Pyrolysis temperature-dependent carbon retention and stability of biochar with participation of calcium: Implications to carbon sequestration
Converting biomass waste into biochar by slow pyrolysis with subsequent soil amendment is a prospective approach with multiple environmental benefits including soil contamination remediation, soil amelioration and carbon sequestration. This study selected cow manure as precursor to produce biochar u...
Saved in:
Published in | Environmental pollution (1987) Vol. 287; p. 117566 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Converting biomass waste into biochar by slow pyrolysis with subsequent soil amendment is a prospective approach with multiple environmental benefits including soil contamination remediation, soil amelioration and carbon sequestration. This study selected cow manure as precursor to produce biochar under 300 °C, 400 °C, 500 °C and 600 °C, and a remarkable promotion of carbon (C) retention in biochar by incorporation of exogenous Ca was achieved at all investigated pyrolysis temperatures. The C retention was elevated from 49.2 to 68.3% of pristine biochars to 66.1–79.7% of Ca-composite biochars. It was interesting that extent of this improvement increased gradually with rising of pyrolysis temperature, i.e., doping Ca in biomass promoted pyrolytic C retention in biochar by 16.6%, 23.4%, 29.1% and 31.1% for 300 °C, 400 °C, 500 °C and 600 °C, respectively. Thermogravimetric-mass spectrometer (TG-MS) and X-ray photoelectron spectroscopy (XPS) showed that Ca catalyzed thermal-chemical reactions and simultaneously suppressed the release of small organic molecular substances (C2–C7) via physical blocking (CaO, CaCO3, and CaClOH) and chemical bonding (CO and OC–O). The catalyzation mainly occurred at 200–400 °C, while the suppression was more prominent at higher temperatures. Raman spectra and 2D FTIR analysis on biochar microstructure showed that presence of Ca had negative influence on carbon aromatization and thus weakened biochar's stability, while increasing pyrolysis temperature enhanced the stability of carbon structure. Finally, with integrating “C retention” during pyrolysis and “C stability” in biochar, the maximum C sequestration (56.3%) was achieved at 600 °C with the participation of Ca. The study highlights the importance of both Ca and pyrolysis temperature in enhancing biochar's capacity of sequestrating C.
[Display omitted]
•Exogenous mineral Ca in pyrolysis could promote more carbon retained in biochar.•Extent of this promotion increased gradually with rising of pyrolysis temperature.•Biochar stability was determined by interaction of Ca and pyrolysis temperature.•Ca suppressed release of small molecules via physical blocking/chemical bonding.•Optimal carbon sequestration (56.3%) was achieved at 600 °C with Ca participation. |
---|---|
AbstractList | Converting biomass waste into biochar by slow pyrolysis with subsequent soil amendment is a prospective approach with multiple environmental benefits including soil contamination remediation, soil amelioration and carbon sequestration. This study selected cow manure as precursor to produce biochar under 300 °C, 400 °C, 500 °C and 600 °C, and a remarkable promotion of carbon (C) retention in biochar by incorporation of exogenous Ca was achieved at all investigated pyrolysis temperatures. The C retention was elevated from 49.2 to 68.3% of pristine biochars to 66.1–79.7% of Ca-composite biochars. It was interesting that extent of this improvement increased gradually with rising of pyrolysis temperature, i.e., doping Ca in biomass promoted pyrolytic C retention in biochar by 16.6%, 23.4%, 29.1% and 31.1% for 300 °C, 400 °C, 500 °C and 600 °C, respectively. Thermogravimetric-mass spectrometer (TG-MS) and X-ray photoelectron spectroscopy (XPS) showed that Ca catalyzed thermal-chemical reactions and simultaneously suppressed the release of small organic molecular substances (C₂–C₇) via physical blocking (CaO, CaCO₃, and CaClOH) and chemical bonding (CO and OC–O). The catalyzation mainly occurred at 200–400 °C, while the suppression was more prominent at higher temperatures. Raman spectra and 2D FTIR analysis on biochar microstructure showed that presence of Ca had negative influence on carbon aromatization and thus weakened biochar's stability, while increasing pyrolysis temperature enhanced the stability of carbon structure. Finally, with integrating “C retention” during pyrolysis and “C stability” in biochar, the maximum C sequestration (56.3%) was achieved at 600 °C with the participation of Ca. The study highlights the importance of both Ca and pyrolysis temperature in enhancing biochar's capacity of sequestrating C. Converting biomass waste into biochar by slow pyrolysis with subsequent soil amendment is a prospective approach with multiple environmental benefits including soil contamination remediation, soil amelioration and carbon sequestration. This study selected cow manure as precursor to produce biochar under 300 °C, 400 °C, 500 °C and 600 °C, and a remarkable promotion of carbon (C) retention in biochar by incorporation of exogenous Ca was achieved at all investigated pyrolysis temperatures. The C retention was elevated from 49.2 to 68.3% of pristine biochars to 66.1-79.7% of Ca-composite biochars. It was interesting that extent of this improvement increased gradually with rising of pyrolysis temperature, i.e., doping Ca in biomass promoted pyrolytic C retention in biochar by 16.6%, 23.4%, 29.1% and 31.1% for 300 °C, 400 °C, 500 °C and 600 °C, respectively. Thermogravimetric-mass spectrometer (TG-MS) and X-ray photoelectron spectroscopy (XPS) showed that Ca catalyzed thermal-chemical reactions and simultaneously suppressed the release of small organic molecular substances (C2-C7) via physical blocking (CaO, CaCO3, and CaClOH) and chemical bonding (CO and OC-O). The catalyzation mainly occurred at 200-400 °C, while the suppression was more prominent at higher temperatures. Raman spectra and 2D FTIR analysis on biochar microstructure showed that presence of Ca had negative influence on carbon aromatization and thus weakened biochar's stability, while increasing pyrolysis temperature enhanced the stability of carbon structure. Finally, with integrating "C retention" during pyrolysis and "C stability" in biochar, the maximum C sequestration (56.3%) was achieved at 600 °C with the participation of Ca. The study highlights the importance of both Ca and pyrolysis temperature in enhancing biochar's capacity of sequestrating C.Converting biomass waste into biochar by slow pyrolysis with subsequent soil amendment is a prospective approach with multiple environmental benefits including soil contamination remediation, soil amelioration and carbon sequestration. This study selected cow manure as precursor to produce biochar under 300 °C, 400 °C, 500 °C and 600 °C, and a remarkable promotion of carbon (C) retention in biochar by incorporation of exogenous Ca was achieved at all investigated pyrolysis temperatures. The C retention was elevated from 49.2 to 68.3% of pristine biochars to 66.1-79.7% of Ca-composite biochars. It was interesting that extent of this improvement increased gradually with rising of pyrolysis temperature, i.e., doping Ca in biomass promoted pyrolytic C retention in biochar by 16.6%, 23.4%, 29.1% and 31.1% for 300 °C, 400 °C, 500 °C and 600 °C, respectively. Thermogravimetric-mass spectrometer (TG-MS) and X-ray photoelectron spectroscopy (XPS) showed that Ca catalyzed thermal-chemical reactions and simultaneously suppressed the release of small organic molecular substances (C2-C7) via physical blocking (CaO, CaCO3, and CaClOH) and chemical bonding (CO and OC-O). The catalyzation mainly occurred at 200-400 °C, while the suppression was more prominent at higher temperatures. Raman spectra and 2D FTIR analysis on biochar microstructure showed that presence of Ca had negative influence on carbon aromatization and thus weakened biochar's stability, while increasing pyrolysis temperature enhanced the stability of carbon structure. Finally, with integrating "C retention" during pyrolysis and "C stability" in biochar, the maximum C sequestration (56.3%) was achieved at 600 °C with the participation of Ca. The study highlights the importance of both Ca and pyrolysis temperature in enhancing biochar's capacity of sequestrating C. Converting biomass waste into biochar by slow pyrolysis with subsequent soil amendment is a prospective approach with multiple environmental benefits including soil contamination remediation, soil amelioration and carbon sequestration. This study selected cow manure as precursor to produce biochar under 300 °C, 400 °C, 500 °C and 600 °C, and a remarkable promotion of carbon (C) retention in biochar by incorporation of exogenous Ca was achieved at all investigated pyrolysis temperatures. The C retention was elevated from 49.2 to 68.3% of pristine biochars to 66.1–79.7% of Ca-composite biochars. It was interesting that extent of this improvement increased gradually with rising of pyrolysis temperature, i.e., doping Ca in biomass promoted pyrolytic C retention in biochar by 16.6%, 23.4%, 29.1% and 31.1% for 300 °C, 400 °C, 500 °C and 600 °C, respectively. Thermogravimetric-mass spectrometer (TG-MS) and X-ray photoelectron spectroscopy (XPS) showed that Ca catalyzed thermal-chemical reactions and simultaneously suppressed the release of small organic molecular substances (C2–C7) via physical blocking (CaO, CaCO3, and CaClOH) and chemical bonding (CO and OC–O). The catalyzation mainly occurred at 200–400 °C, while the suppression was more prominent at higher temperatures. Raman spectra and 2D FTIR analysis on biochar microstructure showed that presence of Ca had negative influence on carbon aromatization and thus weakened biochar's stability, while increasing pyrolysis temperature enhanced the stability of carbon structure. Finally, with integrating “C retention” during pyrolysis and “C stability” in biochar, the maximum C sequestration (56.3%) was achieved at 600 °C with the participation of Ca. The study highlights the importance of both Ca and pyrolysis temperature in enhancing biochar's capacity of sequestrating C. [Display omitted] •Exogenous mineral Ca in pyrolysis could promote more carbon retained in biochar.•Extent of this promotion increased gradually with rising of pyrolysis temperature.•Biochar stability was determined by interaction of Ca and pyrolysis temperature.•Ca suppressed release of small molecules via physical blocking/chemical bonding.•Optimal carbon sequestration (56.3%) was achieved at 600 °C with Ca participation. |
ArticleNumber | 117566 |
Author | Yin, Jianxiang Luo, Ying Yang, Fan Zhao, Ling Cao, Xinde Nan, Hongyan |
Author_xml | – sequence: 1 givenname: Hongyan surname: Nan fullname: Nan, Hongyan organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China – sequence: 2 givenname: Jianxiang surname: Yin fullname: Yin, Jianxiang organization: China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China – sequence: 3 givenname: Fan surname: Yang fullname: Yang, Fan organization: School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China – sequence: 4 givenname: Ying surname: Luo fullname: Luo, Ying organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China – sequence: 5 givenname: Ling surname: Zhao fullname: Zhao, Ling email: wszhaoling@sjtu.edu.cn organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China – sequence: 6 givenname: Xinde surname: Cao fullname: Cao, Xinde organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China |
BookMark | eNqNUUtv1DAQtlCR2Bb-AYccuWSxEz-SHpBQxaNSJTjA2XLsiTorxw62t2h_BP-52YReOACSJXtmvofG3yW5CDEAIa8Z3TPK5NvDHsLDHP2-oQ3bM6aElM_IjnWqrSVv-AXZ0Ub2teI9e0Eucz5QSnnbtjvy6-spRX_KmKsC0wzJlGOC2sEMwUEolTVpiKFKUJYKl5cJrsrFDOixnKo4VgNGe29S9RPLfTWbVNDibFbsMrXGWzxO19XtNHu0a3_xik_CGX4cIZe0Dl6S56PxGV79vq_I948fvt18ru--fLq9eX9Xm7YXpR4Vt9yB480gqATqjHC8UxT6oR-tGrjixjFJpQIK5wMjb1oqm16a1kpor8ibTXdOcbXXE2YL3psA8Zh1IwTrleh49x9QzpnoOy4W6PUGtSnmnGDUFsu617Iees2oPselD3qLS5_j0ltcC5n_QZ4TTiad_kV7t9Fg-a4HhKSzRQgWHCawRbuIfxd4BHCkuBM |
CitedBy_id | crossref_primary_10_1016_j_chemosphere_2024_143204 crossref_primary_10_1016_j_energy_2023_130012 crossref_primary_10_1016_j_scitotenv_2022_161039 crossref_primary_10_1016_j_eti_2023_103413 crossref_primary_10_1007_s42773_024_00321_6 crossref_primary_10_1016_j_jece_2024_111959 crossref_primary_10_1016_j_conbuildmat_2023_131030 crossref_primary_10_1038_s43017_022_00306_8 crossref_primary_10_3390_agronomy13092361 crossref_primary_10_1016_j_scitotenv_2023_162210 crossref_primary_10_1016_j_cej_2024_152567 crossref_primary_10_1016_j_biteb_2025_102034 crossref_primary_10_1080_10643389_2023_2290947 crossref_primary_10_1016_j_energy_2024_133037 crossref_primary_10_1016_j_envpol_2024_125030 crossref_primary_10_1016_j_chemosphere_2021_133427 crossref_primary_10_3390_app14052061 crossref_primary_10_1007_s11270_023_06130_0 crossref_primary_10_1016_j_psep_2023_03_034 crossref_primary_10_3390_agriculture14122222 crossref_primary_10_1016_j_chemosphere_2024_143493 crossref_primary_10_35633_inmateh_72_03 crossref_primary_10_3390_agronomy13071676 crossref_primary_10_3390_agronomy15010144 crossref_primary_10_3390_ijerph20010867 crossref_primary_10_3390_molecules28093950 crossref_primary_10_1016_j_chemosphere_2024_141746 crossref_primary_10_1016_j_envres_2022_113974 crossref_primary_10_1016_j_isci_2025_111915 crossref_primary_10_1016_j_jenvman_2024_120165 crossref_primary_10_1016_j_jaap_2025_106961 crossref_primary_10_1016_j_psep_2024_10_118 crossref_primary_10_1016_j_ijhydene_2025_03_108 crossref_primary_10_1016_j_jclepro_2022_131571 crossref_primary_10_1016_j_jaap_2022_105778 crossref_primary_10_1016_j_conbuildmat_2022_128116 crossref_primary_10_1016_j_scitotenv_2022_154845 crossref_primary_10_3390_su13169267 crossref_primary_10_3390_technologies13030100 crossref_primary_10_1007_s12155_025_10819_x crossref_primary_10_1016_j_biortech_2022_127694 crossref_primary_10_3390_environments10010004 crossref_primary_10_3390_separations10100519 crossref_primary_10_1007_s43615_023_00294_x crossref_primary_10_1016_j_wasman_2023_06_023 crossref_primary_10_1007_s13399_024_06464_7 crossref_primary_10_1016_j_seppur_2025_131420 crossref_primary_10_3390_su15097158 crossref_primary_10_1016_j_biortech_2021_125555 crossref_primary_10_1016_j_chemosphere_2022_133981 crossref_primary_10_1007_s11356_022_22355_8 crossref_primary_10_3390_life15020317 crossref_primary_10_1016_j_envres_2025_121023 crossref_primary_10_1007_s44246_024_00186_1 crossref_primary_10_1016_j_chemosphere_2022_135240 crossref_primary_10_1016_j_cej_2023_146370 crossref_primary_10_3390_agronomy14081861 crossref_primary_10_1016_j_scp_2023_101097 crossref_primary_10_1016_j_jenvman_2023_119586 crossref_primary_10_1016_j_jhazmat_2021_127333 crossref_primary_10_1016_j_jenvman_2023_119669 crossref_primary_10_1016_j_biombioe_2024_107531 crossref_primary_10_1016_j_rineng_2024_102433 crossref_primary_10_1016_j_scitotenv_2021_152112 crossref_primary_10_1016_j_scitotenv_2024_170266 crossref_primary_10_1016_j_psep_2024_03_037 crossref_primary_10_1016_j_earscirev_2022_104215 crossref_primary_10_3390_molecules30071435 crossref_primary_10_1016_j_cej_2024_154196 crossref_primary_10_1016_j_scitotenv_2022_156081 crossref_primary_10_3390_su16177278 crossref_primary_10_1016_j_cej_2021_133178 crossref_primary_10_1007_s42773_024_00356_9 crossref_primary_10_1016_j_jwpe_2024_105509 crossref_primary_10_1016_j_ecoenv_2022_113598 crossref_primary_10_1016_j_watres_2023_119606 crossref_primary_10_1016_j_molstruc_2023_137397 crossref_primary_10_3390_molecules29235712 |
Cites_doi | 10.1016/S0146-6380(02)00062-1 10.1021/es501885n 10.1021/ef201098n 10.1021/ef100977d 10.1016/j.chemosphere.2019.05.225 10.1016/j.cej.2014.04.053 10.1021/acs.est.5b04536 10.1021/es8002684 10.1016/j.combustflame.2006.07.006 10.1021/ef00032a004 10.1016/j.psep.2017.11.006 10.1016/j.jaap.2015.01.010 10.1016/j.wasman.2019.03.025 10.1021/acs.chemrev.6b00647 10.1016/j.fuel.2019.116629 10.1021/es902266r 10.1021/es9031419 10.1016/j.scitotenv.2021.145953 10.1021/es403711y 10.1016/j.jclepro.2020.120162 10.1016/j.watres.2020.116390 10.1016/j.biortech.2015.05.042 10.1016/j.apsoil.2020.103674 10.1016/j.biortech.2010.01.112 10.1016/j.jaap.2004.07.003 10.1016/S1005-9040(06)60155-4 10.1016/j.carbon.2017.04.078 10.1016/j.geoderma.2005.01.007 10.1016/j.renene.2019.12.091 10.1016/j.soilbio.2011.04.022 10.1021/es103752u 10.1016/j.orggeochem.2011.09.002 10.1016/j.carbon.2013.03.033 10.1021/acs.est.8b00306 10.2134/jeq2001.301180x 10.1021/ef000090t 10.1021/es302971d 10.1021/acs.est.9b03261 10.1016/j.biortech.2009.03.068 10.1016/S0016-2361(02)00011-X 10.1016/j.proci.2016.06.167 10.1016/j.jaap.2006.08.006 10.1021/acs.est.7b05203 10.1021/ef000288d 10.1016/j.geoderma.2007.08.010 10.1371/journal.pone.0115373 10.2136/sssaj2005.0120 10.1016/j.carbon.2014.09.005 10.1002/bbb.92 10.1016/j.conbuildmat.2014.09.004 10.1016/j.fuel.2006.01.008 10.1016/0960-1481(94)90058-2 10.1021/acs.est.6b06300 10.1016/j.biombioe.2004.04.002 10.1016/j.chemosphere.2016.12.041 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright © 2021 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright © 2021 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.envpol.2021.117566 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Anatomy & Physiology Environmental Sciences |
EISSN | 1873-6424 |
ExternalDocumentID | 10_1016_j_envpol_2021_117566 S0269749121011489 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 4.4 457 5GY 5VS 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SCC SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K TWZ WH7 XPP ZMT ~G- 29G 53G 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLV HMC HVGLF HZ~ OHT R2- SEN SEW SSH VH1 WUQ XJT XOL 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-a395t-f74c4ded42b506e0da5d4870e9b9fc7b474ad16067e0ee0eeef42306296a3c6e3 |
IEDL.DBID | .~1 |
ISSN | 0269-7491 1873-6424 |
IngestDate | Fri Jul 11 08:01:32 EDT 2025 Mon Jul 21 09:55:36 EDT 2025 Tue Jul 01 03:15:11 EDT 2025 Thu Apr 24 22:50:42 EDT 2025 Sat Apr 13 16:39:49 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Carbon stability Pyrolysis temperature Mineral Ca Biochar Carbon retention Carbon sequestration |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a395t-f74c4ded42b506e0da5d4870e9b9fc7b474ad16067e0ee0eeef42306296a3c6e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2544159845 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2551975848 proquest_miscellaneous_2544159845 crossref_citationtrail_10_1016_j_envpol_2021_117566 crossref_primary_10_1016_j_envpol_2021_117566 elsevier_sciencedirect_doi_10_1016_j_envpol_2021_117566 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-15 |
PublicationDateYYYYMMDD | 2021-10-15 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Environmental pollution (1987) |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Louchouarn (bib32) 2012; 46 He, He, Wang, Zhang, Xu, Wang, Kong, Zhou, Hu (bib16) 2020; 155 Wornat, Nelson (bib50) 1992; 6 Cao, Ma, Liang, Gao, Harris (bib7) 2011; 45 Roberts, Gloy, Joseph, Scott, Lehmann (bib40) 2010; 44 Knicker, Muffler, Hilscher (bib24) 2007; 142 Li, Liang, Jin, Zhou, Li, Wu, Pan (bib28) 2017; 171 Papageorgiou, Azzi, Enell, Sundberg (bib37) 2021; 776 Jiang, Feng, Wang, Xiao, Wang, Xie (bib19) 2014; 72 Patwardhan, Satrio, Brown, Shanks (bib42) 2010; 101 Ren, Tang, Li (bib39) 2018; 115 Yang, Rong, Chen, Zheng, Dong, Liang (bib57) 2006; 146 Baldock, Smernik (bib2) 2002; 33 Zhang, Xu, Zhang, Zhao, Cao (bib60) 2019; 232 Yang, Xu, Yu, Gao, Xu, Zhao, Cao (bib56) 2018; 52 Yu, Dehkhoda, Ellis (bib58) 2010; 25 Fang, Chen, Lin, Guang (bib13) 2013; 48 McDonald-Wharry, Manley-Harris, Pickering (bib33) 2013; 59 Jiang, Ren, Guo, Guo, Li (bib20) 2019; 53 Zhao, Zheng, Cao (bib63) 2014; 250 Li, Bai, Dong, Chen, Yang, Wang, Chen (bib27) 2020; 263 Rumpel, Alexis, Chabbi, Chaplot, Rasse, Valentin, Mariotti (bib41) 2006; 130 Pereira, Kaal, Arbestain, Lorenzo, Aitkenhead, Hedley, Macías, Hindmarsh, Maciá-Agulló (bib38) 2011; 42 Harvey, Herbert, Kuo, Louchouarn (bib15) 2012; 46 Tian, Yu, Mckenzie, Hayashi, Li (bib44) 2006; 85 Chen, Zhou, Zhu (bib8) 2008; 42 Demirbas (bib12) 2004; 72 Xiao, Chen (bib53) 2017; 51 Zhou, Liang, Han, Huang, Yang (bib64) 2019; 88 Wu, Quyn, Li (bib52) 2002; 81 Beaumont (bib3) 1985; 17 Bru, Blin, Julbe, Volle (bib6) 2007; 78 Venglovsky, Sasakova, Placha (bib47) 2009; 100 Das, Ganesh, Wangikar (bib11) 2004; 27 Tsaneva, Kwapinski, Teng, Glowacki (bib45) 2014; 80 Chen, Wang, Duan, Wang, Ren, Ho (bib9) 2020; 187 Tsubouchi, Ohshima, Xu, Ohtsuka (bib46) 2001; 15 Zolin, Jensen, Jensen, Frandsen, Dam-Johansen (bib65) 2001; 15 Zhao, Cao, Zhen, Kan, Zhou (bib62) 2014; 9 Mikutta, Kleber, Kaiser, Jahn (bib34) 2005; 69 Dilly, Pfeiffer, Lehmann, Rillig, Thies, Masiello, Hockaday, Crowley (bib10) 2011; 43 Babu (bib1) 2008; 2 Yuan, Lu, Huang, Zhao, Kobayashi, Chen (bib59) 2015; 112 Johansen, Jakobsen, Frandsen, Glarborg (bib22) 2011; 25 Nan, Zhao, Yang, Liu, Xiao, Cao, Qiu (bib36) 2020; 255 Yang, Lu, Lin, Yang, Yao (bib55) 2006; 4 Bi, Hong, Yang, Yu, Fang, Bai, Liu, Gao, Yan, Wang, Wang (bib4) 2020; 150 Hu, Jiang, Wang, Su, Sun, Sun, Xu, He, Xiang (bib17) 2015; 192 Keiluweit, Nico, Johnson, Kleber (bib23) 2010; 44 Woolf, Amonette, Street-Perrott, Lehmann, Joseph (bib49) 2010; 1 Liu, Ding, Wang, Liu, Jiang (bib31) 2016; 50 Liu, Li, Jiang, Yu (bib30) 2017; 117 Williams, Horne (bib51) 1994; 4 Withers, Clay, Breeze (bib48) 2001; 30 Yaman (bib54) 2004; 35 Guizani, Haddad, Limousy, Jeguirim (bib14) 2017; 119 Huang, Fang, Zhang, Tang (bib18) 2018; 52 Li, Cao, Zhao, Wang, Ding (bib26) 2014; 48 Leng, Wang, Gong, Zhang, Zhang, Xu (bib25) 2017; 36 Huang (10.1016/j.envpol.2021.117566_bib18) 2018; 52 Guizani (10.1016/j.envpol.2021.117566_bib14) 2017; 119 Hu (10.1016/j.envpol.2021.117566_bib17) 2015; 192 Yang (10.1016/j.envpol.2021.117566_bib56) 2018; 52 Pereira (10.1016/j.envpol.2021.117566_bib38) 2011; 42 Tian (10.1016/j.envpol.2021.117566_bib44) 2006; 85 Dilly (10.1016/j.envpol.2021.117566_bib10) 2011; 43 Yu (10.1016/j.envpol.2021.117566_bib58) 2010; 25 Louchouarn (10.1016/j.envpol.2021.117566_bib32) 2012; 46 Venglovsky (10.1016/j.envpol.2021.117566_bib47) 2009; 100 Chen (10.1016/j.envpol.2021.117566_bib9) 2020; 187 Demirbas (10.1016/j.envpol.2021.117566_bib12) 2004; 72 Zhang (10.1016/j.envpol.2021.117566_bib60) 2019; 232 He (10.1016/j.envpol.2021.117566_bib16) 2020; 155 Jiang (10.1016/j.envpol.2021.117566_bib20) 2019; 53 McDonald-Wharry (10.1016/j.envpol.2021.117566_bib33) 2013; 59 Fang (10.1016/j.envpol.2021.117566_bib13) 2013; 48 Williams (10.1016/j.envpol.2021.117566_bib51) 1994; 4 Yuan (10.1016/j.envpol.2021.117566_bib59) 2015; 112 Zolin (10.1016/j.envpol.2021.117566_bib65) 2001; 15 Knicker (10.1016/j.envpol.2021.117566_bib24) 2007; 142 Beaumont (10.1016/j.envpol.2021.117566_bib3) 1985; 17 Wornat (10.1016/j.envpol.2021.117566_bib50) 1992; 6 Babu (10.1016/j.envpol.2021.117566_bib1) 2008; 2 Bru (10.1016/j.envpol.2021.117566_bib6) 2007; 78 Rumpel (10.1016/j.envpol.2021.117566_bib41) 2006; 130 Yang (10.1016/j.envpol.2021.117566_bib57) 2006; 146 Jiang (10.1016/j.envpol.2021.117566_bib19) 2014; 72 Nan (10.1016/j.envpol.2021.117566_bib36) 2020; 255 Johansen (10.1016/j.envpol.2021.117566_bib22) 2011; 25 Yaman (10.1016/j.envpol.2021.117566_bib54) 2004; 35 Wu (10.1016/j.envpol.2021.117566_bib52) 2002; 81 Liu (10.1016/j.envpol.2021.117566_bib31) 2016; 50 Tsubouchi (10.1016/j.envpol.2021.117566_bib46) 2001; 15 Baldock (10.1016/j.envpol.2021.117566_bib2) 2002; 33 Li (10.1016/j.envpol.2021.117566_bib28) 2017; 171 Liu (10.1016/j.envpol.2021.117566_bib30) 2017; 117 Tsaneva (10.1016/j.envpol.2021.117566_bib45) 2014; 80 Leng (10.1016/j.envpol.2021.117566_bib25) 2017; 36 Li (10.1016/j.envpol.2021.117566_bib26) 2014; 48 Bi (10.1016/j.envpol.2021.117566_bib4) 2020; 150 Chen (10.1016/j.envpol.2021.117566_bib8) 2008; 42 Mikutta (10.1016/j.envpol.2021.117566_bib34) 2005; 69 Das (10.1016/j.envpol.2021.117566_bib11) 2004; 27 Papageorgiou (10.1016/j.envpol.2021.117566_bib37) 2021; 776 Xiao (10.1016/j.envpol.2021.117566_bib53) 2017; 51 Cao (10.1016/j.envpol.2021.117566_bib7) 2011; 45 Harvey (10.1016/j.envpol.2021.117566_bib15) 2012; 46 Woolf (10.1016/j.envpol.2021.117566_bib49) 2010; 1 Zhao (10.1016/j.envpol.2021.117566_bib62) 2014; 9 Li (10.1016/j.envpol.2021.117566_bib27) 2020; 263 Yang (10.1016/j.envpol.2021.117566_bib55) 2006; 4 Ren (10.1016/j.envpol.2021.117566_bib39) 2018; 115 Patwardhan (10.1016/j.envpol.2021.117566_bib42) 2010; 101 Withers (10.1016/j.envpol.2021.117566_bib48) 2001; 30 Roberts (10.1016/j.envpol.2021.117566_bib40) 2010; 44 Zhou (10.1016/j.envpol.2021.117566_bib64) 2019; 88 Zhao (10.1016/j.envpol.2021.117566_bib63) 2014; 250 Keiluweit (10.1016/j.envpol.2021.117566_bib23) 2010; 44 |
References_xml | – volume: 2 start-page: 393 year: 2008 end-page: 414 ident: bib1 article-title: Biomass pyrolysis: a state‐of‐the‐art review publication-title: Biofuel Bioprod. Bior. – volume: 6 start-page: 136 year: 1992 end-page: 142 ident: bib50 article-title: Effects of ion-exchanged calcium on brown coal tar composition as determined by Fourier transform infrared spectroscopy publication-title: Energy Fuel. – volume: 50 start-page: 2602 year: 2016 end-page: 2609 ident: bib31 article-title: Pyrolytic temperature dependent and ash catalyzed formation of sludge char with ultra-high adsorption to 1-Naphthol publication-title: Environ. Sci. Technol. – volume: 232 start-page: 273 year: 2019 end-page: 280 ident: bib60 article-title: Pyrolysis-temperature depended quinone and carbonyl groups as the electron accepting sites in barley grass derived biochar publication-title: Chemosphere – volume: 45 start-page: 4884 year: 2011 end-page: 4889 ident: bib7 article-title: Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar publication-title: Environ. Sci. Technol. – volume: 130 year: 2006 ident: bib41 article-title: Black carbon contribution to soil organic matter composition in tropical sloping land under slash and burn agriculture publication-title: Geoderma – volume: 171 start-page: 66 year: 2017 end-page: 73 ident: bib28 article-title: The role of ash content on bisphenol A sorption to biochars derived from different agricultural wastes publication-title: Chemosphere – volume: 117 start-page: 6397 year: 2017 end-page: 6398 ident: bib30 article-title: Fates of chemical elements in biomass during its pyrolysis publication-title: Chem. Rev. – volume: 53 start-page: 13841 year: 2019 end-page: 13849 ident: bib20 article-title: Speciation transformation of phosphorus in poultry litter during pyrolysis: insights from X-ray diffraction, fourier transform infrared, and solid-state NMR spectroscopy publication-title: Environ. Sci. Technol. – volume: 25 start-page: 337 year: 2010 end-page: 344 ident: bib58 article-title: Development of biochar-based catalyst for transesterification of canola oil publication-title: Energy Fuel. – volume: 250 start-page: 240 year: 2014 end-page: 247 ident: bib63 article-title: Distribution and evolution of organic matter phases during biochar formation and their importance in carbon loss and pore structure publication-title: Chem. Eng. J. – volume: 33 start-page: 1093 year: 2002 end-page: 1109 ident: bib2 article-title: Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood publication-title: Org. Geochem. – volume: 48 start-page: 11211 year: 2014 end-page: 11217 ident: bib26 article-title: Effects of mineral additives on biochar formation: carbon retention, stability, and properties publication-title: Environ. Sci. Technol. – volume: 52 start-page: 8321 year: 2018 end-page: 8329 ident: bib56 article-title: Kaolinite enhances the stability of the dissolvable and undissolvable fractions of biochar via different mechanisms publication-title: Environ. Sci. Technol. – volume: 263 start-page: 116629 year: 2020 ident: bib27 article-title: Influence of additives on lignin agglomeration and pyrolysis behavior publication-title: Fuel – volume: 44 start-page: 1247 year: 2010 end-page: 1253 ident: bib23 article-title: Dynamic molecular structure of plant biomass-derived black carbon (biochar) publication-title: Environ. Sci. Technol. – volume: 81 start-page: 1033 year: 2002 end-page: 1039 ident: bib52 article-title: Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part III. The importance of the interactions between volatiles and char at high temperature publication-title: Fuel – volume: 88 start-page: 85 year: 2019 end-page: 95 ident: bib64 article-title: The influence of manure feedstock, slow pyrolysis, and hydrothermal temperature on manure thermochemical and combustion properties publication-title: Waste Manag. – volume: 42 start-page: 5137 year: 2008 end-page: 5143 ident: bib8 article-title: Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures publication-title: Environ. Sci. Technol. – volume: 15 start-page: 158 year: 2001 end-page: 162 ident: bib46 article-title: Enhancement of N publication-title: Energy Fuel. – volume: 69 start-page: 120 year: 2005 end-page: 135 ident: bib34 article-title: Review: organic matter removal from soils using hydrogen peroxide, sodium hypochlorite, and disodium peroxodisulfate publication-title: Soil Sci. Soc. Am. J. – volume: 4 start-page: 1 year: 1994 end-page: 13 ident: bib51 article-title: The role of metal salts in the pyrolysis of biomass publication-title: Renew. Energy – volume: 52 start-page: 3016 year: 2018 end-page: 3026 ident: bib18 article-title: Transformations of phosphorus speciation during (hydro)thermal treatments of animal manures publication-title: Environ. Sci. Technol. – volume: 776 start-page: 145953 year: 2021 ident: bib37 article-title: Biochar produced from wood waste for soil remediation in Sweden: carbon sequestration and other environmental impacts publication-title: Sci. Total Environ. – volume: 4 start-page: 524 year: 2006 end-page: 532 ident: bib55 article-title: TG-FTIR study on corn straw pyrolysis-influence of minerals publication-title: Chem. Res. Chin. Univ. – volume: 72 start-page: 243 year: 2004 end-page: 248 ident: bib12 article-title: Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues publication-title: J. Anal. Appl. Pyrol. – volume: 80 start-page: 617 year: 2014 end-page: 628 ident: bib45 article-title: Assessment of the structural evolution of carbons from microwave plasma natural gas reforming and biomass pyrolysis using Raman spectroscopy publication-title: Carbon – volume: 59 start-page: 383 year: 2013 end-page: 405 ident: bib33 article-title: Carbonisation of biomass-derived chars and the thermal reduction of a graphene oxide sample studied using Raman spectroscopy publication-title: Carbon – volume: 48 start-page: 279 year: 2013 end-page: 288 ident: bib13 article-title: Aromatic and hydrophobic surfaces of wood-derived biochar enhance perchlorate adsorption via hydrogen bonding to oxygen-containing organic groups publication-title: Environ. Sci. Technol. – volume: 150 start-page: 213 year: 2020 end-page: 220 ident: bib4 article-title: Effect of hydraulic retention time on anaerobic co-digestion of cattle manure and food waste publication-title: Renew. Energy – volume: 72 start-page: 1 year: 2014 end-page: 6 ident: bib19 article-title: Fire performance of oak wood modified with N-methylol resin and methylolated guanylurea phosphate/boric acid-based fire retardant publication-title: Construct. Build. Mater. – volume: 101 start-page: 4646 year: 2010 end-page: 4655 ident: bib42 article-title: Influence of inorganic salts on the primary pyrolysis products of cellulose publication-title: Bioresour. Technol. – volume: 35 start-page: 651 year: 2004 end-page: 671 ident: bib54 article-title: Pyrolysis of biomass to produce fuels and chemical feedstocks publication-title: ChemInform – volume: 1 start-page: 1 year: 2010 end-page: 9 ident: bib49 article-title: Sustainable biochar to mitigate global climate change publication-title: Nat. Commun. – volume: 27 start-page: 445 year: 2004 end-page: 457 ident: bib11 article-title: Influence of pretreatment for deashing of sugarcane bagasse on pyrolysis products publication-title: Biomass Bioenergy – volume: 119 start-page: 519 year: 2017 end-page: 521 ident: bib14 article-title: New insights on the structural evolution of biomass char upon pyrolysis as revealed by the Raman spectroscopy and elemental analysis publication-title: Carbon – volume: 44 start-page: 827 year: 2010 end-page: 833 ident: bib40 article-title: Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential publication-title: Environ. Sci. Technol. – volume: 51 start-page: 5473 year: 2017 end-page: 5482 ident: bib53 article-title: A direct observation of the fine aromatic clusters and molecular structures of biochars publication-title: Environ. Sci. Technol. – volume: 9 start-page: 115373 year: 2014 ident: bib62 article-title: Phosphorus-assisted biomass thermal conversion: reducing carbon loss and improving biochar stability publication-title: PloS One – volume: 15 start-page: 1110 year: 2001 end-page: 1122 ident: bib65 article-title: The influence of inorganic materials on the thermal deactivation of fuel chars publication-title: Energy Fuel. – volume: 78 start-page: 291 year: 2007 end-page: 300 ident: bib6 article-title: Pyrolysis of metal impregnated biomass: an innovative catalytic way to produce gas fuel publication-title: J. Anal. Appl. Pyrol. – volume: 17 start-page: 228 year: 1985 end-page: 239 ident: bib3 article-title: Flash pyrolysis products from beech wood publication-title: Wood Fiber Sci. – volume: 46 start-page: 10641 year: 2012 end-page: 10650 ident: bib15 article-title: Generalized two-dimensional perturbation correlation infrared spectroscopy reveals mechanisms for the development of surface charge and recalcitrance in plant-derived biochars publication-title: Environ. Sci. Technol. – volume: 25 start-page: 4961 year: 2011 end-page: 4971 ident: bib22 article-title: Release of K, Cl, and S during pyrolysis and combustion of high-chlorine biomass publication-title: Energy Fuel. – volume: 42 start-page: 1331 year: 2011 end-page: 1342 ident: bib38 article-title: Contribution to characterisation of biochar to estimate the labile fraction of carbon publication-title: Org. Geochem. – volume: 30 start-page: 180 year: 2001 end-page: 188 ident: bib48 article-title: Phosphorus transfer in runoff following application of fertilizer, manure, and sewage sludge publication-title: J. Environ. Qual. – volume: 36 start-page: 2263 year: 2017 end-page: 2270 ident: bib25 article-title: Effect of KCl and CaCl publication-title: Proc. Combust. Inst. – volume: 192 start-page: 23 year: 2015 end-page: 30 ident: bib17 article-title: Effects of inherent alkali and alkaline earth metallic species on biomass pyrolysis at different temperatures publication-title: Bioresour. Technol. – volume: 255 start-page: 120162 year: 2020 ident: bib36 article-title: Different alkaline minerals interacted with biomass carbon during pyrolysis: which one improved biochar carbon sequestration? publication-title: J. Clean. Prod. – volume: 115 start-page: 70 year: 2018 end-page: 78 ident: bib39 article-title: Mineral additive enhanced carbon retention and stabilization in sewage sludge-derived biochar publication-title: Process Saf. Environ. – volume: 187 start-page: 116390 year: 2020 ident: bib9 article-title: Production, properties, and catalytic applications of sludge derived biochar for environmental remediation publication-title: Water Res. – volume: 85 start-page: 1411 year: 2006 end-page: 1417 ident: bib44 article-title: Formation of NO publication-title: Fuel – volume: 146 start-page: 605 year: 2006 end-page: 611 ident: bib57 article-title: Influence of mineral matter on pyrolysis of palm oil wastes publication-title: Combust. Flame – volume: 142 start-page: 178 year: 2007 end-page: 196 ident: bib24 article-title: How useful is chemical oxidation with dichromate for the determination of "Black Carbon" in fire-affected soils? publication-title: Geoderma – volume: 46 start-page: 10641 year: 2012 end-page: 10650 ident: bib32 article-title: Generalized two-dimensional perturbation correlation infrared spectroscopy reveals mechanisms for the development of surface charge and recalcitrance in plant-derived biochars publication-title: Environ. Sci. Technol. – volume: 100 start-page: 5386 year: 2009 end-page: 5391 ident: bib47 article-title: Pathogens and antibiotic residues in animal manures and hygienic and ecological risks related to subsequent land application publication-title: Bioresour. Technol. – volume: 43 start-page: 1812 year: 2011 end-page: 1836 ident: bib10 article-title: Biochar effects on soil biota – a review publication-title: Soil Biol. Biochem. – volume: 155 start-page: 103674 year: 2020 ident: bib16 article-title: Biochar amendment ameliorates soil properties and promotes Miscanthus growth in a coastal saline-alkali soil publication-title: Appl. Soil Ecol. – volume: 112 start-page: 284 year: 2015 end-page: 289 ident: bib59 article-title: Influence of pyrolysis temperature on physical and chemical properties of biochar made from sewage sludge publication-title: J. Anal. Appl. Pyrol. – volume: 33 start-page: 1093 year: 2002 ident: 10.1016/j.envpol.2021.117566_bib2 article-title: Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood publication-title: Org. Geochem. doi: 10.1016/S0146-6380(02)00062-1 – volume: 48 start-page: 11211 year: 2014 ident: 10.1016/j.envpol.2021.117566_bib26 article-title: Effects of mineral additives on biochar formation: carbon retention, stability, and properties publication-title: Environ. Sci. Technol. doi: 10.1021/es501885n – volume: 25 start-page: 4961 year: 2011 ident: 10.1016/j.envpol.2021.117566_bib22 article-title: Release of K, Cl, and S during pyrolysis and combustion of high-chlorine biomass publication-title: Energy Fuel. doi: 10.1021/ef201098n – volume: 25 start-page: 337 year: 2010 ident: 10.1016/j.envpol.2021.117566_bib58 article-title: Development of biochar-based catalyst for transesterification of canola oil publication-title: Energy Fuel. doi: 10.1021/ef100977d – volume: 232 start-page: 273 year: 2019 ident: 10.1016/j.envpol.2021.117566_bib60 article-title: Pyrolysis-temperature depended quinone and carbonyl groups as the electron accepting sites in barley grass derived biochar publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.05.225 – volume: 250 start-page: 240 year: 2014 ident: 10.1016/j.envpol.2021.117566_bib63 article-title: Distribution and evolution of organic matter phases during biochar formation and their importance in carbon loss and pore structure publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.04.053 – volume: 50 start-page: 2602 year: 2016 ident: 10.1016/j.envpol.2021.117566_bib31 article-title: Pyrolytic temperature dependent and ash catalyzed formation of sludge char with ultra-high adsorption to 1-Naphthol publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b04536 – volume: 1 start-page: 1 issue: 56 year: 2010 ident: 10.1016/j.envpol.2021.117566_bib49 article-title: Sustainable biochar to mitigate global climate change publication-title: Nat. Commun. – volume: 17 start-page: 228 issue: 2 year: 1985 ident: 10.1016/j.envpol.2021.117566_bib3 article-title: Flash pyrolysis products from beech wood publication-title: Wood Fiber Sci. – volume: 42 start-page: 5137 year: 2008 ident: 10.1016/j.envpol.2021.117566_bib8 article-title: Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures publication-title: Environ. Sci. Technol. doi: 10.1021/es8002684 – volume: 146 start-page: 605 year: 2006 ident: 10.1016/j.envpol.2021.117566_bib57 article-title: Influence of mineral matter on pyrolysis of palm oil wastes publication-title: Combust. Flame doi: 10.1016/j.combustflame.2006.07.006 – volume: 6 start-page: 136 year: 1992 ident: 10.1016/j.envpol.2021.117566_bib50 article-title: Effects of ion-exchanged calcium on brown coal tar composition as determined by Fourier transform infrared spectroscopy publication-title: Energy Fuel. doi: 10.1021/ef00032a004 – volume: 115 start-page: 70 year: 2018 ident: 10.1016/j.envpol.2021.117566_bib39 article-title: Mineral additive enhanced carbon retention and stabilization in sewage sludge-derived biochar publication-title: Process Saf. Environ. doi: 10.1016/j.psep.2017.11.006 – volume: 112 start-page: 284 year: 2015 ident: 10.1016/j.envpol.2021.117566_bib59 article-title: Influence of pyrolysis temperature on physical and chemical properties of biochar made from sewage sludge publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/j.jaap.2015.01.010 – volume: 88 start-page: 85 year: 2019 ident: 10.1016/j.envpol.2021.117566_bib64 article-title: The influence of manure feedstock, slow pyrolysis, and hydrothermal temperature on manure thermochemical and combustion properties publication-title: Waste Manag. doi: 10.1016/j.wasman.2019.03.025 – volume: 117 start-page: 6397 issue: 9 year: 2017 ident: 10.1016/j.envpol.2021.117566_bib30 article-title: Fates of chemical elements in biomass during its pyrolysis publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00647 – volume: 263 start-page: 116629 year: 2020 ident: 10.1016/j.envpol.2021.117566_bib27 article-title: Influence of additives on lignin agglomeration and pyrolysis behavior publication-title: Fuel doi: 10.1016/j.fuel.2019.116629 – volume: 44 start-page: 827 issue: 2 year: 2010 ident: 10.1016/j.envpol.2021.117566_bib40 article-title: Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential publication-title: Environ. Sci. Technol. doi: 10.1021/es902266r – volume: 44 start-page: 1247 year: 2010 ident: 10.1016/j.envpol.2021.117566_bib23 article-title: Dynamic molecular structure of plant biomass-derived black carbon (biochar) publication-title: Environ. Sci. Technol. doi: 10.1021/es9031419 – volume: 776 start-page: 145953 year: 2021 ident: 10.1016/j.envpol.2021.117566_bib37 article-title: Biochar produced from wood waste for soil remediation in Sweden: carbon sequestration and other environmental impacts publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.145953 – volume: 48 start-page: 279 year: 2013 ident: 10.1016/j.envpol.2021.117566_bib13 article-title: Aromatic and hydrophobic surfaces of wood-derived biochar enhance perchlorate adsorption via hydrogen bonding to oxygen-containing organic groups publication-title: Environ. Sci. Technol. doi: 10.1021/es403711y – volume: 255 start-page: 120162 year: 2020 ident: 10.1016/j.envpol.2021.117566_bib36 article-title: Different alkaline minerals interacted with biomass carbon during pyrolysis: which one improved biochar carbon sequestration? publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.120162 – volume: 187 start-page: 116390 year: 2020 ident: 10.1016/j.envpol.2021.117566_bib9 article-title: Production, properties, and catalytic applications of sludge derived biochar for environmental remediation publication-title: Water Res. doi: 10.1016/j.watres.2020.116390 – volume: 192 start-page: 23 year: 2015 ident: 10.1016/j.envpol.2021.117566_bib17 article-title: Effects of inherent alkali and alkaline earth metallic species on biomass pyrolysis at different temperatures publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.05.042 – volume: 155 start-page: 103674 year: 2020 ident: 10.1016/j.envpol.2021.117566_bib16 article-title: Biochar amendment ameliorates soil properties and promotes Miscanthus growth in a coastal saline-alkali soil publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2020.103674 – volume: 101 start-page: 4646 year: 2010 ident: 10.1016/j.envpol.2021.117566_bib42 article-title: Influence of inorganic salts on the primary pyrolysis products of cellulose publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.01.112 – volume: 72 start-page: 243 issue: 2 year: 2004 ident: 10.1016/j.envpol.2021.117566_bib12 article-title: Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/j.jaap.2004.07.003 – volume: 4 start-page: 524 year: 2006 ident: 10.1016/j.envpol.2021.117566_bib55 article-title: TG-FTIR study on corn straw pyrolysis-influence of minerals publication-title: Chem. Res. Chin. Univ. doi: 10.1016/S1005-9040(06)60155-4 – volume: 119 start-page: 519 year: 2017 ident: 10.1016/j.envpol.2021.117566_bib14 article-title: New insights on the structural evolution of biomass char upon pyrolysis as revealed by the Raman spectroscopy and elemental analysis publication-title: Carbon doi: 10.1016/j.carbon.2017.04.078 – volume: 130 year: 2006 ident: 10.1016/j.envpol.2021.117566_bib41 article-title: Black carbon contribution to soil organic matter composition in tropical sloping land under slash and burn agriculture publication-title: Geoderma doi: 10.1016/j.geoderma.2005.01.007 – volume: 150 start-page: 213 year: 2020 ident: 10.1016/j.envpol.2021.117566_bib4 article-title: Effect of hydraulic retention time on anaerobic co-digestion of cattle manure and food waste publication-title: Renew. Energy doi: 10.1016/j.renene.2019.12.091 – volume: 43 start-page: 1812 year: 2011 ident: 10.1016/j.envpol.2021.117566_bib10 article-title: Biochar effects on soil biota – a review publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.04.022 – volume: 45 start-page: 4884 issue: 11 year: 2011 ident: 10.1016/j.envpol.2021.117566_bib7 article-title: Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar publication-title: Environ. Sci. Technol. doi: 10.1021/es103752u – volume: 42 start-page: 1331 issue: 11 year: 2011 ident: 10.1016/j.envpol.2021.117566_bib38 article-title: Contribution to characterisation of biochar to estimate the labile fraction of carbon publication-title: Org. Geochem. doi: 10.1016/j.orggeochem.2011.09.002 – volume: 59 start-page: 383 year: 2013 ident: 10.1016/j.envpol.2021.117566_bib33 article-title: Carbonisation of biomass-derived chars and the thermal reduction of a graphene oxide sample studied using Raman spectroscopy publication-title: Carbon doi: 10.1016/j.carbon.2013.03.033 – volume: 52 start-page: 8321 issue: 15 year: 2018 ident: 10.1016/j.envpol.2021.117566_bib56 article-title: Kaolinite enhances the stability of the dissolvable and undissolvable fractions of biochar via different mechanisms publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b00306 – volume: 30 start-page: 180 year: 2001 ident: 10.1016/j.envpol.2021.117566_bib48 article-title: Phosphorus transfer in runoff following application of fertilizer, manure, and sewage sludge publication-title: J. Environ. Qual. doi: 10.2134/jeq2001.301180x – volume: 15 start-page: 158 year: 2001 ident: 10.1016/j.envpol.2021.117566_bib46 article-title: Enhancement of N2 formation from the nitrogen in carbon and coal by calcium publication-title: Energy Fuel. doi: 10.1021/ef000090t – volume: 46 start-page: 10641 year: 2012 ident: 10.1016/j.envpol.2021.117566_bib32 article-title: Generalized two-dimensional perturbation correlation infrared spectroscopy reveals mechanisms for the development of surface charge and recalcitrance in plant-derived biochars publication-title: Environ. Sci. Technol. doi: 10.1021/es302971d – volume: 35 start-page: 651 issue: 5 year: 2004 ident: 10.1016/j.envpol.2021.117566_bib54 article-title: Pyrolysis of biomass to produce fuels and chemical feedstocks publication-title: ChemInform – volume: 53 start-page: 13841 year: 2019 ident: 10.1016/j.envpol.2021.117566_bib20 article-title: Speciation transformation of phosphorus in poultry litter during pyrolysis: insights from X-ray diffraction, fourier transform infrared, and solid-state NMR spectroscopy publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b03261 – volume: 46 start-page: 10641 year: 2012 ident: 10.1016/j.envpol.2021.117566_bib15 article-title: Generalized two-dimensional perturbation correlation infrared spectroscopy reveals mechanisms for the development of surface charge and recalcitrance in plant-derived biochars publication-title: Environ. Sci. Technol. doi: 10.1021/es302971d – volume: 100 start-page: 5386 year: 2009 ident: 10.1016/j.envpol.2021.117566_bib47 article-title: Pathogens and antibiotic residues in animal manures and hygienic and ecological risks related to subsequent land application publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2009.03.068 – volume: 81 start-page: 1033 year: 2002 ident: 10.1016/j.envpol.2021.117566_bib52 article-title: Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part III. The importance of the interactions between volatiles and char at high temperature publication-title: Fuel doi: 10.1016/S0016-2361(02)00011-X – volume: 36 start-page: 2263 issue: 2 year: 2017 ident: 10.1016/j.envpol.2021.117566_bib25 article-title: Effect of KCl and CaCl2 loading on the formation of reaction intermediates during cellulose fast pyrolysis publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2016.06.167 – volume: 78 start-page: 291 issue: 2 year: 2007 ident: 10.1016/j.envpol.2021.117566_bib6 article-title: Pyrolysis of metal impregnated biomass: an innovative catalytic way to produce gas fuel publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/j.jaap.2006.08.006 – volume: 52 start-page: 3016 year: 2018 ident: 10.1016/j.envpol.2021.117566_bib18 article-title: Transformations of phosphorus speciation during (hydro)thermal treatments of animal manures publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b05203 – volume: 15 start-page: 1110 year: 2001 ident: 10.1016/j.envpol.2021.117566_bib65 article-title: The influence of inorganic materials on the thermal deactivation of fuel chars publication-title: Energy Fuel. doi: 10.1021/ef000288d – volume: 142 start-page: 178 year: 2007 ident: 10.1016/j.envpol.2021.117566_bib24 article-title: How useful is chemical oxidation with dichromate for the determination of "Black Carbon" in fire-affected soils? publication-title: Geoderma doi: 10.1016/j.geoderma.2007.08.010 – volume: 9 start-page: 115373 year: 2014 ident: 10.1016/j.envpol.2021.117566_bib62 article-title: Phosphorus-assisted biomass thermal conversion: reducing carbon loss and improving biochar stability publication-title: PloS One doi: 10.1371/journal.pone.0115373 – volume: 69 start-page: 120 year: 2005 ident: 10.1016/j.envpol.2021.117566_bib34 article-title: Review: organic matter removal from soils using hydrogen peroxide, sodium hypochlorite, and disodium peroxodisulfate publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2005.0120 – volume: 80 start-page: 617 year: 2014 ident: 10.1016/j.envpol.2021.117566_bib45 article-title: Assessment of the structural evolution of carbons from microwave plasma natural gas reforming and biomass pyrolysis using Raman spectroscopy publication-title: Carbon doi: 10.1016/j.carbon.2014.09.005 – volume: 2 start-page: 393 issue: 5 year: 2008 ident: 10.1016/j.envpol.2021.117566_bib1 article-title: Biomass pyrolysis: a state‐of‐the‐art review publication-title: Biofuel Bioprod. Bior. doi: 10.1002/bbb.92 – volume: 72 start-page: 1 year: 2014 ident: 10.1016/j.envpol.2021.117566_bib19 article-title: Fire performance of oak wood modified with N-methylol resin and methylolated guanylurea phosphate/boric acid-based fire retardant publication-title: Construct. Build. Mater. doi: 10.1016/j.conbuildmat.2014.09.004 – volume: 85 start-page: 1411 year: 2006 ident: 10.1016/j.envpol.2021.117566_bib44 article-title: Formation of NOx precursors during the pyrolysis of coal and biomass. Part IX. Effects of coal ash and externally loaded-Na on fuel-N conversion during the reforming of coal and biomass in steam publication-title: Fuel doi: 10.1016/j.fuel.2006.01.008 – volume: 4 start-page: 1 year: 1994 ident: 10.1016/j.envpol.2021.117566_bib51 article-title: The role of metal salts in the pyrolysis of biomass publication-title: Renew. Energy doi: 10.1016/0960-1481(94)90058-2 – volume: 51 start-page: 5473 year: 2017 ident: 10.1016/j.envpol.2021.117566_bib53 article-title: A direct observation of the fine aromatic clusters and molecular structures of biochars publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b06300 – volume: 27 start-page: 445 year: 2004 ident: 10.1016/j.envpol.2021.117566_bib11 article-title: Influence of pretreatment for deashing of sugarcane bagasse on pyrolysis products publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2004.04.002 – volume: 171 start-page: 66 year: 2017 ident: 10.1016/j.envpol.2021.117566_bib28 article-title: The role of ash content on bisphenol A sorption to biochars derived from different agricultural wastes publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.12.041 |
SSID | ssj0004333 |
Score | 2.6032727 |
Snippet | Converting biomass waste into biochar by slow pyrolysis with subsequent soil amendment is a prospective approach with multiple environmental benefits including... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 117566 |
SubjectTerms | aromatization Biochar biomass calcium calcium oxide carbon Carbon retention Carbon sequestration Carbon stability cow manure microstructure Mineral Ca pyrolysis Pyrolysis temperature soil amendments soil pollution soil remediation spectrometers temperature X-ray photoelectron spectroscopy |
Title | Pyrolysis temperature-dependent carbon retention and stability of biochar with participation of calcium: Implications to carbon sequestration |
URI | https://dx.doi.org/10.1016/j.envpol.2021.117566 https://www.proquest.com/docview/2544159845 https://www.proquest.com/docview/2551975848 |
Volume | 287 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBUhvbSH0m4amjQNKpTe1PXa8odyW0LCpqWh0AZyE5I8gi2NvWy8hb30H-Q_Z0a2mk0oDRR8sS0Z4ZE0b6Q3T4y9V4WrPHpikaaqEDL1VhhfgSgsYgdHAmxBwPTLeTG7kJ8u88stdhxzYYhWOcz9_ZweZuvhyXj4m-PFfD7-htEDgmFFClgE6imJT8qSevnH33c0D5n1x8ljYUGlY_pc4HhB82vR0gZEOqHdyzxoJf7VPT2YqIP3OX3Bng-wkU_7lr1kW9CM2M60wZD5as0_8EDkDCvkI_ZsQ2NwxHZP7lLZ8AvDWL7eYTdf18s2CJJw0qcaxJVFPBW3484sbdvwJcFqMh83Tc0RTAY67Zq3ntt5S1lbnBZz-cJsMLTpLVrfzVdXR_xsg7XOuzZ-OLC4o2zvK3ZxevL9eCaGwxmEyVTeCV9KJ2uoZWrzpICkNnmNwU8CyirvSitLaeoJhkclJEAXeEnhDnYJk7kCsl223bQNvGa8cGkO0lSJg0yqJFWgzMS72ie1gsImeyyLNtFuUC6nAzR-6khR-6F7S2qypO4tucfEn1qLXrnjkfJlNLe-1wM1OpdHar6LvUPj4KQdF9NAu7rWpP-GeLGS-b_KUO4w4sBq_79b8IY9pTvyqZP8gG13yxW8RbDU2cMwGg7Zk-nZ59n5LdjiGYs |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEB3S9ND2UNpNQ9NPFUpv6npt-UO9hZCwaZNQaAK5CUmWYENjLxtvYC_5B_3PnZGtZltKAwWfbFkIj6R5Y715A_BeFrby6Il5msqCi9Qbrn3leGEQO1gSYAsCpscnxfRMfD7PzzdgL-bCEK1y2Pv7PT3s1sOd8fA1x_PZbPwNowcEw5IUsAjUy3twX-DypTIGH29ueR4i6-vJY2tOzWP-XCB5ueZ63tIJRDqh48s8iCX-1T_9sVMH93PwBB4PuJHt9kN7ChuuGcHWboMx8-WKfWCByRl-kY_g0ZrI4Ai2929z2bCHYTFfbcGPr6tFGxRJGAlUDerKPJbF7ZjVC9M2bEG4muzHdFMzRJOBT7tirWdm1lLaFqO_uWyu1yja9BTNb2fLy0_scI22zro2dhxo3FG39xmcHeyf7k35UJ2B60zmHfelsKJ2tUhNnhQuqXVeY_STOGmkt6URpdD1BOOj0iWOLucFxTs4J3RmC5dtw2bTNu45sMKmuRO6SqzLhExS6aSeeFv7pJauMMkOZNEmyg7S5VRB47uKHLUL1VtSkSVVb8kd4L_emvfSHXe0L6O51W9TUKF3uePNd3F2KFyddOSiG9curxQJwCFgrET-rzaUPIxAsHrx3yN4Cw-mp8dH6ujw5MtLeEhPyMFO8lew2S2W7jUip868CSvjJxS1Gxk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pyrolysis+temperature-dependent+carbon+retention+and+stability+of+biochar+with+participation+of+calcium%3A+Implications+to+carbon+sequestration&rft.jtitle=Environmental+pollution+%281987%29&rft.au=Nan%2C+Hongyan&rft.au=Yin%2C+Jianxiang&rft.au=Yang%2C+Fan&rft.au=Luo%2C+Ying&rft.date=2021-10-15&rft.issn=1873-6424&rft.eissn=1873-6424&rft.volume=287&rft.spage=117566&rft_id=info:doi/10.1016%2Fj.envpol.2021.117566&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon |