Carbonate and Ionic Liquid Mixes as Electrolytes To Modify Interphases and Improve Cell Safety in Silicon-Based Li-Ion Batteries

Among the candidates as negative electrode, silicon is now one of the most attractive alternatives to graphite and has been the subject of many investigations for the past decade. The commercialization of Si electrodes is nevertheless blocked by the inability to overcome the mechanical degradation a...

Full description

Saved in:
Bibliographic Details
Published inChemistry of materials Vol. 29; no. 19; pp. 8132 - 8146
Main Authors Dupré, Nicolas, Moreau, Philippe, De Vito, Eric, Quazuguel, Lucille, Boniface, Maxime, Kren, Harald, Bayle-Guillemaud, Pascale, Guyomard, Dominique
Format Journal Article
LanguageEnglish
Published American Chemical Society 10.10.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Among the candidates as negative electrode, silicon is now one of the most attractive alternatives to graphite and has been the subject of many investigations for the past decade. The commercialization of Si electrodes is nevertheless blocked by the inability to overcome the mechanical degradation and electrolyte consumption occurring as a result of the inherent volume expansion upon silicon alloying. The unique combination of their properties renders ionic liquids very attractive and promising candidates to replace the benchmark organic carbonates and could enable an enhanced control of species constituting the solid–electrolyte interface (SEI). In the present study, evolutions of ionic liquid-based electrolytes (pure ionic liquid and ionic liquid/carbonate mixes) and the subsequently formed SEI are monitored upon aging and cycling in full Li-ion cells using nonprelithiated silicon electrodes. X-ray photoelectron spectroscopy, typically probing the first few nm of the surface of the sample, allowed monitoring of the evolution and possible degradation of the ionic liquid based electrolytes upon aging and cycling of complete Si/NMC batteries. Magic angle spinning NMR combined with scanning transmission electron microscopy-electron energy loss spectroscopy is more sensitive to changes occurring in the SEI composition. The degradation of ionic liquid components PYR13 and TFSI is evidenced and their influence on the formation of species at the surface of the silicon electrode clearly observed. However, the presence of the ionic liquid components does not prevent the degradation of carbonates in the parasitic reactions that are consuming the cyclable lithium. Therefore, the failure mechanism scenario is similar to that observed for the full cell using benchmark carbonate electrolytes. Hazard level assessments nevertheless reveal that the addition of ionic liquids is in fact able to moderate the intensity of safety relevant events and improve the cell safety.
AbstractList Among the candidates as negative electrode, silicon is now one of the most attractive alternatives to graphite and has been the subject of many investigations for the past decade. The commercialization of Si electrodes is nevertheless blocked by the inability to overcome the mechanical degradation and electrolyte consumption occurring as a result of the inherent volume expansion upon silicon alloying. The unique combination of their properties renders ionic liquids very attractive and promising candidates to replace the benchmark organic carbonates and could enable an enhanced control of species constituting the solid–electrolyte interface (SEI). In the present study, evolutions of ionic liquid-based electrolytes (pure ionic liquid and ionic liquid/carbonate mixes) and the subsequently formed SEI are monitored upon aging and cycling in full Li-ion cells using nonprelithiated silicon electrodes. X-ray photoelectron spectroscopy, typically probing the first few nm of the surface of the sample, allowed monitoring of the evolution and possible degradation of the ionic liquid based electrolytes upon aging and cycling of complete Si/NMC batteries. Magic angle spinning NMR combined with scanning transmission electron microscopy-electron energy loss spectroscopy is more sensitive to changes occurring in the SEI composition. The degradation of ionic liquid components PYR13 and TFSI is evidenced and their influence on the formation of species at the surface of the silicon electrode clearly observed. However, the presence of the ionic liquid components does not prevent the degradation of carbonates in the parasitic reactions that are consuming the cyclable lithium. Therefore, the failure mechanism scenario is similar to that observed for the full cell using benchmark carbonate electrolytes. Hazard level assessments nevertheless reveal that the addition of ionic liquids is in fact able to moderate the intensity of safety relevant events and improve the cell safety.
Author Bayle-Guillemaud, Pascale
Moreau, Philippe
De Vito, Eric
Boniface, Maxime
Dupré, Nicolas
Guyomard, Dominique
Kren, Harald
Quazuguel, Lucille
AuthorAffiliation Institut des Matériaux Jean Rouxel (IMN)
CEA, LITEN, Minatec Campus
Université Grenoble Alpes
Université de Nantes, CNRS
AuthorAffiliation_xml – name: Université Grenoble Alpes
– name: CEA, LITEN, Minatec Campus
– name: Institut des Matériaux Jean Rouxel (IMN)
– name: Université de Nantes, CNRS
Author_xml – sequence: 1
  givenname: Nicolas
  orcidid: 0000-0002-0687-9357
  surname: Dupré
  fullname: Dupré, Nicolas
  email: Nicolas.dupre@cnrs-imn.fr
  organization: Université de Nantes, CNRS
– sequence: 2
  givenname: Philippe
  orcidid: 0000-0002-1691-1592
  surname: Moreau
  fullname: Moreau, Philippe
  organization: Université de Nantes, CNRS
– sequence: 3
  givenname: Eric
  surname: De Vito
  fullname: De Vito, Eric
  organization: Université Grenoble Alpes
– sequence: 4
  givenname: Lucille
  surname: Quazuguel
  fullname: Quazuguel, Lucille
  organization: Université de Nantes, CNRS
– sequence: 5
  givenname: Maxime
  surname: Boniface
  fullname: Boniface, Maxime
  organization: Université Grenoble Alpes
– sequence: 6
  givenname: Harald
  surname: Kren
  fullname: Kren, Harald
– sequence: 7
  givenname: Pascale
  surname: Bayle-Guillemaud
  fullname: Bayle-Guillemaud, Pascale
  organization: Université Grenoble Alpes
– sequence: 8
  givenname: Dominique
  surname: Guyomard
  fullname: Guyomard, Dominique
  organization: Université de Nantes, CNRS
BackLink https://hal.science/hal-01630179$$DView record in HAL
BookMark eNqFkMFOAyEURYmpibX6CSZsXUyFmQIzcWUbtU1qXKhr8spAiplCBTR256fLpNWFG1cEuOfdvHOKBs47jdAFJWNKSnoFKo7VWm82kHQYixWhDa-O0JCykhSMkHKAhqRuRDERjJ-g0xhfCaEZrYfoawZh5V0mMbgWL7yzCi_t27tt8YP91BFDxLedVin4bpfy_dnjB99as8MLl_u2a4h9qoc32-A_NJ7prsNPYHTaYevwk-2s8q6Y5mCbZxe5BE8hZdjqeIaODXRRnx_OEXq5u32ezYvl4_1idrMsoGpYKlTNFcv7TESrWF0KU6kaCGPckLrUplWCc0pbsuJttTITZgQVOdUYbijoSVON0OV-7ho6uQ12A2EnPVg5v1nK_o1QXhEqmg-as9f7rAo-xqCNVDZBst6lALaTlMhevMzi5a94eRCfafaH_qn7j6N7rv9-9e_BZR__MN93o6BV
CitedBy_id crossref_primary_10_1002_aenm_201900078
crossref_primary_10_1021_acsaem_8b01256
crossref_primary_10_1016_j_ensm_2024_103794
crossref_primary_10_1016_j_nocx_2020_100054
crossref_primary_10_1016_j_cej_2021_130612
crossref_primary_10_1002_anie_202205609
crossref_primary_10_1002_ange_202205609
crossref_primary_10_1016_j_molliq_2023_122361
crossref_primary_10_1021_acs_nanolett_0c01774
crossref_primary_10_1021_acsnano_7b05796
crossref_primary_10_1039_D0TA05827K
crossref_primary_10_1149_1945_7111_adbf4e
crossref_primary_10_1246_cl_180649
crossref_primary_10_3390_batteries10090319
crossref_primary_10_1016_j_pnsc_2020_05_008
crossref_primary_10_1063_5_0077449
crossref_primary_10_1149_1945_7111_abac84
crossref_primary_10_1021_acssuschemeng_0c02391
Cites_doi 10.1016/j.electacta.2013.12.126
10.1016/S0378-7753(03)00257-X
10.1021/la203712s
10.1016/j.jpowsour.2006.03.058
10.1021/acs.nanolett.6b02883
10.1149/1.2719644
10.1016/j.jpowsour.2016.10.111
10.1021/cr500003w
10.1149/1.2164726
10.1016/j.electacta.2016.10.134
10.1007/s10800-009-0040-y
10.1002/aenm.201500117
10.1149/1.1388178
10.1002/adfm.201100774
10.1149/2.085310jes
10.1149/1.1391827
10.1021/nl201787r
10.1016/j.electacta.2009.12.030
10.1016/j.jpowsour.2009.01.007
10.1021/cm2034195
10.1149/1.1792242
10.1016/j.jpowsour.2012.11.017
10.1109/JPROC.2012.2190170
10.1016/j.jpowsour.2017.02.028
10.1149/1.1836540
10.1016/j.jpowsour.2012.08.066
10.1524/zpch.2009.6086
10.1016/j.micron.2013.08.005
10.1016/S0013-4686(96)00444-6
10.1016/j.electacta.2016.08.025
10.1149/2.0191607jes
10.1039/c3cc46131a
10.1016/j.jpowsour.2012.08.007
10.1149/1.1847685
10.1016/j.electacta.2009.12.067
10.1038/nmat2448
10.1039/c3ra40275d
10.1021/acs.chemmater.5b04461
10.1016/j.elecom.2013.05.001
10.1149/1.3148721
10.1021/jp300787p
10.1021/acsenergylett.7b00403
10.1016/j.jpowsour.2005.05.084
10.1149/1.2717365
10.1016/j.electacta.2015.08.137
10.1039/C5CP00205B
10.1016/j.jpowsour.2015.08.006
10.1016/j.electacta.2011.01.116
10.1016/j.jfluchem.2004.09.027
10.1016/j.ssnmr.2011.09.001
10.1149/1.2426871
10.1016/j.jpowsour.2013.03.036
10.1016/j.jelechem.2006.11.016
10.1016/j.jpowsour.2011.01.068
10.1021/cm303399v
10.1016/j.electacta.2008.09.011
10.1021/ar300179v
10.1016/j.electacta.2009.05.070
10.1002/cssc.201501628
10.1038/ncomms7230
10.1016/j.jpowsour.2013.03.108
10.1039/c1jm10213c
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright © 2017 American Chemical Society
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
DOI 10.1021/acs.chemmater.7b01963
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
EISSN 1520-5002
EndPage 8146
ExternalDocumentID oai_HAL_hal_01630179v1
10_1021_acs_chemmater_7b01963
d74493064
GroupedDBID -~X
.K2
29B
4.4
55A
5GY
5VS
7~N
AABXI
AAHBH
ABFRP
ABJNI
ABMVS
ABQRX
ABUCX
ACGFS
ACJ
ACS
ADHLV
AEESW
AENEX
AFEFF
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
CUPRZ
DU5
EBS
ED~
EJD
F5P
GGK
GNL
IH9
JG~
LG6
P2P
ROL
TN5
TWZ
UI2
UPT
VF5
VG9
W1F
YZZ
AAYXX
ABBLG
ABLBI
CITATION
1XC
ID FETCH-LOGICAL-a395t-c86c552047dc5827f3c8a0556f082efdc76611d0b6d3bf45f71727f9f6f1ae493
IEDL.DBID ACS
ISSN 0897-4756
IngestDate Fri May 09 12:13:45 EDT 2025
Thu Apr 24 23:06:55 EDT 2025
Tue Jul 01 01:13:31 EDT 2025
Wed Jul 10 01:28:51 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a395t-c86c552047dc5827f3c8a0556f082efdc76611d0b6d3bf45f71727f9f6f1ae493
ORCID 0000-0002-0687-9357
0000-0002-1691-1592
0000-0003-1780-8746
0000-0001-8520-5272
PageCount 15
ParticipantIDs hal_primary_oai_HAL_hal_01630179v1
crossref_citationtrail_10_1021_acs_chemmater_7b01963
crossref_primary_10_1021_acs_chemmater_7b01963
acs_journals_10_1021_acs_chemmater_7b01963
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-10
PublicationDateYYYYMMDD 2017-10-10
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-10
  day: 10
PublicationDecade 2010
PublicationTitle Chemistry of materials
PublicationTitleAlternate Chem. Mater
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
Doughty D. H. (ref37/cit37) 2005
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref14/cit14
Schmolz A. (ref39/cit39) 1999
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref3/cit3
  doi: 10.1016/j.electacta.2013.12.126
– ident: ref57/cit57
  doi: 10.1016/S0378-7753(03)00257-X
– ident: ref51/cit51
  doi: 10.1021/la203712s
– ident: ref59/cit59
  doi: 10.1016/j.jpowsour.2006.03.058
– volume-title: EUCAR Safety Test Procedures for Modules of EV-Batteries
  year: 1999
  ident: ref39/cit39
– ident: ref36/cit36
– ident: ref67/cit67
  doi: 10.1021/acs.nanolett.6b02883
– ident: ref63/cit63
  doi: 10.1149/1.2719644
– ident: ref30/cit30
  doi: 10.1016/j.jpowsour.2016.10.111
– ident: ref4/cit4
  doi: 10.1021/cr500003w
– ident: ref44/cit44
  doi: 10.1149/1.2164726
– ident: ref32/cit32
  doi: 10.1016/j.electacta.2016.10.134
– ident: ref45/cit45
  doi: 10.1007/s10800-009-0040-y
– ident: ref47/cit47
  doi: 10.1002/aenm.201500117
– ident: ref2/cit2
  doi: 10.1149/1.1388178
– ident: ref35/cit35
  doi: 10.1002/adfm.201100774
– ident: ref53/cit53
  doi: 10.1149/2.085310jes
– ident: ref40/cit40
– ident: ref20/cit20
  doi: 10.1149/1.1391827
– ident: ref14/cit14
  doi: 10.1021/nl201787r
– ident: ref41/cit41
  doi: 10.1016/j.electacta.2009.12.030
– ident: ref49/cit49
  doi: 10.1016/j.jpowsour.2009.01.007
– ident: ref50/cit50
  doi: 10.1021/cm2034195
– ident: ref11/cit11
  doi: 10.1149/1.1792242
– ident: ref29/cit29
  doi: 10.1016/j.jpowsour.2012.11.017
– ident: ref1/cit1
  doi: 10.1109/JPROC.2012.2190170
– ident: ref68/cit68
  doi: 10.1016/j.jpowsour.2017.02.028
– ident: ref19/cit19
  doi: 10.1149/1.1836540
– ident: ref52/cit52
  doi: 10.1016/j.jpowsour.2012.08.066
– ident: ref7/cit7
  doi: 10.1524/zpch.2009.6086
– ident: ref55/cit55
  doi: 10.1016/j.micron.2013.08.005
– ident: ref21/cit21
  doi: 10.1016/S0013-4686(96)00444-6
– ident: ref23/cit23
  doi: 10.1016/j.electacta.2016.08.025
– ident: ref66/cit66
  doi: 10.1149/2.0191607jes
– ident: ref48/cit48
  doi: 10.1039/c3cc46131a
– ident: ref38/cit38
– ident: ref9/cit9
  doi: 10.1016/j.jpowsour.2012.08.007
– ident: ref10/cit10
  doi: 10.1149/1.1847685
– ident: ref5/cit5
  doi: 10.1016/j.electacta.2009.12.067
– ident: ref17/cit17
  doi: 10.1038/nmat2448
– ident: ref27/cit27
  doi: 10.1039/c3ra40275d
– ident: ref15/cit15
  doi: 10.1021/acs.chemmater.5b04461
– ident: ref54/cit54
  doi: 10.1016/j.elecom.2013.05.001
– ident: ref43/cit43
  doi: 10.1149/1.3148721
– ident: ref65/cit65
  doi: 10.1021/jp300787p
– ident: ref33/cit33
  doi: 10.1021/acsenergylett.7b00403
– ident: ref58/cit58
  doi: 10.1016/j.jpowsour.2005.05.084
– ident: ref12/cit12
  doi: 10.1149/1.2717365
– ident: ref25/cit25
  doi: 10.1016/j.electacta.2015.08.137
– ident: ref31/cit31
  doi: 10.1039/C5CP00205B
– volume-title: FreedomCAR Electrical Energy Storage System Abuse Test Manual for Electric and Hybrid Electric Vehicle Applications
  year: 2005
  ident: ref37/cit37
– ident: ref62/cit62
  doi: 10.1021/cr500003w
– ident: ref61/cit61
  doi: 10.1016/j.jpowsour.2015.08.006
– ident: ref24/cit24
  doi: 10.1016/j.electacta.2011.01.116
– ident: ref56/cit56
  doi: 10.1016/j.jfluchem.2004.09.027
– ident: ref60/cit60
  doi: 10.1016/j.ssnmr.2011.09.001
– ident: ref34/cit34
  doi: 10.1149/1.2426871
– ident: ref28/cit28
  doi: 10.1016/j.jpowsour.2013.03.036
– ident: ref22/cit22
  doi: 10.1016/j.jelechem.2006.11.016
– ident: ref26/cit26
  doi: 10.1016/j.jpowsour.2011.01.068
– ident: ref64/cit64
  doi: 10.1021/cm303399v
– ident: ref18/cit18
  doi: 10.1016/j.electacta.2008.09.011
– ident: ref46/cit46
  doi: 10.1021/ar300179v
– ident: ref6/cit6
  doi: 10.1016/j.electacta.2009.05.070
– ident: ref16/cit16
  doi: 10.1002/cssc.201501628
– ident: ref42/cit42
  doi: 10.1038/ncomms7230
– ident: ref13/cit13
  doi: 10.1016/j.jpowsour.2013.03.108
– ident: ref8/cit8
  doi: 10.1039/c1jm10213c
SSID ssj0011028
Score 2.3359773
Snippet Among the candidates as negative electrode, silicon is now one of the most attractive alternatives to graphite and has been the subject of many investigations...
SourceID hal
crossref
acs
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 8132
SubjectTerms Condensed Matter
Materials Science
Physics
Title Carbonate and Ionic Liquid Mixes as Electrolytes To Modify Interphases and Improve Cell Safety in Silicon-Based Li-Ion Batteries
URI http://dx.doi.org/10.1021/acs.chemmater.7b01963
https://hal.science/hal-01630179
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB615QAcWiggWh6yECckbzeJE8fHJWq1oC5C2lbqLfJTGzVkYZNFLCd-OuM8VlSoKlwtj2ONx5nPnvE3AG8jJ7VSKqEIFQxlqZQ0NVrSMeN2rI0MbJubM_uUTC_Zx6v4agdObongh8GJ1Kj8hf2CAM6uRlx5QpdoF-6FScr9aWuSzbdhA-8tW9goOGU8ToYnO7cN412Srm-4pN3FcKPaepizA_g8vNPpEkuuR-tGjfTPv2kb_3Xyj2C_R5tk0pnHY9ix1SHcz4Yib4fw8A8-wifwK5Mr5a_TLZGVIR88bS45L76tC0NmxQ9bE1mT065wTrlBkEoulmS2NIXbkC57cYFOse6E29sKSzJblmQunW02pKjIvCjR9ir6HjsaHJviR0hH8oln9qdweXZ6kU1pX6KBykjEDdVpouM4xJU1Ok5D7iKdSs_P4xBaWGc0R_8fmLFKTKQcix33gMkJl7hAWiaiZ7BXLSv7HIgIUDbkQoZCMZ5wieM4wbQ1wiHIYUfwDrWZ91usztvoeRjkvnGr4rxX8RGwYUlz3ZOd-5ob5V1io63Y147t4y6BN2gv276eq3s6Oc99G2LpyP_uvgfH_zPzF_Ag9MjBJ82MX8Jes1rbV4h7GvW6tfXfxQQAuw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB615VB64FGoWp4W4oTkZZM4cXJcolZb2O1lt6K3yE81ImRhk0UsJ34647x4SKjq1fJM_BhnPtvjbwBeB1YoKWVEESpoymIhaKyVoGPGzVhp4ZkmNmd-EU0v2fur8GoHov4tDDaiQk1Vc4n_m13Ae-vKsBufEceZ9YhLx-sS7MIdBCS-23RN0sVwe-CcZoMeE04ZD6P-5c7_1DjPpKq_PNPudX-w2jias_vwcWhiE1_yabSp5Uj9-Ie98fZ9eAD3OuxJJq2xPIQdUx7CftqnfDuEgz_YCR_Bz1SspTtcN0SUmpw7El0yy79uck3m-XdTEVGR0zaNTrFFyEqWKzJf6dxuSRvLeI0usmqFm7MLQ1JTFGQhrKm3JC_JIi_QEkv6Ditq1E3xI6Sl_MQd_GO4PDtdplPaJWygIkjCmqo4UmHo4zxrFcY-t4GKhWPrsQg0jNWKIxrw9FhGOpCWhZY7-GQTG1lPGJYER7BXrkpzDCTxUNbnifATyXjEBeqxCVNGJxYhDzuBNziaWbfgqqy5S_e9zBUOQ5x1Q3wCrJ_ZTHXU5y4DR3GT2GgQ-9Jyf9wk8ArNZqjrmLunk1nmyhBZB-7n9817cpuWv4T96XI-y2bnFx-ewl3fYQoXTjN-Bnv1emOeIyKq5YvG_H8BsK8JHA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF7RIkF74FGoKM8V4oS0IbbXXvsYTKMUkgoprVSJg7VP1arrlNipCCd-OjO2YwESquC62hnv0_Ptzuw3hLwJnNRKqYgBVDCMx1Ky2GjJhlzYoTbSs01szuw4mpzyj2fhWRdViW9hoBEVaKoaJz7u6ivjOoYB7x2WQ1cuAcvZ5UAo5HYJtshtdN3hwWuUznsPAhrOBkEmgnERRpvXO39Tg9ZJV79Zp63zzeVqY2zG98mXvplNjMnFYFWrgf7-B4Pj__XjAbnXYVA6ahfNQ3LLlnvkbrpJ_bZHdn9hKXxEfqRyqfCS3VJZGnqEZLp0mn9d5YbO8m-2orKih206nWIN0JWeLOhsYXK3pm1M4zmYyqoVbu4wLE1tUdC5dLZe07yk87yAFVmy91DRgG4GH6Et9Sec5B-T0_HhSTphXeIGJoMkrJmOIx2GPsy30WHsCxfoWCJrjwPAYZ3RAlCBZ4YqMoFyPHQCYZRLXOQ8aXkS7JPtclHaJ4QmHsj6IpF-oriIhAQ9LuHamsQB9OEH5C2MZtZtvCprfOq-l2FhP8RZN8QHhG9mN9MdBTpm4ihuEhv0YlctB8hNAq9h6fR1kcF7MppmWAYIO8Cf4LX39F9a_orc-fxhnE2Pjj89Izs-QguMqhk-J9v1cmVfADCq1ctmB_wEMMMLnw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbonate+and+Ionic+Liquid+Mixes+as+Electrolytes+To+Modify+Interphases+and+Improve+Cell+Safety+in+Silicon-Based+Li-Ion+Batteries&rft.jtitle=Chemistry+of+materials&rft.au=Dupre%CC%81%2C+Nicolas&rft.au=Moreau%2C+Philippe&rft.au=De+Vito%2C+Eric&rft.au=Quazuguel%2C+Lucille&rft.date=2017-10-10&rft.pub=American+Chemical+Society&rft.issn=0897-4756&rft.eissn=1520-5002&rft.volume=29&rft.issue=19&rft.spage=8132&rft.epage=8146&rft_id=info:doi/10.1021%2Facs.chemmater.7b01963&rft.externalDocID=d74493064
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0897-4756&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0897-4756&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0897-4756&client=summon