2025_106961
crossref_primary_10_1016_j_psep_2024_10_118
crossref_primary_10_1016_j_ijhydene_2025_03_108
crossref_primary_10_1016_j_jclepro_2022_131571
crossref_primary_10_1016_j_jaap_2022_105778
crossref_primary_10_1016_j_conbuildmat_2022_128116
crossref_primary_10_1016_j_scitotenv_2022_154845
crossref_primary_10_3390_su13169267
crossref_primary_10_3390_technologies13030100
crossref_primary_10_1007_s12155_025_10819_x
crossref_primary_10_1016_j_biortech_2022_127694
crossref_primary_10_3390_environments10010004
crossref_primary_10_3390_separations10100519
crossref_primary_10_1007_s43615_023_00294_x
crossref_primary_10_1016_j_wasman_2023_06_023
crossref_primary_10_1007_s13399_024_06464_7
crossref_primary_10_1016_j_seppur_2025_131420
crossref_primary_10_3390_su15097158
crossref_primary_10_1016_j_biortech_2021_125555
crossref_primary_10_1016_j_chemosphere_2022_133981
crossref_primary_10_1007_s11356_022_22355_8
crossref_primary_10_3390_life15020317
crossref_primary_10_1016_j_envres_2025_121023
crossref_primary_10_1007_s44246_024_00186_1
crossref_primary_10_1016_j_chemosphere_2022_135240
crossref_primary_10_1016_j_cej_2023_146370
crossref_primary_10_3390_agronomy14081861
crossref_primary_10_1016_j_scp_2023_101097
crossref_primary_10_1016_j_jenvman_2023_119586
crossref_primary_10_1016_j_jhazmat_2021_127333
crossref_primary_10_1016_j_jenvman_2023_119669
crossref_primary_10_1016_j_biombioe_2024_107531
crossref_primary_10_1016_j_rineng_2024_102433
crossref_primary_10_1016_j_scitotenv_2021_152112
crossref_primary_10_1016_j_scitotenv_2024_170266
crossref_primary_10_1016_j_psep_2024_03_037
crossref_primary_10_1016_j_earscirev_2022_104215
crossref_primary_10_3390_molecules30071435
crossref_primary_10_1016_j_cej_2024_154196
crossref_primary_10_1016_j_scitotenv_2022_156081
crossref_primary_10_3390_su16177278
crossref_primary_10_1016_j_cej_2021_133178
crossref_primary_10_1007_s42773_024_00356_9
crossref_primary_10_1016_j_jwpe_2024_105509
crossref_primary_10_1016_j_ecoenv_2022_113598
crossref_primary_10_1016_j_watres_2023_119606
crossref_primary_10_1016_j_molstruc_2023_137397
crossref_primary_10_3390_molecules29235712
Cites_doi 10.1016/S0146-6380(02)00062-1
10.1021/es501885n
10.1021/ef201098n
10.1021/ef100977d
10.1016/j.chemosphere.2019.05.225
10.1016/j.cej.2014.04.053
10.1021/acs.est.5b04536
10.1021/es8002684
10.1016/j.combustflame.2006.07.006
10.1021/ef00032a004
10.1016/j.psep.2017.11.006
10.1016/j.jaap.2015.01.010
10.1016/j.wasman.2019.03.025
10.1021/acs.chemrev.6b00647
10.1016/j.fuel.2019.116629
10.1021/es902266r
10.1021/es9031419
10.1016/j.scitotenv.2021.145953
10.1021/es403711y
10.1016/j.jclepro.2020.120162
10.1016/j.watres.2020.116390
10.1016/j.biortech.2015.05.042
10.1016/j.apsoil.2020.103674
10.1016/j.biortech.2010.01.112
10.1016/j.jaap.2004.07.003
10.1016/S1005-9040(06)60155-4
10.1016/j.carbon.2017.04.078
10.1016/j.geoderma.2005.01.007
10.1016/j.renene.2019.12.091
10.1016/j.soilbio.2011.04.022
10.1021/es103752u
10.1016/j.orggeochem.2011.09.002
10.1016/j.carbon.2013.03.033
10.1021/acs.est.8b00306
10.2134/jeq2001.301180x
10.1021/ef000090t
10.1021/es302971d
10.1021/acs.est.9b03261
10.1016/j.biortech.2009.03.068
10.1016/S0016-2361(02)00011-X
10.1016/j.proci.2016.06.167
10.1016/j.jaap.2006.08.006
10.1021/acs.est.7b05203
10.1021/ef000288d
10.1016/j.geoderma.2007.08.010
10.1371/journal.pone.0115373
10.2136/sssaj2005.0120
10.1016/j.carbon.2014.09.005
10.1002/bbb.92
10.1016/j.conbuildmat.2014.09.004
10.1016/j.fuel.2006.01.008
10.1016/0960-1481(94)90058-2
10.1021/acs.est.6b06300
10.1016/j.biombioe.2004.04.002
10.1016/j.chemosphere.2016.12.041
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright © 2021 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright © 2021 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.envpol.2021.117566
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Environmental Sciences
EISSN 1873-6424
ExternalDocumentID 10_1016_j_envpol_2021_117566
S0269749121011489
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
4.4
457
5GY
5VS
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAB
SCC
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
TWZ
WH7
XPP
ZMT
~G-
29G
53G
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLV
HMC
HVGLF
HZ~
OHT
R2-
SEN
SEW
SSH
VH1
WUQ
XJT
XOL
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-a395t-f74c4ded42b506e0da5d4870e9b9fc7b474ad16067e0ee0eeef42306296a3c6e3
IEDL.DBID .~1
ISSN 0269-7491
1873-6424
IngestDate Fri Jul 11 08:01:32 EDT 2025
Mon Jul 21 09:55:36 EDT 2025
Tue Jul 01 03:15:11 EDT 2025
Thu Apr 24 22:50:42 EDT 2025
Sat Apr 13 16:39:49 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Carbon stability
Pyrolysis temperature
Mineral Ca
Biochar
Carbon retention
Carbon sequestration
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a395t-f74c4ded42b506e0da5d4870e9b9fc7b474ad16067e0ee0eeef42306296a3c6e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2544159845
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2551975848
proquest_miscellaneous_2544159845
crossref_citationtrail_10_1016_j_envpol_2021_117566
crossref_primary_10_1016_j_envpol_2021_117566
elsevier_sciencedirect_doi_10_1016_j_envpol_2021_117566
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-15
PublicationDateYYYYMMDD 2021-10-15
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-15
  day: 15
PublicationDecade 2020
PublicationTitle Environmental pollution (1987)
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Louchouarn (bib32) 2012; 46
He, He, Wang, Zhang, Xu, Wang, Kong, Zhou, Hu (bib16) 2020; 155
Wornat, Nelson (bib50) 1992; 6
Cao, Ma, Liang, Gao, Harris (bib7) 2011; 45
Roberts, Gloy, Joseph, Scott, Lehmann (bib40) 2010; 44
Knicker, Muffler, Hilscher (bib24) 2007; 142
Li, Liang, Jin, Zhou, Li, Wu, Pan (bib28) 2017; 171
Papageorgiou, Azzi, Enell, Sundberg (bib37) 2021; 776
Jiang, Feng, Wang, Xiao, Wang, Xie (bib19) 2014; 72
Patwardhan, Satrio, Brown, Shanks (bib42) 2010; 101
Ren, Tang, Li (bib39) 2018; 115
Yang, Rong, Chen, Zheng, Dong, Liang (bib57) 2006; 146
Baldock, Smernik (bib2) 2002; 33
Zhang, Xu, Zhang, Zhao, Cao (bib60) 2019; 232
Yang, Xu, Yu, Gao, Xu, Zhao, Cao (bib56) 2018; 52
Yu, Dehkhoda, Ellis (bib58) 2010; 25
Fang, Chen, Lin, Guang (bib13) 2013; 48
McDonald-Wharry, Manley-Harris, Pickering (bib33) 2013; 59
Jiang, Ren, Guo, Guo, Li (bib20) 2019; 53
Zhao, Zheng, Cao (bib63) 2014; 250
Li, Bai, Dong, Chen, Yang, Wang, Chen (bib27) 2020; 263
Rumpel, Alexis, Chabbi, Chaplot, Rasse, Valentin, Mariotti (bib41) 2006; 130
Pereira, Kaal, Arbestain, Lorenzo, Aitkenhead, Hedley, Macías, Hindmarsh, Maciá-Agulló (bib38) 2011; 42
Harvey, Herbert, Kuo, Louchouarn (bib15) 2012; 46
Tian, Yu, Mckenzie, Hayashi, Li (bib44) 2006; 85
Chen, Zhou, Zhu (bib8) 2008; 42
Demirbas (bib12) 2004; 72
Xiao, Chen (bib53) 2017; 51
Zhou, Liang, Han, Huang, Yang (bib64) 2019; 88
Wu, Quyn, Li (bib52) 2002; 81
Beaumont (bib3) 1985; 17
Bru, Blin, Julbe, Volle (bib6) 2007; 78
Venglovsky, Sasakova, Placha (bib47) 2009; 100
Das, Ganesh, Wangikar (bib11) 2004; 27
Tsaneva, Kwapinski, Teng, Glowacki (bib45) 2014; 80
Chen, Wang, Duan, Wang, Ren, Ho (bib9) 2020; 187
Tsubouchi, Ohshima, Xu, Ohtsuka (bib46) 2001; 15
Zolin, Jensen, Jensen, Frandsen, Dam-Johansen (bib65) 2001; 15
Zhao, Cao, Zhen, Kan, Zhou (bib62) 2014; 9
Mikutta, Kleber, Kaiser, Jahn (bib34) 2005; 69
Dilly, Pfeiffer, Lehmann, Rillig, Thies, Masiello, Hockaday, Crowley (bib10) 2011; 43
Babu (bib1) 2008; 2
Yuan, Lu, Huang, Zhao, Kobayashi, Chen (bib59) 2015; 112
Johansen, Jakobsen, Frandsen, Glarborg (bib22) 2011; 25
Nan, Zhao, Yang, Liu, Xiao, Cao, Qiu (bib36) 2020; 255
Yang, Lu, Lin, Yang, Yao (bib55) 2006; 4
Bi, Hong, Yang, Yu, Fang, Bai, Liu, Gao, Yan, Wang, Wang (bib4) 2020; 150
Hu, Jiang, Wang, Su, Sun, Sun, Xu, He, Xiang (bib17) 2015; 192
Keiluweit, Nico, Johnson, Kleber (bib23) 2010; 44
Woolf, Amonette, Street-Perrott, Lehmann, Joseph (bib49) 2010; 1
Liu, Ding, Wang, Liu, Jiang (bib31) 2016; 50
Liu, Li, Jiang, Yu (bib30) 2017; 117
Williams, Horne (bib51) 1994; 4
Withers, Clay, Breeze (bib48) 2001; 30
Yaman (bib54) 2004; 35
Guizani, Haddad, Limousy, Jeguirim (bib14) 2017; 119
Huang, Fang, Zhang, Tang (bib18) 2018; 52
Li, Cao, Zhao, Wang, Ding (bib26) 2014; 48
Leng, Wang, Gong, Zhang, Zhang, Xu (bib25) 2017; 36
Huang (10.1016/j.envpol.2021.117566_bib18) 2018; 52
Guizani (10.1016/j.envpol.2021.117566_bib14) 2017; 119
Hu (10.1016/j.envpol.2021.117566_bib17) 2015; 192
Yang (10.1016/j.envpol.2021.117566_bib56) 2018; 52
Pereira (10.1016/j.envpol.2021.117566_bib38) 2011; 42
Tian (10.1016/j.envpol.2021.117566_bib44) 2006; 85
Dilly (10.1016/j.envpol.2021.117566_bib10) 2011; 43
Yu (10.1016/j.envpol.2021.117566_bib58) 2010; 25
Louchouarn (10.1016/j.envpol.2021.117566_bib32) 2012; 46
Venglovsky (10.1016/j.envpol.2021.117566_bib47) 2009; 100
Chen (10.1016/j.envpol.2021.117566_bib9) 2020; 187
Demirbas (10.1016/j.envpol.2021.117566_bib12) 2004; 72
Zhang (10.1016/j.envpol.2021.117566_bib60) 2019; 232
He (10.1016/j.envpol.2021.117566_bib16) 2020; 155
Jiang (10.1016/j.envpol.2021.117566_bib20) 2019; 53
McDonald-Wharry (10.1016/j.envpol.2021.117566_bib33) 2013; 59
Fang (10.1016/j.envpol.2021.117566_bib13) 2013; 48
Williams (10.1016/j.envpol.2021.117566_bib51) 1994; 4
Yuan (10.1016/j.envpol.2021.117566_bib59) 2015; 112
Zolin (10.1016/j.envpol.2021.117566_bib65) 2001; 15
Knicker (10.1016/j.envpol.2021.117566_bib24) 2007; 142
Beaumont (10.1016/j.envpol.2021.117566_bib3) 1985; 17
Wornat (10.1016/j.envpol.2021.117566_bib50) 1992; 6
Babu (10.1016/j.envpol.2021.117566_bib1) 2008; 2
Bru (10.1016/j.envpol.2021.117566_bib6) 2007; 78
Rumpel (10.1016/j.envpol.2021.117566_bib41) 2006; 130
Yang (10.1016/j.envpol.2021.117566_bib57) 2006; 146
Jiang (10.1016/j.envpol.2021.117566_bib19) 2014; 72
Nan (10.1016/j.envpol.2021.117566_bib36) 2020; 255
Johansen (10.1016/j.envpol.2021.117566_bib22) 2011; 25
Yaman (10.1016/j.envpol.2021.117566_bib54) 2004; 35
Wu (10.1016/j.envpol.2021.117566_bib52) 2002; 81
Liu (10.1016/j.envpol.2021.117566_bib31) 2016; 50
Tsubouchi (10.1016/j.envpol.2021.117566_bib46) 2001; 15
Baldock (10.1016/j.envpol.2021.117566_bib2) 2002; 33
Li (10.1016/j.envpol.2021.117566_bib28) 2017; 171
Liu (10.1016/j.envpol.2021.117566_bib30) 2017; 117
Tsaneva (10.1016/j.envpol.2021.117566_bib45) 2014; 80
Leng (10.1016/j.envpol.2021.117566_bib25) 2017; 36
Li (10.1016/j.envpol.2021.117566_bib26) 2014; 48
Bi (10.1016/j.envpol.2021.117566_bib4) 2020; 150
Chen (10.1016/j.envpol.2021.117566_bib8) 2008; 42
Mikutta (10.1016/j.envpol.2021.117566_bib34) 2005; 69
Das (10.1016/j.envpol.2021.117566_bib11) 2004; 27
Papageorgiou (10.1016/j.envpol.2021.117566_bib37) 2021; 776
Xiao (10.1016/j.envpol.2021.117566_bib53) 2017; 51
Cao (10.1016/j.envpol.2021.117566_bib7) 2011; 45
Harvey (10.1016/j.envpol.2021.117566_bib15) 2012; 46
Woolf (10.1016/j.envpol.2021.117566_bib49) 2010; 1
Zhao (10.1016/j.envpol.2021.117566_bib62) 2014; 9
Li (10.1016/j.envpol.2021.117566_bib27) 2020; 263
Yang (10.1016/j.envpol.2021.117566_bib55) 2006; 4
Ren (10.1016/j.envpol.2021.117566_bib39) 2018; 115
Patwardhan (10.1016/j.envpol.2021.117566_bib42) 2010; 101
Withers (10.1016/j.envpol.2021.117566_bib48) 2001; 30
Roberts (10.1016/j.envpol.2021.117566_bib40) 2010; 44
Zhou (10.1016/j.envpol.2021.117566_bib64) 2019; 88
Zhao (10.1016/j.envpol.2021.117566_bib63) 2014; 250
Keiluweit (10.1016/j.envpol.2021.117566_bib23) 2010; 44
References_xml – volume: 2
  start-page: 393
  year: 2008
  end-page: 414
  ident: bib1
  article-title: Biomass pyrolysis: a state‐of‐the‐art review
  publication-title: Biofuel Bioprod. Bior.
– volume: 6
  start-page: 136
  year: 1992
  end-page: 142
  ident: bib50
  article-title: Effects of ion-exchanged calcium on brown coal tar composition as determined by Fourier transform infrared spectroscopy
  publication-title: Energy Fuel.
– volume: 50
  start-page: 2602
  year: 2016
  end-page: 2609
  ident: bib31
  article-title: Pyrolytic temperature dependent and ash catalyzed formation of sludge char with ultra-high adsorption to 1-Naphthol
  publication-title: Environ. Sci. Technol.
– volume: 232
  start-page: 273
  year: 2019
  end-page: 280
  ident: bib60
  article-title: Pyrolysis-temperature depended quinone and carbonyl groups as the electron accepting sites in barley grass derived biochar
  publication-title: Chemosphere
– volume: 45
  start-page: 4884
  year: 2011
  end-page: 4889
  ident: bib7
  article-title: Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar
  publication-title: Environ. Sci. Technol.
– volume: 130
  year: 2006
  ident: bib41
  article-title: Black carbon contribution to soil organic matter composition in tropical sloping land under slash and burn agriculture
  publication-title: Geoderma
– volume: 171
  start-page: 66
  year: 2017
  end-page: 73
  ident: bib28
  article-title: The role of ash content on bisphenol A sorption to biochars derived from different agricultural wastes
  publication-title: Chemosphere
– volume: 117
  start-page: 6397
  year: 2017
  end-page: 6398
  ident: bib30
  article-title: Fates of chemical elements in biomass during its pyrolysis
  publication-title: Chem. Rev.
– volume: 53
  start-page: 13841
  year: 2019
  end-page: 13849
  ident: bib20
  article-title: Speciation transformation of phosphorus in poultry litter during pyrolysis: insights from X-ray diffraction, fourier transform infrared, and solid-state NMR spectroscopy
  publication-title: Environ. Sci. Technol.
– volume: 25
  start-page: 337
  year: 2010
  end-page: 344
  ident: bib58
  article-title: Development of biochar-based catalyst for transesterification of canola oil
  publication-title: Energy Fuel.
– volume: 250
  start-page: 240
  year: 2014
  end-page: 247
  ident: bib63
  article-title: Distribution and evolution of organic matter phases during biochar formation and their importance in carbon loss and pore structure
  publication-title: Chem. Eng. J.
– volume: 33
  start-page: 1093
  year: 2002
  end-page: 1109
  ident: bib2
  article-title: Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood
  publication-title: Org. Geochem.
– volume: 48
  start-page: 11211
  year: 2014
  end-page: 11217
  ident: bib26
  article-title: Effects of mineral additives on biochar formation: carbon retention, stability, and properties
  publication-title: Environ. Sci. Technol.
– volume: 52
  start-page: 8321
  year: 2018
  end-page: 8329
  ident: bib56
  article-title: Kaolinite enhances the stability of the dissolvable and undissolvable fractions of biochar via different mechanisms
  publication-title: Environ. Sci. Technol.
– volume: 263
  start-page: 116629
  year: 2020
  ident: bib27
  article-title: Influence of additives on lignin agglomeration and pyrolysis behavior
  publication-title: Fuel
– volume: 44
  start-page: 1247
  year: 2010
  end-page: 1253
  ident: bib23
  article-title: Dynamic molecular structure of plant biomass-derived black carbon (biochar)
  publication-title: Environ. Sci. Technol.
– volume: 81
  start-page: 1033
  year: 2002
  end-page: 1039
  ident: bib52
  article-title: Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part III. The importance of the interactions between volatiles and char at high temperature
  publication-title: Fuel
– volume: 88
  start-page: 85
  year: 2019
  end-page: 95
  ident: bib64
  article-title: The influence of manure feedstock, slow pyrolysis, and hydrothermal temperature on manure thermochemical and combustion properties
  publication-title: Waste Manag.
– volume: 42
  start-page: 5137
  year: 2008
  end-page: 5143
  ident: bib8
  article-title: Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures
  publication-title: Environ. Sci. Technol.
– volume: 15
  start-page: 158
  year: 2001
  end-page: 162
  ident: bib46
  article-title: Enhancement of N
  publication-title: Energy Fuel.
– volume: 69
  start-page: 120
  year: 2005
  end-page: 135
  ident: bib34
  article-title: Review: organic matter removal from soils using hydrogen peroxide, sodium hypochlorite, and disodium peroxodisulfate
  publication-title: Soil Sci. Soc. Am. J.
– volume: 4
  start-page: 1
  year: 1994
  end-page: 13
  ident: bib51
  article-title: The role of metal salts in the pyrolysis of biomass
  publication-title: Renew. Energy
– volume: 52
  start-page: 3016
  year: 2018
  end-page: 3026
  ident: bib18
  article-title: Transformations of phosphorus speciation during (hydro)thermal treatments of animal manures
  publication-title: Environ. Sci. Technol.
– volume: 776
  start-page: 145953
  year: 2021
  ident: bib37
  article-title: Biochar produced from wood waste for soil remediation in Sweden: carbon sequestration and other environmental impacts
  publication-title: Sci. Total Environ.
– volume: 4
  start-page: 524
  year: 2006
  end-page: 532
  ident: bib55
  article-title: TG-FTIR study on corn straw pyrolysis-influence of minerals
  publication-title: Chem. Res. Chin. Univ.
– volume: 72
  start-page: 243
  year: 2004
  end-page: 248
  ident: bib12
  article-title: Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues
  publication-title: J. Anal. Appl. Pyrol.
– volume: 80
  start-page: 617
  year: 2014
  end-page: 628
  ident: bib45
  article-title: Assessment of the structural evolution of carbons from microwave plasma natural gas reforming and biomass pyrolysis using Raman spectroscopy
  publication-title: Carbon
– volume: 59
  start-page: 383
  year: 2013
  end-page: 405
  ident: bib33
  article-title: Carbonisation of biomass-derived chars and the thermal reduction of a graphene oxide sample studied using Raman spectroscopy
  publication-title: Carbon
– volume: 48
  start-page: 279
  year: 2013
  end-page: 288
  ident: bib13
  article-title: Aromatic and hydrophobic surfaces of wood-derived biochar enhance perchlorate adsorption via hydrogen bonding to oxygen-containing organic groups
  publication-title: Environ. Sci. Technol.
– volume: 150
  start-page: 213
  year: 2020
  end-page: 220
  ident: bib4
  article-title: Effect of hydraulic retention time on anaerobic co-digestion of cattle manure and food waste
  publication-title: Renew. Energy
– volume: 72
  start-page: 1
  year: 2014
  end-page: 6
  ident: bib19
  article-title: Fire performance of oak wood modified with N-methylol resin and methylolated guanylurea phosphate/boric acid-based fire retardant
  publication-title: Construct. Build. Mater.
– volume: 101
  start-page: 4646
  year: 2010
  end-page: 4655
  ident: bib42
  article-title: Influence of inorganic salts on the primary pyrolysis products of cellulose
  publication-title: Bioresour. Technol.
– volume: 35
  start-page: 651
  year: 2004
  end-page: 671
  ident: bib54
  article-title: Pyrolysis of biomass to produce fuels and chemical feedstocks
  publication-title: ChemInform
– volume: 1
  start-page: 1
  year: 2010
  end-page: 9
  ident: bib49
  article-title: Sustainable biochar to mitigate global climate change
  publication-title: Nat. Commun.
– volume: 27
  start-page: 445
  year: 2004
  end-page: 457
  ident: bib11
  article-title: Influence of pretreatment for deashing of sugarcane bagasse on pyrolysis products
  publication-title: Biomass Bioenergy
– volume: 119
  start-page: 519
  year: 2017
  end-page: 521
  ident: bib14
  article-title: New insights on the structural evolution of biomass char upon pyrolysis as revealed by the Raman spectroscopy and elemental analysis
  publication-title: Carbon
– volume: 44
  start-page: 827
  year: 2010
  end-page: 833
  ident: bib40
  article-title: Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential
  publication-title: Environ. Sci. Technol.
– volume: 51
  start-page: 5473
  year: 2017
  end-page: 5482
  ident: bib53
  article-title: A direct observation of the fine aromatic clusters and molecular structures of biochars
  publication-title: Environ. Sci. Technol.
– volume: 9
  start-page: 115373
  year: 2014
  ident: bib62
  article-title: Phosphorus-assisted biomass thermal conversion: reducing carbon loss and improving biochar stability
  publication-title: PloS One
– volume: 15
  start-page: 1110
  year: 2001
  end-page: 1122
  ident: bib65
  article-title: The influence of inorganic materials on the thermal deactivation of fuel chars
  publication-title: Energy Fuel.
– volume: 78
  start-page: 291
  year: 2007
  end-page: 300
  ident: bib6
  article-title: Pyrolysis of metal impregnated biomass: an innovative catalytic way to produce gas fuel
  publication-title: J. Anal. Appl. Pyrol.
– volume: 17
  start-page: 228
  year: 1985
  end-page: 239
  ident: bib3
  article-title: Flash pyrolysis products from beech wood
  publication-title: Wood Fiber Sci.
– volume: 46
  start-page: 10641
  year: 2012
  end-page: 10650
  ident: bib15
  article-title: Generalized two-dimensional perturbation correlation infrared spectroscopy reveals mechanisms for the development of surface charge and recalcitrance in plant-derived biochars
  publication-title: Environ. Sci. Technol.
– volume: 25
  start-page: 4961
  year: 2011
  end-page: 4971
  ident: bib22
  article-title: Release of K, Cl, and S during pyrolysis and combustion of high-chlorine biomass
  publication-title: Energy Fuel.
– volume: 42
  start-page: 1331
  year: 2011
  end-page: 1342
  ident: bib38
  article-title: Contribution to characterisation of biochar to estimate the labile fraction of carbon
  publication-title: Org. Geochem.
– volume: 30
  start-page: 180
  year: 2001
  end-page: 188
  ident: bib48
  article-title: Phosphorus transfer in runoff following application of fertilizer, manure, and sewage sludge
  publication-title: J. Environ. Qual.
– volume: 36
  start-page: 2263
  year: 2017
  end-page: 2270
  ident: bib25
  article-title: Effect of KCl and CaCl
  publication-title: Proc. Combust. Inst.
– volume: 192
  start-page: 23
  year: 2015
  end-page: 30
  ident: bib17
  article-title: Effects of inherent alkali and alkaline earth metallic species on biomass pyrolysis at different temperatures
  publication-title: Bioresour. Technol.
– volume: 255
  start-page: 120162
  year: 2020
  ident: bib36
  article-title: Different alkaline minerals interacted with biomass carbon during pyrolysis: which one improved biochar carbon sequestration?
  publication-title: J. Clean. Prod.
– volume: 115
  start-page: 70
  year: 2018
  end-page: 78
  ident: bib39
  article-title: Mineral additive enhanced carbon retention and stabilization in sewage sludge-derived biochar
  publication-title: Process Saf. Environ.
– volume: 187
  start-page: 116390
  year: 2020
  ident: bib9
  article-title: Production, properties, and catalytic applications of sludge derived biochar for environmental remediation
  publication-title: Water Res.
– volume: 85
  start-page: 1411
  year: 2006
  end-page: 1417
  ident: bib44
  article-title: Formation of NO
  publication-title: Fuel
– volume: 146
  start-page: 605
  year: 2006
  end-page: 611
  ident: bib57
  article-title: Influence of mineral matter on pyrolysis of palm oil wastes
  publication-title: Combust. Flame
– volume: 142
  start-page: 178
  year: 2007
  end-page: 196
  ident: bib24
  article-title: How useful is chemical oxidation with dichromate for the determination of "Black Carbon" in fire-affected soils?
  publication-title: Geoderma
– volume: 46
  start-page: 10641
  year: 2012
  end-page: 10650
  ident: bib32
  article-title: Generalized two-dimensional perturbation correlation infrared spectroscopy reveals mechanisms for the development of surface charge and recalcitrance in plant-derived biochars
  publication-title: Environ. Sci. Technol.
– volume: 100
  start-page: 5386
  year: 2009
  end-page: 5391
  ident: bib47
  article-title: Pathogens and antibiotic residues in animal manures and hygienic and ecological risks related to subsequent land application
  publication-title: Bioresour. Technol.
– volume: 43
  start-page: 1812
  year: 2011
  end-page: 1836
  ident: bib10
  article-title: Biochar effects on soil biota – a review
  publication-title: Soil Biol. Biochem.
– volume: 155
  start-page: 103674
  year: 2020
  ident: bib16
  article-title: Biochar amendment ameliorates soil properties and promotes Miscanthus growth in a coastal saline-alkali soil
  publication-title: Appl. Soil Ecol.
– volume: 112
  start-page: 284
  year: 2015
  end-page: 289
  ident: bib59
  article-title: Influence of pyrolysis temperature on physical and chemical properties of biochar made from sewage sludge
  publication-title: J. Anal. Appl. Pyrol.
– volume: 33
  start-page: 1093
  year: 2002
  ident: 10.1016/j.envpol.2021.117566_bib2
  article-title: Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood
  publication-title: Org. Geochem.
  doi: 10.1016/S0146-6380(02)00062-1
– volume: 48
  start-page: 11211
  year: 2014
  ident: 10.1016/j.envpol.2021.117566_bib26
  article-title: Effects of mineral additives on biochar formation: carbon retention, stability, and properties
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es501885n
– volume: 25
  start-page: 4961
  year: 2011
  ident: 10.1016/j.envpol.2021.117566_bib22
  article-title: Release of K, Cl, and S during pyrolysis and combustion of high-chlorine biomass
  publication-title: Energy Fuel.
  doi: 10.1021/ef201098n
– volume: 25
  start-page: 337
  year: 2010
  ident: 10.1016/j.envpol.2021.117566_bib58
  article-title: Development of biochar-based catalyst for transesterification of canola oil
  publication-title: Energy Fuel.
  doi: 10.1021/ef100977d
– volume: 232
  start-page: 273
  year: 2019
  ident: 10.1016/j.envpol.2021.117566_bib60
  article-title: Pyrolysis-temperature depended quinone and carbonyl groups as the electron accepting sites in barley grass derived biochar
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.05.225
– volume: 250
  start-page: 240
  year: 2014
  ident: 10.1016/j.envpol.2021.117566_bib63
  article-title: Distribution and evolution of organic matter phases during biochar formation and their importance in carbon loss and pore structure
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.04.053
– volume: 50
  start-page: 2602
  year: 2016
  ident: 10.1016/j.envpol.2021.117566_bib31
  article-title: Pyrolytic temperature dependent and ash catalyzed formation of sludge char with ultra-high adsorption to 1-Naphthol
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b04536
– volume: 1
  start-page: 1
  issue: 56
  year: 2010
  ident: 10.1016/j.envpol.2021.117566_bib49
  article-title: Sustainable biochar to mitigate global climate change
  publication-title: Nat. Commun.
– volume: 17
  start-page: 228
  issue: 2
  year: 1985
  ident: 10.1016/j.envpol.2021.117566_bib3
  article-title: Flash pyrolysis products from beech wood
  publication-title: Wood Fiber Sci.
– volume: 42
  start-page: 5137
  year: 2008
  ident: 10.1016/j.envpol.2021.117566_bib8
  article-title: Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es8002684
– volume: 146
  start-page: 605
  year: 2006
  ident: 10.1016/j.envpol.2021.117566_bib57
  article-title: Influence of mineral matter on pyrolysis of palm oil wastes
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2006.07.006
– volume: 6
  start-page: 136
  year: 1992
  ident: 10.1016/j.envpol.2021.117566_bib50
  article-title: Effects of ion-exchanged calcium on brown coal tar composition as determined by Fourier transform infrared spectroscopy
  publication-title: Energy Fuel.
  doi: 10.1021/ef00032a004
– volume: 115
  start-page: 70
  year: 2018
  ident: 10.1016/j.envpol.2021.117566_bib39
  article-title: Mineral additive enhanced carbon retention and stabilization in sewage sludge-derived biochar
  publication-title: Process Saf. Environ.
  doi: 10.1016/j.psep.2017.11.006
– volume: 112
  start-page: 284
  year: 2015
  ident: 10.1016/j.envpol.2021.117566_bib59
  article-title: Influence of pyrolysis temperature on physical and chemical properties of biochar made from sewage sludge
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/j.jaap.2015.01.010
– volume: 88
  start-page: 85
  year: 2019
  ident: 10.1016/j.envpol.2021.117566_bib64
  article-title: The influence of manure feedstock, slow pyrolysis, and hydrothermal temperature on manure thermochemical and combustion properties
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2019.03.025
– volume: 117
  start-page: 6397
  issue: 9
  year: 2017
  ident: 10.1016/j.envpol.2021.117566_bib30
  article-title: Fates of chemical elements in biomass during its pyrolysis
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00647
– volume: 263
  start-page: 116629
  year: 2020
  ident: 10.1016/j.envpol.2021.117566_bib27
  article-title: Influence of additives on lignin agglomeration and pyrolysis behavior
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.116629
– volume: 44
  start-page: 827
  issue: 2
  year: 2010
  ident: 10.1016/j.envpol.2021.117566_bib40
  article-title: Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es902266r
– volume: 44
  start-page: 1247
  year: 2010
  ident: 10.1016/j.envpol.2021.117566_bib23
  article-title: Dynamic molecular structure of plant biomass-derived black carbon (biochar)
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9031419
– volume: 776
  start-page: 145953
  year: 2021
  ident: 10.1016/j.envpol.2021.117566_bib37
  article-title: Biochar produced from wood waste for soil remediation in Sweden: carbon sequestration and other environmental impacts
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.145953
– volume: 48
  start-page: 279
  year: 2013
  ident: 10.1016/j.envpol.2021.117566_bib13
  article-title: Aromatic and hydrophobic surfaces of wood-derived biochar enhance perchlorate adsorption via hydrogen bonding to oxygen-containing organic groups
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es403711y
– volume: 255
  start-page: 120162
  year: 2020
  ident: 10.1016/j.envpol.2021.117566_bib36
  article-title: Different alkaline minerals interacted with biomass carbon during pyrolysis: which one improved biochar carbon sequestration?
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.120162
– volume: 187
  start-page: 116390
  year: 2020
  ident: 10.1016/j.envpol.2021.117566_bib9
  article-title: Production, properties, and catalytic applications of sludge derived biochar for environmental remediation
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.116390
– volume: 192
  start-page: 23
  year: 2015
  ident: 10.1016/j.envpol.2021.117566_bib17
  article-title: Effects of inherent alkali and alkaline earth metallic species on biomass pyrolysis at different temperatures
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.05.042
– volume: 155
  start-page: 103674
  year: 2020
  ident: 10.1016/j.envpol.2021.117566_bib16
  article-title: Biochar amendment ameliorates soil properties and promotes Miscanthus growth in a coastal saline-alkali soil
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2020.103674
– volume: 101
  start-page: 4646
  year: 2010
  ident: 10.1016/j.envpol.2021.117566_bib42
  article-title: Influence of inorganic salts on the primary pyrolysis products of cellulose
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.01.112
– volume: 72
  start-page: 243
  issue: 2
  year: 2004
  ident: 10.1016/j.envpol.2021.117566_bib12
  article-title: Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/j.jaap.2004.07.003
– volume: 4
  start-page: 524
  year: 2006
  ident: 10.1016/j.envpol.2021.117566_bib55
  article-title: TG-FTIR study on corn straw pyrolysis-influence of minerals
  publication-title: Chem. Res. Chin. Univ.
  doi: 10.1016/S1005-9040(06)60155-4
– volume: 119
  start-page: 519
  year: 2017
  ident: 10.1016/j.envpol.2021.117566_bib14
  article-title: New insights on the structural evolution of biomass char upon pyrolysis as revealed by the Raman spectroscopy and elemental analysis
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.04.078
– volume: 130
  year: 2006
  ident: 10.1016/j.envpol.2021.117566_bib41
  article-title: Black carbon contribution to soil organic matter composition in tropical sloping land under slash and burn agriculture
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2005.01.007
– volume: 150
  start-page: 213
  year: 2020
  ident: 10.1016/j.envpol.2021.117566_bib4
  article-title: Effect of hydraulic retention time on anaerobic co-digestion of cattle manure and food waste
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.12.091
– volume: 43
  start-page: 1812
  year: 2011
  ident: 10.1016/j.envpol.2021.117566_bib10
  article-title: Biochar effects on soil biota – a review
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2011.04.022
– volume: 45
  start-page: 4884
  issue: 11
  year: 2011
  ident: 10.1016/j.envpol.2021.117566_bib7
  article-title: Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es103752u
– volume: 42
  start-page: 1331
  issue: 11
  year: 2011
  ident: 10.1016/j.envpol.2021.117566_bib38
  article-title: Contribution to characterisation of biochar to estimate the labile fraction of carbon
  publication-title: Org. Geochem.
  doi: 10.1016/j.orggeochem.2011.09.002
– volume: 59
  start-page: 383
  year: 2013
  ident: 10.1016/j.envpol.2021.117566_bib33
  article-title: Carbonisation of biomass-derived chars and the thermal reduction of a graphene oxide sample studied using Raman spectroscopy
  publication-title: Carbon
  doi: 10.1016/j.carbon.2013.03.033
– volume: 52
  start-page: 8321
  issue: 15
  year: 2018
  ident: 10.1016/j.envpol.2021.117566_bib56
  article-title: Kaolinite enhances the stability of the dissolvable and undissolvable fractions of biochar via different mechanisms
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b00306
– volume: 30
  start-page: 180
  year: 2001
  ident: 10.1016/j.envpol.2021.117566_bib48
  article-title: Phosphorus transfer in runoff following application of fertilizer, manure, and sewage sludge
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2001.301180x
– volume: 15
  start-page: 158
  year: 2001
  ident: 10.1016/j.envpol.2021.117566_bib46
  article-title: Enhancement of N2 formation from the nitrogen in carbon and coal by calcium
  publication-title: Energy Fuel.
  doi: 10.1021/ef000090t
– volume: 46
  start-page: 10641
  year: 2012
  ident: 10.1016/j.envpol.2021.117566_bib32
  article-title: Generalized two-dimensional perturbation correlation infrared spectroscopy reveals mechanisms for the development of surface charge and recalcitrance in plant-derived biochars
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es302971d
– volume: 35
  start-page: 651
  issue: 5
  year: 2004
  ident: 10.1016/j.envpol.2021.117566_bib54
  article-title: Pyrolysis of biomass to produce fuels and chemical feedstocks
  publication-title: ChemInform
– volume: 53
  start-page: 13841
  year: 2019
  ident: 10.1016/j.envpol.2021.117566_bib20
  article-title: Speciation transformation of phosphorus in poultry litter during pyrolysis: insights from X-ray diffraction, fourier transform infrared, and solid-state NMR spectroscopy
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b03261
– volume: 46
  start-page: 10641
  year: 2012
  ident: 10.1016/j.envpol.2021.117566_bib15
  article-title: Generalized two-dimensional perturbation correlation infrared spectroscopy reveals mechanisms for the development of surface charge and recalcitrance in plant-derived biochars
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es302971d
– volume: 100
  start-page: 5386
  year: 2009
  ident: 10.1016/j.envpol.2021.117566_bib47
  article-title: Pathogens and antibiotic residues in animal manures and hygienic and ecological risks related to subsequent land application
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2009.03.068
– volume: 81
  start-page: 1033
  year: 2002
  ident: 10.1016/j.envpol.2021.117566_bib52
  article-title: Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part III. The importance of the interactions between volatiles and char at high temperature
  publication-title: Fuel
  doi: 10.1016/S0016-2361(02)00011-X
– volume: 36
  start-page: 2263
  issue: 2
  year: 2017
  ident: 10.1016/j.envpol.2021.117566_bib25
  article-title: Effect of KCl and CaCl2 loading on the formation of reaction intermediates during cellulose fast pyrolysis
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2016.06.167
– volume: 78
  start-page: 291
  issue: 2
  year: 2007
  ident: 10.1016/j.envpol.2021.117566_bib6
  article-title: Pyrolysis of metal impregnated biomass: an innovative catalytic way to produce gas fuel
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/j.jaap.2006.08.006
– volume: 52
  start-page: 3016
  year: 2018
  ident: 10.1016/j.envpol.2021.117566_bib18
  article-title: Transformations of phosphorus speciation during (hydro)thermal treatments of animal manures
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b05203
– volume: 15
  start-page: 1110
  year: 2001
  ident: 10.1016/j.envpol.2021.117566_bib65
  article-title: The influence of inorganic materials on the thermal deactivation of fuel chars
  publication-title: Energy Fuel.
  doi: 10.1021/ef000288d
– volume: 142
  start-page: 178
  year: 2007
  ident: 10.1016/j.envpol.2021.117566_bib24
  article-title: How useful is chemical oxidation with dichromate for the determination of "Black Carbon" in fire-affected soils?
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2007.08.010
– volume: 9
  start-page: 115373
  year: 2014
  ident: 10.1016/j.envpol.2021.117566_bib62
  article-title: Phosphorus-assisted biomass thermal conversion: reducing carbon loss and improving biochar stability
  publication-title: PloS One
  doi: 10.1371/journal.pone.0115373
– volume: 69
  start-page: 120
  year: 2005
  ident: 10.1016/j.envpol.2021.117566_bib34
  article-title: Review: organic matter removal from soils using hydrogen peroxide, sodium hypochlorite, and disodium peroxodisulfate
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2005.0120
– volume: 80
  start-page: 617
  year: 2014
  ident: 10.1016/j.envpol.2021.117566_bib45
  article-title: Assessment of the structural evolution of carbons from microwave plasma natural gas reforming and biomass pyrolysis using Raman spectroscopy
  publication-title: Carbon
  doi: 10.1016/j.carbon.2014.09.005
– volume: 2
  start-page: 393
  issue: 5
  year: 2008
  ident: 10.1016/j.envpol.2021.117566_bib1
  article-title: Biomass pyrolysis: a state‐of‐the‐art review
  publication-title: Biofuel Bioprod. Bior.
  doi: 10.1002/bbb.92
– volume: 72
  start-page: 1
  year: 2014
  ident: 10.1016/j.envpol.2021.117566_bib19
  article-title: Fire performance of oak wood modified with N-methylol resin and methylolated guanylurea phosphate/boric acid-based fire retardant
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2014.09.004
– volume: 85
  start-page: 1411
  year: 2006
  ident: 10.1016/j.envpol.2021.117566_bib44
  article-title: Formation of NOx precursors during the pyrolysis of coal and biomass. Part IX. Effects of coal ash and externally loaded-Na on fuel-N conversion during the reforming of coal and biomass in steam
  publication-title: Fuel
  doi: 10.1016/j.fuel.2006.01.008
– volume: 4
  start-page: 1
  year: 1994
  ident: 10.1016/j.envpol.2021.117566_bib51
  article-title: The role of metal salts in the pyrolysis of biomass
  publication-title: Renew. Energy
  doi: 10.1016/0960-1481(94)90058-2
– volume: 51
  start-page: 5473
  year: 2017
  ident: 10.1016/j.envpol.2021.117566_bib53
  article-title: A direct observation of the fine aromatic clusters and molecular structures of biochars
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b06300
– volume: 27
  start-page: 445
  year: 2004
  ident: 10.1016/j.envpol.2021.117566_bib11
  article-title: Influence of pretreatment for deashing of sugarcane bagasse on pyrolysis products
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2004.04.002
– volume: 171
  start-page: 66
  year: 2017
  ident: 10.1016/j.envpol.2021.117566_bib28
  article-title: The role of ash content on bisphenol A sorption to biochars derived from different agricultural wastes
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.12.041
SSID ssj0004333
Score 2.6032727
Snippet Converting biomass waste into biochar by slow pyrolysis with subsequent soil amendment is a prospective approach with multiple environmental benefits including...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 117566
SubjectTerms aromatization
Biochar
biomass
calcium
calcium oxide
carbon
Carbon retention
Carbon sequestration
Carbon stability
cow manure
microstructure
Mineral Ca
pyrolysis
Pyrolysis temperature
soil amendments
soil pollution
soil remediation
spectrometers
temperature
X-ray photoelectron spectroscopy
Title Pyrolysis temperature-dependent carbon retention and stability of biochar with participation of calcium: Implications to carbon sequestration
URI https://dx.doi.org/10.1016/j.envpol.2021.117566
https://www.proquest.com/docview/2544159845
https://www.proquest.com/docview/2551975848
Volume 287
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBUhvbSH0m4amjQNKpTe1PXa8odyW0LCpqWh0AZyE5I8gi2NvWy8hb30H-Q_Z0a2mk0oDRR8sS0Z4ZE0b6Q3T4y9V4WrPHpikaaqEDL1VhhfgSgsYgdHAmxBwPTLeTG7kJ8u88stdhxzYYhWOcz9_ZweZuvhyXj4m-PFfD7-htEDgmFFClgE6imJT8qSevnH33c0D5n1x8ljYUGlY_pc4HhB82vR0gZEOqHdyzxoJf7VPT2YqIP3OX3Bng-wkU_7lr1kW9CM2M60wZD5as0_8EDkDCvkI_ZsQ2NwxHZP7lLZ8AvDWL7eYTdf18s2CJJw0qcaxJVFPBW3484sbdvwJcFqMh83Tc0RTAY67Zq3ntt5S1lbnBZz-cJsMLTpLVrfzVdXR_xsg7XOuzZ-OLC4o2zvK3ZxevL9eCaGwxmEyVTeCV9KJ2uoZWrzpICkNnmNwU8CyirvSitLaeoJhkclJEAXeEnhDnYJk7kCsl223bQNvGa8cGkO0lSJg0yqJFWgzMS72ie1gsImeyyLNtFuUC6nAzR-6khR-6F7S2qypO4tucfEn1qLXrnjkfJlNLe-1wM1OpdHar6LvUPj4KQdF9NAu7rWpP-GeLGS-b_KUO4w4sBq_79b8IY9pTvyqZP8gG13yxW8RbDU2cMwGg7Zk-nZ59n5LdjiGYs
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEB3S9ND2UNpNQ9NPFUpv6npt-UO9hZCwaZNQaAK5CUmWYENjLxtvYC_5B_3PnZGtZltKAwWfbFkIj6R5Y715A_BeFrby6Il5msqCi9Qbrn3leGEQO1gSYAsCpscnxfRMfD7PzzdgL-bCEK1y2Pv7PT3s1sOd8fA1x_PZbPwNowcEw5IUsAjUy3twX-DypTIGH29ueR4i6-vJY2tOzWP-XCB5ueZ63tIJRDqh48s8iCX-1T_9sVMH93PwBB4PuJHt9kN7ChuuGcHWboMx8-WKfWCByRl-kY_g0ZrI4Ai2929z2bCHYTFfbcGPr6tFGxRJGAlUDerKPJbF7ZjVC9M2bEG4muzHdFMzRJOBT7tirWdm1lLaFqO_uWyu1yja9BTNb2fLy0_scI22zro2dhxo3FG39xmcHeyf7k35UJ2B60zmHfelsKJ2tUhNnhQuqXVeY_STOGmkt6URpdD1BOOj0iWOLucFxTs4J3RmC5dtw2bTNu45sMKmuRO6SqzLhExS6aSeeFv7pJauMMkOZNEmyg7S5VRB47uKHLUL1VtSkSVVb8kd4L_emvfSHXe0L6O51W9TUKF3uePNd3F2KFyddOSiG9curxQJwCFgrET-rzaUPIxAsHrx3yN4Cw-mp8dH6ujw5MtLeEhPyMFO8lew2S2W7jUip868CSvjJxS1Gxk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pyrolysis+temperature-dependent+carbon+retention+and+stability+of+biochar+with+participation+of+calcium%3A+Implications+to+carbon+sequestration&rft.jtitle=Environmental+pollution+%281987%29&rft.au=Nan%2C+Hongyan&rft.au=Yin%2C+Jianxiang&rft.au=Yang%2C+Fan&rft.au=Luo%2C+Ying&rft.date=2021-10-15&rft.issn=1873-6424&rft.eissn=1873-6424&rft.volume=287&rft.spage=117566&rft_id=info:doi/10.1016%2Fj.envpol.2021.117566&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon