Constraining the Enceladus plume using numerical simulation and Cassini data

•We model the gas component of the Enceladus plume using detailed gas dynamics.•We constrain the model using several INMS and UVIS data sets.•We estimate H2O production rates of a few hundred kgs−1 from the plume.•Narrow emissions produce better fits to data, suggesting a subsurface origin.•The dist...

Full description

Saved in:
Bibliographic Details
Published inIcarus (New York, N.Y. 1962) Vol. 281; pp. 357 - 378
Main Authors Yeoh, Seng Keat, Li, Zheng, Goldstein, David B., Varghese, Philip L., Levin, Deborah A., Trafton, Laurence M.
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.01.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We model the gas component of the Enceladus plume using detailed gas dynamics.•We constrain the model using several INMS and UVIS data sets.•We estimate H2O production rates of a few hundred kgs−1 from the plume.•Narrow emissions produce better fits to data, suggesting a subsurface origin.•The distributed Tiger Stripe sources are likely dominant while the jets provide a lesser contribution. Since its discovery, the Enceladus plume has been subjected to intense study due to the major effects that it has on the Saturnian system and the window that it provides into the interior of Enceladus. However, several questions remain and we attempt to answer some of them in this work. In particular, we aim to constrain the H2O production rate from the plume, evaluate the relative importance of the jets and the distributed sources along the Tiger Stripes, and make inferences about the source of the plume by accurately modeling the plume and constraining the model using the Cassini INMS and UVIS data. This is an extension of a previous work (Yeoh, S.K., et al. [2015] Icarus, 253, 205–222) in which we only modeled the collisional part of the Enceladus plume and studied its important physical processes. In this work, we propagate the plume farther into space where the flow has become free-molecular and the Cassini INMS and UVIS data were sampled. Then, we fit this part of the plume to the INMS H2O density distributions sampled along the E3, E5 and E7 trajectories and also compare some of the fit results with the UVIS measurements of the plume optical depth collected during the solar occultation observation on 18 May 2010. We consider several vent conditions and source configurations for the plume. By constraining our model using the INMS and UVIS data, we estimate H2O production rates of several hundred kgs-1: 400–500kg/s during the E3 and E7 flybys and ∼900kg/s during the E5 flyby. These values agree with other estimates and are consistent with the observed temporal variability of the plume over the orbital period of Enceladus (Hedman, M.M., et al. [2013] Nature, 500, 182–184). In addition, we determine that one of the Tiger Stripes, Cairo, exhibits a local temporal variability consistent with the observed overall temporal variability of the plume. We also find that the distributed sources along the Tiger Stripes are likely dominant while the jets provide a lesser contribution. Moreover, our best-fit solutions for the plume are sensitive to the vent conditions chosen. The spreading angle of the jet produced is the main difference among the vent conditions and thus it appears to be an important parameter in fitting to these INMS data sets. In general, we find that narrow jets produce better fits, suggesting high Mach numbers (> 5) at the vents. This is supported by certain narrow features believed to be jets in both the INMS and UVIS data sets. This tends to rule out sublimation from the surface but points to a deep underground source for the plume. However, the underground source can be either sublimation from an icy reservoir or evaporation from a liquid reservoir. A high Mach number at the vent also suggests subsurface channels with large variations in width and not fairly straight channels so that the gas can undergo sufficient expansion. Additionally, the broad spreading angles inferred for the µm-sized grains (Ingersoll, A.P. and Ewald, S.P. [2011] Icarus, 216, 492–506; Postberg, F., et al. [2011] Nature, 474, 620–622) cannot be due to spreading by the gas above the surface alone. Some other mechanism(s) must also be responsible, perhaps occurring below the surface, which further points to an underground source for the plume.
AbstractList Since its discovery, the Enceladus plume has been subjected to intense study due to the major effects that it has on the Saturnian system and the window that it provides into the interior of Enceladus. However, several questions remain and we attempt to answer some of them in this work. In particular, we aim to constrain the H2O production rate from the plume, evaluate the relative importance of the jets and the distributed sources along the Tiger Stripes, and make inferences about the source of the plume by accurately modeling the plume and constraining the model using the Cassini INMS and UVIS data. This is an extension of a previous work (Yeoh, S.K., et al. [2015] Icarus, 253, 205-222) in which we only modeled the collisional part of the Enceladus plume and studied its important physical processes. In this work, we propagate the plume farther into space where the flow has become free-molecular and the Cassini INMS and UVIS data were sampled. Then, we fit this part of the plume to the INMS H2O density distributions sampled along the E3, E5 and E7 trajectories and also compare some of the fit results with the UVIS measurements of the plume optical depth collected during the solar occultation observation on 18 May 2010. We consider several vent conditions and source configurations for the plume. By constraining our model using the INMS and UVIS data, we estimate H2O production rates of several hundred kgs-1: 400-500kg/s during the E3 and E7 flybys and 900kg/s during the E5 flyby. These values agree with other estimates and are consistent with the observed temporal variability of the plume over the orbital period of Enceladus (Hedman, M.M., et al. [2013] Nature, 500, 182-184). In addition, we determine that one of the Tiger Stripes, Cairo, exhibits a local temporal variability consistent with the observed overall temporal variability of the plume. We also find that the distributed sources along the Tiger Stripes are likely dominant while the jets provide a lesser contribution. Moreover, our best-fit solutions for the plume are sensitive to the vent conditions chosen. The spreading angle of the jet produced is the main difference among the vent conditions and thus it appears to be an important parameter in fitting to these INMS data sets. In general, we find that narrow jets produce better fits, suggesting high Mach numbers (>5) at the vents. This is supported by certain narrow features believed to be jets in both the INMS and UVIS data sets. This tends to rule out sublimation from the surface but points to a deep underground source for the plume. However, the underground source can be either sublimation from an icy reservoir or evaporation from a liquid reservoir. A high Mach number at the vent also suggests subsurface channels with large variations in width and not fairly straight channels so that the gas can undergo sufficient expansion. Additionally, the broad spreading angles inferred for the mu m-sized grains (Ingersoll, A.P. and Ewald, S.P. [2011] Icarus, 216, 492-506; Postberg, F., et al. [2011] Nature, 474, 620-622) cannot be due to spreading by the gas above the surface alone. Some other mechanism(s) must also be responsible, perhaps occurring below the surface, which further points to an underground source for the plume.
•We model the gas component of the Enceladus plume using detailed gas dynamics.•We constrain the model using several INMS and UVIS data sets.•We estimate H2O production rates of a few hundred kgs−1 from the plume.•Narrow emissions produce better fits to data, suggesting a subsurface origin.•The distributed Tiger Stripe sources are likely dominant while the jets provide a lesser contribution. Since its discovery, the Enceladus plume has been subjected to intense study due to the major effects that it has on the Saturnian system and the window that it provides into the interior of Enceladus. However, several questions remain and we attempt to answer some of them in this work. In particular, we aim to constrain the H2O production rate from the plume, evaluate the relative importance of the jets and the distributed sources along the Tiger Stripes, and make inferences about the source of the plume by accurately modeling the plume and constraining the model using the Cassini INMS and UVIS data. This is an extension of a previous work (Yeoh, S.K., et al. [2015] Icarus, 253, 205–222) in which we only modeled the collisional part of the Enceladus plume and studied its important physical processes. In this work, we propagate the plume farther into space where the flow has become free-molecular and the Cassini INMS and UVIS data were sampled. Then, we fit this part of the plume to the INMS H2O density distributions sampled along the E3, E5 and E7 trajectories and also compare some of the fit results with the UVIS measurements of the plume optical depth collected during the solar occultation observation on 18 May 2010. We consider several vent conditions and source configurations for the plume. By constraining our model using the INMS and UVIS data, we estimate H2O production rates of several hundred kgs-1: 400–500kg/s during the E3 and E7 flybys and ∼900kg/s during the E5 flyby. These values agree with other estimates and are consistent with the observed temporal variability of the plume over the orbital period of Enceladus (Hedman, M.M., et al. [2013] Nature, 500, 182–184). In addition, we determine that one of the Tiger Stripes, Cairo, exhibits a local temporal variability consistent with the observed overall temporal variability of the plume. We also find that the distributed sources along the Tiger Stripes are likely dominant while the jets provide a lesser contribution. Moreover, our best-fit solutions for the plume are sensitive to the vent conditions chosen. The spreading angle of the jet produced is the main difference among the vent conditions and thus it appears to be an important parameter in fitting to these INMS data sets. In general, we find that narrow jets produce better fits, suggesting high Mach numbers (> 5) at the vents. This is supported by certain narrow features believed to be jets in both the INMS and UVIS data sets. This tends to rule out sublimation from the surface but points to a deep underground source for the plume. However, the underground source can be either sublimation from an icy reservoir or evaporation from a liquid reservoir. A high Mach number at the vent also suggests subsurface channels with large variations in width and not fairly straight channels so that the gas can undergo sufficient expansion. Additionally, the broad spreading angles inferred for the µm-sized grains (Ingersoll, A.P. and Ewald, S.P. [2011] Icarus, 216, 492–506; Postberg, F., et al. [2011] Nature, 474, 620–622) cannot be due to spreading by the gas above the surface alone. Some other mechanism(s) must also be responsible, perhaps occurring below the surface, which further points to an underground source for the plume.
Author Varghese, Philip L.
Levin, Deborah A.
Li, Zheng
Goldstein, David B.
Trafton, Laurence M.
Yeoh, Seng Keat
Author_xml – sequence: 1
  givenname: Seng Keat
  orcidid: 0000-0001-6956-0215
  surname: Yeoh
  fullname: Yeoh, Seng Keat
  email: skyeoh@utexas.edu
  organization: Department of Aerospace Engineering and Engineering Mechanics, University of Texas, Austin, Texas 78712, United States
– sequence: 2
  givenname: Zheng
  surname: Li
  fullname: Li, Zheng
  organization: Department of Aerospace Engineering, University of Illinois, Urbana, Illinois 61801, United States
– sequence: 3
  givenname: David B.
  surname: Goldstein
  fullname: Goldstein, David B.
  organization: Department of Aerospace Engineering and Engineering Mechanics, University of Texas, Austin, Texas 78712, United States
– sequence: 4
  givenname: Philip L.
  surname: Varghese
  fullname: Varghese, Philip L.
  organization: Department of Aerospace Engineering and Engineering Mechanics, University of Texas, Austin, Texas 78712, United States
– sequence: 5
  givenname: Deborah A.
  surname: Levin
  fullname: Levin, Deborah A.
  organization: Department of Aerospace Engineering, University of Illinois, Urbana, Illinois 61801, United States
– sequence: 6
  givenname: Laurence M.
  surname: Trafton
  fullname: Trafton, Laurence M.
  organization: Department of Astronomy, University of Texas, Austin, Texas 78712, United States
BookMark eNqNkEtLAzEQx4NUsK1-Aw85etl1snk0exFkqQ8oeNFzmGZTTdnN1mRX8NubUs8ic5gZ5j-v34LMwhAcIdcMSgZM3e5LbzFOqaxyVoIuodJnZM6ghqJSgs_IHIDVBQMuL8gipT0ASF3zOdk0Q0hjRB98eKfjh6PrYF2H7ZTooZt6R6d0rIQcxrylo8n3U4ejHwLF0NIGUxZ42uKIl-R8h11yV79-Sd4e1q_NU7F5eXxu7jcF8lqOhXDZkFunFBNaaWm5FFApBTsGEtUWtXSVslvJcMW01K2Stahzod6CkJwvyc1p7iEOn5NLo-l9yld3GNwwJcO0kBpEvRL_kPIVZ1xqmaXiJLVxSCm6nTlE32P8NgzMkbPZmxNnc-RsQJvMObfdndpc_vjLu2iS9S5DbH10djTt4P8e8APPLokF
CitedBy_id crossref_primary_10_3847_PSJ_acd5d4
crossref_primary_10_1016_j_icarus_2020_114274
crossref_primary_10_1016_j_icarus_2019_06_006
crossref_primary_10_1016_j_icarus_2023_115488
crossref_primary_10_1016_j_icarus_2024_116203
crossref_primary_10_1029_2019JA027591
crossref_primary_10_1029_2021JA029690
crossref_primary_10_3390_universe8050261
crossref_primary_10_1016_j_pss_2017_11_017
crossref_primary_10_1007_s11214_018_0539_9
crossref_primary_10_1016_j_icarus_2023_115584
crossref_primary_10_1089_ast_2017_1647
crossref_primary_10_1016_j_icarus_2018_10_022
crossref_primary_10_1016_j_icarus_2018_01_006
Cites_doi 10.1029/2011JA016693
10.1088/0004-6256/150/3/96
10.1029/98JE01127
10.1126/science.1121254
10.1038/nature08046
10.1016/j.icarus.2010.04.010
10.1126/science.1133519
10.1038/nature07542
10.1126/science.1121661
10.1016/j.icarus.2009.05.011
10.1063/1.4790476
10.1038/nature06491
10.1038/nature14368
10.1016/j.icarus.2011.09.018
10.1038/nature10175
10.1016/0032-0633(95)00107-7
10.1029/2011GL047415
10.1038/nature06217
10.1016/j.icarus.2015.09.030
10.1016/j.icarus.2009.09.015
10.1088/0004-6256/148/3/45
10.1029/2008GL035811
10.6028/jres.081A.003
10.1016/j.icarus.2015.04.037
10.1080/10618560701736221
10.1029/2002GL015855
10.1029/2009JA015223
10.1029/2006JA012086
10.1029/2009JA015184
10.1063/1.3562712
10.1038/nature12371
10.1002/2014JE004700
10.1016/j.icarus.2006.11.010
10.1126/science.1121290
10.1086/505750
10.1016/j.icarus.2015.03.019
10.1029/2004JA010635
10.1126/science.1123013
10.1016/j.icarus.2015.02.020
ContentType Journal Article
Copyright 2016 Elsevier Inc.
Copyright_xml – notice: 2016 Elsevier Inc.
DBID AAYXX
CITATION
7TG
KL.
8FD
H8D
L7M
DOI 10.1016/j.icarus.2016.08.028
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database
Meteorological & Geoastrophysical Abstracts - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
EISSN 1090-2643
EndPage 378
ExternalDocumentID 10_1016_j_icarus_2016_08_028
S001910351630536X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABNEU
ABQEM
ABQYD
ABYKQ
ACDAQ
ACFVG
ACGFS
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LG5
LY3
LZ4
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
RXW
SDF
SDG
SDP
SES
SHN
SPC
SPCBC
SSE
SSQ
SSZ
T5K
TAE
ZMT
ZU3
~02
~G-
29I
6TJ
AAQXK
AAXKI
AAYXX
ABFNM
ABTAH
ABXDB
ACNNM
ADFGL
ADMUD
AFFNX
AFJKZ
AKRWK
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
HMA
HME
HVGLF
HZ~
MVM
OHT
PVJ
R2-
SEP
SEW
UQL
VOH
WUQ
XJT
ZY4
7TG
KL.
8FD
H8D
L7M
ID FETCH-LOGICAL-a395t-4e4e4a3ce66148685c35402660f105a6ba85e26cb51a71858d65949a6b9b04533
IEDL.DBID .~1
ISSN 0019-1035
IngestDate Thu Oct 24 23:56:28 EDT 2024
Fri Oct 25 04:02:30 EDT 2024
Thu Sep 26 18:36:29 EDT 2024
Fri Feb 23 02:20:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Satellites, atmospheres
Saturn, satellites
Enceladus
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a395t-4e4e4a3ce66148685c35402660f105a6ba85e26cb51a71858d65949a6b9b04533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6956-0215
PQID 1837313585
PQPubID 23462
PageCount 22
ParticipantIDs proquest_miscellaneous_1845804974
proquest_miscellaneous_1837313585
crossref_primary_10_1016_j_icarus_2016_08_028
elsevier_sciencedirect_doi_10_1016_j_icarus_2016_08_028
PublicationCentury 2000
PublicationDate 2017-01-01
2017-01-00
20170101
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-01
  day: 01
PublicationDecade 2010
PublicationTitle Icarus (New York, N.Y. 1962)
PublicationYear 2017
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Perry, Teolis, Hurley, Magee, Waite, Brockwell, Perryman, McNutt (bib0024) 2015; 257
Yeoh, Chapman, Goldstein, Varghese, Trafton (bib0045) 2015; 253
Kieffer, Lu, McFarquhar, Wohletz (bib0021) 2009; 203
Schmidt, Brilliantov, Spahn, Kempf (bib0034) 2008; 451
Smith, Johnson, Perry, Mitchell, McNutt, Young (bib0035) 2010; 115
Hansen, Shemansky, Esposito, Stewart, Lewis, Colwell, Hendrix, West, Waite, Teolis, Magee (bib0011) 2011; 38
Saur, Schilling, Neubauer, Strobel, Simon, Dougherty, Russell, Pappalardo (bib0033) 2008; 35
Ingersoll, Ewald (bib0014) 2011; 216
Spitale, Hurford, Rhoden, Berkson, Platts (bib0037) 2015; 521
Hansen, Esposito, Stewart, Meinke, Wallis, Colwell, Hendrix, Larsen, Pryor, Tian (bib0010) 2008; 456
Johnson (bib0016) 1990
Spencer, Pearl, Segura, Flasar, Mamoutkine, Romani, Buratti, Hendrix, Spilker, Lopes (bib0036) 2006; 311
Titov, Levin (bib0042) 2007; 21
Portyankina, Esposito, Ali, Hansen (bib0027) 2016; 47
Tian, Stewart, Toon, Larsen, Esposito (bib0041) 2007; 188
Burger, Sittler, Johnson, Smith, Tucker, Shematovich (bib0004) 2007; 112
Dong, Hill, Teolis, Magee, Waite (bib0007) 2011; 116
Acton (bib0001) 1996; 44
Jurac, Richardson (bib0019) 2005; 110
Postberg, Kempf, Schmidt, Brilliantov, Beinsen, Abel, Buck, Srama (bib0028) 2009; 459
(bib0006) 2002
Johnson, Smith, Tucker, Liu, Burger, Sittler, Tokar (bib0017) 2006; 644
Jurac, McGrath, Johnson, Richardson, Vasyliunas, Eviatar (bib0018) 2002; 29
Porco, DiNino, Nimmo (bib0025) 2014; 148
Kieffer, Lu, Bethke, Spencer, Marshak, Navrotsky (bib0020) 2006; 314
Postberg, Schmidt, Hillier, Kempf, Srama (bib0029) 2011; 474
Gao, Kopparla, Zhang, Ingersoll (bib0008) 2016; 264
Mack (bib0022) 1967
Tenishev, Öztürk, Combi, Rubin, Waite, Perry (bib0040) 2014; 119
Borner, Li, Levin (bib0003) 2013; 138
Wexler (bib0044) 1976; 81A
Ingersoll, Pankine (bib0015) 2010; 206
Porco, Helfenstein, Thomas, Ingersoll, Wisdom, West, Neukum, Denk, Wagner, Roatsch, Kieffer, Turtle, McEwen, Johnson, Rathbun, Veverka, Wilson, Perry, Spitale, Brahic, Burns, DelGenio, Dones, Murray, Squyres (bib0026) 2006; 311
Richardson, Eviatar, McGrath, Vasyliunas (bib0032) 1998; 103
Cassidy, Johnson (bib0005) 2010; 209
McDoniel, Goldstein, Varghese, Trafton (bib0023) 2015; 257
Tenishev, Combi, Teolis, Waite (bib0039) 2010; 115
Hedman, Gosmeyer, Nicholson, Sotin, Brown, Clark, Baines, Buratti, Showalter (bib0012) 2013; 500
Hansen, Esposito, Stewart, Colwell, Hendrix, Pryor, Shemansky, West (bib0009) 2006; 311
Spitale, Porco (bib0038) 2007; 449
Bird (bib0002) 1994
Helfenstein, Porco (bib0013) 2015; 150
Waite, Combi, Ip, Cravens, McNutt, Kasprzak, Yelle, Luhmann, Niemann, Gell, Magee, Fletcher, Lunine, Tseng (bib0043) 2006; 311
Prisbell, Marichalar, Lumpkin, LeBeau (bib0031) 2011; 1333
Press, Teukolsky, Vetterling, Flannery (bib0030) 1992
Richardson (10.1016/j.icarus.2016.08.028_bib0032) 1998; 103
Hansen (10.1016/j.icarus.2016.08.028_bib0009) 2006; 311
Borner (10.1016/j.icarus.2016.08.028_bib0003) 2013; 138
Press (10.1016/j.icarus.2016.08.028_bib0030) 1992
Spitale (10.1016/j.icarus.2016.08.028_bib0037) 2015; 521
Hansen (10.1016/j.icarus.2016.08.028_bib0010) 2008; 456
(10.1016/j.icarus.2016.08.028_bib0006) 2002
Hansen (10.1016/j.icarus.2016.08.028_bib0011) 2011; 38
Mack (10.1016/j.icarus.2016.08.028_bib0022) 1967
Smith (10.1016/j.icarus.2016.08.028_bib0035) 2010; 115
Johnson (10.1016/j.icarus.2016.08.028_bib0017) 2006; 644
Tenishev (10.1016/j.icarus.2016.08.028_bib0040) 2014; 119
Kieffer (10.1016/j.icarus.2016.08.028_bib0021) 2009; 203
Spitale (10.1016/j.icarus.2016.08.028_bib0038) 2007; 449
Kieffer (10.1016/j.icarus.2016.08.028_bib0020) 2006; 314
Waite (10.1016/j.icarus.2016.08.028_bib0043) 2006; 311
Jurac (10.1016/j.icarus.2016.08.028_bib0019) 2005; 110
Perry (10.1016/j.icarus.2016.08.028_bib0024) 2015; 257
Postberg (10.1016/j.icarus.2016.08.028_bib0029) 2011; 474
Titov (10.1016/j.icarus.2016.08.028_bib0042) 2007; 21
Johnson (10.1016/j.icarus.2016.08.028_bib0016) 1990
Yeoh (10.1016/j.icarus.2016.08.028_bib0045) 2015; 253
Helfenstein (10.1016/j.icarus.2016.08.028_bib0013) 2015; 150
Saur (10.1016/j.icarus.2016.08.028_bib0033) 2008; 35
Jurac (10.1016/j.icarus.2016.08.028_bib0018) 2002; 29
Burger (10.1016/j.icarus.2016.08.028_bib0004) 2007; 112
Postberg (10.1016/j.icarus.2016.08.028_bib0028) 2009; 459
Bird (10.1016/j.icarus.2016.08.028_bib0002) 1994
Ingersoll (10.1016/j.icarus.2016.08.028_bib0015) 2010; 206
Dong (10.1016/j.icarus.2016.08.028_bib0007) 2011; 116
Tenishev (10.1016/j.icarus.2016.08.028_bib0039) 2010; 115
Prisbell (10.1016/j.icarus.2016.08.028_bib0031) 2011; 1333
Schmidt (10.1016/j.icarus.2016.08.028_bib0034) 2008; 451
Acton (10.1016/j.icarus.2016.08.028_bib0001) 1996; 44
Wexler (10.1016/j.icarus.2016.08.028_bib0044) 1976; 81A
Hedman (10.1016/j.icarus.2016.08.028_bib0012) 2013; 500
Porco (10.1016/j.icarus.2016.08.028_bib0025) 2014; 148
Porco (10.1016/j.icarus.2016.08.028_bib0026) 2006; 311
Ingersoll (10.1016/j.icarus.2016.08.028_bib0014) 2011; 216
Tian (10.1016/j.icarus.2016.08.028_bib0041) 2007; 188
McDoniel (10.1016/j.icarus.2016.08.028_bib0023) 2015; 257
Spencer (10.1016/j.icarus.2016.08.028_bib0036) 2006; 311
Gao (10.1016/j.icarus.2016.08.028_bib0008) 2016; 264
Cassidy (10.1016/j.icarus.2016.08.028_bib0005) 2010; 209
Portyankina (10.1016/j.icarus.2016.08.028_bib0027) 2016; 47
References_xml – volume: 115
  start-page: A10252
  year: 2010
  ident: bib0035
  article-title: Enceladus plume variability and the neutral gas densities in saturn's magnetosphere
  publication-title: J. Geophys. Res.
  contributor:
    fullname: Young
– volume: 119
  start-page: 2658
  year: 2014
  end-page: 2667
  ident: bib0040
  article-title: Effect of the tiger stripes on the water vapor distribution in Enceladus' exosphere
  publication-title: J. Geophys. Res. Planets
  contributor:
    fullname: Perry
– volume: 474
  start-page: 620
  year: 2011
  end-page: 622
  ident: bib0029
  article-title: A salt-water reservoir as the source of a compositionally stratified plume on Enceladus
  publication-title: Nature
  contributor:
    fullname: Srama
– volume: 148
  start-page: 45
  year: 2014
  ident: bib0025
  article-title: How the geysers, tidal stresses, and thermal emission across the south polar terrain of Enceladus are related
  publication-title: Astron. J.
  contributor:
    fullname: Nimmo
– volume: 456
  start-page: 477
  year: 2008
  end-page: 479
  ident: bib0010
  article-title: Water vapour jets inside the plume of gas leaving Enceladus
  publication-title: Nature
  contributor:
    fullname: Tian
– volume: 314
  start-page: 1764
  year: 2006
  end-page: 1766
  ident: bib0020
  article-title: A clathrate reservoir hypothesis for Enceladus’ south polar plume
  publication-title: Science (80-)
  contributor:
    fullname: Navrotsky
– volume: 29
  start-page: 2172
  year: 2002
  ident: bib0018
  article-title: Saturn: search for a missing water source
  publication-title: Geophys. Res. Lett.
  contributor:
    fullname: Eviatar
– volume: 103
  start-page: 20245
  year: 1998
  end-page: 20255
  ident: bib0032
  article-title: OH in saturn's magnetosphere: observations and implications
  publication-title: J. Geophys. Res.
  contributor:
    fullname: Vasyliunas
– year: 1967
  ident: bib0022
  article-title: Essentials of Statistics for Scientists and Technologists
  contributor:
    fullname: Mack
– volume: 311
  start-page: 1419
  year: 2006
  end-page: 1422
  ident: bib0043
  article-title: Cassini ion and neutral mass Spectrometer: Enceladus plume composition and structure
  publication-title: Science (80-)
  contributor:
    fullname: Tseng
– volume: 81A
  start-page: 5
  year: 1976
  end-page: 20
  ident: bib0044
  article-title: Vapor pressure formulation for ice
  publication-title: J. Res. Nat. Bur. Stand.
  contributor:
    fullname: Wexler
– volume: 38
  start-page: L11202
  year: 2011
  ident: bib0011
  article-title: The composition and structure of the Enceladus plume
  publication-title: Geophys. Res. Lett.
  contributor:
    fullname: Magee
– volume: 311
  start-page: 1401
  year: 2006
  end-page: 1405
  ident: bib0036
  article-title: Cassini encounters Enceladus: background and the discovery of a south polar hot spot
  publication-title: Science
  contributor:
    fullname: Lopes
– volume: 203
  start-page: 238
  year: 2009
  end-page: 241
  ident: bib0021
  article-title: A redetermination of the ice/vapor ratio of Enceladus’ plumes: implications for sublimation and the lack of a liquid water reservoir
  publication-title: Icarus
  contributor:
    fullname: Wohletz
– volume: 500
  start-page: 182
  year: 2013
  end-page: 184
  ident: bib0012
  article-title: An observed correlation between plume activity and tidal stresses on Enceladus
  publication-title: Nature
  contributor:
    fullname: Showalter
– volume: 459
  start-page: 1098
  year: 2009
  end-page: 1101
  ident: bib0028
  article-title: Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus
  publication-title: Nature
  contributor:
    fullname: Srama
– volume: 521
  start-page: 57
  year: 2015
  end-page: 60
  ident: bib0037
  article-title: Curtain eruptions form Enceladus’ south-polar terrain
  publication-title: Nature
  contributor:
    fullname: Platts
– volume: 257
  start-page: 251
  year: 2015
  end-page: 274
  ident: bib0023
  article-title: Three-dimensional simulation of gas and dust in Io's Pele plume
  publication-title: Icarus
  contributor:
    fullname: Trafton
– year: 1992
  ident: bib0030
  article-title: Numerical Recipes in C
  contributor:
    fullname: Flannery
– volume: 116
  start-page: A10204
  year: 2011
  ident: bib0007
  article-title: The water vapor plumes of Enceladus
  publication-title: J. Geophys. Res.
  contributor:
    fullname: Waite
– volume: 311
  start-page: 1422
  year: 2006
  end-page: 1425
  ident: bib0009
  article-title: Enceladus’ water vapor plume
  publication-title: Science
  contributor:
    fullname: West
– volume: 253
  start-page: 205
  year: 2015
  end-page: 222
  ident: bib0045
  article-title: On understanding the physics of the Enceladus south polar plume via numerical simulation
  publication-title: Icarus
  contributor:
    fullname: Trafton
– volume: 209
  start-page: 696
  year: 2010
  end-page: 703
  ident: bib0005
  article-title: Collisional spreading of Enceladus’ neutral cloud
  publication-title: Icarus
  contributor:
    fullname: Johnson
– volume: 264
  start-page: 227
  year: 2016
  end-page: 238
  ident: bib0008
  article-title: Aggregate particles in the plumes of Enceladus
  publication-title: Icarus
  contributor:
    fullname: Ingersoll
– volume: 44
  start-page: 65
  year: 1996
  end-page: 70
  ident: bib0001
  article-title: Ancillary data services of NASA's navigation and ancillary information facility
  publication-title: Planet. Space Sci.
  contributor:
    fullname: Acton
– volume: 257
  start-page: 139
  year: 2015
  end-page: 162
  ident: bib0024
  article-title: Cassini INMS measurements of Enceladus plume density
  publication-title: Icarus
  contributor:
    fullname: McNutt
– volume: 449
  start-page: 695
  year: 2007
  end-page: 697
  ident: bib0038
  article-title: Association of the jets of Enceladus with the warmest regions on its south-polar fractures
  publication-title: Nature
  contributor:
    fullname: Porco
– volume: 451
  start-page: 685
  year: 2008
  end-page: 688
  ident: bib0034
  article-title: Slow dust in Enceladus’ plume from condensation and wall collisions in tiger stripe fractures
  publication-title: Nature
  contributor:
    fullname: Kempf
– volume: 216
  start-page: 492
  year: 2011
  end-page: 506
  ident: bib0014
  article-title: Total particulate mass in enceladus plumes and mass of Saturn's E ring inferred from Cassini ISS images
  publication-title: Icarus
  contributor:
    fullname: Ewald
– volume: 644
  start-page: L137
  year: 2006
  end-page: L139
  ident: bib0017
  article-title: The Enceladus and OH tori at Saturn
  publication-title: Astrohys. J.
  contributor:
    fullname: Tokar
– volume: 110
  start-page: A09220
  year: 2005
  ident: bib0019
  article-title: A self-consistent model of plasma and neutrals at Saturn: neutral cloud morphology
  publication-title: J. Geophys. Res.
  contributor:
    fullname: Richardson
– volume: 311
  start-page: 1393
  year: 2006
  end-page: 1401
  ident: bib0026
  article-title: Cassini observes the active south pole of Enceladus
  publication-title: Science (80-)
  contributor:
    fullname: Squyres
– year: 1994
  ident: bib0002
  article-title: Molecular Gas Dynamics and the Direct Simulation of Gas Flows
  contributor:
    fullname: Bird
– year: 1990
  ident: bib0016
  article-title: Energetic Charged-Particle Interactions with Atmospheres and Surfaces
  contributor:
    fullname: Johnson
– volume: 1333
  start-page: 595
  year: 2011
  end-page: 600
  ident: bib0031
  article-title: Analysis of plume impingement effects from orion crew service module dual reaction control system engine firings
  publication-title: AIP Conf. Proc.
  contributor:
    fullname: LeBeau
– volume: 35
  start-page: L20105
  year: 2008
  ident: bib0033
  article-title: Evidence for temporal variability of Enceladus’ gas jets: modeling of cassini observations
  publication-title: Geophys. Res. Lett.
  contributor:
    fullname: Pappalardo
– volume: 47
  start-page: 2600
  year: 2016
  ident: bib0027
  article-title: Modeling of the Enceladus water vapor jets for interpreting UVIS star and solar occultation observations
  publication-title: Lunar Planet. Sci.
  contributor:
    fullname: Hansen
– volume: 115
  start-page: A09302
  year: 2010
  ident: bib0039
  article-title: An approach to numerical simulation of the gas distribution in the atmosphere of Enceladus
  publication-title: J. Geophys. Res.
  contributor:
    fullname: Waite
– volume: 188
  start-page: 154
  year: 2007
  end-page: 161
  ident: bib0041
  article-title: Monte Carlo simulations of the water vapor plumes on Enceladus
  publication-title: Icarus
  contributor:
    fullname: Esposito
– volume: 138
  year: 2013
  ident: bib0003
  article-title: Development of a molecular-dynamics-based cluster-heat-capacity model for study of homogeneous condensation in supersonic water-vapor expansions
  publication-title: J. Chem. Phys.
  contributor:
    fullname: Levin
– year: 2002
  ident: bib0006
  publication-title: Allen's Astrophysical Quantities
– volume: 206
  start-page: 594
  year: 2010
  end-page: 607
  ident: bib0015
  article-title: Subsurface heat transfer on Enceladus: conditions under which melting occurs
  publication-title: Icarus
  contributor:
    fullname: Pankine
– volume: 21
  start-page: 351
  year: 2007
  end-page: 368
  ident: bib0042
  article-title: Extension of the DSMC method to high pressure flows
  publication-title: Int. J. Comput. Fluid D.
  contributor:
    fullname: Levin
– volume: 112
  start-page: A06219
  year: 2007
  ident: bib0004
  article-title: Understanding the escape of water from Enceladus
  publication-title: J. Geophys. Res.
  contributor:
    fullname: Shematovich
– volume: 150
  start-page: 96
  year: 2015
  ident: bib0013
  article-title: Enceladus’ geysers: relation to geological features
  publication-title: Astron. J.
  contributor:
    fullname: Porco
– volume: 116
  start-page: A10204
  year: 2011
  ident: 10.1016/j.icarus.2016.08.028_bib0007
  article-title: The water vapor plumes of Enceladus
  publication-title: J. Geophys. Res.
  doi: 10.1029/2011JA016693
  contributor:
    fullname: Dong
– volume: 150
  start-page: 96
  year: 2015
  ident: 10.1016/j.icarus.2016.08.028_bib0013
  article-title: Enceladus’ geysers: relation to geological features
  publication-title: Astron. J.
  doi: 10.1088/0004-6256/150/3/96
  contributor:
    fullname: Helfenstein
– volume: 103
  start-page: 20245
  year: 1998
  ident: 10.1016/j.icarus.2016.08.028_bib0032
  article-title: OH in saturn's magnetosphere: observations and implications
  publication-title: J. Geophys. Res.
  doi: 10.1029/98JE01127
  contributor:
    fullname: Richardson
– volume: 311
  start-page: 1422
  year: 2006
  ident: 10.1016/j.icarus.2016.08.028_bib0009
  article-title: Enceladus’ water vapor plume
  publication-title: Science
  doi: 10.1126/science.1121254
  contributor:
    fullname: Hansen
– volume: 459
  start-page: 1098
  year: 2009
  ident: 10.1016/j.icarus.2016.08.028_bib0028
  article-title: Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus
  publication-title: Nature
  doi: 10.1038/nature08046
  contributor:
    fullname: Postberg
– year: 1992
  ident: 10.1016/j.icarus.2016.08.028_bib0030
  contributor:
    fullname: Press
– volume: 209
  start-page: 696
  year: 2010
  ident: 10.1016/j.icarus.2016.08.028_bib0005
  article-title: Collisional spreading of Enceladus’ neutral cloud
  publication-title: Icarus
  doi: 10.1016/j.icarus.2010.04.010
  contributor:
    fullname: Cassidy
– volume: 314
  start-page: 1764
  year: 2006
  ident: 10.1016/j.icarus.2016.08.028_bib0020
  article-title: A clathrate reservoir hypothesis for Enceladus’ south polar plume
  publication-title: Science (80-)
  doi: 10.1126/science.1133519
  contributor:
    fullname: Kieffer
– volume: 456
  start-page: 477
  year: 2008
  ident: 10.1016/j.icarus.2016.08.028_bib0010
  article-title: Water vapour jets inside the plume of gas leaving Enceladus
  publication-title: Nature
  doi: 10.1038/nature07542
  contributor:
    fullname: Hansen
– volume: 311
  start-page: 1401
  year: 2006
  ident: 10.1016/j.icarus.2016.08.028_bib0036
  article-title: Cassini encounters Enceladus: background and the discovery of a south polar hot spot
  publication-title: Science
  doi: 10.1126/science.1121661
  contributor:
    fullname: Spencer
– year: 2002
  ident: 10.1016/j.icarus.2016.08.028_bib0006
– volume: 203
  start-page: 238
  year: 2009
  ident: 10.1016/j.icarus.2016.08.028_bib0021
  article-title: A redetermination of the ice/vapor ratio of Enceladus’ plumes: implications for sublimation and the lack of a liquid water reservoir
  publication-title: Icarus
  doi: 10.1016/j.icarus.2009.05.011
  contributor:
    fullname: Kieffer
– volume: 138
  year: 2013
  ident: 10.1016/j.icarus.2016.08.028_bib0003
  article-title: Development of a molecular-dynamics-based cluster-heat-capacity model for study of homogeneous condensation in supersonic water-vapor expansions
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4790476
  contributor:
    fullname: Borner
– year: 1990
  ident: 10.1016/j.icarus.2016.08.028_bib0016
  contributor:
    fullname: Johnson
– volume: 451
  start-page: 685
  year: 2008
  ident: 10.1016/j.icarus.2016.08.028_bib0034
  article-title: Slow dust in Enceladus’ plume from condensation and wall collisions in tiger stripe fractures
  publication-title: Nature
  doi: 10.1038/nature06491
  contributor:
    fullname: Schmidt
– volume: 521
  start-page: 57
  year: 2015
  ident: 10.1016/j.icarus.2016.08.028_bib0037
  article-title: Curtain eruptions form Enceladus’ south-polar terrain
  publication-title: Nature
  doi: 10.1038/nature14368
  contributor:
    fullname: Spitale
– volume: 216
  start-page: 492
  year: 2011
  ident: 10.1016/j.icarus.2016.08.028_bib0014
  article-title: Total particulate mass in enceladus plumes and mass of Saturn's E ring inferred from Cassini ISS images
  publication-title: Icarus
  doi: 10.1016/j.icarus.2011.09.018
  contributor:
    fullname: Ingersoll
– volume: 474
  start-page: 620
  year: 2011
  ident: 10.1016/j.icarus.2016.08.028_bib0029
  article-title: A salt-water reservoir as the source of a compositionally stratified plume on Enceladus
  publication-title: Nature
  doi: 10.1038/nature10175
  contributor:
    fullname: Postberg
– volume: 44
  start-page: 65
  year: 1996
  ident: 10.1016/j.icarus.2016.08.028_bib0001
  article-title: Ancillary data services of NASA's navigation and ancillary information facility
  publication-title: Planet. Space Sci.
  doi: 10.1016/0032-0633(95)00107-7
  contributor:
    fullname: Acton
– volume: 38
  start-page: L11202
  year: 2011
  ident: 10.1016/j.icarus.2016.08.028_bib0011
  article-title: The composition and structure of the Enceladus plume
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2011GL047415
  contributor:
    fullname: Hansen
– volume: 449
  start-page: 695
  year: 2007
  ident: 10.1016/j.icarus.2016.08.028_bib0038
  article-title: Association of the jets of Enceladus with the warmest regions on its south-polar fractures
  publication-title: Nature
  doi: 10.1038/nature06217
  contributor:
    fullname: Spitale
– volume: 264
  start-page: 227
  year: 2016
  ident: 10.1016/j.icarus.2016.08.028_bib0008
  article-title: Aggregate particles in the plumes of Enceladus
  publication-title: Icarus
  doi: 10.1016/j.icarus.2015.09.030
  contributor:
    fullname: Gao
– volume: 47
  start-page: 2600
  year: 2016
  ident: 10.1016/j.icarus.2016.08.028_bib0027
  article-title: Modeling of the Enceladus water vapor jets for interpreting UVIS star and solar occultation observations
  publication-title: Lunar Planet. Sci.
  contributor:
    fullname: Portyankina
– volume: 206
  start-page: 594
  year: 2010
  ident: 10.1016/j.icarus.2016.08.028_bib0015
  article-title: Subsurface heat transfer on Enceladus: conditions under which melting occurs
  publication-title: Icarus
  doi: 10.1016/j.icarus.2009.09.015
  contributor:
    fullname: Ingersoll
– volume: 148
  start-page: 45
  year: 2014
  ident: 10.1016/j.icarus.2016.08.028_bib0025
  article-title: How the geysers, tidal stresses, and thermal emission across the south polar terrain of Enceladus are related
  publication-title: Astron. J.
  doi: 10.1088/0004-6256/148/3/45
  contributor:
    fullname: Porco
– volume: 35
  start-page: L20105
  year: 2008
  ident: 10.1016/j.icarus.2016.08.028_bib0033
  article-title: Evidence for temporal variability of Enceladus’ gas jets: modeling of cassini observations
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2008GL035811
  contributor:
    fullname: Saur
– year: 1967
  ident: 10.1016/j.icarus.2016.08.028_bib0022
  contributor:
    fullname: Mack
– volume: 81A
  start-page: 5
  year: 1976
  ident: 10.1016/j.icarus.2016.08.028_bib0044
  article-title: Vapor pressure formulation for ice
  publication-title: J. Res. Nat. Bur. Stand.
  doi: 10.6028/jres.081A.003
  contributor:
    fullname: Wexler
– volume: 257
  start-page: 139
  year: 2015
  ident: 10.1016/j.icarus.2016.08.028_bib0024
  article-title: Cassini INMS measurements of Enceladus plume density
  publication-title: Icarus
  doi: 10.1016/j.icarus.2015.04.037
  contributor:
    fullname: Perry
– volume: 21
  start-page: 351
  year: 2007
  ident: 10.1016/j.icarus.2016.08.028_bib0042
  article-title: Extension of the DSMC method to high pressure flows
  publication-title: Int. J. Comput. Fluid D.
  doi: 10.1080/10618560701736221
  contributor:
    fullname: Titov
– volume: 29
  start-page: 2172
  year: 2002
  ident: 10.1016/j.icarus.2016.08.028_bib0018
  article-title: Saturn: search for a missing water source
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2002GL015855
  contributor:
    fullname: Jurac
– volume: 115
  start-page: A09302
  year: 2010
  ident: 10.1016/j.icarus.2016.08.028_bib0039
  article-title: An approach to numerical simulation of the gas distribution in the atmosphere of Enceladus
  publication-title: J. Geophys. Res.
  doi: 10.1029/2009JA015223
  contributor:
    fullname: Tenishev
– volume: 112
  start-page: A06219
  year: 2007
  ident: 10.1016/j.icarus.2016.08.028_bib0004
  article-title: Understanding the escape of water from Enceladus
  publication-title: J. Geophys. Res.
  doi: 10.1029/2006JA012086
  contributor:
    fullname: Burger
– volume: 115
  start-page: A10252
  year: 2010
  ident: 10.1016/j.icarus.2016.08.028_bib0035
  article-title: Enceladus plume variability and the neutral gas densities in saturn's magnetosphere
  publication-title: J. Geophys. Res.
  doi: 10.1029/2009JA015184
  contributor:
    fullname: Smith
– volume: 1333
  start-page: 595
  year: 2011
  ident: 10.1016/j.icarus.2016.08.028_bib0031
  article-title: Analysis of plume impingement effects from orion crew service module dual reaction control system engine firings
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.3562712
  contributor:
    fullname: Prisbell
– volume: 500
  start-page: 182
  year: 2013
  ident: 10.1016/j.icarus.2016.08.028_bib0012
  article-title: An observed correlation between plume activity and tidal stresses on Enceladus
  publication-title: Nature
  doi: 10.1038/nature12371
  contributor:
    fullname: Hedman
– volume: 119
  start-page: 2658
  year: 2014
  ident: 10.1016/j.icarus.2016.08.028_bib0040
  article-title: Effect of the tiger stripes on the water vapor distribution in Enceladus' exosphere
  publication-title: J. Geophys. Res. Planets
  doi: 10.1002/2014JE004700
  contributor:
    fullname: Tenishev
– volume: 188
  start-page: 154
  year: 2007
  ident: 10.1016/j.icarus.2016.08.028_bib0041
  article-title: Monte Carlo simulations of the water vapor plumes on Enceladus
  publication-title: Icarus
  doi: 10.1016/j.icarus.2006.11.010
  contributor:
    fullname: Tian
– volume: 311
  start-page: 1419
  year: 2006
  ident: 10.1016/j.icarus.2016.08.028_bib0043
  article-title: Cassini ion and neutral mass Spectrometer: Enceladus plume composition and structure
  publication-title: Science (80-)
  doi: 10.1126/science.1121290
  contributor:
    fullname: Waite
– volume: 644
  start-page: L137
  year: 2006
  ident: 10.1016/j.icarus.2016.08.028_bib0017
  article-title: The Enceladus and OH tori at Saturn
  publication-title: Astrohys. J.
  doi: 10.1086/505750
  contributor:
    fullname: Johnson
– volume: 257
  start-page: 251
  year: 2015
  ident: 10.1016/j.icarus.2016.08.028_bib0023
  article-title: Three-dimensional simulation of gas and dust in Io's Pele plume
  publication-title: Icarus
  doi: 10.1016/j.icarus.2015.03.019
  contributor:
    fullname: McDoniel
– volume: 110
  start-page: A09220
  year: 2005
  ident: 10.1016/j.icarus.2016.08.028_bib0019
  article-title: A self-consistent model of plasma and neutrals at Saturn: neutral cloud morphology
  publication-title: J. Geophys. Res.
  doi: 10.1029/2004JA010635
  contributor:
    fullname: Jurac
– year: 1994
  ident: 10.1016/j.icarus.2016.08.028_bib0002
  contributor:
    fullname: Bird
– volume: 311
  start-page: 1393
  year: 2006
  ident: 10.1016/j.icarus.2016.08.028_bib0026
  article-title: Cassini observes the active south pole of Enceladus
  publication-title: Science (80-)
  doi: 10.1126/science.1123013
  contributor:
    fullname: Porco
– volume: 253
  start-page: 205
  year: 2015
  ident: 10.1016/j.icarus.2016.08.028_bib0045
  article-title: On understanding the physics of the Enceladus south polar plume via numerical simulation
  publication-title: Icarus
  doi: 10.1016/j.icarus.2015.02.020
  contributor:
    fullname: Yeoh
SSID ssj0005893
Score 2.333076
Snippet •We model the gas component of the Enceladus plume using detailed gas dynamics.•We constrain the model using several INMS and UVIS data sets.•We estimate H2O...
Since its discovery, the Enceladus plume has been subjected to intense study due to the major effects that it has on the Saturnian system and the window that...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 357
SubjectTerms Cassini mission
Constraining
Enceladus
High Mach number
Jets
Plumes
Satellites, atmospheres
Saturn, satellites
Spreading
Vents
Title Constraining the Enceladus plume using numerical simulation and Cassini data
URI https://dx.doi.org/10.1016/j.icarus.2016.08.028
https://search.proquest.com/docview/1837313585
https://search.proquest.com/docview/1845804974
Volume 281
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXgRn9RXWUG8rW2yj2yOpbTUV08Wegub7EYqbVra5uDF3-5MHqAiCpJLSCZkM7uZ-WZ2HoRcJwkXVgRd5gnbZYCINYudnzKXcgvo1QXcoqH4NFajibifymmD9OtcGAyrrGR_KdMLaV1d6VTc7KxmM8zxBVsDN8IUrFmuppjBDuoP1vTt-6cwD10V3vVChtR1-lwR4wV8WOdYtNtTRSFP7Mn-s3r6JqgL7TPcJ3sVbKS9cmQHpOGyQ9LqbdCRvVy80RtanJd-is0RecRGnHX7Bwogjw7gy-bG5hu6QnlEMeD9hWZ5uWMzp5vZourkRU1maR9ANTxMMYL0mEyGg-f-iFWNE5jhodwy4eAwPHGofLXSMkHvDqjibgpwyqjYaOl8lcTSM6CbpLZKhiKEG2EMEI_zE9LMlplrEQocS0NuASaZGIvR6zSIbQKMgjcZafUpYTW_olVZHyOqA8deo5K_EfI3wm6XPtAHNVOjL_McgQj_48mreg4i-AVwX8NkbglEIJUC7nEwfH6jEVKDNRSIs3-P4Jzs-qjUCwfMBWlu17m7BEiyjdvFmmuTnd7dw2j8AaLv4Mw
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWBBPMUbIyE206a2E2esqlYF2k6t1M1yYgcVtWnVx8DCb-cuDwkQAglliRJHcT47d9-dz3eE3MUxF1YEdeYJW2fAiBWLXCNhLuEW2KsLuEVDsT_wuyPxNJbjCmmVe2EwrLKQ_blMz6R1caVWoFlbTCa4xxdsDVwI82HOcn-8RbYF8mOY1A_vn-I8VJF51wsZNi_3z2VBXgDEcoNZuz0_y-SJRdl_1k_fJHWmfjr7ZK_gjbSZd-2AVFx6SE6bK_Rkz2dv9J5m57mjYnVEeliJs6z_QIHl0TZ82tTYzYouUCBRjHh_oekmX7KZ0tVkVpTyoia1tAWsGh6mGEJ6TEad9rDVZUXlBGZ4KNdMODgMjx1qX-UrGaN7B3RxPQE-ZfzIKOkafhxJz4Byksr6MhQh3Agj4Hicn5BqOk_dKaGAWBJyCzzJRJiNXiVBZGMACt5kpFVnhJV46UWeIEOXkWOvOsdXI74ay102oH1Qgqq_DLQGGf7Hk7flGGj4B3Bhw6RuDo1ALAXc42D5_NZGSAXmUCDO_92DG7LTHfZ7uvc4eL4guw3U8Jk35pJU18uNuwJ-so6us_n3Afo54mU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constraining+the+Enceladus+plume+using+numerical+simulation+and+Cassini+data&rft.jtitle=Icarus+%28New+York%2C+N.Y.+1962%29&rft.au=Yeoh%2C+Seng+Keat&rft.au=Li%2C+Zheng&rft.au=Goldstein%2C+David+B.&rft.au=Varghese%2C+Philip+L.&rft.date=2017-01-01&rft.issn=0019-1035&rft.volume=281&rft.spage=357&rft.epage=378&rft_id=info:doi/10.1016%2Fj.icarus.2016.08.028&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_icarus_2016_08_028
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-1035&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-1035&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-1035&client=summon