Ordered Mesoporous Metal–Phenolic Network Particles

Mesoporous metal–organic networks have attracted widespread interest owing to their potential applications in diverse fields including gas storage, separations, catalysis, and drug delivery. Despite recent advances, the synthesis of metal–organic networks with large and ordered mesochannels (>20...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 142; no. 1; pp. 335 - 341
Main Authors Lin, Zhixing, Zhou, Jiajing, Cortez-Jugo, Christina, Han, Yiyuan, Ma, Yutian, Pan, Shuaijun, Hanssen, Eric, Richardson, Joseph J, Caruso, Frank
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 08.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mesoporous metal–organic networks have attracted widespread interest owing to their potential applications in diverse fields including gas storage, separations, catalysis, and drug delivery. Despite recent advances, the synthesis of metal–organic networks with large and ordered mesochannels (>20 nm), which are important for loading, separating, and releasing macromolecules, remains a challenge. Herein, we report a templating strategy using sacrificial double cubic network polymer cubosomes (Im3̅m) to synthesize ordered mesoporous metal–phenolic particles (meso-MPN particles) with a large-pore (∼40 nm) single cubic network (Pm3̅m). We demonstrate that the large-pore network and the phenolic groups in the meso-MPN particles enable high loadings of various proteins (e.g., horseradish peroxidase (HRP), bovine hemoglobin, immunoglobulin G, and glucose oxidase (GOx)), which have different shapes, charges, and sizes (i.e., molecular weights spanning 44–160 kDa). For example, GOx loading in the meso-MPN particles was 362 mg g–1, which is ∼6-fold higher than the amount loaded in commercially available SiO2 particles with an average pore size of 50 nm. Furthermore, we show that HRP, when loaded in the meso-MPN particles (486 mg g–1), retained ∼82% activity of free HRP in solution and can be recycled at least five times with a minimal (∼13%) decrease in HRP activity, which exceeds HRP performance in 50 nm pore SiO2 particles (∼36% retained activity and ∼30% activity loss when recycled five times). Considering the wide selection of naturally abundant polyphenols (>8000 species) and metal ions available, the present cubosome-enabled strategy is expected to provide new avenues for designing a range of meso-MPN particles for various applications.
AbstractList Mesoporous metal–organic networks have attracted widespread interest owing to their potential applications in diverse fields including gas storage, separations, catalysis, and drug delivery. Despite recent advances, the synthesis of metal–organic networks with large and ordered mesochannels (>20 nm), which are important for loading, separating, and releasing macromolecules, remains a challenge. Herein, we report a templating strategy using sacrificial double cubic network polymer cubosomes (Im3̅m) to synthesize ordered mesoporous metal–phenolic particles (meso-MPN particles) with a large-pore (∼40 nm) single cubic network (Pm3̅m). We demonstrate that the large-pore network and the phenolic groups in the meso-MPN particles enable high loadings of various proteins (e.g., horseradish peroxidase (HRP), bovine hemoglobin, immunoglobulin G, and glucose oxidase (GOx)), which have different shapes, charges, and sizes (i.e., molecular weights spanning 44–160 kDa). For example, GOx loading in the meso-MPN particles was 362 mg g–1, which is ∼6-fold higher than the amount loaded in commercially available SiO2 particles with an average pore size of 50 nm. Furthermore, we show that HRP, when loaded in the meso-MPN particles (486 mg g–1), retained ∼82% activity of free HRP in solution and can be recycled at least five times with a minimal (∼13%) decrease in HRP activity, which exceeds HRP performance in 50 nm pore SiO2 particles (∼36% retained activity and ∼30% activity loss when recycled five times). Considering the wide selection of naturally abundant polyphenols (>8000 species) and metal ions available, the present cubosome-enabled strategy is expected to provide new avenues for designing a range of meso-MPN particles for various applications.
Mesoporous metal–organic networks have attracted widespread interest owing to their potential applications in diverse fields including gas storage, separations, catalysis, and drug delivery. Despite recent advances, the synthesis of metal–organic networks with large and ordered mesochannels (>20 nm), which are important for loading, separating, and releasing macromolecules, remains a challenge. Herein, we report a templating strategy using sacrificial double cubic network polymer cubosomes (Im3̅m) to synthesize ordered mesoporous metal–phenolic particles (meso-MPN particles) with a large-pore (∼40 nm) single cubic network (Pm3̅m). We demonstrate that the large-pore network and the phenolic groups in the meso-MPN particles enable high loadings of various proteins (e.g., horseradish peroxidase (HRP), bovine hemoglobin, immunoglobulin G, and glucose oxidase (GOx)), which have different shapes, charges, and sizes (i.e., molecular weights spanning 44–160 kDa). For example, GOx loading in the meso-MPN particles was 362 mg g–¹, which is ∼6-fold higher than the amount loaded in commercially available SiO₂ particles with an average pore size of 50 nm. Furthermore, we show that HRP, when loaded in the meso-MPN particles (486 mg g–¹), retained ∼82% activity of free HRP in solution and can be recycled at least five times with a minimal (∼13%) decrease in HRP activity, which exceeds HRP performance in 50 nm pore SiO₂ particles (∼36% retained activity and ∼30% activity loss when recycled five times). Considering the wide selection of naturally abundant polyphenols (>8000 species) and metal ions available, the present cubosome-enabled strategy is expected to provide new avenues for designing a range of meso-MPN particles for various applications.
Mesoporous metal-organic networks have attracted widespread interest owing to their potential applications in diverse fields including gas storage, separations, catalysis, and drug delivery. Despite recent advances, the synthesis of metal-organic networks with large and ordered mesochannels (>20 nm), which are important for loading, separating, and releasing macromolecules, remains a challenge. Herein, we report a templating strategy using sacrificial double cubic network polymer cubosomes ( 3̅ ) to synthesize ordered mesoporous metal-phenolic particles (meso-MPN particles) with a large-pore (∼40 nm) single cubic network ( 3̅ ). We demonstrate that the large-pore network and the phenolic groups in the meso-MPN particles enable high loadings of various proteins (e.g., horseradish peroxidase (HRP), bovine hemoglobin, immunoglobulin G, and glucose oxidase (GOx)), which have different shapes, charges, and sizes (i.e., molecular weights spanning 44-160 kDa). For example, GOx loading in the meso-MPN particles was 362 mg g , which is ∼6-fold higher than the amount loaded in commercially available SiO particles with an average pore size of 50 nm. Furthermore, we show that HRP, when loaded in the meso-MPN particles (486 mg g ), retained ∼82% activity of free HRP in solution and can be recycled at least five times with a minimal (∼13%) decrease in HRP activity, which exceeds HRP performance in 50 nm pore SiO particles (∼36% retained activity and ∼30% activity loss when recycled five times). Considering the wide selection of naturally abundant polyphenols (>8000 species) and metal ions available, the present cubosome-enabled strategy is expected to provide new avenues for designing a range of meso-MPN particles for various applications.
Mesoporous metal-organic networks have attracted widespread interest owing to their potential applications in diverse fields including gas storage, separations, catalysis, and drug delivery. Despite recent advances, the synthesis of metal-organic networks with large and ordered mesochannels (>20 nm), which are important for loading, separating, and releasing macromolecules, remains a challenge. Herein, we report a templating strategy using sacrificial double cubic network polymer cubosomes (Im3̅m) to synthesize ordered mesoporous metal-phenolic particles (meso-MPN particles) with a large-pore (∼40 nm) single cubic network (Pm3̅m). We demonstrate that the large-pore network and the phenolic groups in the meso-MPN particles enable high loadings of various proteins (e.g., horseradish peroxidase (HRP), bovine hemoglobin, immunoglobulin G, and glucose oxidase (GOx)), which have different shapes, charges, and sizes (i.e., molecular weights spanning 44-160 kDa). For example, GOx loading in the meso-MPN particles was 362 mg g-1, which is ∼6-fold higher than the amount loaded in commercially available SiO2 particles with an average pore size of 50 nm. Furthermore, we show that HRP, when loaded in the meso-MPN particles (486 mg g-1), retained ∼82% activity of free HRP in solution and can be recycled at least five times with a minimal (∼13%) decrease in HRP activity, which exceeds HRP performance in 50 nm pore SiO2 particles (∼36% retained activity and ∼30% activity loss when recycled five times). Considering the wide selection of naturally abundant polyphenols (>8000 species) and metal ions available, the present cubosome-enabled strategy is expected to provide new avenues for designing a range of meso-MPN particles for various applications.Mesoporous metal-organic networks have attracted widespread interest owing to their potential applications in diverse fields including gas storage, separations, catalysis, and drug delivery. Despite recent advances, the synthesis of metal-organic networks with large and ordered mesochannels (>20 nm), which are important for loading, separating, and releasing macromolecules, remains a challenge. Herein, we report a templating strategy using sacrificial double cubic network polymer cubosomes (Im3̅m) to synthesize ordered mesoporous metal-phenolic particles (meso-MPN particles) with a large-pore (∼40 nm) single cubic network (Pm3̅m). We demonstrate that the large-pore network and the phenolic groups in the meso-MPN particles enable high loadings of various proteins (e.g., horseradish peroxidase (HRP), bovine hemoglobin, immunoglobulin G, and glucose oxidase (GOx)), which have different shapes, charges, and sizes (i.e., molecular weights spanning 44-160 kDa). For example, GOx loading in the meso-MPN particles was 362 mg g-1, which is ∼6-fold higher than the amount loaded in commercially available SiO2 particles with an average pore size of 50 nm. Furthermore, we show that HRP, when loaded in the meso-MPN particles (486 mg g-1), retained ∼82% activity of free HRP in solution and can be recycled at least five times with a minimal (∼13%) decrease in HRP activity, which exceeds HRP performance in 50 nm pore SiO2 particles (∼36% retained activity and ∼30% activity loss when recycled five times). Considering the wide selection of naturally abundant polyphenols (>8000 species) and metal ions available, the present cubosome-enabled strategy is expected to provide new avenues for designing a range of meso-MPN particles for various applications.
Author Ma, Yutian
Pan, Shuaijun
Zhou, Jiajing
Lin, Zhixing
Cortez-Jugo, Christina
Han, Yiyuan
Richardson, Joseph J
Hanssen, Eric
Caruso, Frank
AuthorAffiliation ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Department of Chemical Engineering
Advanced Microscopy Facility, Bio21 Molecular Science and Biotechnology Institute
AuthorAffiliation_xml – name: ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Department of Chemical Engineering
– name: Advanced Microscopy Facility, Bio21 Molecular Science and Biotechnology Institute
Author_xml – sequence: 1
  givenname: Zhixing
  orcidid: 0000-0001-9372-3424
  surname: Lin
  fullname: Lin, Zhixing
  organization: ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Department of Chemical Engineering
– sequence: 2
  givenname: Jiajing
  orcidid: 0000-0001-5203-4737
  surname: Zhou
  fullname: Zhou, Jiajing
  organization: ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Department of Chemical Engineering
– sequence: 3
  givenname: Christina
  surname: Cortez-Jugo
  fullname: Cortez-Jugo, Christina
  organization: ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Department of Chemical Engineering
– sequence: 4
  givenname: Yiyuan
  surname: Han
  fullname: Han, Yiyuan
  organization: ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Department of Chemical Engineering
– sequence: 5
  givenname: Yutian
  surname: Ma
  fullname: Ma, Yutian
  organization: ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Department of Chemical Engineering
– sequence: 6
  givenname: Shuaijun
  surname: Pan
  fullname: Pan, Shuaijun
  organization: ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Department of Chemical Engineering
– sequence: 7
  givenname: Eric
  surname: Hanssen
  fullname: Hanssen, Eric
  organization: Advanced Microscopy Facility, Bio21 Molecular Science and Biotechnology Institute
– sequence: 8
  givenname: Joseph J
  surname: Richardson
  fullname: Richardson, Joseph J
  organization: ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Department of Chemical Engineering
– sequence: 9
  givenname: Frank
  orcidid: 0000-0002-0197-497X
  surname: Caruso
  fullname: Caruso, Frank
  email: fcaruso@unimelb.edu.au
  organization: ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Department of Chemical Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31851509$$D View this record in MEDLINE/PubMed
BookMark eNqFkD1PwzAQhi1URD9gY0YdGUjxRxzbI0J8SYV2gDlynItISeNiO0Js_Af-Ib8EVy0MCMR0d6-eO52eIeq1tgWEDgmeEEzJ6UIbP1EFwZLxHTQgnOKEE5r10ABjTBMhM9ZHQ-8XcUypJHuoz4jkhGM1QHzmSnBQjm_B25V1tvOxDbr5eHufP0Jrm9qM7yC8WPc0nmsXatOA30e7lW48HGzrCD1cXtyfXyfT2dXN-dk00UzxkFSsMpAKTpVSFedZTLHQOE0BCwHAq6JMs7KUElhmpOQFZgIKw4lKuWYG2Agdb-6unH3uwId8WXsDTaNbiJ_mVMmMcpEq_j_KqBRCMSkjerRFu2IJZb5y9VK71_zLSgRONoBx1nsH1TdCcL6Wnq-l51vpEac_cFMHHWrbBqfr5q-l7b_rcGE710aRv6OfRKeSIw
CitedBy_id crossref_primary_10_1039_D0CS00021C
crossref_primary_10_1016_j_gee_2022_04_003
crossref_primary_10_1021_acssensors_4c00957
crossref_primary_10_1002_marc_202400633
crossref_primary_10_1016_j_cej_2023_145945
crossref_primary_10_1021_acs_accounts_0c00150
crossref_primary_10_1002_pol_20220662
crossref_primary_10_1021_acs_chemmater_1c00123
crossref_primary_10_1002_adom_202301483
crossref_primary_10_1002_anie_202302448
crossref_primary_10_3390_molecules30061218
crossref_primary_10_1021_acsami_3c19621
crossref_primary_10_1021_acsomega_4c01399
crossref_primary_10_1021_acs_chemrev_1c01042
crossref_primary_10_1021_acs_iecr_2c02651
crossref_primary_10_1002_smll_202100314
crossref_primary_10_1021_jacs_3c07748
crossref_primary_10_3762_bjnano_13_67
crossref_primary_10_1093_humrep_deab105
crossref_primary_10_1039_D3YA00306J
crossref_primary_10_1002_adma_202416204
crossref_primary_10_1002_advs_202202684
crossref_primary_10_1021_acsnano_0c09166
crossref_primary_10_1016_j_bios_2023_115965
crossref_primary_10_1002_anie_202108671
crossref_primary_10_1021_jacs_1c10979
crossref_primary_10_1021_acsnano_3c04827
crossref_primary_10_1021_acs_nanolett_3c02828
crossref_primary_10_1039_D0CC06521H
crossref_primary_10_1126_sciadv_abh3482
crossref_primary_10_1016_j_foodhyd_2024_110695
crossref_primary_10_1016_j_microc_2022_107193
crossref_primary_10_3390_bios13080776
crossref_primary_10_2139_ssrn_3940903
crossref_primary_10_1007_s11705_022_2278_4
crossref_primary_10_1021_acs_analchem_2c03070
crossref_primary_10_1002_marc_202100194
crossref_primary_10_1039_D1TA01110C
crossref_primary_10_1017_S1431927621012149
crossref_primary_10_1021_acsnano_1c05089
crossref_primary_10_1039_D3PY01377D
crossref_primary_10_1021_cbmi_2c00003
crossref_primary_10_1186_s12951_025_03210_7
crossref_primary_10_1016_j_foodchem_2024_139260
crossref_primary_10_1021_acs_inorgchem_4c03982
crossref_primary_10_1039_D0CS00908C
crossref_primary_10_1021_acs_langmuir_1c00784
crossref_primary_10_1038_s41570_023_00474_1
crossref_primary_10_1002_ange_202108462
crossref_primary_10_1021_acs_chemrev_3c00858
crossref_primary_10_1002_smsc_202400274
crossref_primary_10_1002_admi_202400358
crossref_primary_10_1021_acs_chemmater_1c04419
crossref_primary_10_1002_anie_202214935
crossref_primary_10_1021_acsnano_3c08219
crossref_primary_10_1016_j_talanta_2024_127092
crossref_primary_10_1021_jacs_2c02881
crossref_primary_10_1039_D3CS00273J
crossref_primary_10_1002_anie_202215985
crossref_primary_10_1016_j_actbio_2024_07_030
crossref_primary_10_1002_anie_202410043
crossref_primary_10_1002_smll_202403777
crossref_primary_10_1002_anie_202108462
crossref_primary_10_1021_jacs_4c08336
crossref_primary_10_1002_adma_202209015
crossref_primary_10_1002_ange_202215985
crossref_primary_10_1016_j_ccr_2022_214649
crossref_primary_10_1002_adma_202313920
crossref_primary_10_1002_ange_202214935
crossref_primary_10_1002_smll_202206592
crossref_primary_10_1016_j_ijhydene_2024_10_261
crossref_primary_10_1016_j_polymer_2020_122914
crossref_primary_10_1016_j_colsurfb_2022_112511
crossref_primary_10_1021_jacs_2c13515
crossref_primary_10_3390_pharmaceutics14030600
crossref_primary_10_1126_sciadv_abo1874
crossref_primary_10_1021_acsami_2c07732
crossref_primary_10_1021_acsnano_0c04197
crossref_primary_10_1002_cplu_202300695
crossref_primary_10_1016_j_jcis_2023_10_135
crossref_primary_10_1002_ange_202302448
crossref_primary_10_1016_j_foodhyd_2024_110011
crossref_primary_10_1016_j_tifs_2024_104665
crossref_primary_10_1016_j_matdes_2024_112691
crossref_primary_10_1039_D2PY00701K
crossref_primary_10_1002_adma_202210994
crossref_primary_10_1021_acs_chemmater_4c02617
crossref_primary_10_1021_acsnano_2c00642
crossref_primary_10_1002_advs_202202394
crossref_primary_10_1021_acsami_3c02768
crossref_primary_10_1021_jacs_4c02651
crossref_primary_10_1016_j_mattod_2024_07_010
crossref_primary_10_1002_adfm_202211869
crossref_primary_10_1021_jacs_0c02009
crossref_primary_10_1038_s41467_024_49826_5
crossref_primary_10_1016_j_crgsc_2021_100110
crossref_primary_10_1002_ange_202108671
crossref_primary_10_1039_D2RA00832G
crossref_primary_10_1002_pol_20230053
crossref_primary_10_1021_acs_accounts_3c00172
crossref_primary_10_1021_acs_biomac_4c01023
crossref_primary_10_1039_D2BM00969B
crossref_primary_10_1007_s11426_023_1838_4
crossref_primary_10_1021_acs_langmuir_1c03338
crossref_primary_10_1021_acs_chemmater_0c02279
crossref_primary_10_1002_ange_202410043
crossref_primary_10_1021_acsnano_4c13152
crossref_primary_10_1039_D1PY00115A
crossref_primary_10_1016_j_jcis_2024_04_130
crossref_primary_10_1002_adma_202207684
crossref_primary_10_1016_j_jhazmat_2024_134194
crossref_primary_10_1021_acsnano_3c07963
crossref_primary_10_3390_polym12102190
crossref_primary_10_1016_j_colsurfb_2021_111851
crossref_primary_10_1002_smtd_202001137
crossref_primary_10_1016_j_trac_2024_118098
Cites_doi 10.1039/C2CS35426H
10.1002/anie.201000044
10.1021/jacs.8b09682
10.1039/C8EE01438H
10.1039/C4CS00127C
10.1039/b807085g
10.1039/c2cs15284c
10.1039/C8CS00688A
10.1126/science.1147241
10.1002/adma.201704877
10.1103/PhysRevE.73.061510
10.1126/science.aao3403
10.1021/acs.chemmater.5b02790
10.1038/s41467-018-07793-8
10.1002/anie.201804067
10.1002/anie.201804401
10.1038/s41467-017-00541-4
10.1016/j.ccr.2018.05.001
10.1002/adma.201705708
10.1038/nchem.1946
10.1038/ncomms9915
10.1038/s41467-019-09324-5
10.1016/j.ceb.2006.06.008
10.1002/adfm.201905321
10.1103/PhysRevB.95.155105
10.1002/anie.201807804
10.1021/ja209698f
10.1016/j.ces.2008.10.042
10.1002/adma.201606717
10.1002/adma.201203395
10.1002/anie.201703765
10.1039/C8CS00658J
10.1126/science.1220131
10.1038/nature01650
10.1126/science.1237265
10.1038/nature00785
10.1021/ja067379v
10.1021/acsami.8b10415
10.1021/cr300439k
10.1038/nnano.2016.172
10.1002/anie.201704639
10.1002/anie.201311136
10.1002/anie.201702591
10.1021/cr200440z
10.1038/ncomms5110
10.1021/jacs.9b02091
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/jacs.9b10835
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 341
ExternalDocumentID 31851509
10_1021_jacs_9b10835
c807010274
Genre Journal Article
GroupedDBID -
.K2
02
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
4.4
53G
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
NPM
YIN
7X8
7S9
L.6
ID FETCH-LOGICAL-a395t-f3fce4752999f556a3907a044e077ee5fbd46dd88e36c885b037ebc51945a3ce3
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Fri Jul 11 02:16:18 EDT 2025
Fri Jul 11 02:58:41 EDT 2025
Wed Feb 19 02:30:55 EST 2025
Thu Apr 24 23:03:13 EDT 2025
Tue Jul 01 03:21:55 EDT 2025
Thu Aug 27 22:10:25 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a395t-f3fce4752999f556a3907a044e077ee5fbd46dd88e36c885b037ebc51945a3ce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0197-497X
0000-0001-9372-3424
0000-0001-5203-4737
OpenAccessLink http://hdl.handle.net/11343/233830
PMID 31851509
PQID 2328779388
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2986257495
proquest_miscellaneous_2328779388
pubmed_primary_31851509
crossref_primary_10_1021_jacs_9b10835
crossref_citationtrail_10_1021_jacs_9b10835
acs_journals_10_1021_jacs_9b10835
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-08
PublicationDateYYYYMMDD 2020-01-08
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-08
  day: 08
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref46/cit46
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref6/cit6
  doi: 10.1039/C2CS35426H
– ident: ref40/cit40
  doi: 10.1002/anie.201000044
– ident: ref12/cit12
  doi: 10.1021/jacs.8b09682
– ident: ref28/cit28
  doi: 10.1039/C8EE01438H
– ident: ref14/cit14
  doi: 10.1039/C4CS00127C
– ident: ref8/cit8
  doi: 10.1039/b807085g
– ident: ref4/cit4
  doi: 10.1039/c2cs15284c
– ident: ref9/cit9
  doi: 10.1039/C8CS00688A
– ident: ref41/cit41
  doi: 10.1126/science.1147241
– ident: ref27/cit27
  doi: 10.1002/adma.201704877
– ident: ref33/cit33
  doi: 10.1103/PhysRevE.73.061510
– ident: ref45/cit45
  doi: 10.1126/science.aao3403
– ident: ref25/cit25
  doi: 10.1021/acs.chemmater.5b02790
– ident: ref22/cit22
  doi: 10.1038/s41467-018-07793-8
– ident: ref31/cit31
  doi: 10.1002/anie.201804067
– ident: ref20/cit20
  doi: 10.1002/anie.201804401
– ident: ref43/cit43
  doi: 10.1038/s41467-017-00541-4
– ident: ref15/cit15
  doi: 10.1016/j.ccr.2018.05.001
– ident: ref30/cit30
  doi: 10.1002/adma.201705708
– ident: ref17/cit17
  doi: 10.1038/nchem.1946
– ident: ref32/cit32
  doi: 10.1038/ncomms9915
– ident: ref21/cit21
  doi: 10.1038/s41467-019-09324-5
– ident: ref29/cit29
  doi: 10.1016/j.ceb.2006.06.008
– ident: ref42/cit42
  doi: 10.1002/adfm.201905321
– ident: ref35/cit35
  doi: 10.1103/PhysRevB.95.155105
– ident: ref39/cit39
  doi: 10.1002/anie.201807804
– ident: ref13/cit13
  doi: 10.1021/ja209698f
– ident: ref44/cit44
  doi: 10.1016/j.ces.2008.10.042
– ident: ref37/cit37
  doi: 10.1002/adma.201606717
– ident: ref34/cit34
  doi: 10.1002/adma.201203395
– ident: ref19/cit19
  doi: 10.1002/anie.201703765
– ident: ref3/cit3
  doi: 10.1039/C8CS00658J
– ident: ref10/cit10
  doi: 10.1126/science.1220131
– ident: ref11/cit11
  doi: 10.1038/nature01650
– ident: ref23/cit23
  doi: 10.1126/science.1237265
– ident: ref5/cit5
  doi: 10.1038/nature00785
– ident: ref46/cit46
  doi: 10.1021/ja067379v
– ident: ref38/cit38
  doi: 10.1021/acsami.8b10415
– ident: ref1/cit1
  doi: 10.1021/cr300439k
– ident: ref26/cit26
  doi: 10.1038/nnano.2016.172
– ident: ref36/cit36
  doi: 10.1002/anie.201704639
– ident: ref24/cit24
  doi: 10.1002/anie.201311136
– ident: ref16/cit16
  doi: 10.1002/anie.201702591
– ident: ref2/cit2
  doi: 10.1021/cr200440z
– ident: ref18/cit18
  doi: 10.1038/ncomms5110
– ident: ref7/cit7
  doi: 10.1021/jacs.9b02091
SSID ssj0004281
Score 2.6081605
Snippet Mesoporous metal–organic networks have attracted widespread interest owing to their potential applications in diverse fields including gas storage,...
Mesoporous metal-organic networks have attracted widespread interest owing to their potential applications in diverse fields including gas storage,...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 335
SubjectTerms catalytic activity
cattle
drugs
glucose oxidase
hemoglobin
immunoglobulin G
metal ions
molecular weight
peroxidase
polymers
polyphenols
porosity
porous media
silica
Title Ordered Mesoporous Metal–Phenolic Network Particles
URI http://dx.doi.org/10.1021/jacs.9b10835
https://www.ncbi.nlm.nih.gov/pubmed/31851509
https://www.proquest.com/docview/2328779388
https://www.proquest.com/docview/2986257495
Volume 142
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46H_TF-2Xe6ECfpKM2SZM8ynCKsDnQwd5Kk5wiKFW27sUn_4P_0F_iydpuqEx9K-H0kpO05_t6boScMJdyENrED1LFfJZo7WsKFlkrMylwC1y5ROFON7rus5sBH8wCZL978ENXH8iMmkqfO6ywSJbCCN9fB4Fad7P8x1CeVzBXyIiWAe7fz3YGyIy-GqA5qHJiXdpr5KrK0SmCSh6b41w3zevPko1_PPg6WS0BpndR7IgNsgDZJlluVX3dtgi_HU4adHodGD0j-kbqj4eIwT_e3nsPkLlCwV63iA73elXg3Dbpty_vW9d-2TzBT6jiuZ_S1AATHM2NSjmPcDQQScAYBEIA8FRbFlkrJdDISMl1QAVog4CO8YQaoDuklj1nsEc8ClQjkQpMaFNmXRc_vHgoFFDkUlaqOmngVONy84_iiV87RF7hRksF1MlZpfXYlNXHXROMpznSp1Ppl6Lqxhy5RrWAMWrR-TqSDFBvMQJFKfDbI-UvMgrpHBdIEetkt1j96d1cUjliZbX_j7kdkJXQsXD3Y0Yeklo-HMMRQpVcH0_26SdC6eJw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtNAEB5BOYRLC-WnoQUciZ4qV45317t7rCKiAEkaiUTKzfLujoUEcqo4ufTEO_CGPElnHTsRkYJ6s1Zje3c89nyfd34APnGfchC7LIxyzUOeGRMaho5YK7c5CodC-0Th0TgZzPjXuZjXyeo-F4YmUdKVymoTf1ddwJcJokFtuh4yPIVnhENib9A3ve-7NMhYdRu0K1XC6jj3_bO9H7Llv37oALisnEz_BMbb6VWxJT-v1ytzbe_3Kjc-ev4v4LiGm8HNxj5ewhMsTqHVa7q8vQJxu6zadQYjLBeExRfrkg4Jkf_9_WfyAwtfNjgYb2LFg0kTRvcaZv3P094grFsphBnTYhXmLLfIpSDno3MhEhqNZBZxjpGUiCI3jifOKYUssUoJEzGJxhK84yJjFtkbOCoWBZ5BwJAZolWRjV3One_pRxePpUZGzMop3YYOLTWtX4UyrXa5Y2IZfrRWQBuuGuWntq5F7lti_DogfbmVvtvU4Dgg12meY0pa9DsfWYGkt5Rgo5L0JVLqPzKayJ2QRBjb8HZjBNu7-RRzQs763SPW9hFag-lomA6_jL-dw_PY83P_y0ZdwNFqucb3BGJW5kNlug8UBurR
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4BlaAXaHl1gdIgwQlllY3t2D6ihRWlZVnxkLhFsT0REiiLyO6FU_9D_2F_ScfZZBFIW9Fb5EwcP8aZbzIvgH3uQw5il4VRrnnIM2NCw9CR1sptjsKh0D5Q-LyfnN7ws1txOwedJhaGBlFST2VlxPen-tHldYYBnyqIbmjT8bBhHj54i51n6qPu1UsoZKw6DeKVKmG1r_vbp70ssuVrWTQDYFaCprcCl9MhVv4l9-3xyLTt85vsjf81h0-wXMPO4GjCJ59hDotVWOo21d7WQFw8VWU7g3Msh4TJh-OSLgmZ__n1e3CHhU8fHPQnPuPBoHGnW4eb3sl19zSsSyqEGdNiFOYst8ilICGkcyESao1kFnGOkZSIIjeOJ84phSyxSgkTMYnGEszjImMW2QYsFMMCv0DAkBlSryIbu5w7X9uPOo-lRkYallO6BXs01bQ-EmVaWbtj0jZ8a70ALThsNiC1dU5yXxrjYQb1wZT6cZKLYwbdXrOXKa2it4BkBdK6pQQflaQvklL_oNGk5AlJimMLNieMMH2bDzUnBK233jG3b7A4OO6lP7_3f2zDx9ir6f7PjdqBhdHTGL8SlhmZ3Yp7_wLOu-1U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ordered+Mesoporous+Metal%E2%80%93Phenolic+Network+Particles&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Lin%2C+Zhixing&rft.au=Zhou%2C+Jiajing&rft.au=Cortez-Jugo%2C+Christina&rft.au=Han%2C+Yiyuan&rft.date=2020-01-08&rft.issn=1520-5126&rft.volume=142&rft.issue=1+p.335-341&rft.spage=335&rft.epage=341&rft_id=info:doi/10.1021%2Fjacs.9b10835&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon