Cytoplasmic Tail Truncation of SARS-CoV-2 Spike Protein Enhances Titer of Pseudotyped Vectors but Masks the Effect of the D614G Mutation

The high pathogenicity of SARS-CoV-2 requires it to be handled under biosafety level 3 conditions. Consequently, Spike protein-pseudotyped vectors are a useful tool to study viral entry and its inhibition, with retroviral, lentiviral (LV), and vesicular stomatitis virus (VSV) vectors the most common...

Full description

Saved in:
Bibliographic Details
Published inJournal of virology Vol. 95; no. 22; p. e0096621
Main Authors Chen, Hsu-Yu, Huang, Chun, Tian, Lu, Huang, Xiaoli, Zhang, Chennan, Llewellyn, George N, Rogers, Geoffrey L, Andresen, Kevin, O’Gorman, Maurice R. G, Chen, Ya-Wen, Cannon, Paula M
Format Journal Article
LanguageEnglish
Published 1752 N St., N.W., Washington, DC American Society for Microbiology 27.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The high pathogenicity of SARS-CoV-2 requires it to be handled under biosafety level 3 conditions. Consequently, Spike protein-pseudotyped vectors are a useful tool to study viral entry and its inhibition, with retroviral, lentiviral (LV), and vesicular stomatitis virus (VSV) vectors the most commonly used systems. Methods to increase the titer of such vectors commonly include concentration by ultracentrifugation and truncation of the Spike protein cytoplasmic tail. However, limited studies have examined whether such a modification also impacts the protein’s function. Here, we optimized concentration methods for SARS-CoV-2 Spike-pseudotyped VSV vectors, finding that tangential flow filtration produced vectors with more consistent titers than ultracentrifugation. We also examined the impact of Spike tail truncation on transduction of various cell types and sensitivity to convalescent serum neutralization. We found that tail truncation increased Spike incorporation into both LV and VSV vectors and resulted in enhanced titers but had no impact on sensitivity to convalescent serum. In addition, we analyzed the effect of the D614G mutation, which became a dominant SARS-CoV-2 variant early in the pandemic. Our studies revealed that, similar to the tail truncation, D614G independently increases Spike incorporation and vector titers, but this effect is masked by also including the cytoplasmic tail truncation. Therefore, the use of full-length Spike protein, combined with tangential flow filtration, is recommended as a method to generate high titer pseudotyped vectors that retain native Spike protein functions. IMPORTANCE Pseudotyped viral vectors are useful tools to study the properties of viral fusion proteins, especially those from highly pathogenic viruses. The Spike protein of SARS-CoV-2 has been investigated using pseudotyped lentiviral and VSV vector systems, where truncation of its cytoplasmic tail is commonly used to enhance Spike incorporation into vectors and to increase the titers of the resulting vectors. However, our studies have shown that such effects can also mask the phenotype of the D614G mutation in the ectodomain of the protein, which was a dominant variant arising early in the COVID-19 pandemic. To better ensure the authenticity of Spike protein phenotypes when using pseudotyped vectors, we recommend using full-length Spike proteins, combined with tangential flow filtration methods of concentration if higher-titer vectors are required.
AbstractList Pseudotyped viral vectors are useful tools to study the properties of viral fusion proteins, especially those from highly pathogenic viruses. The Spike protein of SARS-CoV-2 has been investigated using pseudotyped lentiviral and VSV vector systems, where truncation of its cytoplasmic tail is commonly used to enhance Spike incorporation into vectors and to increase the titers of the resulting vectors. The high pathogenicity of SARS-CoV-2 requires it to be handled under biosafety level 3 conditions. Consequently, Spike protein-pseudotyped vectors are a useful tool to study viral entry and its inhibition, with retroviral, lentiviral (LV), and vesicular stomatitis virus (VSV) vectors the most commonly used systems. Methods to increase the titer of such vectors commonly include concentration by ultracentrifugation and truncation of the Spike protein cytoplasmic tail. However, limited studies have examined whether such a modification also impacts the protein’s function. Here, we optimized concentration methods for SARS-CoV-2 Spike-pseudotyped VSV vectors, finding that tangential flow filtration produced vectors with more consistent titers than ultracentrifugation. We also examined the impact of Spike tail truncation on transduction of various cell types and sensitivity to convalescent serum neutralization. We found that tail truncation increased Spike incorporation into both LV and VSV vectors and resulted in enhanced titers but had no impact on sensitivity to convalescent serum. In addition, we analyzed the effect of the D614G mutation, which became a dominant SARS-CoV-2 variant early in the pandemic. Our studies revealed that, similar to the tail truncation, D614G independently increases Spike incorporation and vector titers, but this effect is masked by also including the cytoplasmic tail truncation. Therefore, the use of full-length Spike protein, combined with tangential flow filtration, is recommended as a method to generate high titer pseudotyped vectors that retain native Spike protein functions. IMPORTANCE Pseudotyped viral vectors are useful tools to study the properties of viral fusion proteins, especially those from highly pathogenic viruses. The Spike protein of SARS-CoV-2 has been investigated using pseudotyped lentiviral and VSV vector systems, where truncation of its cytoplasmic tail is commonly used to enhance Spike incorporation into vectors and to increase the titers of the resulting vectors. However, our studies have shown that such effects can also mask the phenotype of the D614G mutation in the ectodomain of the protein, which was a dominant variant arising early in the COVID-19 pandemic. To better ensure the authenticity of Spike protein phenotypes when using pseudotyped vectors, we recommend using full-length Spike proteins, combined with tangential flow filtration methods of concentration if higher-titer vectors are required.
The high pathogenicity of SARS-CoV-2 requires it to be handled under biosafety level 3 conditions. Consequently, Spike protein-pseudotyped vectors are a useful tool to study viral entry and its inhibition, with retroviral, lentiviral (LV), and vesicular stomatitis virus (VSV) vectors the most commonly used systems. Methods to increase the titer of such vectors commonly include concentration by ultracentrifugation and truncation of the Spike protein cytoplasmic tail. However, limited studies have examined whether such a modification also impacts the protein's function. Here, we optimized concentration methods for SARS-CoV-2 Spike-pseudotyped VSV vectors, finding that tangential flow filtration produced vectors with more consistent titers than ultracentrifugation. We also examined the impact of Spike tail truncation on transduction of various cell types and sensitivity to convalescent serum neutralization. We found that tail truncation increased Spike incorporation into both LV and VSV vectors and resulted in enhanced titers but had no impact on sensitivity to convalescent serum. In addition, we analyzed the effect of the D614G mutation, which became a dominant SARS-CoV-2 variant early in the pandemic. Our studies revealed that, similar to the tail truncation, D614G independently increases Spike incorporation and vector titers, but this effect is masked by also including the cytoplasmic tail truncation. Therefore, the use of full-length Spike protein, combined with tangential flow filtration, is recommended as a method to generate high titer pseudotyped vectors that retain native Spike protein functions. IMPORTANCE Pseudotyped viral vectors are useful tools to study the properties of viral fusion proteins, especially those from highly pathogenic viruses. The Spike protein of SARS-CoV-2 has been investigated using pseudotyped lentiviral and VSV vector systems, where truncation of its cytoplasmic tail is commonly used to enhance Spike incorporation into vectors and to increase the titers of the resulting vectors. However, our studies have shown that such effects can also mask the phenotype of the D614G mutation in the ectodomain of the protein, which was a dominant variant arising early in the COVID-19 pandemic. To better ensure the authenticity of Spike protein phenotypes when using pseudotyped vectors, we recommend using full-length Spike proteins, combined with tangential flow filtration methods of concentration if higher-titer vectors are required.
The high pathogenicity of SARS-CoV-2 requires it to be handled under biosafety level 3 conditions. Consequently, Spike protein-pseudotyped vectors are a useful tool to study viral entry and its inhibition, with retroviral, lentiviral (LV), and vesicular stomatitis virus (VSV) vectors the most commonly used systems. Methods to increase the titer of such vectors commonly include concentration by ultracentrifugation and truncation of the Spike protein cytoplasmic tail. However, limited studies have examined whether such a modification also impacts the protein’s function. Here, we optimized concentration methods for SARS-CoV-2 Spike-pseudotyped VSV vectors, finding that tangential flow filtration produced vectors with more consistent titers than ultracentrifugation. We also examined the impact of Spike tail truncation on transduction of various cell types and sensitivity to convalescent serum neutralization. We found that tail truncation increased Spike incorporation into both LV and VSV vectors and resulted in enhanced titers but had no impact on sensitivity to convalescent serum. In addition, we analyzed the effect of the D614G mutation, which became a dominant SARS-CoV-2 variant early in the pandemic. Our studies revealed that, similar to the tail truncation, D614G independently increases Spike incorporation and vector titers, but this effect is masked by also including the cytoplasmic tail truncation. Therefore, the use of full-length Spike protein, combined with tangential flow filtration, is recommended as a method to generate high titer pseudotyped vectors that retain native Spike protein functions. IMPORTANCE Pseudotyped viral vectors are useful tools to study the properties of viral fusion proteins, especially those from highly pathogenic viruses. The Spike protein of SARS-CoV-2 has been investigated using pseudotyped lentiviral and VSV vector systems, where truncation of its cytoplasmic tail is commonly used to enhance Spike incorporation into vectors and to increase the titers of the resulting vectors. However, our studies have shown that such effects can also mask the phenotype of the D614G mutation in the ectodomain of the protein, which was a dominant variant arising early in the COVID-19 pandemic. To better ensure the authenticity of Spike protein phenotypes when using pseudotyped vectors, we recommend using full-length Spike proteins, combined with tangential flow filtration methods of concentration if higher-titer vectors are required.
Author Cannon, Paula M
O’Gorman, Maurice R. G
Chen, Ya-Wen
Huang, Chun
Rogers, Geoffrey L
Zhang, Chennan
Tian, Lu
Llewellyn, George N
Huang, Xiaoli
Chen, Hsu-Yu
Andresen, Kevin
Author_xml – sequence: 1
  givenname: Hsu-Yu
  surname: Chen
  fullname: Chen, Hsu-Yu
– sequence: 2
  givenname: Chun
  surname: Huang
  fullname: Huang, Chun
– sequence: 3
  givenname: Lu
  surname: Tian
  fullname: Tian, Lu
– sequence: 4
  givenname: Xiaoli
  surname: Huang
  fullname: Huang, Xiaoli
– sequence: 5
  givenname: Chennan
  surname: Zhang
  fullname: Zhang, Chennan
– sequence: 6
  givenname: George N
  surname: Llewellyn
  fullname: Llewellyn, George N
– sequence: 7
  givenname: Geoffrey L
  surname: Rogers
  fullname: Rogers, Geoffrey L
– sequence: 8
  givenname: Kevin
  surname: Andresen
  fullname: Andresen, Kevin
– sequence: 9
  givenname: Maurice R. G
  surname: O’Gorman
  fullname: O’Gorman, Maurice R. G
– sequence: 10
  givenname: Ya-Wen
  surname: Chen
  fullname: Chen, Ya-Wen
– sequence: 11
  givenname: Paula M
  orcidid: 0000-0003-0059-354X
  surname: Cannon
  fullname: Cannon, Paula M
  email: pcannon@usc.edu
BookMark eNptkd1OGzEQhS0EgkB7xwP4spW64N_9uamE0pRSgYqaNOLO8npnG8PGXmxvpbwBj80mQZUq9Wo0M9-cI805RYfOO0DonJILSll5-X15c0FIlecZowdoQklVZlJScYgmhDCWSV4-nKDTGB8JoULk4hidcCEqWRAyQS_TTfJ9p-PaGrzQtsOLMDijk_UO-xbPr37Os6lfZgzPe_sE-D74BNbhmVtpZyDihU0Qtuh9hKHxadNDg5dgkg8R10PCdzo-RZxWgGdtO8637Lb7klNxje-GtDN7h45a3UV4_1bP0K-vs8X0W3b74_pmenWbaV7JlNUchGl4QQWrqyInXNCmAam1rpjkrSxBg-Gk5CxnJROFrHLT5C2hdTUe6Jqfoc973X6o19AYcCnoTvXBrnXYKK-t-nfj7Er99n9UKcefMToKfHgTCP55gJjU2kYDXacd-CEqJgtKpCyEGNFPe9QEH2OA9q8NJWobnhrDU7vw1E754x4f02Dq0Q_BjZ_4P_sKyeyaHQ
CitedBy_id crossref_primary_10_1016_j_antiviral_2022_105509
crossref_primary_10_3390_ijms25042061
crossref_primary_10_3390_v14051024
crossref_primary_10_1128_jvi_00684_23
crossref_primary_10_3390_microorganisms11020431
crossref_primary_10_1128_jvi_01250_22
crossref_primary_10_1002_mco2_517
crossref_primary_10_1002_jmv_28622
crossref_primary_10_1016_j_antiviral_2022_105373
crossref_primary_10_1128_spectrum_02676_21
crossref_primary_10_1128_jvi_01650_22
crossref_primary_10_3390_cells12081198
crossref_primary_10_3390_microorganisms11082075
crossref_primary_10_1038_s41598_023_48397_7
Cites_doi 10.1128/JVI.67.5.2824-2831.1993
10.1016/j.jviromet.2010.08.006
10.1126/science.abg6105
10.1038/mt.2008.128
10.1016/j.omtm.2020.12.007
10.1016/j.jviromet.2011.06.019
10.3390/v12121465
10.7150/ijbs.59184
10.1186/s40249-020-00662-x
10.1128/JVI.00127-20
10.1016/j.cell.2020.02.058
10.1126/science.aaa9804
10.3934/publichealth.2021011
10.1038/s41586-020-2012-7
10.1038/s41586-020-2456-9
10.1080/22221751.2020.1815589
10.1002/jgm.778
10.1126/science.abe8499
10.1038/s41586-020-2380-z
10.1128/JCM.02005-20
10.7554/eLife.65365
10.1371/journal.ppat.1005641
10.26508/lsa.202000786
10.1128/JVI.75.9.4129-4138.2001
10.1038/s41591-021-01285-x
10.1101/2020.08.18.20177303
10.1016/j.chom.2020.11.012
10.1101/2021.03.07.21252647
10.1038/s41392-020-00426-x
10.1038/s41467-020-20789-7
10.1128/JVI.72.2.1224-1234.1998
10.1016/j.cell.2020.08.012
10.1038/s41541-020-00246-8
10.1016/j.ebiom.2020.103112
10.1128/JVI.71.4.3341-3345.1997
10.1128/JVI.78.19.10628-10635.2004
10.1038/gt.2013.23
10.1016/j.jim.2013.11.022
10.1016/j.chom.2020.06.020
10.1016/j.chom.2020.11.007
10.1038/s41586-020-2895-3
10.1128/JVI.01688-17
10.1128/JVI.01062-20
10.1038/s41467-020-19808-4
10.1038/s41586-020-2901-9
10.1128/jvi.77.2.1281-1291.2003
10.1128/JVI.00044-21
10.1038/s41586-021-03398-2
10.1016/j.cell.2020.09.032
10.1186/1743-422X-7-312
10.1038/s41467-020-16452-w
10.1021/acsmedchemlett.0c00410
10.1016/j.cell.2020.04.035
10.1006/viro.1999.9847
10.1128/JVI.02205-06
10.1038/s41564-020-0688-y
10.1080/22221751.2020.1743767
10.1016/j.chom.2020.06.021
10.1038/ncb3510
10.1038/s41586-021-03324-6
10.1038/s41586-021-03361-1
10.1002/rmv.1963
10.1038/s41467-020-15562-9
10.1084/jem.20201181
10.1038/s41467-021-21118-2
10.1016/j.intimp.2020.107364
10.1101/2020.03.30.20047365
10.1016/j.cell.2020.06.043
10.7554/eLife.61312
10.1016/j.cell.2020.02.052
10.1038/nature09328
10.1101/2020.06.20.161323
10.1101/2020.07.04.187989
10.1101/2020.09.16.299891
10.1101/2020.08.25.267500
ContentType Journal Article
Copyright Copyright © 2021 American Society for Microbiology.
Copyright © 2021 American Society for Microbiology. 2021 American Society for Microbiology
Copyright_xml – notice: Copyright © 2021 American Society for Microbiology.
– notice: Copyright © 2021 American Society for Microbiology. 2021 American Society for Microbiology
DBID AAYXX
CITATION
7X8
5PM
DOI 10.1128/JVI.00966-21
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic


DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1098-5514
Editor Gallagher, Tom
Editor_xml – sequence: 1
  givenname: Tom
  surname: Gallagher
  fullname: Gallagher, Tom
EndPage e0096621
ExternalDocumentID 10_1128_JVI_00966_21
00966-21
GrantInformation_xml – fundername: W. M. Keck Foundation (Keck Foundation)
  funderid: https://doi.org/10.13039/100000888
– fundername: ;
GroupedDBID -
02
0R
2WC
39C
4.4
53G
5GY
5RE
5VS
85S
ABFLS
ABPPZ
ABPTK
ACNCT
ADACO
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BXI
CS3
DIK
E3Z
EBS
F5P
FRP
GX1
HZ
IH2
KM
KQ8
N9A
O9-
OK1
P2P
RHF
RHI
RNS
RPM
RSF
TR2
UCJ
UPT
WH7
WOQ
X
ZA5
---
-~X
0R~
18M
29L
AAYXX
ACGFO
AGVNZ
BTFSW
CITATION
H13
HYE
HZ~
W2D
W8F
YQT
~02
~KM
7X8
5PM
ID FETCH-LOGICAL-a395t-b3e4cd37142b9760341dde5aaa9253f58eaec30832628247596cd6f01b92b9ab3
IEDL.DBID RPM
ISSN 0022-538X
IngestDate Tue Sep 17 21:02:08 EDT 2024
Thu Oct 24 23:08:48 EDT 2024
Fri Dec 06 01:18:20 EST 2024
Tue Dec 28 13:59:00 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords D614G mutation
SARS-CoV-2
Spike protein
cytoplasmic tail truncation
pseudotyped vectors
Language English
License All Rights Reserved. This article is made available via the PMC Open Access Subset for unrestricted noncommercial re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. https://doi.org/10.1128/ASMCopyrightv2
All Rights Reserved.
This article is made available via the PMC Open Access Subset for unrestricted noncommercial re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a395t-b3e4cd37142b9760341dde5aaa9253f58eaec30832628247596cd6f01b92b9ab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Citation Chen H-Y, Huang C, Tian L, Huang X, Zhang C, Llewellyn GN, Rogers GL, Andresen K, O’Gorman MRG, Chen Y-W, Cannon PM. 2021. Cytoplasmic tail truncation of SARS-CoV-2 Spike protein enhances titer of pseudotyped vectors but masks the effect of the D614G mutation. J Virol 95:e00966-21. https://doi.org/10.1128/JVI.00966-21.
ORCID 0000-0003-0059-354X
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8549521/
PMID 34495700
PQID 2571055744
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8549521
proquest_miscellaneous_2571055744
crossref_primary_10_1128_JVI_00966_21
asm2_journals_10_1128_JVI_00966_21
PublicationCentury 2000
PublicationDate 20211027
PublicationDateYYYYMMDD 2021-10-27
PublicationDate_xml – month: 10
  year: 2021
  text: 20211027
  day: 27
PublicationDecade 2020
PublicationPlace 1752 N St., N.W., Washington, DC
PublicationPlace_xml – name: 1752 N St., N.W., Washington, DC
PublicationTitle Journal of virology
PublicationTitleAbbrev J Virol
PublicationYear 2021
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References Chen, M, Zhang, X (B16) 2021; 17
Daniloski, Z, Jordan, TX, Ilmain, JK, Guo, X, Bhabha, G, Tenoever, BR, Sanjana, NE (B33) 2021; 10
Luchsinger, LL, Ransegnola, B, Jin, D, Muecksch, F, Weisblum, Y, Bao, W, George, PJ, Rodriguez, M, Tricoche, N, Schmidt, F, Gao, C, Jawahar, S, Pal, M, Schnall, E, Zhang, H, Strauss, D, Yazdanbakhsh, K, Hillyer, CD, Bieniasz, PD, Hatziioannou, T (B28) 2020; 58
Bender, RR, Muth, A, Schneider, IC, Friedel, T, Hartmann, J, Plückthun, A, Maisner, A, Buchholz, CJ (B49) 2016; 12
Korber, B, Fischer, WM, Gnanakaran, S, Yoon, H, Theiler, J, Abfalterer, W, Hengartner, N, Giorgi, EE, Bhattacharya, T, Foley, B, Hastie, KM, Parker, MD, Partridge, DG, Evans, CM, Freeman, TM, de Silva, TI, Angyal, A, Brown, RL, Carrilero, L, Green, LR, Groves, DC, Johnson, KJ, Keeley, AJ, Lindsey, BB, Parsons, PJ, Raza, M, Rowland-Jones, S, Smith, N, Tucker, RM, Wang, D, Wyles, MD, McDanal, C, Perez, LG, Tang, H, Moon-Walker, A, Whelan, SP, LaBranche, CC, Saphire, EO, Montefiori, DC (B35) 2020; 182
Wang, P, Nair, MS, Liu, L, Iketani, S, Luo, Y, Guo, Y, Wang, M, Yu, J, Zhang, B, Kwong, PD, Graham, BS, Mascola, JR, Chang, JY, Yin, MT, Sobieszczyk, M, Kyratsous, CA, Shapiro, L, Sheng, Z, Huang, Y, Ho, DD (B37) 2021; 593
Plante, JA, Liu, Y, Liu, J, Xia, H, Johnson, BA, Lokugamage, KG, Zhang, X, Muruato, AE, Zou, J, Fontes-Garfias, CR, Mirchandani, D, Scharton, D, Bilello, JP, Ku, Z, An, Z, Kalveram, B, Freiberg, AN, Menachery, VD, Xie, X, Plante, KS, Weaver, SC, Shi, PY (B42) 2021; 592
B29
Zingler, K, Littman, DR (B56) 1993; 67
Sarzotti-Kelsoe, M, Bailer, RT, Turk, E, Lin, C, Bilska, M, Greene, KM, Gao, H, Todd, CA, Ozaki, DA, Seaman, MS, Mascola, JR, Montefiori, DC (B64) 2014; 409
Li, Q, Liu, Q, Huang, W, Li, X, Wang, Y (B15) 2018; 28
Klingler, J, Weiss, S, Itri, V, Liu, X, Oguntuyo, KY, Stevens, C, Ikegame, S, Hung, C, Enyindah-Asonye, G, Amanat, F, Bermudez-Gonzalez, M, Simon, V, Liu, S, Lee, B (B27) 2020
Ou, X, Liu, Y, Lei, X, Li, P, Mi, D, Ren, L, Guo, L, Guo, R, Chen, T, Hu, J, Xiang, Z, Mu, Z, Chen, X, Chen, J, Hu, K, Jin, Q, Wang, J, Qian, Z (B18) 2020; 11
Weisblum, Y, Schmidt, F, Zhang, F, DaSilva, J, Poston, D, Lorenzi, JCC, Muecksch, F, Rutkowska, M, Michailidis, H-H, Gaeble, C, Agudelo, M, Cho, A, Wang, Z, Gazumyan, A, Cipolla, M, Luchsinger, L, Hillyer, CD, Caskey, M, Robbiani, DF, Rice, CM, Nussenzweig, MC, Hatziioannou, T, Bieniasz, PD (B36) 2020; 9
Dieterle, ME, Haslwanter, D, Bortz, RH, Wirchnianski, AS, Lasso, G, Vergnolle, O, Abbasi, SA, Fels, JM, Laudermilch, E, Florez, C, Mengotto, A, Kimmel, D, Malonis, RJ, Georgiev, G, Quiroz, J, Barnhill, J, Pirofski, L, Daily, JP, Dye, JM, Lai, JR, Herbert, AS, Chandran, K, Jangra, RK (B17) 2020; 28
Ozono, S, Zhang, Y, Ode, H, Sano, K, Tan, TS, Imai, K, Miyoshi, K, Kishigami, S, Ueno, T, Iwatani, Y, Suzuki, T, Tokunaga, K (B31) 2021; 12
Li, M-YM, Li, L, Zhang, Y, Wang, XX-S (B13) 2020; 9
Lorenzo-Redondo, R, Nam, HH, Roberts, SC, Simons, LM, Jennings, LJ, Qi, C, Achenbach, CJ, Hauser, AR, Ison, MG, Hultquist, JF, Ozer, EA (B67) 2020; 62
B70
Hou, YJ, Chiba, S, Halfmann, P, Ehre, C, Kuroda, M, Dinnon, KH, Leist, SR, Schäfer, A, Nakajima, N, Takahashi, K, Lee, RE, Mascenik, TM, Graham, R, Edwards, CE, Tse, LV, Okuda, K, Markmann, AJ, Bartelt, L, de Silva, A, Margolis, DM, Boucher, RC, Randell, SH, Suzuki, T, Gralinski, LE, Kawaoka, Y, Baric, RS (B68) 2020; 370
B34
Wan, Y, Shang, J, Graham, R, Baric, RS, Li, F (B7) 2020; 94
B38
Whitt, MA (B76) 2010; 169
Mohamed Khosroshahi, L, Rokni, M, Mokhtari, T, Noorbakhsh, F (B6) 2021; 93
Ziegler, CGK, Allon, SJ, Nyquist, SK, Mbano, IM, Miao, VN, Tzouanas, CN, Cao, Y, Yousif, AS, Bals, J, Hauser, BM, Feldman, J, Muus, C, Wadsworth, MH, Kazer, SW, Hughes, TK, Doran, B, Gatter, GJ, Vukovic, M, Taliaferro, F, Mead, BE, Guo, Z, Wang, JP, Gras, D, Plaisant, M, Ansari, M, Angelidis, I, Adler, H, Sucre, JMS, Taylor, CJ, Lin, B, Waghray, A, Mitsialis, V, Dwyer, DF, Buchheit, KM, Boyce, JA, Barrett, NA, Laidlaw, TM, Carroll, SL, Colonna, L, Tkachev, V, Peterson, CW, Yu, A, Zheng, HB, Gideon, HP, Winchell, CG, Lin, PL, Bingle, CD, Snapper, SB, Kropski, JA, Theis, FJ, Schiller, HB, Zaragosi, LE, Barbry, P, Leslie, A, Kiem, HP (B14) 2020; 181
Starr, TN, Greaney, AJ, Hilton, SK, Ellis, D, Crawford, KHD, Dingens, AS, Navarro, MJ, Bowen, JE, Tortorici, MA, Walls, AC, King, NP, Veesler, D, Bloom, JD (B43) 2020; 182
Greaney, AJ, Starr, TN, Gilchuk, P, Zost, SJ, Binshtein, E, Loes, AN, Hilton, SK, Huddleston, J, Eguia, R, Crawford, KHD, Dingens, AS, Nargi, RS, Sutton, RE, Suryadevara, N, Rothlauf, PW, Liu, Z, Whelan, SPJ, Carnahan, RH, Crowe, JE, Bloom, JD (B26) 2021; 29
Geraerts, M, Michiels, M, Baekelandt, V, Debyser, Z, Gijsbers, R (B66) 2005; 7
Aguilar, HC, Anderson, WF, Cannon, PM (B53) 2003; 77
Fernández, A (B72) 2020; 11
Deng, X, Garcia-Knight, MA, Khalid, MM, Servellita, V, Wang, C, Morris, MK, Sotomayor-González, A, Glasner, DR, Reyes, KR, Gliwa, AS, Reddy, NP, Sanchez, C, Martin, S, Federman, S, Cheng, J, Balcerek, J, Taylor, J, Streithorst, JA, Miller, S, Kumar, GR, Sreekumar, B, Chen, P-Y, Schulze-Gahmen, U, Taha, TY, Hayashi, J, Simoneau, CR, McMahon, S, Lidsky, PV, Xiao, Y, Hemarajata, P, Green, NM, Espinosa, A, Kath, C, Haw, M, Bell, J, Hacker, JK, Hanson, C, Wadford, DA, Anaya, C, Ferguson, D, Lareau, LF, Frankino, PA, Shivram, H, Wyman, SK, Ott, M, Andino, R, Chiu, CY (B75) 2021
Wang, K, Chen, W, Zhang, Z, Deng, Y, Lian, JQ, Du, P, Wei, D, Zhang, Y, Sun, XX, Gong, L, Yang, X, He, L, Zhang, L, Yang, Z, Geng, JJ, Chen, R, Zhang, H, Wang, B, Zhu, YM, Nan, G, Jiang, JL, Li, L, Wu, J, Lin, P, Huang, W, Xie, L, Zheng, ZH, Zhang, K, Miao, JL, Cui, HY, Huang, M, Zhang, J, Fu, L, Yang, XM, Zhao, Z, Sun, S, Gu, H, Wang, Z, Wang, CF, Lu, Y, Liu, YY, Wang, QY, Bian, H, Zhu, P, Chen, ZN (B10) 2020; 5
Mammano, F, Salvatori, F, Indraccolo, S, De Rossi, A, Chieco-Bianchi, L, Göttlinger, HG (B46) 1997; 71
Walls, AC, Park, Y-J, Tortorici, MA, Wall, A, McGuire, AT, Veesler, D (B19) 2020; 181
Wibmer, CK, Ayres, F, Hermanus, T, Madzivhandila, M, Kgagudi, P, Oosthuysen, B, Lambson, BE, de Oliveira, T, Vermeulen, M, van der Berg, K, Rossouw, T, Boswell, M, Ueckermann, V, Meiring, S, von Gottberg, A, Cohen, C, Morris, L, Bhiman, JN, Moore, PL (B41) 2021; 27
Cavazzana-Calvo, M, Payen, E, Negre, O, Wang, G, Hehir, K, Fusil, F, Down, J, Denaro, M, Brady, T, Westerman, K, Cavallesco, R, Gillet-Legrand, B, Caccavelli, L, Sgarra, R, Maouche-Chrétien, L, Bernaudin, F, Girot, R, Dorazio, R, Mulder, GJ, Polack, A, Bank, A, Soulier, J, Larghero, J, Kabbara, N, Dalle, B, Gourmel, B, Socie, G, Chrétien, S, Cartier, N, Aubourg, P, Fischer, A, Cornetta, K, Galacteros, F, Beuzard, Y, Gluckman, E, Bushman, F, Hacein-Bey-Abina, S, Leboulch, P (B73) 2010; 467
Wang, Z, Schmidt, F, Weisblum, Y, Muecksch, F, Barnes, CO, Finkin, S, Schaefer-Babajew, D, Cipolla, M, Gaebler, C, Lieberman, JA, Oliveira, TY, Yang, Z, Abernathy, ME, Huey-Tubman, KE, Hurley, A, Turroja, M, West, KA, Gordon, K, Millard, KG, Ramos, V, Da Silva, J, Xu, J, Colbert, RA, Patel, R, Dizon, J, Unson-O'Brien, C, Shimeliovich, I, Gazumyan, A, Caskey, M, Bjorkman, PJ, Casellas, R, Hatziioannou, T, Bieniasz, PD, Nussenzweig, MC (B40) 2021; 592
Witting, SR, Vallanda, P, Gamble, AL (B50) 2013; 20
Case, JB, Rothlauf, PW, Chen, RE, Liu, Z, Zhao, H, Kim, AS, Bloyet, LM, Zeng, Q, Tahan, S, Droit, L, Ilagan, MXG, Tartell, MA, Amarasinghe, G, Henderson, JP, Miersch, S, Ustav, M, Sidhu, S, Virgin, HW, Wang, D, Ding, S, Corti, D, Theel, ES, Fremont, DH, Diamond, MS, Whelan, SPJ (B24) 2020; 28
Yu, J, Li, Z, He, X, Gebre, MS, Bondzie, EA, Wan, H, Jacob-Dolan, C, Martinez, DR, Nkolola, JP, Baric, RS, Barouch, DH (B60) 2021; 95
Xiong, HL, Wu, YT, Cao, JL, Yang, R, Liu, YX, Ma, J, Qiao, XY, Yao, XY, Zhang, BH, Zhang, YL, Hou, WH, Shi, Y, Xu, JJ, Zhang, L, Wang, SJ, Fu, BR, Yang, T, Ge, SX, Zhang, J, Yuan, Q, Huang, BY, Li, ZY, Zhang, TY, Xia, NS (B25) 2020; 9
Havranek, KE, Jimenez, AR, Acciani, MD, Fernanda, M, Mendoza, L, Mary, J, Ballista, R, Diaz, DA, Brindley, MA (B62) 2020; 12
Nie, J, Li, Q, Wu, J, Zhao, C, Hao, H, Liu, H, Zhang, L, Nie, L, Qin, H, Wang, M, Lu, Q, Li, X, Sun, Q, Liu, J, Fan, C, Huang, W, Xu, M, Wang, Y (B20) 2020; 9
McAuley, AJ, Kuiper, MJ, Durr, PA, Bruce, MP, Barr, J, Todd, S, Au, GG, Blasdell, K, Tachedjian, M, Lowther, S, Marsh, GA, Edwards, S, Poole, T, Layton, R, Riddell, S-JJ, Drew, TW, Druce, JD, Smith, TRFF, Broderick, KE, Vasan, SS (B74) 2020; 5
Hoffmann, M, Kleine-Weber, H, Schroeder, S, Krüger, N, Herrler, T, Erichsen, S, Schiergens, TS, Herrler, G, Wu, N-H, Nitsche, A, Müller, MA, Drosten, C, Pöhlmann, S (B11) 2020; 181
Wu, F, Xun, J, Lu, L, Jiang, S, Lu, H, Wen, Y, Huang, J (B21) 2020
Fu, X, Tao, L, Zhang, X (B63) 2021; 20
Zhou, B, Thi Nhu Thao, T, Hoffmann, D, Taddeo, A, Ebert, N, Labroussaa, F, Pohlmann, A, King, J, Steiner, S, Kelly, JN, Portmann, J, Halwe, NJ, Ulrich, L, Trüeb, BS, Fan, X, Hoffmann, B, Wang, L, Thomann, L, Lin, X, Stalder, H, Pozzi, B, de Brot, S, Jiang, N, Cui, D, Hossain, J, Wilson, M, Keller, M, Stark, TJ, Barnes, JR, Dijkman, R, Jores, J, Benarafa, C, Wentworth, DE, Thiel, V, Beer, M (B69) 2021; 592
Zhang, L, Jackson, CB, Mou, H, Ojha, A, Peng, H, Quinlan, BD, Rangarajan, ES, Pan, A, Vanderheiden, A, Suthar, MS, Li, W, Izard, T, Rader, C, Farzan, M, Choe, H (B44) 2020; 11
Ku, Z, Xie, X, Davidson, E, Ye, X, Su, H, Menachery, VD, Li, Y, Yuan, Z, Zhang, X, Muruato, AE, I Escuer, AG, Tyrell, B, Doolan, K, Doranz, BJ, Wrapp, D, Bates, PF, McLellan, JS, Weiss, SR, Zhang, N, Shi, P-Y, An, Z (B39) 2021; 12
Moore, MJ, Dorfman, T, Li, W, Wong, SK, Li, Y, Kuhn, JH, Coderre, J, Vasilieva, N, Han, Z, Greenough, TC, Farzan, M, Choe, H (B52) 2004; 78
Zhou, P, Yang, X, Lou Wang, XG, Hu, B, Zhang, L, Zhang, W, Si, HR, Zhu, Y, Li, B, Huang, CL, Chen, HD, Chen, J, Luo, Y, Guo, H, Jiang, R, Di Liu, MQ, Chen, Y, Shen, XR, Wang, X, Zheng, XS, Zhao, K, Chen, QJ, Deng, F, Liu, LL, Yan, B, Zhan, FX, Wang, YY, Xiao, GF, Shi, ZL (B1) 2020; 579
Christodoulopoulos, I, Cannon, PM (B47) 2001; 75
Chen, J, Kovacs, JM, Peng, H, Rits-Volloch, S, Lu
e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
Chandrasekaran B (e_1_3_2_79_2) 2020; 67
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_60_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_75_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_73_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
e_1_3_2_77_2
e_1_3_2_50_2
e_1_3_2_71_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
Johns Hopkins University (e_1_3_2_3_2) 2021
e_1_3_2_40_2
e_1_3_2_65_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_63_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_69_2
Masre SF (e_1_3_2_10_2) 2020; 2020
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_67_2
e_1_3_2_61_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_76_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_74_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_78_2
e_1_3_2_2_2
e_1_3_2_72_2
e_1_3_2_70_2
References_xml – volume: 67
  start-page: 2824
  year: 1993
  end-page: 2831
  ident: B56
  article-title: Truncation of the cytoplasmic domain of the simian immunodeficiency virus envelope glycoprotein increases env incorporation into particles and fusogenicity and infectivity
  publication-title: J Virol
  doi: 10.1128/JVI.67.5.2824-2831.1993
  contributor:
    fullname: Littman, DR
– volume: 169
  start-page: 365
  year: 2010
  end-page: 374
  ident: B76
  article-title: Generation of VSV pseudotypes using recombinant ΔG-VSV for studies on virus entry, identification of entry inhibitors, and immune responses to vaccines
  publication-title: J Virol Methods
  doi: 10.1016/j.jviromet.2010.08.006
  contributor:
    fullname: Whitt, MA
– volume: 371
  start-page: 1152
  year: 2021
  end-page: 1153
  ident: B32
  article-title: Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus by BNT162b2 vaccine–elicited human sera
  publication-title: Science
  doi: 10.1126/science.abg6105
  contributor:
    fullname: Şahin, U
– volume: 16
  start-page: 1427
  year: 2008
  end-page: 1436
  ident: B48
  article-title: Targeted cell entry of lentiviral vectors
  publication-title: Mol Ther
  doi: 10.1038/mt.2008.128
  contributor:
    fullname: Buchholz, CJ
– volume: 20
  start-page: 350
  year: 2021
  end-page: 356
  ident: B63
  article-title: Comprehensive and systemic optimization for improving the yield of SARS-COV-2 spike pseudotyped virus
  publication-title: Mol Ther Methods Clin Dev
  doi: 10.1016/j.omtm.2020.12.007
  contributor:
    fullname: Zhang, X
– ident: B29
  article-title: Higuchi Y , Suzuki T , Arimori T , Ikemura N , Kirita Y , Ohgitani E , Mazda O , Motooka D , Nakamura S , Matsuura Y , Matoba S , Okamoto T , Takagi J , Hoshino A . 2020 . High affinity modified ACE2 receptors prevent SARS-CoV-2 infection . bioRxiv 10.1101/2020.09.16.299891 .
– volume: 177
  start-page: 1
  year: 2011
  end-page: 9
  ident: B65
  article-title: Highly efficient large-scale lentiviral vector concentration by tandem tangential flow filtration
  publication-title: J Virol Methods
  doi: 10.1016/j.jviromet.2011.06.019
  contributor:
    fullname: Hollis, RP
– volume: 12
  start-page: 1465
  year: 2020
  ident: B62
  article-title: SARS-CoV-2 Spike alterations enhance
  publication-title: Viruses
  doi: 10.3390/v12121465
  contributor:
    fullname: Brindley, MA
– volume: 17
  start-page: 1574
  year: 2021
  end-page: 1580
  ident: B16
  article-title: Construction and applications of SARS-CoV-2 pseudoviruses: a mini review
  publication-title: Int J Biol Sci
  doi: 10.7150/ijbs.59184
  contributor:
    fullname: Zhang, X
– volume: 9
  start-page: 45
  year: 2020
  ident: B13
  article-title: Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues
  publication-title: Infect Dis Poverty
  doi: 10.1186/s40249-020-00662-x
  contributor:
    fullname: Wang, XX-S
– volume: 94
  year: 2020
  ident: B7
  article-title: Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus
  publication-title: J Virol
  doi: 10.1128/JVI.00127-20
  contributor:
    fullname: Li, F
– volume: 181
  start-page: 281
  year: 2020
  end-page: 212
  ident: B19
  article-title: Structure, function, and antigenicity of the SARS-CoV-2 Spike glycoprotein
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.058
  contributor:
    fullname: Veesler, D
– volume: 349
  start-page: 191
  year: 2015
  end-page: 195
  ident: B58
  article-title: Effect of the cytoplasmic domain on antigenic characteristics of HIV-1 envelope glycoprotein
  publication-title: Science
  doi: 10.1126/science.aaa9804
  contributor:
    fullname: Chen, B
– volume: 8
  start-page: 137
  year: 2021
  end-page: 153
  ident: B3
  article-title: A rapid review of recent advances in diagnosis, treatment and vaccination for COVID-19
  publication-title: AIMS Public Health
  doi: 10.3934/publichealth.2021011
  contributor:
    fullname: Bukelo, M
– volume: 579
  start-page: 270
  year: 2020
  end-page: 273
  ident: B1
  article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin
  publication-title: Nature
  doi: 10.1038/s41586-020-2012-7
  contributor:
    fullname: Shi, ZL
– volume: 584
  start-page: 437
  year: 2020
  end-page: 442
  ident: B4
  article-title: Convergent antibody responses to SARS-CoV-2 in convalescent individuals
  publication-title: Nature
  doi: 10.1038/s41586-020-2456-9
  contributor:
    fullname: Nussenzweig, MC
– volume: 9
  start-page: 2105
  year: 2020
  end-page: 2113
  ident: B25
  article-title: Robust neutralization assay based on SARS-CoV-2 S-protein-bearing vesicular stomatitis virus (VSV) pseudovirus and ACE2-overexpressing BHK21 cells
  publication-title: Emerg Microbes Infect
  doi: 10.1080/22221751.2020.1815589
  contributor:
    fullname: Xia, NS
– volume: 7
  start-page: 1299
  year: 2005
  end-page: 1310
  ident: B66
  article-title: Upscaling of lentiviral vector production by tangential flow filtration
  publication-title: J Gene Med
  doi: 10.1002/jgm.778
  contributor:
    fullname: Gijsbers, R
– volume: 370
  start-page: 1464
  year: 2020
  end-page: 1468
  ident: B68
  article-title: SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo
  publication-title: Science
  doi: 10.1126/science.abe8499
  contributor:
    fullname: Baric, RS
– volume: 584
  start-page: 115
  year: 2020
  end-page: 119
  ident: B5
  article-title: Human neutralizing antibodies elicited by SARS-CoV-2 infection
  publication-title: Nature
  doi: 10.1038/s41586-020-2380-z
  contributor:
    fullname: Zhang, L
– volume: 58
  year: 2020
  ident: B28
  article-title: Serological assays estimate highly variable SARS-CoV-2 neutralizing antibody activity in recovered COVID19 patients
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.02005-20
  contributor:
    fullname: Hatziioannou, T
– volume: 10
  year: 2021
  ident: B33
  article-title: The spike d614g mutation increases sars-cov-2 infection of multiple human cell types
  publication-title: Elife
  doi: 10.7554/eLife.65365
  contributor:
    fullname: Sanjana, NE
– volume: 12
  year: 2016
  ident: B49
  article-title: Receptor-targeted Nipah virus glycoproteins improve cell-type selective gene delivery and reveal a preference for membrane-proximal cell attachment
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1005641
  contributor:
    fullname: Buchholz, CJ
– volume: 3
  year: 2020
  ident: B12
  article-title: TMPRSS2 and furin are both essential for proteolytic activation and spread of SARS-CoV-2 in human airway epithelial cells and provide promising drug targets
  publication-title: Life Sci Alliance
  doi: 10.26508/lsa.202000786
  contributor:
    fullname: Böttcher-Friebertshäuser, E
– volume: 75
  start-page: 4129
  year: 2001
  end-page: 4138
  ident: B47
  article-title: Sequences in the cytoplasmic tail of the gibbon ape leukemia virus envelope protein that prevent its incorporation into lentivirus vectors
  publication-title: J Virol
  doi: 10.1128/JVI.75.9.4129-4138.2001
  contributor:
    fullname: Cannon, PM
– volume: 27
  start-page: 622
  year: 2021
  end-page: 625
  ident: B41
  article-title: SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma
  publication-title: Nat Med
  doi: 10.1038/s41591-021-01285-x
  contributor:
    fullname: Moore, PL
– year: 2020
  ident: B27
  article-title: Role of IgM and IgA antibodies to the neutralization of SARS-CoV-2
  publication-title: medRxiv
  doi: 10.1101/2020.08.18.20177303
  contributor:
    fullname: Lee, B
– volume: 29
  start-page: 23
  year: 2021
  end-page: 31
  ident: B45
  article-title: D614G Spike mutation increases SARS CoV-2 susceptibility to neutralization
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2020.11.012
  contributor:
    fullname: Montefiori, DC
– year: 2021
  ident: B75
  article-title: Transmission, infectivity, and antibody neutralization of an emerging SARS-CoV-2 variant in California carrying a L452R spike protein mutation
  publication-title: medRxiv
  doi: 10.1101/2021.03.07.21252647
  contributor:
    fullname: Chiu, CY
– volume: 5
  start-page: 283
  year: 2020
  ident: B10
  article-title: CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells
  publication-title: Signal Transduct Target Ther
  doi: 10.1038/s41392-020-00426-x
  contributor:
    fullname: Chen, ZN
– volume: 12
  start-page: 469
  year: 2021
  ident: B39
  article-title: Molecular determinants and mechanism for antibody cocktail preventing SARS-CoV-2 escape
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-20789-7
  contributor:
    fullname: An, Z
– volume: 72
  start-page: 1224
  year: 1998
  end-page: 1234
  ident: B57
  article-title: Measles viruses with altered envelope protein cytoplasmic tails gain cell fusion competence
  publication-title: J Virol
  doi: 10.1128/JVI.72.2.1224-1234.1998
  contributor:
    fullname: Cattaneo, R
– volume: 182
  start-page: 1295
  year: 2020
  end-page: 1310.e20
  ident: B43
  article-title: Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding
  publication-title: Cell
  doi: 10.1016/j.cell.2020.08.012
  contributor:
    fullname: Bloom, JD
– volume: 5
  start-page: 96
  year: 2020
  ident: B74
  article-title: Experimental and in silico evidence suggests vaccines are unlikely to be affected by D614G mutation in SARS-CoV-2 spike protein
  publication-title: NPJ Vaccines
  doi: 10.1038/s41541-020-00246-8
  contributor:
    fullname: Vasan, SS
– volume: 62
  start-page: 103112
  year: 2020
  ident: B67
  article-title: A clade of SARS-CoV-2 viruses associated with lower viral loads in patient upper airways
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2020.103112
  contributor:
    fullname: Ozer, EA
– volume: 71
  start-page: 3341
  year: 1997
  end-page: 3345
  ident: B46
  article-title: Truncation of the human immunodeficiency virus type 1 envelope glycoprotein allows efficient pseudotyping of Moloney murine leukemia virus particles and gene transfer into CD4+ cells
  publication-title: J Virol
  doi: 10.1128/JVI.71.4.3341-3345.1997
  contributor:
    fullname: Göttlinger, HG
– volume: 78
  start-page: 10628
  year: 2004
  end-page: 10635
  ident: B52
  article-title: Retroviruses pseudotyped with the severe acute respiratory syndrome coronavirus spike protein efficiently infect cells expressing angiotensin-converting enzyme 2
  publication-title: J Virol
  doi: 10.1128/JVI.78.19.10628-10635.2004
  contributor:
    fullname: Choe, H
– ident: B34
  article-title: Zhou T , Tsybovsky Y , Olia AS , Gorman J , Rapp M , Cerutti G 8, Chuang G-Y , Katsamba PS , Nazzari A , Sampson JM , Schön A , Wang P , Bimela J , Shi W , Teng I-T , Zhang B , Boyington JC , Sastry M , Stephens T , Stuckey J , Wang S , Friesner RA , Ho DD , Mascola JR , Shapiro L , Kwong PD . 2020 . Cryo-EM structures delineate a pH-dependent switch 4 that mediates endosomal positioning of SARS-CoV-2 spike receptor-binding domains . bioRxiv 10.1101/2020.07.04.187989 .
– ident: B38
  article-title: Hu J , He CL , Gao Q , Zhang GJ , Cao XX , Long QX , Deng HJ , Huang LY , Chen J , Wang K , Tang N , Huang AL . 2020 . D614G mutation of SARS-CoV-2 spike protein enhances viral infectivity . bioRxiv 10.1101/2020.06.20.161323 .
– volume: 20
  start-page: 997
  year: 2013
  end-page: 1005
  ident: B50
  article-title: Characterization of a third generation lentiviral vector pseudotyped with Nipah virus envelope proteins for endothelial cell transduction
  publication-title: Gene Ther
  doi: 10.1038/gt.2013.23
  contributor:
    fullname: Gamble, AL
– volume: 409
  start-page: 131
  year: 2014
  end-page: 146
  ident: B64
  article-title: Optimization and validation of the TZM-bl assay for standardized assessments of neutralizing antibodies against HIV-1
  publication-title: J Immunol Methods
  doi: 10.1016/j.jim.2013.11.022
  contributor:
    fullname: Montefiori, DC
– volume: 28
  start-page: 486
  year: 2020
  end-page: 496
  ident: B17
  article-title: A replication-competent vesicular stomatitis virus for studies of SARS-CoV-2 Spike-mediated cell entry and its inhibition
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2020.06.020
  contributor:
    fullname: Jangra, RK
– volume: 29
  start-page: 44
  year: 2021
  end-page: 57
  ident: B26
  article-title: Complete mapping of mutations to the SARS-CoV-2 Spike receptor-binding domain that escape antibody recognition
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2020.11.007
  contributor:
    fullname: Bloom, JD
– volume: 592
  start-page: 116
  year: 2021
  end-page: 121
  ident: B42
  article-title: Spike mutation D614G alters SARS-CoV-2 fitness
  publication-title: Nature
  doi: 10.1038/s41586-020-2895-3
  contributor:
    fullname: Shi, PY
– volume: 92
  year: 2017
  ident: B59
  article-title: Truncating the gp41 cytoplasmic tail of simian immunodeficiency virus decreases sensitivity to neutralizing antibodies without increasing the envelope content of virions
  publication-title: J Virol
  doi: 10.1128/JVI.01688-17
  contributor:
    fullname: Hirsch, VM
– volume: 94
  year: 2020
  ident: B61
  article-title: Optimized pseudotyping conditions for the SARS-COV-2 Spike glycoprotein
  publication-title: J Virol
  doi: 10.1128/JVI.01062-20
  contributor:
    fullname: Ritter, DG
– volume: 11
  start-page: 6013
  year: 2020
  ident: B44
  article-title: SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-19808-4
  contributor:
    fullname: Choe, H
– volume: 589
  start-page: 270
  year: 2021
  end-page: 275
  ident: B30
  article-title: Identification of SARS-CoV-2 inhibitors using lung and colonic organoids
  publication-title: Nature
  doi: 10.1038/s41586-020-2901-9
  contributor:
    fullname: Chen, S
– volume: 77
  start-page: 1281
  year: 2003
  end-page: 1291
  ident: B53
  article-title: Cytoplasmic tail of moloney murine leukemia virus envelope protein influences the conformation of the extracellular domain: implications for mechanism of action of the R peptide
  publication-title: J Virol
  doi: 10.1128/jvi.77.2.1281-1291.2003
  contributor:
    fullname: Cannon, PM
– volume: 95
  year: 2021
  ident: B60
  article-title: Deletion of the SARS-CoV-2 Spike cytoplasmic tail increases infectivity in pseudovirus neutralization assays
  publication-title: J Virol
  doi: 10.1128/JVI.00044-21
  contributor:
    fullname: Barouch, DH
– volume: 593
  start-page: 130
  year: 2021
  end-page: 135
  ident: B37
  article-title: Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7
  publication-title: Nature
  doi: 10.1038/s41586-021-03398-2
  contributor:
    fullname: Ho, DD
– volume: 183
  start-page: 739
  year: 2020
  end-page: 751
  ident: B71
  article-title: Structural and functional analysis of the D614G SARS-CoV-2 Spike protein variant
  publication-title: Cell
  doi: 10.1016/j.cell.2020.09.032
  contributor:
    fullname: Luban, J
– volume: 7
  start-page: 312
  year: 2010
  end-page: 314
  ident: B54
  article-title: A functional henipavirus envelope glycoprotein pseudotyped lentivirus assay system
  publication-title: Virol J
  doi: 10.1186/1743-422X-7-312
  contributor:
    fullname: Broder, CC
– ident: B70
  article-title: Michaud WA , Boland GM , Rabi SA . 2020 . The SARS-CoV-2 Spike mutation D614G increases entry fitness across a range of ACE2 levels, directly outcompetes the wild type, and is preferentially incorporated into trimers . bioRxiv 10.1101/2020.08.25.267500 .
– volume: 11
  start-page: 2251
  year: 2020
  ident: B22
  article-title: A human monoclonal 1 antibody blocking SARS-CoV-2 infection
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-16452-w
  contributor:
    fullname: Bosch, B-J
– volume: 11
  start-page: 1667
  year: 2020
  end-page: 1670
  ident: B72
  article-title: Structural impact of mutation D614G in SARS-CoV-2 Spike protein: enhanced infectivity and therapeutic opportunity
  publication-title: ACS Med Chem Lett
  doi: 10.1021/acsmedchemlett.0c00410
  contributor:
    fullname: Fernández, A
– volume: 181
  start-page: 1016
  year: 2020
  end-page: 1035
  ident: B14
  article-title: SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues
  publication-title: Cell
  doi: 10.1016/j.cell.2020.04.035
  contributor:
    fullname: Kiem, HP
– volume: 261
  start-page: 70
  year: 1999
  end-page: 78
  ident: B51
  article-title: Truncation of the human immunodeficiency virus-type-2 envelope glycoprotein allows efficient pseudotyping of murine leukemia virus retrovital vector particles
  publication-title: Virology
  doi: 10.1006/viro.1999.9847
  contributor:
    fullname: Schnierle, BS
– year: 2021
  ident: B2
  publication-title: Coronavirus Resource Center. ;Johns Hopkins Coronavirus Resource Center ;Baltimore, MD
– volume: 81
  start-page: 4520
  year: 2007
  end-page: 4532
  ident: B55
  article-title: Polybasic KKR motif in the cytoplasmic tail of Nipah virus fusion protein modulates membrane fusion by inside-out signaling
  publication-title: J Virol
  doi: 10.1128/JVI.02205-06
  contributor:
    fullname: Lee, B
– volume: 5
  start-page: 562
  year: 2020
  end-page: 569
  ident: B8
  article-title: Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses
  publication-title: Nat Microbiol
  doi: 10.1038/s41564-020-0688-y
  contributor:
    fullname: Munster, V
– volume: 9
  start-page: 680
  year: 2020
  end-page: 686
  ident: B20
  article-title: Establishment and validation of a pseudovirus neutralization assay for SARS-CoV-2
  publication-title: Emerg Microbes Infect
  doi: 10.1080/22221751.2020.1743767
  contributor:
    fullname: Wang, Y
– volume: 28
  start-page: 475
  year: 2020
  end-page: 485
  ident: B24
  article-title: Neutralizing antibody and soluble ACE2 inhibition of a replication-competent VSV-SARS-CoV-2 and a clinical isolate of SARS-CoV-2
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2020.06.021
  contributor:
    fullname: Whelan, SPJ
– volume: 67
  start-page: 763
  year: 2020
  end-page: 768
  ident: B78
  article-title: A cross-sectional study examining the seroprevalence of severe acute respiratory syndrome coronavirus 2 antibodies in a university student population
  publication-title: Diabetes Metab Syndr
  contributor:
    fullname: Fernandes, S
– volume: 19
  start-page: 542
  year: 2017
  end-page: 549
  ident: B77
  article-title: A three-dimensional model of human lung development and disease from pluripotent stem cells
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb3510
  contributor:
    fullname: Snoeck, HW
– volume: 2020
  start-page: e2207
  year: 2020
  end-page: e2209
  ident: B9
  article-title: Classical and alternative receptors for SARS-CoV-2 therapeutic strategy
  publication-title: Rev Med Virol
  contributor:
    fullname: Abdul Raub, SH
– volume: 592
  start-page: 616
  year: 2021
  end-page: 622
  ident: B40
  article-title: mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants
  publication-title: Nature
  doi: 10.1038/s41586-021-03324-6
  contributor:
    fullname: Nussenzweig, MC
– volume: 592
  start-page: 122
  year: 2021
  end-page: 127
  ident: B69
  article-title: SARS-CoV-2 spike D614G change enhances replication and transmission
  publication-title: Nature
  doi: 10.1038/s41586-021-03361-1
  contributor:
    fullname: Beer, M
– volume: 28
  year: 2018
  ident: B15
  article-title: Current status on the development of pseudoviruses for enveloped viruses
  publication-title: Rev Med Virol
  doi: 10.1002/rmv.1963
  contributor:
    fullname: Wang, Y
– volume: 11
  start-page: 1620
  year: 2020
  ident: B18
  article-title: Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-15562-9
  contributor:
    fullname: Qian, Z
– volume: 217
  year: 2020
  ident: B23
  article-title: Measuring SARS-CoV-2 neutralizing antibody activity using pseudotyped and chimeric viruses
  publication-title: J Exp Med
  doi: 10.1084/jem.20201181
  contributor:
    fullname: Bieniasz, PD
– volume: 12
  start-page: 848
  year: 2021
  ident: B31
  article-title: SARS-CoV-2 D614G spike mutation increases entry efficiency with enhanced ACE2-binding affinity
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-21118-2
  contributor:
    fullname: Tokunaga, K
– volume: 93
  start-page: 107364
  year: 2021
  ident: B6
  article-title: Immunology, immunopathogenesis and immunotherapeutics of COVID-19; an overview
  publication-title: Int Immunopharmacol
  doi: 10.1016/j.intimp.2020.107364
  contributor:
    fullname: Noorbakhsh, F
– year: 2020
  ident: B21
  article-title: Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered patient cohort and their implications
  publication-title: medRxiv
  doi: 10.1101/2020.03.30.20047365
  contributor:
    fullname: Huang, J
– volume: 182
  start-page: 812
  year: 2020
  end-page: 827
  ident: B35
  article-title: Tracking changes in SARS-CoV-2 Spike: evidence that D614G increases infectivity of the COVID-19 virus
  publication-title: Cell
  doi: 10.1016/j.cell.2020.06.043
  contributor:
    fullname: Montefiori, DC
– volume: 9
  year: 2020
  ident: B36
  article-title: Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants
  publication-title: Elife
  doi: 10.7554/eLife.61312
  contributor:
    fullname: Bieniasz, PD
– volume: 181
  start-page: 271
  year: 2020
  end-page: 210
  ident: B11
  article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.052
  contributor:
    fullname: Pöhlmann, S
– volume: 467
  start-page: 318
  year: 2010
  end-page: 322
  ident: B73
  article-title: Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia
  publication-title: Nature
  doi: 10.1038/nature09328
  contributor:
    fullname: Leboulch, P
– ident: e_1_3_2_59_2
  doi: 10.1126/science.aaa9804
– ident: e_1_3_2_62_2
  doi: 10.1128/JVI.01062-20
– ident: e_1_3_2_37_2
  doi: 10.7554/eLife.61312
– ident: e_1_3_2_72_2
  doi: 10.1016/j.cell.2020.09.032
– ident: e_1_3_2_50_2
  doi: 10.1371/journal.ppat.1005641
– ident: e_1_3_2_21_2
  doi: 10.1080/22221751.2020.1743767
– ident: e_1_3_2_75_2
  doi: 10.1038/s41541-020-00246-8
– ident: e_1_3_2_48_2
  doi: 10.1128/JVI.75.9.4129-4138.2001
– ident: e_1_3_2_39_2
  doi: 10.1101/2020.06.20.161323
– ident: e_1_3_2_70_2
  doi: 10.1038/s41586-021-03361-1
– ident: e_1_3_2_64_2
  doi: 10.1016/j.omtm.2020.12.007
– ident: e_1_3_2_77_2
  doi: 10.1016/j.jviromet.2010.08.006
– ident: e_1_3_2_9_2
  doi: 10.1038/s41564-020-0688-y
– ident: e_1_3_2_55_2
  doi: 10.1186/1743-422X-7-312
– ident: e_1_3_2_58_2
  doi: 10.1128/JVI.72.2.1224-1234.1998
– ident: e_1_3_2_69_2
  doi: 10.1126/science.abe8499
– ident: e_1_3_2_66_2
  doi: 10.1016/j.jviromet.2011.06.019
– ident: e_1_3_2_6_2
  doi: 10.1038/s41586-020-2380-z
– ident: e_1_3_2_45_2
  doi: 10.1038/s41467-020-19808-4
– ident: e_1_3_2_68_2
  doi: 10.1016/j.ebiom.2020.103112
– ident: e_1_3_2_35_2
  doi: 10.1101/2020.07.04.187989
– ident: e_1_3_2_46_2
  doi: 10.1016/j.chom.2020.11.012
– ident: e_1_3_2_52_2
  doi: 10.1006/viro.1999.9847
– ident: e_1_3_2_15_2
  doi: 10.1016/j.cell.2020.04.035
– ident: e_1_3_2_23_2
  doi: 10.1038/s41467-020-16452-w
– ident: e_1_3_2_61_2
  doi: 10.1128/JVI.00044-21
– ident: e_1_3_2_26_2
  doi: 10.1080/22221751.2020.1815589
– ident: e_1_3_2_38_2
  doi: 10.1038/s41586-021-03398-2
– volume-title: Coronavirus Resource Center.
  year: 2021
  ident: e_1_3_2_3_2
  contributor:
    fullname: Johns Hopkins University
– ident: e_1_3_2_28_2
  doi: 10.1101/2020.08.18.20177303
– ident: e_1_3_2_60_2
  doi: 10.1128/JVI.01688-17
– ident: e_1_3_2_44_2
  doi: 10.1016/j.cell.2020.08.012
– ident: e_1_3_2_76_2
  doi: 10.1101/2021.03.07.21252647
– ident: e_1_3_2_4_2
  doi: 10.3934/publichealth.2021011
– ident: e_1_3_2_57_2
  doi: 10.1128/JVI.67.5.2824-2831.1993
– ident: e_1_3_2_5_2
  doi: 10.1038/s41586-020-2456-9
– ident: e_1_3_2_25_2
  doi: 10.1016/j.chom.2020.06.021
– ident: e_1_3_2_2_2
  doi: 10.1038/s41586-020-2012-7
– ident: e_1_3_2_20_2
  doi: 10.1016/j.cell.2020.02.058
– ident: e_1_3_2_67_2
  doi: 10.1002/jgm.778
– ident: e_1_3_2_8_2
  doi: 10.1128/JVI.00127-20
– ident: e_1_3_2_13_2
  doi: 10.26508/lsa.202000786
– ident: e_1_3_2_78_2
  doi: 10.1038/ncb3510
– ident: e_1_3_2_34_2
  doi: 10.7554/eLife.65365
– ident: e_1_3_2_42_2
  doi: 10.1038/s41591-021-01285-x
– ident: e_1_3_2_17_2
  doi: 10.7150/ijbs.59184
– volume: 2020
  start-page: e2207
  year: 2020
  ident: e_1_3_2_10_2
  article-title: Classical and alternative receptors for SARS-CoV-2 therapeutic strategy
  publication-title: Rev Med Virol
  contributor:
    fullname: Masre SF
– ident: e_1_3_2_16_2
  doi: 10.1002/rmv.1963
– ident: e_1_3_2_24_2
  doi: 10.1084/jem.20201181
– ident: e_1_3_2_51_2
  doi: 10.1038/gt.2013.23
– ident: e_1_3_2_27_2
  doi: 10.1016/j.chom.2020.11.007
– ident: e_1_3_2_18_2
  doi: 10.1016/j.chom.2020.06.020
– ident: e_1_3_2_32_2
  doi: 10.1038/s41467-021-21118-2
– ident: e_1_3_2_49_2
  doi: 10.1038/mt.2008.128
– ident: e_1_3_2_63_2
  doi: 10.3390/v12121465
– ident: e_1_3_2_74_2
  doi: 10.1038/nature09328
– volume: 67
  start-page: 763
  year: 2020
  ident: e_1_3_2_79_2
  article-title: A cross-sectional study examining the seroprevalence of severe acute respiratory syndrome coronavirus 2 antibodies in a university student population
  publication-title: Diabetes Metab Syndr
  contributor:
    fullname: Chandrasekaran B
– ident: e_1_3_2_19_2
  doi: 10.1038/s41467-020-15562-9
– ident: e_1_3_2_47_2
  doi: 10.1128/JVI.71.4.3341-3345.1997
– ident: e_1_3_2_54_2
  doi: 10.1128/jvi.77.2.1281-1291.2003
– ident: e_1_3_2_11_2
  doi: 10.1038/s41392-020-00426-x
– ident: e_1_3_2_31_2
  doi: 10.1038/s41586-020-2901-9
– ident: e_1_3_2_36_2
  doi: 10.1016/j.cell.2020.06.043
– ident: e_1_3_2_53_2
  doi: 10.1128/JVI.78.19.10628-10635.2004
– ident: e_1_3_2_7_2
  doi: 10.1016/j.intimp.2020.107364
– ident: e_1_3_2_56_2
  doi: 10.1128/JVI.02205-06
– ident: e_1_3_2_22_2
  doi: 10.1101/2020.03.30.20047365
– ident: e_1_3_2_33_2
  doi: 10.1126/science.abg6105
– ident: e_1_3_2_43_2
  doi: 10.1038/s41586-020-2895-3
– ident: e_1_3_2_12_2
  doi: 10.1016/j.cell.2020.02.052
– ident: e_1_3_2_30_2
  doi: 10.1101/2020.09.16.299891
– ident: e_1_3_2_14_2
  doi: 10.1186/s40249-020-00662-x
– ident: e_1_3_2_41_2
  doi: 10.1038/s41586-021-03324-6
– ident: e_1_3_2_40_2
  doi: 10.1038/s41467-020-20789-7
– ident: e_1_3_2_73_2
  doi: 10.1021/acsmedchemlett.0c00410
– ident: e_1_3_2_29_2
  doi: 10.1128/JCM.02005-20
– ident: e_1_3_2_65_2
  doi: 10.1016/j.jim.2013.11.022
– ident: e_1_3_2_71_2
  doi: 10.1101/2020.08.25.267500
SSID ssj0014464
Score 2.5068946
Snippet The high pathogenicity of SARS-CoV-2 requires it to be handled under biosafety level 3 conditions. Consequently, Spike protein-pseudotyped vectors are a useful...
Pseudotyped viral vectors are useful tools to study the properties of viral fusion proteins, especially those from highly pathogenic viruses. The Spike protein...
SourceID pubmedcentral
proquest
crossref
asm2
SourceType Open Access Repository
Aggregation Database
StartPage e0096621
SubjectTerms Structure and Assembly
Virology
Title Cytoplasmic Tail Truncation of SARS-CoV-2 Spike Protein Enhances Titer of Pseudotyped Vectors but Masks the Effect of the D614G Mutation
URI https://journals.asm.org/doi/10.1128/JVI.00966-21
https://search.proquest.com/docview/2571055744
https://pubmed.ncbi.nlm.nih.gov/PMC8549521
Volume 95
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZgJaReKspDpaXIrdqj9-E4cXJEW57VVit2We0tsh1HRLDOiiQH_gE_m5k8CnvohWMU24kynsz32TOfCfkpTBpG1nrMj5KACS0ViwJjmDRY5imkbCTzJ3-Dy1txvfSXW8TvamHqpH2js757WPVddlfnVq5XZtDliQ2mk3EIpAbCzmCbbEP47Sh6u3UA_EZ0EuHgzcsu252Hg-vFVR8xe8A4nhDjCRhGYm1bTxUrvhmZXuHmZrLkm-hzvks-trCRnjav94lsWbdHdpqDJJ_2yfP4qczXAIRXmaFzlT3Q-WPlmtU4mqd0dnozY-N8wTidrbN7S6coz5A5eubu0OwFnWMpMjadFrYCpgr0NKGLekm_oLoq6UQV9wUFuEgbwWNsi1e_IfJe0EnVbOkfkNvzs_n4krVnLDDlRX7JtGeFSVC2j2tAJkMIavDD85VSEfe91A-tssYDnMYDIGcoDhiYJEiHIx1BB6W9Q9JzubOfCfWAKybDRCZGa-GnqRIpt6EYSS05eLk4Ij_wM8etkxRxzT94GINZ4tosMR8dkV-dEeJ1o7fxn3bfOwvF4BC4y6Gczasihn8QHvopBTxQbpju34Aoqb15B2ZaLa3dzqwv7-75lXzgmPUC0Y3LY9IrHyv7DWBLqU8AsF_9Oakn6wvZpevn
link.rule.ids 230,314,727,780,784,885,27924,27925,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbKIgQXxFOUp0Fw9D5sJ06O1dKyLU21YtPV3izbcdSoXWfVJIf-A3424zyAPXDhGMV2oown8332zGeEPnOTR7G1jARxFhKuhSJxaAwRxpd5ciE6yfzkIlxc8rNNsDlAwVAL0ybtG12M3c127IqrNrdytzWTIU9sskzmEZAaCDuTe-h-wEQ8G0h6v3kADIcPIuHgz5sh351Gk7P16dij9pBQf0YM4zCQ8NVtI1Vt6X5s-gM499Ml_4o_J0_Q4x444qPuBZ-iA-ueoQfdUZJ3z9HP-V1d7gAKbwuDU1Xc4PS2cd16HC5zvDr6sSLzck0oXu2Ka4uXXqChcPjYXXnDVzj1xci-6bKyDXBVIKgZXreL-hXWTY0TVV1XGAAj7iSPfVt_9RVi7zecNN2m_gt0eXKczhekP2WBKBYHNdHMcpN54T6qAZtMIazBLy9QSsU0YHkQWWUNA6RGQ6BnXh4wNFmYT2c6hg5Ks5do5EpnXyHMgC1m00xkRmse5LniObURnwktKPg5P0Sf_GeWvZtUsmUgNJJgFtmaRdLZIfoyGEHuOsWNf7T7OFhIgkv4fQ7lbNlUEv5C_thPweGBYs90vwf0otr7d2CuteLa_dx6_d89P6CHizQ5l-enF9_foEfU58BArKPiLRrVt419ByCm1u_bKfsL3DvuQw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgEYgL4inK0yA4erNrO3FyrLZd2sJWK3a72ptlO44atetETXLoP-BnM84DugcuHKPYTpQZZ77PHn-D0BdusjixlpEwSSPCtVAkiYwhwvhjnlyITjJ_cR6dXPCzbbi9U-qrTdo3Oh-7693Y5ZdtbmW5M8GQJxYsF7MYSA2EnaBMs-A-ehAycLKBqPcbCMBy-CAUDnN6O-S80zg425yOPXKPCPV1YhiHwYQ_4TZS1Y7ux6e_oHM_ZfJODJo_RU968IgPu5d8hu5Z9xw97MpJ3r5Av2a3dVECHN7lBq9Vfo3XN43r1uRwkeHV4c8VmRUbQvGqzK8sXnqRhtzhY3fpjV_htT-Q7JsuK9sAXwWSmuJNu7BfYd3UeKGqqwoDaMSd7LFv66-OIP5-w4um29h_iS7mx-vZCekrLRDFkrAmmlluUi_eRzXgkwmENvjthUqphIYsC2OrrGGA1mgEFM1LBEYmjbLJVCfQQWn2Co1c4exrhBkwxnSSitRozcMsUzyjNuZToQWFuc4P0Gf_mWU_VSrZshAaSzCLbM0i6fQAfR2MIMtOdeMf7T4NFpIwLfxeh3K2aCoJfyJf-lNweKDYM92fAb2w9v4d8LdWYLv3rzf_3fMjerQ8mssfp-ff36LH1KfBQLij4h0a1TeNfQ84ptYfWo_9DVk471Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cytoplasmic+Tail+Truncation+of+SARS-CoV-2+Spike+Protein+Enhances+Titer+of+Pseudotyped+Vectors+but+Masks+the+Effect+of+the+D614G+Mutation&rft.jtitle=Journal+of+virology&rft.au=Chen%2C+Hsu-Yu&rft.au=Huang%2C+Chun&rft.au=Tian%2C+Lu&rft.au=Huang%2C+Xiaoli&rft.date=2021-10-27&rft.pub=American+Society+for+Microbiology&rft.issn=0022-538X&rft.eissn=1098-5514&rft.volume=95&rft.issue=22&rft_id=info:doi/10.1128%2FJVI.00966-21&rft_id=info%3Apmid%2F34495700&rft.externalDBID=PMC8549521
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon