Ordered Mesoporous Metal–Phenolic Network Particles
Mesoporous metal–organic networks have attracted widespread interest owing to their potential applications in diverse fields including gas storage, separations, catalysis, and drug delivery. Despite recent advances, the synthesis of metal–organic networks with large and ordered mesochannels (>20...
Saved in:
Published in | Journal of the American Chemical Society Vol. 142; no. 1; pp. 335 - 341 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
08.01.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mesoporous metal–organic networks have attracted widespread interest owing to their potential applications in diverse fields including gas storage, separations, catalysis, and drug delivery. Despite recent advances, the synthesis of metal–organic networks with large and ordered mesochannels (>20 nm), which are important for loading, separating, and releasing macromolecules, remains a challenge. Herein, we report a templating strategy using sacrificial double cubic network polymer cubosomes (Im3̅m) to synthesize ordered mesoporous metal–phenolic particles (meso-MPN particles) with a large-pore (∼40 nm) single cubic network (Pm3̅m). We demonstrate that the large-pore network and the phenolic groups in the meso-MPN particles enable high loadings of various proteins (e.g., horseradish peroxidase (HRP), bovine hemoglobin, immunoglobulin G, and glucose oxidase (GOx)), which have different shapes, charges, and sizes (i.e., molecular weights spanning 44–160 kDa). For example, GOx loading in the meso-MPN particles was 362 mg g–1, which is ∼6-fold higher than the amount loaded in commercially available SiO2 particles with an average pore size of 50 nm. Furthermore, we show that HRP, when loaded in the meso-MPN particles (486 mg g–1), retained ∼82% activity of free HRP in solution and can be recycled at least five times with a minimal (∼13%) decrease in HRP activity, which exceeds HRP performance in 50 nm pore SiO2 particles (∼36% retained activity and ∼30% activity loss when recycled five times). Considering the wide selection of naturally abundant polyphenols (>8000 species) and metal ions available, the present cubosome-enabled strategy is expected to provide new avenues for designing a range of meso-MPN particles for various applications. |
---|---|
AbstractList | Mesoporous metal–organic networks have attracted widespread interest owing to their potential applications in diverse fields including gas storage, separations, catalysis, and drug delivery. Despite recent advances, the synthesis of metal–organic networks with large and ordered mesochannels (>20 nm), which are important for loading, separating, and releasing macromolecules, remains a challenge. Herein, we report a templating strategy using sacrificial double cubic network polymer cubosomes (Im3̅m) to synthesize ordered mesoporous metal–phenolic particles (meso-MPN particles) with a large-pore (∼40 nm) single cubic network (Pm3̅m). We demonstrate that the large-pore network and the phenolic groups in the meso-MPN particles enable high loadings of various proteins (e.g., horseradish peroxidase (HRP), bovine hemoglobin, immunoglobulin G, and glucose oxidase (GOx)), which have different shapes, charges, and sizes (i.e., molecular weights spanning 44–160 kDa). For example, GOx loading in the meso-MPN particles was 362 mg g–1, which is ∼6-fold higher than the amount loaded in commercially available SiO2 particles with an average pore size of 50 nm. Furthermore, we show that HRP, when loaded in the meso-MPN particles (486 mg g–1), retained ∼82% activity of free HRP in solution and can be recycled at least five times with a minimal (∼13%) decrease in HRP activity, which exceeds HRP performance in 50 nm pore SiO2 particles (∼36% retained activity and ∼30% activity loss when recycled five times). Considering the wide selection of naturally abundant polyphenols (>8000 species) and metal ions available, the present cubosome-enabled strategy is expected to provide new avenues for designing a range of meso-MPN particles for various applications. Mesoporous metal–organic networks have attracted widespread interest owing to their potential applications in diverse fields including gas storage, separations, catalysis, and drug delivery. Despite recent advances, the synthesis of metal–organic networks with large and ordered mesochannels (>20 nm), which are important for loading, separating, and releasing macromolecules, remains a challenge. Herein, we report a templating strategy using sacrificial double cubic network polymer cubosomes (Im3̅m) to synthesize ordered mesoporous metal–phenolic particles (meso-MPN particles) with a large-pore (∼40 nm) single cubic network (Pm3̅m). We demonstrate that the large-pore network and the phenolic groups in the meso-MPN particles enable high loadings of various proteins (e.g., horseradish peroxidase (HRP), bovine hemoglobin, immunoglobulin G, and glucose oxidase (GOx)), which have different shapes, charges, and sizes (i.e., molecular weights spanning 44–160 kDa). For example, GOx loading in the meso-MPN particles was 362 mg g–¹, which is ∼6-fold higher than the amount loaded in commercially available SiO₂ particles with an average pore size of 50 nm. Furthermore, we show that HRP, when loaded in the meso-MPN particles (486 mg g–¹), retained ∼82% activity of free HRP in solution and can be recycled at least five times with a minimal (∼13%) decrease in HRP activity, which exceeds HRP performance in 50 nm pore SiO₂ particles (∼36% retained activity and ∼30% activity loss when recycled five times). Considering the wide selection of naturally abundant polyphenols (>8000 species) and metal ions available, the present cubosome-enabled strategy is expected to provide new avenues for designing a range of meso-MPN particles for various applications. Mesoporous metal-organic networks have attracted widespread interest owing to their potential applications in diverse fields including gas storage, separations, catalysis, and drug delivery. Despite recent advances, the synthesis of metal-organic networks with large and ordered mesochannels (>20 nm), which are important for loading, separating, and releasing macromolecules, remains a challenge. Herein, we report a templating strategy using sacrificial double cubic network polymer cubosomes ( 3̅ ) to synthesize ordered mesoporous metal-phenolic particles (meso-MPN particles) with a large-pore (∼40 nm) single cubic network ( 3̅ ). We demonstrate that the large-pore network and the phenolic groups in the meso-MPN particles enable high loadings of various proteins (e.g., horseradish peroxidase (HRP), bovine hemoglobin, immunoglobulin G, and glucose oxidase (GOx)), which have different shapes, charges, and sizes (i.e., molecular weights spanning 44-160 kDa). For example, GOx loading in the meso-MPN particles was 362 mg g , which is ∼6-fold higher than the amount loaded in commercially available SiO particles with an average pore size of 50 nm. Furthermore, we show that HRP, when loaded in the meso-MPN particles (486 mg g ), retained ∼82% activity of free HRP in solution and can be recycled at least five times with a minimal (∼13%) decrease in HRP activity, which exceeds HRP performance in 50 nm pore SiO particles (∼36% retained activity and ∼30% activity loss when recycled five times). Considering the wide selection of naturally abundant polyphenols (>8000 species) and metal ions available, the present cubosome-enabled strategy is expected to provide new avenues for designing a range of meso-MPN particles for various applications. Mesoporous metal-organic networks have attracted widespread interest owing to their potential applications in diverse fields including gas storage, separations, catalysis, and drug delivery. Despite recent advances, the synthesis of metal-organic networks with large and ordered mesochannels (>20 nm), which are important for loading, separating, and releasing macromolecules, remains a challenge. Herein, we report a templating strategy using sacrificial double cubic network polymer cubosomes (Im3̅m) to synthesize ordered mesoporous metal-phenolic particles (meso-MPN particles) with a large-pore (∼40 nm) single cubic network (Pm3̅m). We demonstrate that the large-pore network and the phenolic groups in the meso-MPN particles enable high loadings of various proteins (e.g., horseradish peroxidase (HRP), bovine hemoglobin, immunoglobulin G, and glucose oxidase (GOx)), which have different shapes, charges, and sizes (i.e., molecular weights spanning 44-160 kDa). For example, GOx loading in the meso-MPN particles was 362 mg g-1, which is ∼6-fold higher than the amount loaded in commercially available SiO2 particles with an average pore size of 50 nm. Furthermore, we show that HRP, when loaded in the meso-MPN particles (486 mg g-1), retained ∼82% activity of free HRP in solution and can be recycled at least five times with a minimal (∼13%) decrease in HRP activity, which exceeds HRP performance in 50 nm pore SiO2 particles (∼36% retained activity and ∼30% activity loss when recycled five times). Considering the wide selection of naturally abundant polyphenols (>8000 species) and metal ions available, the present cubosome-enabled strategy is expected to provide new avenues for designing a range of meso-MPN particles for various applications.Mesoporous metal-organic networks have attracted widespread interest owing to their potential applications in diverse fields including gas storage, separations, catalysis, and drug delivery. Despite recent advances, the synthesis of metal-organic networks with large and ordered mesochannels (>20 nm), which are important for loading, separating, and releasing macromolecules, remains a challenge. Herein, we report a templating strategy using sacrificial double cubic network polymer cubosomes (Im3̅m) to synthesize ordered mesoporous metal-phenolic particles (meso-MPN particles) with a large-pore (∼40 nm) single cubic network (Pm3̅m). We demonstrate that the large-pore network and the phenolic groups in the meso-MPN particles enable high loadings of various proteins (e.g., horseradish peroxidase (HRP), bovine hemoglobin, immunoglobulin G, and glucose oxidase (GOx)), which have different shapes, charges, and sizes (i.e., molecular weights spanning 44-160 kDa). For example, GOx loading in the meso-MPN particles was 362 mg g-1, which is ∼6-fold higher than the amount loaded in commercially available SiO2 particles with an average pore size of 50 nm. Furthermore, we show that HRP, when loaded in the meso-MPN particles (486 mg g-1), retained ∼82% activity of free HRP in solution and can be recycled at least five times with a minimal (∼13%) decrease in HRP activity, which exceeds HRP performance in 50 nm pore SiO2 particles (∼36% retained activity and ∼30% activity loss when recycled five times). Considering the wide selection of naturally abundant polyphenols (>8000 species) and metal ions available, the present cubosome-enabled strategy is expected to provide new avenues for designing a range of meso-MPN particles for various applications. |
Author | Ma, Yutian Pan, Shuaijun Zhou, Jiajing Lin, Zhixing Cortez-Jugo, Christina Han, Yiyuan Richardson, Joseph J Hanssen, Eric Caruso, Frank |
AuthorAffiliation | ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Department of Chemical Engineering Advanced Microscopy Facility, Bio21 Molecular Science and Biotechnology Institute |
AuthorAffiliation_xml | – name: ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Department of Chemical Engineering – name: Advanced Microscopy Facility, Bio21 Molecular Science and Biotechnology Institute |
Author_xml | – sequence: 1 givenname: Zhixing orcidid: 0000-0001-9372-3424 surname: Lin fullname: Lin, Zhixing organization: ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Department of Chemical Engineering – sequence: 2 givenname: Jiajing orcidid: 0000-0001-5203-4737 surname: Zhou fullname: Zhou, Jiajing organization: ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Department of Chemical Engineering – sequence: 3 givenname: Christina surname: Cortez-Jugo fullname: Cortez-Jugo, Christina organization: ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Department of Chemical Engineering – sequence: 4 givenname: Yiyuan surname: Han fullname: Han, Yiyuan organization: ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Department of Chemical Engineering – sequence: 5 givenname: Yutian surname: Ma fullname: Ma, Yutian organization: ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Department of Chemical Engineering – sequence: 6 givenname: Shuaijun surname: Pan fullname: Pan, Shuaijun organization: ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Department of Chemical Engineering – sequence: 7 givenname: Eric surname: Hanssen fullname: Hanssen, Eric organization: Advanced Microscopy Facility, Bio21 Molecular Science and Biotechnology Institute – sequence: 8 givenname: Joseph J surname: Richardson fullname: Richardson, Joseph J organization: ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Department of Chemical Engineering – sequence: 9 givenname: Frank orcidid: 0000-0002-0197-497X surname: Caruso fullname: Caruso, Frank email: fcaruso@unimelb.edu.au organization: ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Department of Chemical Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31851509$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkD1PwzAQhi1URD9gY0YdGUjxRxzbI0J8SYV2gDlynItISeNiO0Js_Af-Ib8EVy0MCMR0d6-eO52eIeq1tgWEDgmeEEzJ6UIbP1EFwZLxHTQgnOKEE5r10ABjTBMhM9ZHQ-8XcUypJHuoz4jkhGM1QHzmSnBQjm_B25V1tvOxDbr5eHufP0Jrm9qM7yC8WPc0nmsXatOA30e7lW48HGzrCD1cXtyfXyfT2dXN-dk00UzxkFSsMpAKTpVSFedZTLHQOE0BCwHAq6JMs7KUElhmpOQFZgIKw4lKuWYG2Agdb-6unH3uwId8WXsDTaNbiJ_mVMmMcpEq_j_KqBRCMSkjerRFu2IJZb5y9VK71_zLSgRONoBx1nsH1TdCcL6Wnq-l51vpEac_cFMHHWrbBqfr5q-l7b_rcGE710aRv6OfRKeSIw |
CitedBy_id | crossref_primary_10_1039_D0CS00021C crossref_primary_10_1016_j_gee_2022_04_003 crossref_primary_10_1021_acssensors_4c00957 crossref_primary_10_1002_marc_202400633 crossref_primary_10_1016_j_cej_2023_145945 crossref_primary_10_1021_acs_accounts_0c00150 crossref_primary_10_1002_pol_20220662 crossref_primary_10_1021_acs_chemmater_1c00123 crossref_primary_10_1002_adom_202301483 crossref_primary_10_1002_anie_202302448 crossref_primary_10_3390_molecules30061218 crossref_primary_10_1021_acsami_3c19621 crossref_primary_10_1021_acsomega_4c01399 crossref_primary_10_1021_acs_chemrev_1c01042 crossref_primary_10_1021_acs_iecr_2c02651 crossref_primary_10_1002_smll_202100314 crossref_primary_10_1021_jacs_3c07748 crossref_primary_10_3762_bjnano_13_67 crossref_primary_10_1093_humrep_deab105 crossref_primary_10_1039_D3YA00306J crossref_primary_10_1002_adma_202416204 crossref_primary_10_1002_advs_202202684 crossref_primary_10_1021_acsnano_0c09166 crossref_primary_10_1016_j_bios_2023_115965 crossref_primary_10_1002_anie_202108671 crossref_primary_10_1021_jacs_1c10979 crossref_primary_10_1021_acsnano_3c04827 crossref_primary_10_1021_acs_nanolett_3c02828 crossref_primary_10_1039_D0CC06521H crossref_primary_10_1126_sciadv_abh3482 crossref_primary_10_1016_j_foodhyd_2024_110695 crossref_primary_10_1016_j_microc_2022_107193 crossref_primary_10_3390_bios13080776 crossref_primary_10_2139_ssrn_3940903 crossref_primary_10_1007_s11705_022_2278_4 crossref_primary_10_1021_acs_analchem_2c03070 crossref_primary_10_1002_marc_202100194 crossref_primary_10_1039_D1TA01110C crossref_primary_10_1017_S1431927621012149 crossref_primary_10_1021_acsnano_1c05089 crossref_primary_10_1039_D3PY01377D crossref_primary_10_1021_cbmi_2c00003 crossref_primary_10_1186_s12951_025_03210_7 crossref_primary_10_1016_j_foodchem_2024_139260 crossref_primary_10_1021_acs_inorgchem_4c03982 crossref_primary_10_1039_D0CS00908C crossref_primary_10_1021_acs_langmuir_1c00784 crossref_primary_10_1038_s41570_023_00474_1 crossref_primary_10_1002_ange_202108462 crossref_primary_10_1021_acs_chemrev_3c00858 crossref_primary_10_1002_smsc_202400274 crossref_primary_10_1002_admi_202400358 crossref_primary_10_1021_acs_chemmater_1c04419 crossref_primary_10_1002_anie_202214935 crossref_primary_10_1021_acsnano_3c08219 crossref_primary_10_1016_j_talanta_2024_127092 crossref_primary_10_1021_jacs_2c02881 crossref_primary_10_1039_D3CS00273J crossref_primary_10_1002_anie_202215985 crossref_primary_10_1016_j_actbio_2024_07_030 crossref_primary_10_1002_anie_202410043 crossref_primary_10_1002_smll_202403777 crossref_primary_10_1002_anie_202108462 crossref_primary_10_1021_jacs_4c08336 crossref_primary_10_1002_adma_202209015 crossref_primary_10_1002_ange_202215985 crossref_primary_10_1016_j_ccr_2022_214649 crossref_primary_10_1002_adma_202313920 crossref_primary_10_1002_ange_202214935 crossref_primary_10_1002_smll_202206592 crossref_primary_10_1016_j_ijhydene_2024_10_261 crossref_primary_10_1016_j_polymer_2020_122914 crossref_primary_10_1016_j_colsurfb_2022_112511 crossref_primary_10_1021_jacs_2c13515 crossref_primary_10_3390_pharmaceutics14030600 crossref_primary_10_1126_sciadv_abo1874 crossref_primary_10_1021_acsami_2c07732 crossref_primary_10_1021_acsnano_0c04197 crossref_primary_10_1002_cplu_202300695 crossref_primary_10_1016_j_jcis_2023_10_135 crossref_primary_10_1002_ange_202302448 crossref_primary_10_1016_j_foodhyd_2024_110011 crossref_primary_10_1016_j_tifs_2024_104665 crossref_primary_10_1016_j_matdes_2024_112691 crossref_primary_10_1039_D2PY00701K crossref_primary_10_1002_adma_202210994 crossref_primary_10_1021_acs_chemmater_4c02617 crossref_primary_10_1021_acsnano_2c00642 crossref_primary_10_1002_advs_202202394 crossref_primary_10_1021_acsami_3c02768 crossref_primary_10_1021_jacs_4c02651 crossref_primary_10_1016_j_mattod_2024_07_010 crossref_primary_10_1002_adfm_202211869 crossref_primary_10_1021_jacs_0c02009 crossref_primary_10_1038_s41467_024_49826_5 crossref_primary_10_1016_j_crgsc_2021_100110 crossref_primary_10_1002_ange_202108671 crossref_primary_10_1039_D2RA00832G crossref_primary_10_1002_pol_20230053 crossref_primary_10_1021_acs_accounts_3c00172 crossref_primary_10_1021_acs_biomac_4c01023 crossref_primary_10_1039_D2BM00969B crossref_primary_10_1007_s11426_023_1838_4 crossref_primary_10_1021_acs_langmuir_1c03338 crossref_primary_10_1021_acs_chemmater_0c02279 crossref_primary_10_1002_ange_202410043 crossref_primary_10_1021_acsnano_4c13152 crossref_primary_10_1039_D1PY00115A crossref_primary_10_1016_j_jcis_2024_04_130 crossref_primary_10_1002_adma_202207684 crossref_primary_10_1016_j_jhazmat_2024_134194 crossref_primary_10_1021_acsnano_3c07963 crossref_primary_10_3390_polym12102190 crossref_primary_10_1016_j_colsurfb_2021_111851 crossref_primary_10_1002_smtd_202001137 crossref_primary_10_1016_j_trac_2024_118098 |
Cites_doi | 10.1039/C2CS35426H 10.1002/anie.201000044 10.1021/jacs.8b09682 10.1039/C8EE01438H 10.1039/C4CS00127C 10.1039/b807085g 10.1039/c2cs15284c 10.1039/C8CS00688A 10.1126/science.1147241 10.1002/adma.201704877 10.1103/PhysRevE.73.061510 10.1126/science.aao3403 10.1021/acs.chemmater.5b02790 10.1038/s41467-018-07793-8 10.1002/anie.201804067 10.1002/anie.201804401 10.1038/s41467-017-00541-4 10.1016/j.ccr.2018.05.001 10.1002/adma.201705708 10.1038/nchem.1946 10.1038/ncomms9915 10.1038/s41467-019-09324-5 10.1016/j.ceb.2006.06.008 10.1002/adfm.201905321 10.1103/PhysRevB.95.155105 10.1002/anie.201807804 10.1021/ja209698f 10.1016/j.ces.2008.10.042 10.1002/adma.201606717 10.1002/adma.201203395 10.1002/anie.201703765 10.1039/C8CS00658J 10.1126/science.1220131 10.1038/nature01650 10.1126/science.1237265 10.1038/nature00785 10.1021/ja067379v 10.1021/acsami.8b10415 10.1021/cr300439k 10.1038/nnano.2016.172 10.1002/anie.201704639 10.1002/anie.201311136 10.1002/anie.201702591 10.1021/cr200440z 10.1038/ncomms5110 10.1021/jacs.9b02091 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/jacs.9b10835 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 341 |
ExternalDocumentID | 31851509 10_1021_jacs_9b10835 c807010274 |
Genre | Journal Article |
GroupedDBID | - .K2 02 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 53G AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 NPM YIN 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a395t-f3fce4752999f556a3907a044e077ee5fbd46dd88e36c885b037ebc51945a3ce3 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Fri Jul 11 02:16:18 EDT 2025 Fri Jul 11 02:58:41 EDT 2025 Wed Feb 19 02:30:55 EST 2025 Thu Apr 24 23:03:13 EDT 2025 Tue Jul 01 03:21:55 EDT 2025 Thu Aug 27 22:10:25 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a395t-f3fce4752999f556a3907a044e077ee5fbd46dd88e36c885b037ebc51945a3ce3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0197-497X 0000-0001-9372-3424 0000-0001-5203-4737 |
OpenAccessLink | http://hdl.handle.net/11343/233830 |
PMID | 31851509 |
PQID | 2328779388 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2986257495 proquest_miscellaneous_2328779388 pubmed_primary_31851509 crossref_primary_10_1021_jacs_9b10835 crossref_citationtrail_10_1021_jacs_9b10835 acs_journals_10_1021_jacs_9b10835 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-08 |
PublicationDateYYYYMMDD | 2020-01-08 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref46/cit46 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref6/cit6 doi: 10.1039/C2CS35426H – ident: ref40/cit40 doi: 10.1002/anie.201000044 – ident: ref12/cit12 doi: 10.1021/jacs.8b09682 – ident: ref28/cit28 doi: 10.1039/C8EE01438H – ident: ref14/cit14 doi: 10.1039/C4CS00127C – ident: ref8/cit8 doi: 10.1039/b807085g – ident: ref4/cit4 doi: 10.1039/c2cs15284c – ident: ref9/cit9 doi: 10.1039/C8CS00688A – ident: ref41/cit41 doi: 10.1126/science.1147241 – ident: ref27/cit27 doi: 10.1002/adma.201704877 – ident: ref33/cit33 doi: 10.1103/PhysRevE.73.061510 – ident: ref45/cit45 doi: 10.1126/science.aao3403 – ident: ref25/cit25 doi: 10.1021/acs.chemmater.5b02790 – ident: ref22/cit22 doi: 10.1038/s41467-018-07793-8 – ident: ref31/cit31 doi: 10.1002/anie.201804067 – ident: ref20/cit20 doi: 10.1002/anie.201804401 – ident: ref43/cit43 doi: 10.1038/s41467-017-00541-4 – ident: ref15/cit15 doi: 10.1016/j.ccr.2018.05.001 – ident: ref30/cit30 doi: 10.1002/adma.201705708 – ident: ref17/cit17 doi: 10.1038/nchem.1946 – ident: ref32/cit32 doi: 10.1038/ncomms9915 – ident: ref21/cit21 doi: 10.1038/s41467-019-09324-5 – ident: ref29/cit29 doi: 10.1016/j.ceb.2006.06.008 – ident: ref42/cit42 doi: 10.1002/adfm.201905321 – ident: ref35/cit35 doi: 10.1103/PhysRevB.95.155105 – ident: ref39/cit39 doi: 10.1002/anie.201807804 – ident: ref13/cit13 doi: 10.1021/ja209698f – ident: ref44/cit44 doi: 10.1016/j.ces.2008.10.042 – ident: ref37/cit37 doi: 10.1002/adma.201606717 – ident: ref34/cit34 doi: 10.1002/adma.201203395 – ident: ref19/cit19 doi: 10.1002/anie.201703765 – ident: ref3/cit3 doi: 10.1039/C8CS00658J – ident: ref10/cit10 doi: 10.1126/science.1220131 – ident: ref11/cit11 doi: 10.1038/nature01650 – ident: ref23/cit23 doi: 10.1126/science.1237265 – ident: ref5/cit5 doi: 10.1038/nature00785 – ident: ref46/cit46 doi: 10.1021/ja067379v – ident: ref38/cit38 doi: 10.1021/acsami.8b10415 – ident: ref1/cit1 doi: 10.1021/cr300439k – ident: ref26/cit26 doi: 10.1038/nnano.2016.172 – ident: ref36/cit36 doi: 10.1002/anie.201704639 – ident: ref24/cit24 doi: 10.1002/anie.201311136 – ident: ref16/cit16 doi: 10.1002/anie.201702591 – ident: ref2/cit2 doi: 10.1021/cr200440z – ident: ref18/cit18 doi: 10.1038/ncomms5110 – ident: ref7/cit7 doi: 10.1021/jacs.9b02091 |
SSID | ssj0004281 |
Score | 2.6081605 |
Snippet | Mesoporous metal–organic networks have attracted widespread interest owing to their potential applications in diverse fields including gas storage,... Mesoporous metal-organic networks have attracted widespread interest owing to their potential applications in diverse fields including gas storage,... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 335 |
SubjectTerms | catalytic activity cattle drugs glucose oxidase hemoglobin immunoglobulin G metal ions molecular weight peroxidase polymers polyphenols porosity porous media silica |
Title | Ordered Mesoporous Metal–Phenolic Network Particles |
URI | http://dx.doi.org/10.1021/jacs.9b10835 https://www.ncbi.nlm.nih.gov/pubmed/31851509 https://www.proquest.com/docview/2328779388 https://www.proquest.com/docview/2986257495 |
Volume | 142 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46H_TF-2Xe6ECfpKM2SZM8ynCKsDnQwd5Kk5wiKFW27sUn_4P_0F_iydpuqEx9K-H0kpO05_t6boScMJdyENrED1LFfJZo7WsKFlkrMylwC1y5ROFON7rus5sBH8wCZL978ENXH8iMmkqfO6ywSJbCCN9fB4Fad7P8x1CeVzBXyIiWAe7fz3YGyIy-GqA5qHJiXdpr5KrK0SmCSh6b41w3zevPko1_PPg6WS0BpndR7IgNsgDZJlluVX3dtgi_HU4adHodGD0j-kbqj4eIwT_e3nsPkLlCwV63iA73elXg3Dbpty_vW9d-2TzBT6jiuZ_S1AATHM2NSjmPcDQQScAYBEIA8FRbFlkrJdDISMl1QAVog4CO8YQaoDuklj1nsEc8ClQjkQpMaFNmXRc_vHgoFFDkUlaqOmngVONy84_iiV87RF7hRksF1MlZpfXYlNXHXROMpznSp1Ppl6Lqxhy5RrWAMWrR-TqSDFBvMQJFKfDbI-UvMgrpHBdIEetkt1j96d1cUjliZbX_j7kdkJXQsXD3Y0Yeklo-HMMRQpVcH0_26SdC6eJw |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtNAEB5BOYRLC-WnoQUciZ4qV45317t7rCKiAEkaiUTKzfLujoUEcqo4ufTEO_CGPElnHTsRkYJ6s1Zje3c89nyfd34APnGfchC7LIxyzUOeGRMaho5YK7c5CodC-0Th0TgZzPjXuZjXyeo-F4YmUdKVymoTf1ddwJcJokFtuh4yPIVnhENib9A3ve-7NMhYdRu0K1XC6jj3_bO9H7Llv37oALisnEz_BMbb6VWxJT-v1ytzbe_3Kjc-ev4v4LiGm8HNxj5ewhMsTqHVa7q8vQJxu6zadQYjLBeExRfrkg4Jkf_9_WfyAwtfNjgYb2LFg0kTRvcaZv3P094grFsphBnTYhXmLLfIpSDno3MhEhqNZBZxjpGUiCI3jifOKYUssUoJEzGJxhK84yJjFtkbOCoWBZ5BwJAZolWRjV3One_pRxePpUZGzMop3YYOLTWtX4UyrXa5Y2IZfrRWQBuuGuWntq5F7lti_DogfbmVvtvU4Dgg12meY0pa9DsfWYGkt5Rgo5L0JVLqPzKayJ2QRBjb8HZjBNu7-RRzQs763SPW9hFag-lomA6_jL-dw_PY83P_y0ZdwNFqucb3BGJW5kNlug8UBurR |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4BlaAXaHl1gdIgwQlllY3t2D6ihRWlZVnxkLhFsT0REiiLyO6FU_9D_2F_ScfZZBFIW9Fb5EwcP8aZbzIvgH3uQw5il4VRrnnIM2NCw9CR1sptjsKh0D5Q-LyfnN7ws1txOwedJhaGBlFST2VlxPen-tHldYYBnyqIbmjT8bBhHj54i51n6qPu1UsoZKw6DeKVKmG1r_vbp70ssuVrWTQDYFaCprcCl9MhVv4l9-3xyLTt85vsjf81h0-wXMPO4GjCJ59hDotVWOo21d7WQFw8VWU7g3Msh4TJh-OSLgmZ__n1e3CHhU8fHPQnPuPBoHGnW4eb3sl19zSsSyqEGdNiFOYst8ilICGkcyESao1kFnGOkZSIIjeOJ84phSyxSgkTMYnGEszjImMW2QYsFMMCv0DAkBlSryIbu5w7X9uPOo-lRkYallO6BXs01bQ-EmVaWbtj0jZ8a70ALThsNiC1dU5yXxrjYQb1wZT6cZKLYwbdXrOXKa2it4BkBdK6pQQflaQvklL_oNGk5AlJimMLNieMMH2bDzUnBK233jG3b7A4OO6lP7_3f2zDx9ir6f7PjdqBhdHTGL8SlhmZ3Yp7_wLOu-1U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ordered+Mesoporous+Metal%E2%80%93Phenolic+Network+Particles&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Lin%2C+Zhixing&rft.au=Zhou%2C+Jiajing&rft.au=Cortez-Jugo%2C+Christina&rft.au=Han%2C+Yiyuan&rft.date=2020-01-08&rft.issn=1520-5126&rft.volume=142&rft.issue=1+p.335-341&rft.spage=335&rft.epage=341&rft_id=info:doi/10.1021%2Fjacs.9b10835&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |