Antibody-Dependent Enhancement of SARS-CoV-2 Infection Is Mediated by the IgG Receptors FcγRIIA and FcγRIIIA but Does Not Contribute to Aberrant Cytokine Production by Macrophages
Viruses infect cells mainly via specific receptors at the cell surface. Antibody-dependent enhancement (ADE) of infection is an alternative mechanism of infection for viruses to infect immune cells that is mediated by antibodies and IgG receptors (FcγRs). The coronavirus disease 2019 (COVID-19) pand...
Saved in:
Published in | mBio Vol. 12; no. 5; p. e0198721 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
1752 N St., N.W., Washington, DC
American Society for Microbiology
26.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Viruses infect cells mainly via specific receptors at the cell surface. Antibody-dependent enhancement (ADE) of infection is an alternative mechanism of infection for viruses to infect immune cells that is mediated by antibodies and IgG receptors (FcγRs).
The coronavirus disease 2019 (COVID-19) pandemic has raised concerns about the detrimental effects of antibodies. Antibody-dependent enhancement (ADE) of infection is one of the biggest concerns in terms of not only the antibody reaction to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) upon reinfection with the virus but also the reaction to COVID-19 vaccines. In this study, we evaluated ADE of infection by using COVID-19 convalescent-phase plasma and BHK cells expressing human Fcγ receptors (FcγRs). We found that FcγRIIA and FcγRIIIA mediated modest ADE of infection against SARS-CoV-2. Although ADE of infection was observed in monocyte-derived macrophages infected with SARS-CoV-2, including its variants, proinflammatory cytokine/chemokine expression was not upregulated in macrophages. SARS-CoV-2 infection thus produces antibodies that elicit ADE of infection, but these antibodies do not contribute to excess cytokine production by macrophages.
IMPORTANCE
Viruses infect cells mainly via specific receptors at the cell surface. Antibody-dependent enhancement (ADE) of infection is an alternative mechanism of infection for viruses to infect immune cells that is mediated by antibodies and IgG receptors (FcγRs). Because ADE of infection contributes to the pathogenesis of some viruses, such as dengue virus and feline coronavirus, it is important to evaluate the precise mechanism of ADE and its contribution to the pathogenesis of SARS-CoV-2. Here, using convalescent-phase plasma from COVID-19 patients, we found that two types of FcγRs, FcγRIIA and FcγRIIIA, mediate ADE of SARS-CoV-2 infection. Although ADE of infection was observed for SARS-CoV-2 and its recent variants, proinflammatory cytokine production in monocyte-derived macrophages was not upregulated. These observations suggest that SARS-CoV-2 infection produces antibodies that elicit ADE of infection, but these antibodies may not be involved in aberrant cytokine release by macrophages during SARS-CoV-2 infection. |
---|---|
AbstractList | Viruses infect cells mainly via specific receptors at the cell surface. Antibody-dependent enhancement (ADE) of infection is an alternative mechanism of infection for viruses to infect immune cells that is mediated by antibodies and IgG receptors (FcγRs). The coronavirus disease 2019 (COVID-19) pandemic has raised concerns about the detrimental effects of antibodies. Antibody-dependent enhancement (ADE) of infection is one of the biggest concerns in terms of not only the antibody reaction to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) upon reinfection with the virus but also the reaction to COVID-19 vaccines. In this study, we evaluated ADE of infection by using COVID-19 convalescent-phase plasma and BHK cells expressing human Fcγ receptors (FcγRs). We found that FcγRIIA and FcγRIIIA mediated modest ADE of infection against SARS-CoV-2. Although ADE of infection was observed in monocyte-derived macrophages infected with SARS-CoV-2, including its variants, proinflammatory cytokine/chemokine expression was not upregulated in macrophages. SARS-CoV-2 infection thus produces antibodies that elicit ADE of infection, but these antibodies do not contribute to excess cytokine production by macrophages. The coronavirus disease 2019 (COVID-19) pandemic has raised concerns about the detrimental effects of antibodies. Antibody-dependent enhancement (ADE) of infection is one of the biggest concerns in terms of not only the antibody reaction to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) upon reinfection with the virus but also the reaction to COVID-19 vaccines. In this study, we evaluated ADE of infection by using COVID-19 convalescent-phase plasma and BHK cells expressing human Fcγ receptors (FcγRs). We found that FcγRIIA and FcγRIIIA mediated modest ADE of infection against SARS-CoV-2. Although ADE of infection was observed in monocyte-derived macrophages infected with SARS-CoV-2, including its variants, proinflammatory cytokine/chemokine expression was not upregulated in macrophages. SARS-CoV-2 infection thus produces antibodies that elicit ADE of infection, but these antibodies do not contribute to excess cytokine production by macrophages. IMPORTANCE Viruses infect cells mainly via specific receptors at the cell surface. Antibody-dependent enhancement (ADE) of infection is an alternative mechanism of infection for viruses to infect immune cells that is mediated by antibodies and IgG receptors (FcγRs). Because ADE of infection contributes to the pathogenesis of some viruses, such as dengue virus and feline coronavirus, it is important to evaluate the precise mechanism of ADE and its contribution to the pathogenesis of SARS-CoV-2. Here, using convalescent-phase plasma from COVID-19 patients, we found that two types of FcγRs, FcγRIIA and FcγRIIIA, mediate ADE of SARS-CoV-2 infection. Although ADE of infection was observed for SARS-CoV-2 and its recent variants, proinflammatory cytokine production in monocyte-derived macrophages was not upregulated. These observations suggest that SARS-CoV-2 infection produces antibodies that elicit ADE of infection, but these antibodies may not be involved in aberrant cytokine release by macrophages during SARS-CoV-2 infection.The coronavirus disease 2019 (COVID-19) pandemic has raised concerns about the detrimental effects of antibodies. Antibody-dependent enhancement (ADE) of infection is one of the biggest concerns in terms of not only the antibody reaction to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) upon reinfection with the virus but also the reaction to COVID-19 vaccines. In this study, we evaluated ADE of infection by using COVID-19 convalescent-phase plasma and BHK cells expressing human Fcγ receptors (FcγRs). We found that FcγRIIA and FcγRIIIA mediated modest ADE of infection against SARS-CoV-2. Although ADE of infection was observed in monocyte-derived macrophages infected with SARS-CoV-2, including its variants, proinflammatory cytokine/chemokine expression was not upregulated in macrophages. SARS-CoV-2 infection thus produces antibodies that elicit ADE of infection, but these antibodies do not contribute to excess cytokine production by macrophages. IMPORTANCE Viruses infect cells mainly via specific receptors at the cell surface. Antibody-dependent enhancement (ADE) of infection is an alternative mechanism of infection for viruses to infect immune cells that is mediated by antibodies and IgG receptors (FcγRs). Because ADE of infection contributes to the pathogenesis of some viruses, such as dengue virus and feline coronavirus, it is important to evaluate the precise mechanism of ADE and its contribution to the pathogenesis of SARS-CoV-2. Here, using convalescent-phase plasma from COVID-19 patients, we found that two types of FcγRs, FcγRIIA and FcγRIIIA, mediate ADE of SARS-CoV-2 infection. Although ADE of infection was observed for SARS-CoV-2 and its recent variants, proinflammatory cytokine production in monocyte-derived macrophages was not upregulated. These observations suggest that SARS-CoV-2 infection produces antibodies that elicit ADE of infection, but these antibodies may not be involved in aberrant cytokine release by macrophages during SARS-CoV-2 infection. Viruses infect cells mainly via specific receptors at the cell surface. Antibody-dependent enhancement (ADE) of infection is an alternative mechanism of infection for viruses to infect immune cells that is mediated by antibodies and IgG receptors (FcγRs). The coronavirus disease 2019 (COVID-19) pandemic has raised concerns about the detrimental effects of antibodies. Antibody-dependent enhancement (ADE) of infection is one of the biggest concerns in terms of not only the antibody reaction to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) upon reinfection with the virus but also the reaction to COVID-19 vaccines. In this study, we evaluated ADE of infection by using COVID-19 convalescent-phase plasma and BHK cells expressing human Fcγ receptors (FcγRs). We found that FcγRIIA and FcγRIIIA mediated modest ADE of infection against SARS-CoV-2. Although ADE of infection was observed in monocyte-derived macrophages infected with SARS-CoV-2, including its variants, proinflammatory cytokine/chemokine expression was not upregulated in macrophages. SARS-CoV-2 infection thus produces antibodies that elicit ADE of infection, but these antibodies do not contribute to excess cytokine production by macrophages. IMPORTANCE Viruses infect cells mainly via specific receptors at the cell surface. Antibody-dependent enhancement (ADE) of infection is an alternative mechanism of infection for viruses to infect immune cells that is mediated by antibodies and IgG receptors (FcγRs). Because ADE of infection contributes to the pathogenesis of some viruses, such as dengue virus and feline coronavirus, it is important to evaluate the precise mechanism of ADE and its contribution to the pathogenesis of SARS-CoV-2. Here, using convalescent-phase plasma from COVID-19 patients, we found that two types of FcγRs, FcγRIIA and FcγRIIIA, mediate ADE of SARS-CoV-2 infection. Although ADE of infection was observed for SARS-CoV-2 and its recent variants, proinflammatory cytokine production in monocyte-derived macrophages was not upregulated. These observations suggest that SARS-CoV-2 infection produces antibodies that elicit ADE of infection, but these antibodies may not be involved in aberrant cytokine release by macrophages during SARS-CoV-2 infection. The coronavirus disease 2019 (COVID-19) pandemic has raised concerns about the detrimental effects of antibodies. Antibody-dependent enhancement (ADE) of infection is one of the biggest concerns in terms of not only the antibody reaction to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) upon reinfection with the virus but also the reaction to COVID-19 vaccines. In this study, we evaluated ADE of infection by using COVID-19 convalescent-phase plasma and BHK cells expressing human Fcγ receptors (FcγRs). We found that FcγRIIA and FcγRIIIA mediated modest ADE of infection against SARS-CoV-2. Although ADE of infection was observed in monocyte-derived macrophages infected with SARS-CoV-2, including its variants, proinflammatory cytokine/chemokine expression was not upregulated in macrophages. SARS-CoV-2 infection thus produces antibodies that elicit ADE of infection, but these antibodies do not contribute to excess cytokine production by macrophages. IMPORTANCE Viruses infect cells mainly via specific receptors at the cell surface. Antibody-dependent enhancement (ADE) of infection is an alternative mechanism of infection for viruses to infect immune cells that is mediated by antibodies and IgG receptors (FcγRs). Because ADE of infection contributes to the pathogenesis of some viruses, such as dengue virus and feline coronavirus, it is important to evaluate the precise mechanism of ADE and its contribution to the pathogenesis of SARS-CoV-2. Here, using convalescent-phase plasma from COVID-19 patients, we found that two types of FcγRs, FcγRIIA and FcγRIIIA, mediate ADE of SARS-CoV-2 infection. Although ADE of infection was observed for SARS-CoV-2 and its recent variants, proinflammatory cytokine production in monocyte-derived macrophages was not upregulated. These observations suggest that SARS-CoV-2 infection produces antibodies that elicit ADE of infection, but these antibodies may not be involved in aberrant cytokine release by macrophages during SARS-CoV-2 infection. |
Author | Armbrust, Tammy Yamayoshi, Seiya Kuroda, Makoto Kawaoka, Yoshihiro Maemura, Tadashi Halfmann, Peter J. |
Author_xml | – sequence: 1 givenname: Tadashi surname: Maemura fullname: Maemura, Tadashi organization: Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA, Division of Virology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan – sequence: 2 givenname: Makoto surname: Kuroda fullname: Kuroda, Makoto organization: Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA – sequence: 3 givenname: Tammy surname: Armbrust fullname: Armbrust, Tammy organization: Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA – sequence: 4 givenname: Seiya orcidid: 0000-0001-7768-5157 surname: Yamayoshi fullname: Yamayoshi, Seiya organization: Division of Virology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan, The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan – sequence: 5 givenname: Peter J. surname: Halfmann fullname: Halfmann, Peter J. organization: Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA – sequence: 6 givenname: Yoshihiro orcidid: 0000-0001-5061-8296 surname: Kawaoka fullname: Kawaoka, Yoshihiro organization: Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA, Division of Virology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan, The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan, Department of Special Pathogens, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan |
BookMark | eNp1ks1u1DAQxyNUREvpkbuPCCklju18XJCW9INILaAtcLUce7LrJbG3toO0z4V4DZ4Jp1sQRaovnhn__ZvxeJ4nB8YaSJKXODvFOK_ejO-0Pc1wXZVpjp8kRzlmWVoyjA_-sQ-TE-83WVyE4Ipkz5JDQllZszI_Sn4uTNCdVbv0DLZgFJiAzs1aGAnjbNse3SyWN2ljv6Y5ak0PMmhrUOvRNSgtAijU7VBYA2pXl2gJErbBOo8u5K8fy7ZdIGHUHyd63RTQmQWPPtiAGmuC0zEEKFi06MA5EXM2u2C_aQPok7Nq2ueLOa6FdHa7FivwL5KnvRg8nNzvx8mXi_PPzfv06uNl2yyuUkFqFtKqLoq6J70iJC-FBEyUqoikRScz3FOCKRGyIKSkWSlY3eVdXUAHrO9kV2CMyXHS7rnKig3fOj0Kt-NWaH4XsG7FhQtaDsBxDoTWWZlVQGkloKqliPgSF1RVfQGR9XbP2k7dCErG7joxPIA-PDF6zVf2O68YLSpaR8Cre4CztxP4wEftJQyDMGAnz3NWlpThjM3S13up8GPON3ZyJraJ44zPY8PnseF3Y8Pz-ZHpXhzb672D_m9Nj-nJf3qpg5h_KZath0du_Qbmvde3 |
CitedBy_id | crossref_primary_10_3390_v14112535 crossref_primary_10_1038_s41541_022_00549_y crossref_primary_10_1134_S0006350922020166 crossref_primary_10_1002_jmv_29628 crossref_primary_10_1002_jmv_29506 crossref_primary_10_3389_fimmu_2021_804808 crossref_primary_10_1186_s13256_023_03904_2 crossref_primary_10_1016_j_vaccine_2023_03_005 crossref_primary_10_1007_s12519_022_00542_4 crossref_primary_10_1016_j_jaip_2022_10_002 crossref_primary_10_1021_acsinfecdis_2c00204 crossref_primary_10_1111_imr_13115 crossref_primary_10_1016_j_intimp_2022_108943 crossref_primary_10_1016_j_antiviral_2022_105271 crossref_primary_10_1089_apc_2022_29008_com crossref_primary_10_1016_j_heliyon_2023_e16017 crossref_primary_10_1007_s00285_023_01900_0 crossref_primary_10_1002_cbin_11903 crossref_primary_10_3390_v14040827 crossref_primary_10_3389_fimmu_2022_882972 crossref_primary_10_3389_fimmu_2022_901217 crossref_primary_10_3390_v14081739 crossref_primary_10_3389_fimmu_2022_1008285 crossref_primary_10_1186_s12929_022_00833_y crossref_primary_10_3390_vaccines11071240 crossref_primary_10_3390_microorganisms10071463 crossref_primary_10_5501_wjv_v12_i3_193 crossref_primary_10_1007_s11684_023_1021_y crossref_primary_10_1038_s41379_022_01069_9 crossref_primary_10_1093_abt_tbad001 crossref_primary_10_1038_s41586_024_08121_5 crossref_primary_10_1038_s41392_024_02043_4 crossref_primary_10_3390_microorganisms9122578 crossref_primary_10_3390_microorganisms11041015 crossref_primary_10_3390_pathogens12091108 crossref_primary_10_3390_vaccines10020236 crossref_primary_10_1016_j_antiviral_2023_105738 crossref_primary_10_1016_j_isci_2022_104709 crossref_primary_10_3390_ijms23116078 crossref_primary_10_3390_pathogens12121408 crossref_primary_10_1080_22221751_2024_2377599 crossref_primary_10_3389_fmicb_2022_932408 crossref_primary_10_1002_jcb_30207 crossref_primary_10_3390_tropicalmed7020020 crossref_primary_10_1186_s41232_022_00233_7 crossref_primary_10_1038_s41598_022_12252_y crossref_primary_10_1080_17476348_2023_2208349 crossref_primary_10_4236_jbm_2021_911008 crossref_primary_10_1016_j_isci_2024_110387 crossref_primary_10_3390_v14030481 crossref_primary_10_1371_journal_ppat_1010591 crossref_primary_10_1371_journal_ppat_1011680 crossref_primary_10_1002_mef2_11 crossref_primary_10_1016_j_jconrel_2023_06_025 crossref_primary_10_1038_s41598_022_19993_w crossref_primary_10_1371_journal_ppat_1012493 crossref_primary_10_2147_IJN_S427990 crossref_primary_10_3390_vetsci9090470 crossref_primary_10_1186_s13578_024_01237_1 crossref_primary_10_3390_ijms26051898 crossref_primary_10_1152_ajplung_00330_2022 crossref_primary_10_1016_j_micinf_2024_105464 |
Cites_doi | 10.1126/science.abf4063 10.1186/1471-2180-14-44 10.1016/j.cell.2021.04.006 10.1182/blood-2012-01-380121 10.1172/JCI137244 10.1016/j.cell.2020.02.052 10.1016/S2213-2600(20)30193-4 10.1038/s41586-020-2538-8 10.1016/j.jinf.2021.08.010 10.1038/s41577-020-00410-0 10.1016/j.dci.2018.09.019 10.1002/JLB.3COVR0520-272R 10.4049/jimmunol.144.2.599 10.1016/j.cell.2021.03.036 10.1016/j.cell.2021.05.032 10.1001/jama.2021.3199 10.1101/2020.10.08.20209114:2020.10.08.20209114 10.7883/yoken.JJID.2020.061 10.1038/s41586-020-2798-3 10.1126/science.abc6027 10.1093/infdis/jiaa753 10.1016/j.eclinm.2021.100734 10.1038/s41564-020-00789-5 10.1126/science.aai8128 10.1016/j.cyto.2020.155256 10.3389/fcimb.2021.644574 10.1016/S0140-6736(20)30183-5 10.3390/v9050124 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Maemura et al. Copyright © 2021 Maemura et al. 2021 Maemura et al. |
Copyright_xml | – notice: Copyright © 2021 Maemura et al. – notice: Copyright © 2021 Maemura et al. 2021 Maemura et al. |
DBID | AAYXX CITATION 7X8 5PM DOA |
DOI | 10.1128/mBio.01987-21 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2150-7511 |
Editor | Schultz-Cherry, Stacey |
Editor_xml | – sequence: 1 givenname: Stacey surname: Schultz-Cherry fullname: Schultz-Cherry, Stacey |
ExternalDocumentID | oai_doaj_org_article_12e3490708e448ae89ca43a7164d8f6e PMC8546849 mBio01987-21 10_1128_mBio_01987_21 |
GrantInformation_xml | – fundername: Japan Agency for Medical Research and Development (AMED) grantid: JP20fk0108527 funderid: https://doi.org/10.13039/100009619 – fundername: Japan Agency for Medical Research and Development (AMED) grantid: JP21wm0125002 funderid: https://doi.org/10.13039/100009619 – fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID) grantid: HHSN272201400008C funderid: https://doi.org/10.13039/100000060 – fundername: ; grantid: HHSN272201400008C – fundername: ; grantid: JP21wm0125002 – fundername: ; grantid: JP20fk0108527 |
GroupedDBID | --- 0R~ 53G 5VS AAFWJ AAGFI AAUOK AAYXX ADBBV AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BTFSW CITATION DIK E3Z EBS FRP GROUPED_DOAJ GX1 H13 HYE HZ~ KQ8 M48 O5R O5S O9- OK1 P2P PGMZT RHI RNS RPM RSF - 0R ADACO BXI HZ M~E RHF 7X8 5PM |
ID | FETCH-LOGICAL-a395t-89669f3fd3327ace13dd83c46bc01f43143ac6337407a59b2b96ebe5fbcb61113 |
IEDL.DBID | DOA |
ISSN | 2150-7511 |
IngestDate | Wed Aug 27 01:13:29 EDT 2025 Thu Aug 21 18:25:39 EDT 2025 Fri Jul 11 05:26:22 EDT 2025 Tue Dec 28 13:59:21 EST 2021 Tue Jul 01 01:52:49 EDT 2025 Thu Apr 24 23:01:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | COVID-19 ADE SARS-CoV-2 macrophages FcγRIIIA antibody-dependent enhancement FcγRIIA |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a395t-89669f3fd3327ace13dd83c46bc01f43143ac6337407a59b2b96ebe5fbcb61113 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7768-5157 0000-0001-5061-8296 |
OpenAccessLink | https://doaj.org/article/12e3490708e448ae89ca43a7164d8f6e |
PMID | 34579572 |
PQID | 2577451059 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_12e3490708e448ae89ca43a7164d8f6e pubmedcentral_primary_oai_pubmedcentral_nih_gov_8546849 proquest_miscellaneous_2577451059 asm2_journals_10_1128_mBio_01987_21 crossref_primary_10_1128_mBio_01987_21 crossref_citationtrail_10_1128_mBio_01987_21 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211026 |
PublicationDateYYYYMMDD | 2021-10-26 |
PublicationDate_xml | – month: 10 year: 2021 text: 20211026 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | 1752 N St., N.W., Washington, DC |
PublicationPlace_xml | – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | mBio |
PublicationTitleAbbrev | mBio |
PublicationYear | 2021 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_20_2 e_1_3_2_21_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_24_2 e_1_3_2_25_2 Klaassen RJ (e_1_3_2_10_2) 1990; 144 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_2_2 e_1_3_2_14_2 Shirato, K, Nao, N, Katano, H, Takayama, I, Saito, S, Kato, F, Katoh, H, Sakata, M, Nakatsu, Y, Mori, Y, Kageyama, T, Matsuyama, S, Takeda, M (B30) 2020; 73 Huang, C, Wang, Y, Li, X, Ren, L, Zhao, J, Hu, Y, Zhang, L, Fan, G, Xu, J, Gu, X, Cheng, Z, Yu, T, Xia, J, Wei, Y, Wu, W, Xie, X, Yin, W, Li, H, Liu, M, Xiao, Y, Gao, H, Guo, L, Xie, J, Wang, G, Jiang, R, Gao, Z, Jin, Q, Wang, J, Cao, B (B19) 2020; 395 Bournazos, S, Gupta, A, Ravetch, JV (B7) 2020; 20 Krammer, F (B3) 2020; 586 Arvin, AM, Fink, K, Schmid, MA, Cathcart, A, Spreafico, R, Havenar-Daughton, C, Lanzavecchia, A, Corti, D, Virgin, HW (B6) 2020; 584 Garcia-Nicolas, O, Ricklin, ME, Liniger, M, Vielle, NJ, Python, S, Souque, P, Charneau, P, Summerfield, A (B15) 2017; 9 Wang, J, Jiang, M, Chen, X, Montaner, LJ (B20) 2020; 108 Chen, G, Wu, D, Guo, W, Cao, Y, Huang, D, Wang, H, Wang, T, Zhang, X, Chen, H, Yu, H, Zhang, X, Zhang, M, Wu, S, Song, J, Chen, T, Han, M, Li, S, Luo, X, Zhao, J, Ning, Q (B17) 2020; 130 Klaassen, RJ, Ouwehand, WH, Huizinga, TW, Engelfriet, CP, von Dem Borne, AE (B9) 1990; 144 Zheng, J, Wang, Y, Li, K, Meyerholz, DK, Allamargot, C, Perlman, S (B21) 2021; 223 Creech, CB, Walker, SC, Samuels, RJ (B4) 2021; 325 Wu, F, Yan, R, Liu, M, Liu, Z, Wang, Y, Luan, D, Wu, K, Song, Z, Sun, T, Ma, Y, Zhang, Y, Wang, Q, Li, X, Ji, P, Li, Y, Li, C, Wu, Y, Ying, T, Wen, Y, Jiang, S, Zhu, T, Lu, L, Zhang, Y, Zhou, Q, Huang, J (B11) 2020 Hoffmann, M, Kleine-Weber, H, Schroeder, S, Kruger, N, Herrler, T, Erichsen, S, Schiergens, TS, Herrler, G, Wu, NH, Nitsche, A, Muller, MA, Drosten, C, Pohlmann, S (B16) 2020; 181 Cloutier, M, Nandi, M, Ihsan, AU, Chamard, HA, Ilangumaran, S, Ramanathan, S (B10) 2020; 136 Yahi, N, Chahinian, H, Fantini, J (B28) 2021 Garcia-Beltran, WF, Lam, EC, St Denis, K, Nitido, AD, Garcia, ZH, Hauser, BM, Feldman, J, Pavlovic, MN, Gregory, DJ, Poznansky, MC, Sigal, A, Schmidt, AG, Iafrate, AJ, Naranbhai, V, Balazs, AB (B23) 2021; 184 Hadjadj, J, Yatim, N, Barnabei, L, Corneau, A, Boussier, J, Smith, N, Pere, H, Charbit, B, Bondet, V, Chenevier-Gobeaux, C, Breillat, P, Carlier, N, Gauzit, R, Morbieu, C, Pene, F, Marin, N, Roche, N, Szwebel, TA, Merkling, SH, Treluyer, JM, Veyer, D, Mouthon, L, Blanc, C, Tharaux, PL, Rozenberg, F, Fischer, A, Duffy, D, Rieux-Laucat, F, Kerneis, S, Terrier, B (B18) 2020; 369 Song, KY, Zhao, H, Jiang, ZY, Li, XF, Deng, YQ, Jiang, T, Zhu, SY, Shi, PY, Zhang, B, Zhang, FC, Qin, ED, Qin, CF (B22) 2014; 14 Hoffmann, M, Arora, P, Groß, R, Seidel, A, Hörnich, BF, Hahn, AS, Krüger, N, Graichen, L, Hofmann-Winkler, H, Kempf, A, Winkler, MS, Schulz, S, Jäck, H-M, Jahrsdörfer, B, Schrezenmeier, H, Müller, M, Kleger, A, Münch, J, Pöhlmann, S (B24) 2021; 184 Yamayoshi, S, Yasuhara, A, Ito, M, Akasaka, O, Nakamura, M, Nakachi, I, Koga, M, Mitamura, K, Yagi, K, Maeda, K, Kato, H, Nojima, M, Pattinson, D, Ogura, T, Baba, R, Fujita, K, Nagai, H, Yamamoto, S, Saito, M, Adachi, E, Ochi, J, Hattori, SI, Suzuki, T, Miyazato, Y, Chiba, S, Okuda, M, Murakami, J, Hamabata, T, Iwatsuki-Horimoto, K, Nakajima, H, Mitsuya, H, Omagari, N, Sugaya, N, Yotsuyanagi, H, Kawaoka, Y (B26) 2021; 32 Liu, Y, Soh, WT, Kishikawa, JI, Hirose, M, Nakayama, EE, Li, S, Sasai, M, Suzuki, T, Tada, A, Arakawa, A, Matsuoka, S, Akamatsu, K, Matsuda, M, Ono, C, Torii, S, Kishida, K, Jin, H, Nakai, W, Arase, N, Nakagawa, A, Matsumoto, M, Nakazaki, Y, Shindo, Y, Kohyama, M, Tomii, K, Ohmura, K, Ohshima, S, Okamoto, T, Yamamoto, M, Nakagami, H, Matsuura, Y, Nakagawa, A, Kato, T, Okada, M, Standley, DM, Shioda, T, Arase, H (B27) 2021; 184 Bruhns, P (B8) 2012; 119 Lee, WS, Wheatley, AK, Kent, SJ, DeKosky, BJ (B5) 2020; 5 B1 B2 Shi, P, Su, Y, Li, Y, Zhang, L, Lu, D, Li, R, Zhang, L, Huang, J (B13) 2019; 90 Dan, JM, Mateus, J, Kato, Y, Hastie, KM, Yu, ED, Faliti, CE, Grifoni, A, Ramirez, SI, Haupt, S, Frazier, A, Nakao, C, Rayaprolu, V, Rawlings, SA, Peters, B, Krammer, F, Simon, V, Saphire, EO, Smith, DM, Weiskopf, D, Sette, A, Crotty, S (B25) 2021; 371 Garcia-Nicolas, O, V'Kovski, P, Zettl, F, Zimmer, G, Thiel, V, Summerfield, A (B12) 2021; 11 Hui, KPY, Cheung, MC, Perera, R, Ng, KC, Bui, CHT, Ho, JCW, Ng, MMT, Kuok, DIT, Shih, KC, Tsao, SW, Poon, LLM, Peiris, M, Nicholls, JM, Chan, MCW (B29) 2020; 8 Wang, TT, Sewatanon, J, Memoli, MJ, Wrammert, J, Bournazos, S, Bhaumik, SK, Pinsky, BA, Chokephaibulkit, K, Onlamoon, N, Pattanapanyasat, K, Taubenberger, JK, Ahmed, R, Ravetch, JV (B14) 2017; 355 |
References_xml | – ident: e_1_3_2_26_2 doi: 10.1126/science.abf4063 – ident: e_1_3_2_23_2 doi: 10.1186/1471-2180-14-44 – ident: e_1_3_2_24_2 doi: 10.1016/j.cell.2021.04.006 – ident: e_1_3_2_9_2 doi: 10.1182/blood-2012-01-380121 – ident: e_1_3_2_18_2 doi: 10.1172/JCI137244 – ident: e_1_3_2_17_2 doi: 10.1016/j.cell.2020.02.052 – ident: e_1_3_2_30_2 doi: 10.1016/S2213-2600(20)30193-4 – ident: e_1_3_2_3_2 – ident: e_1_3_2_7_2 doi: 10.1038/s41586-020-2538-8 – ident: e_1_3_2_29_2 doi: 10.1016/j.jinf.2021.08.010 – ident: e_1_3_2_8_2 doi: 10.1038/s41577-020-00410-0 – ident: e_1_3_2_14_2 doi: 10.1016/j.dci.2018.09.019 – ident: e_1_3_2_21_2 doi: 10.1002/JLB.3COVR0520-272R – volume: 144 start-page: 599 year: 1990 ident: e_1_3_2_10_2 article-title: The Fc-receptor III of cultured human monocytes. Structural similarity with FcRIII of natural killer cells and role in the extracellular lysis of sensitized erythrocytes publication-title: J Immunol doi: 10.4049/jimmunol.144.2.599 – ident: e_1_3_2_25_2 doi: 10.1016/j.cell.2021.03.036 – ident: e_1_3_2_28_2 doi: 10.1016/j.cell.2021.05.032 – ident: e_1_3_2_5_2 doi: 10.1001/jama.2021.3199 – ident: e_1_3_2_12_2 doi: 10.1101/2020.10.08.20209114:2020.10.08.20209114 – ident: e_1_3_2_31_2 doi: 10.7883/yoken.JJID.2020.061 – ident: e_1_3_2_4_2 doi: 10.1038/s41586-020-2798-3 – ident: e_1_3_2_19_2 doi: 10.1126/science.abc6027 – ident: e_1_3_2_22_2 doi: 10.1093/infdis/jiaa753 – ident: e_1_3_2_27_2 doi: 10.1016/j.eclinm.2021.100734 – ident: e_1_3_2_6_2 doi: 10.1038/s41564-020-00789-5 – ident: e_1_3_2_15_2 doi: 10.1126/science.aai8128 – ident: e_1_3_2_11_2 doi: 10.1016/j.cyto.2020.155256 – ident: e_1_3_2_13_2 doi: 10.3389/fcimb.2021.644574 – ident: e_1_3_2_2_2 – ident: e_1_3_2_20_2 doi: 10.1016/S0140-6736(20)30183-5 – ident: e_1_3_2_16_2 doi: 10.3390/v9050124 – volume: 11 start-page: 644574 year: 2021 ident: B12 article-title: No evidence for human monocyte-derived macrophage infection and antibody-mediated enhancement of SARS-CoV-2 infection publication-title: Front Cell Infect Microbiol doi: 10.3389/fcimb.2021.644574 – volume: 108 start-page: 17 year: 2020 end-page: 41 ident: B20 article-title: Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts publication-title: J Leukoc Biol doi: 10.1002/JLB.3COVR0520-272R – volume: 32 start-page: 100734 year: 2021 ident: B26 article-title: Antibody titers against SARS-CoV-2 decline, but do not disappear for several months publication-title: EClinicalMedicine doi: 10.1016/j.eclinm.2021.100734 – volume: 20 start-page: 633 year: 2020 end-page: 643 ident: B7 article-title: The role of IgG Fc receptors in antibody-dependent enhancement publication-title: Nat Rev Immunol doi: 10.1038/s41577-020-00410-0 – volume: 181 start-page: 271 year: 2020 end-page: 280.E8 ident: B16 article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor publication-title: Cell doi: 10.1016/j.cell.2020.02.052 – year: 2020 ident: B11 article-title: Antibody-dependent enhancement (ADE) of SARS-CoV-2 infection in recovered COVID-19 patients: studies based on cellular and structural biology analysis publication-title: medRxiv doi: 10.1101/2020.10.08.20209114:2020.10.08.20209114 – volume: 9 start-page: 124 year: 2017 ident: B15 article-title: A Japanese encephalitis virus vaccine inducing antibodies strongly enhancing in vitro infection is protective in pigs publication-title: Viruses doi: 10.3390/v9050124 – volume: 184 start-page: 2384 year: 2021 end-page: 2393.E12 ident: B24 article-title: SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies publication-title: Cell doi: 10.1016/j.cell.2021.03.036 – volume: 584 start-page: 353 year: 2020 end-page: 363 ident: B6 article-title: A perspective on potential antibody-dependent enhancement of SARS-CoV-2 publication-title: Nature doi: 10.1038/s41586-020-2538-8 – volume: 355 start-page: 395 year: 2017 end-page: 398 ident: B14 article-title: IgG antibodies to dengue enhanced for FcgammaRIIIA binding determine disease severity publication-title: Science doi: 10.1126/science.aai8128 – volume: 90 start-page: 186 year: 2019 end-page: 198 ident: B13 article-title: The alternatively spliced porcine FcgammaRI regulated PRRSV-ADE infection and proinflammatory cytokine production publication-title: Dev Comp Immunol doi: 10.1016/j.dci.2018.09.019 – volume: 5 start-page: 1185 year: 2020 end-page: 1191 ident: B5 article-title: Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies publication-title: Nat Microbiol doi: 10.1038/s41564-020-00789-5 – volume: 369 start-page: 718 year: 2020 end-page: 724 ident: B18 article-title: Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients publication-title: Science doi: 10.1126/science.abc6027 – volume: 586 start-page: 516 year: 2020 end-page: 527 ident: B3 article-title: SARS-CoV-2 vaccines in development publication-title: Nature doi: 10.1038/s41586-020-2798-3 – volume: 325 start-page: 1318 year: 2021 end-page: 1320 ident: B4 article-title: SARS-CoV-2 Vaccines publication-title: JAMA doi: 10.1001/jama.2021.3199 – volume: 130 start-page: 2620 year: 2020 end-page: 2629 ident: B17 article-title: Clinical and immunological features of severe and moderate coronavirus disease 2019 publication-title: J Clin Invest doi: 10.1172/JCI137244 – volume: 223 start-page: 785 year: 2021 end-page: 795 ident: B21 article-title: Severe acute respiratory syndrome coronavirus 2-induced immune activation and death of monocyte-derived human macrophages and dendritic cells publication-title: J Infect Dis doi: 10.1093/infdis/jiaa753 – volume: 8 start-page: 687 year: 2020 end-page: 695 ident: B29 article-title: Tropism, replication competence, and innate immune responses of the coronavirus SARS-CoV-2 in human respiratory tract and conjunctiva: an analysis in ex-vivo and in-vitro cultures publication-title: Lancet Respir Med doi: 10.1016/S2213-2600(20)30193-4 – volume: 73 start-page: 304 year: 2020 end-page: 307 ident: B30 article-title: Development of genetic diagnostic methods for detection for novel coronavirus 2019(nCoV-2019) in Japan publication-title: Jpn J Infect Dis doi: 10.7883/yoken.JJID.2020.061 – volume: 395 start-page: 497 year: 2020 end-page: 506 ident: B19 article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China publication-title: Lancet doi: 10.1016/S0140-6736(20)30183-5 – ident: B1 article-title: World Health Organization . WHO coronavirus (COVID-19) dashboard. World Health Organization, Geneva, Switzerland . https://covid19.who.int/ . Accessed 23 May 2021 . – volume: 184 start-page: 3452 year: 2021 end-page: 3466.E18 ident: B27 article-title: An infectivity-enhancing site on the SARS-CoV-2 spike protein targeted by antibodies publication-title: Cell doi: 10.1016/j.cell.2021.05.032 – volume: 14 start-page: 44 year: 2014 ident: B22 article-title: A novel reporter system for neutralizing and enhancing antibody assay against dengue virus publication-title: BMC Microbiol doi: 10.1186/1471-2180-14-44 – volume: 144 start-page: 599 year: 1990 end-page: 606 ident: B9 article-title: The Fc-receptor III of cultured human monocytes. Structural similarity with FcRIII of natural killer cells and role in the extracellular lysis of sensitized erythrocytes publication-title: J Immunol – volume: 371 year: 2021 ident: B25 article-title: Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection publication-title: Science doi: 10.1126/science.abf4063 – volume: 184 start-page: 2523 year: 2021 ident: B23 article-title: Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity publication-title: Cell doi: 10.1016/j.cell.2021.04.006 – volume: 136 start-page: 155256 year: 2020 ident: B10 article-title: ADE and hyperinflammation in SARS-CoV2 infection—comparison with dengue hemorrhagic fever and feline infectious peritonitis publication-title: Cytokine doi: 10.1016/j.cyto.2020.155256 – year: 2021 ident: B28 article-title: Infection-enhancing anti-SARS-CoV-2 antibodies recognize both the original Wuhan/D614G strain and Delta variants. A potential risk for mass vaccination? publication-title: J Infect doi: 10.1016/j.jinf.2021.08.010 – volume: 119 start-page: 5640 year: 2012 end-page: 5649 ident: B8 article-title: Properties of mouse and human IgG receptors and their contribution to disease models publication-title: Blood doi: 10.1182/blood-2012-01-380121 – ident: B2 article-title: Johns Hopkins University . COVID-19 dashboard. Johns Hopkins University, Baltimore, MD . https://coronavirus.jhu.edu/map.html . Accessed 23 May 2021 . |
SSID | ssj0000331830 |
Score | 2.5336332 |
Snippet | Viruses infect cells mainly via specific receptors at the cell surface. Antibody-dependent enhancement (ADE) of infection is an alternative mechanism of... The coronavirus disease 2019 (COVID-19) pandemic has raised concerns about the detrimental effects of antibodies. Antibody-dependent enhancement (ADE) of... |
SourceID | doaj pubmedcentral proquest asm2 crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | e0198721 |
SubjectTerms | Immunology Research Article |
SummonAdditionalLinks | – databaseName: American Society for Microbiology Open Access dbid: AAUOK link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LbtQwFLWqqZDYIJ5ieOkiECtSMraT2Mv0MXRALahlUHeRX2FG0LhqMov5LsRv8E1cZ5IRQarE0o5jS77X9rl-nEPIa8tooqnVUZIxFXFFWaRYmUWypBbhrBDGtmyfp-nxnH-4SC52CO3fwnQ9WO-p-rI9yN-ObCreXe4v_V4cwuQovB3fTajk8Yjs5vn808ftzkrMgp_GPaHmv__h3It108E61NL1DzDm8IbkX0vO9C6502FFyDfGvUd2XHWf3NqoR64fkF951Sy1t-vosFOybeCoWgQzhi0_8CWc52fn0YH_GlGYdbeuKpjVcNIKdDgLeg2IAGH27T0ggHRXQXsHpub3z7PZLAdV2T6BKb1q4NC7Gk59A4HVqtXKctB4yLW7xkUPs9eN_47AFT5vmGRDe9jGiQpKYQucu-qHZD49-nJwHHUqDGg0mTSRwIBIlqy0jNFMGTdh1gpmeKpNPCkRf3CmTMpYhqGhSqSmWqboGUmpjU6DkP0jMqp85R4T4JJZxbTWilmO1WqjMs0NQrA4tWWajMmrYJqid4KijVCoKIIBi9aABZ2MydvecoXpiMyDnsaPm4q_2Ra_2jB43FRwP7jBtlAg3m4z0A2LbhwXE-oYlzhPCoeBrXJCGoUdEKJOK8rUjcnL3okKHKjh9EVVzq_qAufGjLdwdkyygXcNWhx-qZaLlvJbJDwVXD75rw56Sm7TcPMGV1iaPiOj5nrlniN0avSLbqz8AXCwGIY priority: 102 providerName: American Society for Microbiology – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLVQERIbxFMMLxmBWOEyYzuJs0AofQwN0lSoZVB3kV_pjGjjMslI5LsQv8E3ce1kCkF0xzKJE0e5r3MT5xyEXhpGI0WNIlHCJOGSMiJZmZC0pAbgrBDaBLbPw_hgzj-cRCe_KYX6B1j_s7XzelLz1dn2t6_tOwj4t90PMOLN-c7SbY9990z8L-XXoSglPkZnPdIPSZl55x1vWDb_PgsSsqzP6aA4BQ7_AfAcLpv8ow5Nb6NbPYDEWWfxO-iare6iG52kZHsP_ciqZqmcacleL2_b4P1q4W3r3wNiV-Lj7OiY7LrPhOK8X4pV4bzGs6DaYQ1WLQZYiPPT9xhQpb3wgjx4qn9-P8rzDMvKbDZgS60bvOdsjQ9dgz3VVRDQsrhxOFN2BZUQdreN-wJoFn_s6GX9fDDHTHr5sAUktPo-mk_3P-0ekF6aASyZRg0R0CWlJSsNYzSR2k6YMYJpHis9npQASjiTOmYsgX5RRqmiKo3BXaJSaRV7dfsHaKtylX2IME-ZkUwpJZnhcFmlZaK4Blw2jk0ZRyP0wpum2LhGEdoWKgpvwCIYsKCTEXq9sVyhe3ZzL7JxdtXwV5fDLzpaj6sG7ng3uBzk2bjDDrc6LfrgLibUMp5C8hQWul1pRaolPADfihpRxnaEnm-cqIDo9Z9kZGXdui4gYSY8YNwRSgbeNZhxeKRaLgIPuIh4LHj66H_c4mN0k_rVOlCVafwEbTWrtX0KcKtRz0Ig_QIirSu4 priority: 102 providerName: Scholars Portal |
Title | Antibody-Dependent Enhancement of SARS-CoV-2 Infection Is Mediated by the IgG Receptors FcγRIIA and FcγRIIIA but Does Not Contribute to Aberrant Cytokine Production by Macrophages |
URI | https://journals.asm.org/doi/10.1128/mBio.01987-21 https://www.proquest.com/docview/2577451059 https://pubmed.ncbi.nlm.nih.gov/PMC8546849 https://doaj.org/article/12e3490708e448ae89ca43a7164d8f6e |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLXQICQ2iPIQU2hlBGJFaGI7jrNMH9MGNAW1DJpd5FeYETSpmsxivgvxG3wT106mmiwqNmwi2bFiK_fa99zk6hyE3hpKYkWMCuKEyoBJQgNJyyRIS2IAzgqhjWf7POdnM_ZxHs-3pL5cTVhHD9y9uIOIWMoggwuFhUxCWpFqyah0MN-Iklt3-kLM20qm_BlMna-GG1JNIg6uDpf1h9Cl2IHjBR3J5ooMYpGn7B_gzGGV5FbYmTxGj3q8iLNunTvonq2eoAedguT6KfqdVe1S1WYdHPdqti0-qRbOlO6zH65LfJldXAZH9beA4LyvvKpw3uCpF-mwBqs1BhSI8--nGECkvXb6O3ii__y6yPMMy8psGtBSqxYf17bB53WLHbOV18uyuK1xpuwNBD7oXrf1DwCv-EvHJuvmgzmm0qmFLeD8ap6h2eTk69FZ0CsxgOHSuA0EJEVpSUtDKUmkthE1RlDNuNJhVAIGAYtoTmkC6aGMU0VUysE74lJpxZ2Y_XM0qurKvkCYpdRIqpSS1DB4rNIyUUwDDAu5KXk8Rm-caYp-KzWFz1KIKJwBC2_AgkRj9H5juUL3ZOZOU-PnXcPf3Q6_7lg87hp46NzgdpAj3_Yd4JJF75LFv1xyjF5vnKiAzer-wMjK1qumgPMxYR7SjlEy8K7BjMM71XLhab9FzLhg6e7_WOJL9JC44hwIwoS_QqP2ZmX3AF21ah_dz7LZ50_7fkPB9XQewXXKxF8jaiel |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLamTQheEFdRrkYgnshobSdxHrNLadha0LaivVm-hRa2ZFrSh_4uxN_gN3FOmlYEaRKPcZxY8jnH_o4v30fIW8dZaJgzQRhzHQjNeKB5HgdJzhzAWSmta9g-J9FoKj6dh-dbJFrfhfmOurwX1a6uLpt9fAxsXIhu9Qjlh8u9ebnbx1Q5wPvjO7hvCJ69k6bTz0eb1ZU-R1_tr0k1__0Oxl9ogHXmooayv4Mzu6ck_5p2hvfI3RYv0nRl4PtkyxcPyK2VguTyIfmVFvXclG4ZHLRqtjU9LGZoSlz2o2VOT9OT02C__BowmrUnrwqaVXTciHR4R82SAgqk2bePFECkv0L9HTq0v3-eZFlKdeHWD_BkFjU9KH1FJ2VNkdmq0cvytC5pavw1THxQvKzLHwBe6ZcVmyy2B22MNaqFzWD8qh6R6fDwbH8UtEoMYLgkrAMJfZzkPHecs1hbP-DOSW5FZGx_kAMGEVzbiPMY0kMdJoaZJALvCHNjTYRi9o_JdlEW_gmhIuFOc2OM5k7Ab43VsREWYFg_cnkU9sgbNI1qQ6lSTZbCpEIDqsaAig165P3acsq2ZOaoqXFxU_V3m-pXKxaPmyruoRtsKiH5dlMAvqjaWFYD5rlIYKyUHpJb7WViNXQAZp5O5pHvkddrJ1IQrLgDowtfLioF42MsGkjbI3HHuzotdt8U81lD-y1DEUmRPP2vDnpFbo_OxsfqOJscPSN3GJ7EgRmXRc_Jdn298C8AStXmZRs3fwAKZxzp |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLamTSBeEFdRNsAIxBMZqe04zmO2riyMlWmjaG-Wb1krWFIt6UN_F-Jv8Js4TpOKIE3i0Y5jSz7H9nd8-T6E3lpKIk2sDqKYqoApQgNF8zhIcmIBzgphbMP2OeHHU_bpMrrcQrx7C9P2YLWvquvmIN-P7IXNWz1C8eH6YF7uhz5UDvz78R1_UAX-vZOm0y8nm92VkHpfDTtSzX__g_kX6ie9taih7O_hzP4tyb-WnfEDdL_FizhdG_gh2nLFI3RnrSC5eox-pUU916VdBaNWzbbGR8XMm9Jv--Eyxxfp-UVwWH4LCM7am1cFzip82oh0OIv1CgMKxNnVRwwg0i28_g4em98_z7MsxaqwXQJSelnjUekqPClr7JmtGr0sh-sSp9rdwMIH2au6_A7gFZ-t2WR9e9DGqfJqYTOYv6onaDo--np4HLRKDGC4JKoDAUFRktPcUkpiZdyQWiuoYVybcJgDBmFUGU5pDOGhihJNdMLBO6JcG829mP1TtF2UhXuGMEuoVVRrrahlUK02KtbMAAwLuc15NEBvvGlk5wiyiVKIkN6AsjGgJMMBet9ZTpqWzNxravy4rfi7TfHFmsXjtoIH3g02hTz5dpMBrijbsSyHxFGWwFwpHAS3yonEKOgAH3lakXM3QK87J5IwWP0JjCpcuawkzI8xayDtAMU97-q12P9SzGcN7beIGBcsef5fHfQK3T0bjeXnbHKyi-4RfxEHFlzC99B2fbN0LwBJ1fplO2z-AM8OHIU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antibody-Dependent+Enhancement+of+SARS-CoV-2+Infection+Is+Mediated+by+the+IgG+Receptors+Fc%CE%B3RIIA+and+Fc%CE%B3RIIIA+but+Does+Not+Contribute+to+Aberrant+Cytokine+Production+by+Macrophages&rft.jtitle=mBio&rft.au=Tadashi+Maemura&rft.au=Makoto+Kuroda&rft.au=Tammy+Armbrust&rft.au=Seiya+Yamayoshi&rft.date=2021-10-26&rft.pub=American+Society+for+Microbiology&rft.eissn=2150-7511&rft.volume=12&rft.issue=5&rft_id=info:doi/10.1128%2FmBio.01987-21&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_12e3490708e448ae89ca43a7164d8f6e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2150-7511&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2150-7511&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2150-7511&client=summon |