Constraining the Enceladus plume using numerical simulation and Cassini data
•We model the gas component of the Enceladus plume using detailed gas dynamics.•We constrain the model using several INMS and UVIS data sets.•We estimate H2O production rates of a few hundred kgs−1 from the plume.•Narrow emissions produce better fits to data, suggesting a subsurface origin.•The dist...
Saved in:
Published in | Icarus (New York, N.Y. 1962) Vol. 281; pp. 357 - 378 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.01.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •We model the gas component of the Enceladus plume using detailed gas dynamics.•We constrain the model using several INMS and UVIS data sets.•We estimate H2O production rates of a few hundred kgs−1 from the plume.•Narrow emissions produce better fits to data, suggesting a subsurface origin.•The distributed Tiger Stripe sources are likely dominant while the jets provide a lesser contribution.
Since its discovery, the Enceladus plume has been subjected to intense study due to the major effects that it has on the Saturnian system and the window that it provides into the interior of Enceladus. However, several questions remain and we attempt to answer some of them in this work. In particular, we aim to constrain the H2O production rate from the plume, evaluate the relative importance of the jets and the distributed sources along the Tiger Stripes, and make inferences about the source of the plume by accurately modeling the plume and constraining the model using the Cassini INMS and UVIS data. This is an extension of a previous work (Yeoh, S.K., et al. [2015] Icarus, 253, 205–222) in which we only modeled the collisional part of the Enceladus plume and studied its important physical processes. In this work, we propagate the plume farther into space where the flow has become free-molecular and the Cassini INMS and UVIS data were sampled. Then, we fit this part of the plume to the INMS H2O density distributions sampled along the E3, E5 and E7 trajectories and also compare some of the fit results with the UVIS measurements of the plume optical depth collected during the solar occultation observation on 18 May 2010. We consider several vent conditions and source configurations for the plume. By constraining our model using the INMS and UVIS data, we estimate H2O production rates of several hundred kgs-1: 400–500kg/s during the E3 and E7 flybys and ∼900kg/s during the E5 flyby. These values agree with other estimates and are consistent with the observed temporal variability of the plume over the orbital period of Enceladus (Hedman, M.M., et al. [2013] Nature, 500, 182–184). In addition, we determine that one of the Tiger Stripes, Cairo, exhibits a local temporal variability consistent with the observed overall temporal variability of the plume. We also find that the distributed sources along the Tiger Stripes are likely dominant while the jets provide a lesser contribution. Moreover, our best-fit solutions for the plume are sensitive to the vent conditions chosen. The spreading angle of the jet produced is the main difference among the vent conditions and thus it appears to be an important parameter in fitting to these INMS data sets. In general, we find that narrow jets produce better fits, suggesting high Mach numbers (> 5) at the vents. This is supported by certain narrow features believed to be jets in both the INMS and UVIS data sets. This tends to rule out sublimation from the surface but points to a deep underground source for the plume. However, the underground source can be either sublimation from an icy reservoir or evaporation from a liquid reservoir. A high Mach number at the vent also suggests subsurface channels with large variations in width and not fairly straight channels so that the gas can undergo sufficient expansion. Additionally, the broad spreading angles inferred for the µm-sized grains (Ingersoll, A.P. and Ewald, S.P. [2011] Icarus, 216, 492–506; Postberg, F., et al. [2011] Nature, 474, 620–622) cannot be due to spreading by the gas above the surface alone. Some other mechanism(s) must also be responsible, perhaps occurring below the surface, which further points to an underground source for the plume. |
---|---|
AbstractList | Since its discovery, the Enceladus plume has been subjected to intense study due to the major effects that it has on the Saturnian system and the window that it provides into the interior of Enceladus. However, several questions remain and we attempt to answer some of them in this work. In particular, we aim to constrain the H2O production rate from the plume, evaluate the relative importance of the jets and the distributed sources along the Tiger Stripes, and make inferences about the source of the plume by accurately modeling the plume and constraining the model using the Cassini INMS and UVIS data. This is an extension of a previous work (Yeoh, S.K., et al. [2015] Icarus, 253, 205-222) in which we only modeled the collisional part of the Enceladus plume and studied its important physical processes. In this work, we propagate the plume farther into space where the flow has become free-molecular and the Cassini INMS and UVIS data were sampled. Then, we fit this part of the plume to the INMS H2O density distributions sampled along the E3, E5 and E7 trajectories and also compare some of the fit results with the UVIS measurements of the plume optical depth collected during the solar occultation observation on 18 May 2010. We consider several vent conditions and source configurations for the plume. By constraining our model using the INMS and UVIS data, we estimate H2O production rates of several hundred kgs-1: 400-500kg/s during the E3 and E7 flybys and 900kg/s during the E5 flyby. These values agree with other estimates and are consistent with the observed temporal variability of the plume over the orbital period of Enceladus (Hedman, M.M., et al. [2013] Nature, 500, 182-184). In addition, we determine that one of the Tiger Stripes, Cairo, exhibits a local temporal variability consistent with the observed overall temporal variability of the plume. We also find that the distributed sources along the Tiger Stripes are likely dominant while the jets provide a lesser contribution. Moreover, our best-fit solutions for the plume are sensitive to the vent conditions chosen. The spreading angle of the jet produced is the main difference among the vent conditions and thus it appears to be an important parameter in fitting to these INMS data sets. In general, we find that narrow jets produce better fits, suggesting high Mach numbers (>5) at the vents. This is supported by certain narrow features believed to be jets in both the INMS and UVIS data sets. This tends to rule out sublimation from the surface but points to a deep underground source for the plume. However, the underground source can be either sublimation from an icy reservoir or evaporation from a liquid reservoir. A high Mach number at the vent also suggests subsurface channels with large variations in width and not fairly straight channels so that the gas can undergo sufficient expansion. Additionally, the broad spreading angles inferred for the mu m-sized grains (Ingersoll, A.P. and Ewald, S.P. [2011] Icarus, 216, 492-506; Postberg, F., et al. [2011] Nature, 474, 620-622) cannot be due to spreading by the gas above the surface alone. Some other mechanism(s) must also be responsible, perhaps occurring below the surface, which further points to an underground source for the plume. •We model the gas component of the Enceladus plume using detailed gas dynamics.•We constrain the model using several INMS and UVIS data sets.•We estimate H2O production rates of a few hundred kgs−1 from the plume.•Narrow emissions produce better fits to data, suggesting a subsurface origin.•The distributed Tiger Stripe sources are likely dominant while the jets provide a lesser contribution. Since its discovery, the Enceladus plume has been subjected to intense study due to the major effects that it has on the Saturnian system and the window that it provides into the interior of Enceladus. However, several questions remain and we attempt to answer some of them in this work. In particular, we aim to constrain the H2O production rate from the plume, evaluate the relative importance of the jets and the distributed sources along the Tiger Stripes, and make inferences about the source of the plume by accurately modeling the plume and constraining the model using the Cassini INMS and UVIS data. This is an extension of a previous work (Yeoh, S.K., et al. [2015] Icarus, 253, 205–222) in which we only modeled the collisional part of the Enceladus plume and studied its important physical processes. In this work, we propagate the plume farther into space where the flow has become free-molecular and the Cassini INMS and UVIS data were sampled. Then, we fit this part of the plume to the INMS H2O density distributions sampled along the E3, E5 and E7 trajectories and also compare some of the fit results with the UVIS measurements of the plume optical depth collected during the solar occultation observation on 18 May 2010. We consider several vent conditions and source configurations for the plume. By constraining our model using the INMS and UVIS data, we estimate H2O production rates of several hundred kgs-1: 400–500kg/s during the E3 and E7 flybys and ∼900kg/s during the E5 flyby. These values agree with other estimates and are consistent with the observed temporal variability of the plume over the orbital period of Enceladus (Hedman, M.M., et al. [2013] Nature, 500, 182–184). In addition, we determine that one of the Tiger Stripes, Cairo, exhibits a local temporal variability consistent with the observed overall temporal variability of the plume. We also find that the distributed sources along the Tiger Stripes are likely dominant while the jets provide a lesser contribution. Moreover, our best-fit solutions for the plume are sensitive to the vent conditions chosen. The spreading angle of the jet produced is the main difference among the vent conditions and thus it appears to be an important parameter in fitting to these INMS data sets. In general, we find that narrow jets produce better fits, suggesting high Mach numbers (> 5) at the vents. This is supported by certain narrow features believed to be jets in both the INMS and UVIS data sets. This tends to rule out sublimation from the surface but points to a deep underground source for the plume. However, the underground source can be either sublimation from an icy reservoir or evaporation from a liquid reservoir. A high Mach number at the vent also suggests subsurface channels with large variations in width and not fairly straight channels so that the gas can undergo sufficient expansion. Additionally, the broad spreading angles inferred for the µm-sized grains (Ingersoll, A.P. and Ewald, S.P. [2011] Icarus, 216, 492–506; Postberg, F., et al. [2011] Nature, 474, 620–622) cannot be due to spreading by the gas above the surface alone. Some other mechanism(s) must also be responsible, perhaps occurring below the surface, which further points to an underground source for the plume. |
Author | Varghese, Philip L. Levin, Deborah A. Li, Zheng Goldstein, David B. Trafton, Laurence M. Yeoh, Seng Keat |
Author_xml | – sequence: 1 givenname: Seng Keat orcidid: 0000-0001-6956-0215 surname: Yeoh fullname: Yeoh, Seng Keat email: skyeoh@utexas.edu organization: Department of Aerospace Engineering and Engineering Mechanics, University of Texas, Austin, Texas 78712, United States – sequence: 2 givenname: Zheng surname: Li fullname: Li, Zheng organization: Department of Aerospace Engineering, University of Illinois, Urbana, Illinois 61801, United States – sequence: 3 givenname: David B. surname: Goldstein fullname: Goldstein, David B. organization: Department of Aerospace Engineering and Engineering Mechanics, University of Texas, Austin, Texas 78712, United States – sequence: 4 givenname: Philip L. surname: Varghese fullname: Varghese, Philip L. organization: Department of Aerospace Engineering and Engineering Mechanics, University of Texas, Austin, Texas 78712, United States – sequence: 5 givenname: Deborah A. surname: Levin fullname: Levin, Deborah A. organization: Department of Aerospace Engineering, University of Illinois, Urbana, Illinois 61801, United States – sequence: 6 givenname: Laurence M. surname: Trafton fullname: Trafton, Laurence M. organization: Department of Astronomy, University of Texas, Austin, Texas 78712, United States |
BookMark | eNqNkEtLAzEQx4NUsK1-Aw85etl1snk0exFkqQ8oeNFzmGZTTdnN1mRX8NubUs8ic5gZ5j-v34LMwhAcIdcMSgZM3e5LbzFOqaxyVoIuodJnZM6ghqJSgs_IHIDVBQMuL8gipT0ASF3zOdk0Q0hjRB98eKfjh6PrYF2H7ZTooZt6R6d0rIQcxrylo8n3U4ejHwLF0NIGUxZ42uKIl-R8h11yV79-Sd4e1q_NU7F5eXxu7jcF8lqOhXDZkFunFBNaaWm5FFApBTsGEtUWtXSVslvJcMW01K2Stahzod6CkJwvyc1p7iEOn5NLo-l9yld3GNwwJcO0kBpEvRL_kPIVZ1xqmaXiJLVxSCm6nTlE32P8NgzMkbPZmxNnc-RsQJvMObfdndpc_vjLu2iS9S5DbH10djTt4P8e8APPLokF |
CitedBy_id | crossref_primary_10_3847_PSJ_acd5d4 crossref_primary_10_1016_j_icarus_2020_114274 crossref_primary_10_1016_j_icarus_2019_06_006 crossref_primary_10_1016_j_icarus_2023_115488 crossref_primary_10_1016_j_icarus_2024_116203 crossref_primary_10_1029_2019JA027591 crossref_primary_10_1029_2021JA029690 crossref_primary_10_3390_universe8050261 crossref_primary_10_1016_j_pss_2017_11_017 crossref_primary_10_1007_s11214_018_0539_9 crossref_primary_10_1016_j_icarus_2023_115584 crossref_primary_10_1089_ast_2017_1647 crossref_primary_10_1016_j_icarus_2018_10_022 crossref_primary_10_1016_j_icarus_2018_01_006 |
Cites_doi | 10.1029/2011JA016693 10.1088/0004-6256/150/3/96 10.1029/98JE01127 10.1126/science.1121254 10.1038/nature08046 10.1016/j.icarus.2010.04.010 10.1126/science.1133519 10.1038/nature07542 10.1126/science.1121661 10.1016/j.icarus.2009.05.011 10.1063/1.4790476 10.1038/nature06491 10.1038/nature14368 10.1016/j.icarus.2011.09.018 10.1038/nature10175 10.1016/0032-0633(95)00107-7 10.1029/2011GL047415 10.1038/nature06217 10.1016/j.icarus.2015.09.030 10.1016/j.icarus.2009.09.015 10.1088/0004-6256/148/3/45 10.1029/2008GL035811 10.6028/jres.081A.003 10.1016/j.icarus.2015.04.037 10.1080/10618560701736221 10.1029/2002GL015855 10.1029/2009JA015223 10.1029/2006JA012086 10.1029/2009JA015184 10.1063/1.3562712 10.1038/nature12371 10.1002/2014JE004700 10.1016/j.icarus.2006.11.010 10.1126/science.1121290 10.1086/505750 10.1016/j.icarus.2015.03.019 10.1029/2004JA010635 10.1126/science.1123013 10.1016/j.icarus.2015.02.020 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Inc. |
Copyright_xml | – notice: 2016 Elsevier Inc. |
DBID | AAYXX CITATION 7TG KL. 8FD H8D L7M |
DOI | 10.1016/j.icarus.2016.08.028 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database Meteorological & Geoastrophysical Abstracts - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics |
EISSN | 1090-2643 |
EndPage | 378 |
ExternalDocumentID | 10_1016_j_icarus_2016_08_028 S001910351630536X |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABNEU ABQEM ABQYD ABYKQ ACDAQ ACFVG ACGFS ACLVX ACNCT ACRLP ACSBN ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LG5 LY3 LZ4 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ RXW SDF SDG SDP SES SHN SPC SPCBC SSE SSQ SSZ T5K TAE ZMT ZU3 ~02 ~G- 29I 6TJ AAQXK AAXKI AAYXX ABFNM ABTAH ABXDB ACNNM ADFGL ADMUD AFFNX AFJKZ AKRWK ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB HMA HME HVGLF HZ~ MVM OHT PVJ R2- SEP SEW UQL VOH WUQ XJT ZY4 7TG KL. 8FD H8D L7M |
ID | FETCH-LOGICAL-a395t-4e4e4a3ce66148685c35402660f105a6ba85e26cb51a71858d65949a6b9b04533 |
IEDL.DBID | .~1 |
ISSN | 0019-1035 |
IngestDate | Thu Oct 24 23:56:28 EDT 2024 Fri Oct 25 04:02:30 EDT 2024 Thu Sep 26 18:36:29 EDT 2024 Fri Feb 23 02:20:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Satellites, atmospheres Saturn, satellites Enceladus |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a395t-4e4e4a3ce66148685c35402660f105a6ba85e26cb51a71858d65949a6b9b04533 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6956-0215 |
PQID | 1837313585 |
PQPubID | 23462 |
PageCount | 22 |
ParticipantIDs | proquest_miscellaneous_1845804974 proquest_miscellaneous_1837313585 crossref_primary_10_1016_j_icarus_2016_08_028 elsevier_sciencedirect_doi_10_1016_j_icarus_2016_08_028 |
PublicationCentury | 2000 |
PublicationDate | 2017-01-01 2017-01-00 20170101 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Icarus (New York, N.Y. 1962) |
PublicationYear | 2017 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Perry, Teolis, Hurley, Magee, Waite, Brockwell, Perryman, McNutt (bib0024) 2015; 257 Yeoh, Chapman, Goldstein, Varghese, Trafton (bib0045) 2015; 253 Kieffer, Lu, McFarquhar, Wohletz (bib0021) 2009; 203 Schmidt, Brilliantov, Spahn, Kempf (bib0034) 2008; 451 Smith, Johnson, Perry, Mitchell, McNutt, Young (bib0035) 2010; 115 Hansen, Shemansky, Esposito, Stewart, Lewis, Colwell, Hendrix, West, Waite, Teolis, Magee (bib0011) 2011; 38 Saur, Schilling, Neubauer, Strobel, Simon, Dougherty, Russell, Pappalardo (bib0033) 2008; 35 Ingersoll, Ewald (bib0014) 2011; 216 Spitale, Hurford, Rhoden, Berkson, Platts (bib0037) 2015; 521 Hansen, Esposito, Stewart, Meinke, Wallis, Colwell, Hendrix, Larsen, Pryor, Tian (bib0010) 2008; 456 Johnson (bib0016) 1990 Spencer, Pearl, Segura, Flasar, Mamoutkine, Romani, Buratti, Hendrix, Spilker, Lopes (bib0036) 2006; 311 Titov, Levin (bib0042) 2007; 21 Portyankina, Esposito, Ali, Hansen (bib0027) 2016; 47 Tian, Stewart, Toon, Larsen, Esposito (bib0041) 2007; 188 Burger, Sittler, Johnson, Smith, Tucker, Shematovich (bib0004) 2007; 112 Dong, Hill, Teolis, Magee, Waite (bib0007) 2011; 116 Acton (bib0001) 1996; 44 Jurac, Richardson (bib0019) 2005; 110 Postberg, Kempf, Schmidt, Brilliantov, Beinsen, Abel, Buck, Srama (bib0028) 2009; 459 (bib0006) 2002 Johnson, Smith, Tucker, Liu, Burger, Sittler, Tokar (bib0017) 2006; 644 Jurac, McGrath, Johnson, Richardson, Vasyliunas, Eviatar (bib0018) 2002; 29 Porco, DiNino, Nimmo (bib0025) 2014; 148 Kieffer, Lu, Bethke, Spencer, Marshak, Navrotsky (bib0020) 2006; 314 Postberg, Schmidt, Hillier, Kempf, Srama (bib0029) 2011; 474 Gao, Kopparla, Zhang, Ingersoll (bib0008) 2016; 264 Mack (bib0022) 1967 Tenishev, Öztürk, Combi, Rubin, Waite, Perry (bib0040) 2014; 119 Borner, Li, Levin (bib0003) 2013; 138 Wexler (bib0044) 1976; 81A Ingersoll, Pankine (bib0015) 2010; 206 Porco, Helfenstein, Thomas, Ingersoll, Wisdom, West, Neukum, Denk, Wagner, Roatsch, Kieffer, Turtle, McEwen, Johnson, Rathbun, Veverka, Wilson, Perry, Spitale, Brahic, Burns, DelGenio, Dones, Murray, Squyres (bib0026) 2006; 311 Richardson, Eviatar, McGrath, Vasyliunas (bib0032) 1998; 103 Cassidy, Johnson (bib0005) 2010; 209 McDoniel, Goldstein, Varghese, Trafton (bib0023) 2015; 257 Tenishev, Combi, Teolis, Waite (bib0039) 2010; 115 Hedman, Gosmeyer, Nicholson, Sotin, Brown, Clark, Baines, Buratti, Showalter (bib0012) 2013; 500 Hansen, Esposito, Stewart, Colwell, Hendrix, Pryor, Shemansky, West (bib0009) 2006; 311 Spitale, Porco (bib0038) 2007; 449 Bird (bib0002) 1994 Helfenstein, Porco (bib0013) 2015; 150 Waite, Combi, Ip, Cravens, McNutt, Kasprzak, Yelle, Luhmann, Niemann, Gell, Magee, Fletcher, Lunine, Tseng (bib0043) 2006; 311 Prisbell, Marichalar, Lumpkin, LeBeau (bib0031) 2011; 1333 Press, Teukolsky, Vetterling, Flannery (bib0030) 1992 Richardson (10.1016/j.icarus.2016.08.028_bib0032) 1998; 103 Hansen (10.1016/j.icarus.2016.08.028_bib0009) 2006; 311 Borner (10.1016/j.icarus.2016.08.028_bib0003) 2013; 138 Press (10.1016/j.icarus.2016.08.028_bib0030) 1992 Spitale (10.1016/j.icarus.2016.08.028_bib0037) 2015; 521 Hansen (10.1016/j.icarus.2016.08.028_bib0010) 2008; 456 (10.1016/j.icarus.2016.08.028_bib0006) 2002 Hansen (10.1016/j.icarus.2016.08.028_bib0011) 2011; 38 Mack (10.1016/j.icarus.2016.08.028_bib0022) 1967 Smith (10.1016/j.icarus.2016.08.028_bib0035) 2010; 115 Johnson (10.1016/j.icarus.2016.08.028_bib0017) 2006; 644 Tenishev (10.1016/j.icarus.2016.08.028_bib0040) 2014; 119 Kieffer (10.1016/j.icarus.2016.08.028_bib0021) 2009; 203 Spitale (10.1016/j.icarus.2016.08.028_bib0038) 2007; 449 Kieffer (10.1016/j.icarus.2016.08.028_bib0020) 2006; 314 Waite (10.1016/j.icarus.2016.08.028_bib0043) 2006; 311 Jurac (10.1016/j.icarus.2016.08.028_bib0019) 2005; 110 Perry (10.1016/j.icarus.2016.08.028_bib0024) 2015; 257 Postberg (10.1016/j.icarus.2016.08.028_bib0029) 2011; 474 Titov (10.1016/j.icarus.2016.08.028_bib0042) 2007; 21 Johnson (10.1016/j.icarus.2016.08.028_bib0016) 1990 Yeoh (10.1016/j.icarus.2016.08.028_bib0045) 2015; 253 Helfenstein (10.1016/j.icarus.2016.08.028_bib0013) 2015; 150 Saur (10.1016/j.icarus.2016.08.028_bib0033) 2008; 35 Jurac (10.1016/j.icarus.2016.08.028_bib0018) 2002; 29 Burger (10.1016/j.icarus.2016.08.028_bib0004) 2007; 112 Postberg (10.1016/j.icarus.2016.08.028_bib0028) 2009; 459 Bird (10.1016/j.icarus.2016.08.028_bib0002) 1994 Ingersoll (10.1016/j.icarus.2016.08.028_bib0015) 2010; 206 Dong (10.1016/j.icarus.2016.08.028_bib0007) 2011; 116 Tenishev (10.1016/j.icarus.2016.08.028_bib0039) 2010; 115 Prisbell (10.1016/j.icarus.2016.08.028_bib0031) 2011; 1333 Schmidt (10.1016/j.icarus.2016.08.028_bib0034) 2008; 451 Acton (10.1016/j.icarus.2016.08.028_bib0001) 1996; 44 Wexler (10.1016/j.icarus.2016.08.028_bib0044) 1976; 81A Hedman (10.1016/j.icarus.2016.08.028_bib0012) 2013; 500 Porco (10.1016/j.icarus.2016.08.028_bib0025) 2014; 148 Porco (10.1016/j.icarus.2016.08.028_bib0026) 2006; 311 Ingersoll (10.1016/j.icarus.2016.08.028_bib0014) 2011; 216 Tian (10.1016/j.icarus.2016.08.028_bib0041) 2007; 188 McDoniel (10.1016/j.icarus.2016.08.028_bib0023) 2015; 257 Spencer (10.1016/j.icarus.2016.08.028_bib0036) 2006; 311 Gao (10.1016/j.icarus.2016.08.028_bib0008) 2016; 264 Cassidy (10.1016/j.icarus.2016.08.028_bib0005) 2010; 209 Portyankina (10.1016/j.icarus.2016.08.028_bib0027) 2016; 47 |
References_xml | – volume: 115 start-page: A10252 year: 2010 ident: bib0035 article-title: Enceladus plume variability and the neutral gas densities in saturn's magnetosphere publication-title: J. Geophys. Res. contributor: fullname: Young – volume: 119 start-page: 2658 year: 2014 end-page: 2667 ident: bib0040 article-title: Effect of the tiger stripes on the water vapor distribution in Enceladus' exosphere publication-title: J. Geophys. Res. Planets contributor: fullname: Perry – volume: 474 start-page: 620 year: 2011 end-page: 622 ident: bib0029 article-title: A salt-water reservoir as the source of a compositionally stratified plume on Enceladus publication-title: Nature contributor: fullname: Srama – volume: 148 start-page: 45 year: 2014 ident: bib0025 article-title: How the geysers, tidal stresses, and thermal emission across the south polar terrain of Enceladus are related publication-title: Astron. J. contributor: fullname: Nimmo – volume: 456 start-page: 477 year: 2008 end-page: 479 ident: bib0010 article-title: Water vapour jets inside the plume of gas leaving Enceladus publication-title: Nature contributor: fullname: Tian – volume: 314 start-page: 1764 year: 2006 end-page: 1766 ident: bib0020 article-title: A clathrate reservoir hypothesis for Enceladus’ south polar plume publication-title: Science (80-) contributor: fullname: Navrotsky – volume: 29 start-page: 2172 year: 2002 ident: bib0018 article-title: Saturn: search for a missing water source publication-title: Geophys. Res. Lett. contributor: fullname: Eviatar – volume: 103 start-page: 20245 year: 1998 end-page: 20255 ident: bib0032 article-title: OH in saturn's magnetosphere: observations and implications publication-title: J. Geophys. Res. contributor: fullname: Vasyliunas – year: 1967 ident: bib0022 article-title: Essentials of Statistics for Scientists and Technologists contributor: fullname: Mack – volume: 311 start-page: 1419 year: 2006 end-page: 1422 ident: bib0043 article-title: Cassini ion and neutral mass Spectrometer: Enceladus plume composition and structure publication-title: Science (80-) contributor: fullname: Tseng – volume: 81A start-page: 5 year: 1976 end-page: 20 ident: bib0044 article-title: Vapor pressure formulation for ice publication-title: J. Res. Nat. Bur. Stand. contributor: fullname: Wexler – volume: 38 start-page: L11202 year: 2011 ident: bib0011 article-title: The composition and structure of the Enceladus plume publication-title: Geophys. Res. Lett. contributor: fullname: Magee – volume: 311 start-page: 1401 year: 2006 end-page: 1405 ident: bib0036 article-title: Cassini encounters Enceladus: background and the discovery of a south polar hot spot publication-title: Science contributor: fullname: Lopes – volume: 203 start-page: 238 year: 2009 end-page: 241 ident: bib0021 article-title: A redetermination of the ice/vapor ratio of Enceladus’ plumes: implications for sublimation and the lack of a liquid water reservoir publication-title: Icarus contributor: fullname: Wohletz – volume: 500 start-page: 182 year: 2013 end-page: 184 ident: bib0012 article-title: An observed correlation between plume activity and tidal stresses on Enceladus publication-title: Nature contributor: fullname: Showalter – volume: 459 start-page: 1098 year: 2009 end-page: 1101 ident: bib0028 article-title: Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus publication-title: Nature contributor: fullname: Srama – volume: 521 start-page: 57 year: 2015 end-page: 60 ident: bib0037 article-title: Curtain eruptions form Enceladus’ south-polar terrain publication-title: Nature contributor: fullname: Platts – volume: 257 start-page: 251 year: 2015 end-page: 274 ident: bib0023 article-title: Three-dimensional simulation of gas and dust in Io's Pele plume publication-title: Icarus contributor: fullname: Trafton – year: 1992 ident: bib0030 article-title: Numerical Recipes in C contributor: fullname: Flannery – volume: 116 start-page: A10204 year: 2011 ident: bib0007 article-title: The water vapor plumes of Enceladus publication-title: J. Geophys. Res. contributor: fullname: Waite – volume: 311 start-page: 1422 year: 2006 end-page: 1425 ident: bib0009 article-title: Enceladus’ water vapor plume publication-title: Science contributor: fullname: West – volume: 253 start-page: 205 year: 2015 end-page: 222 ident: bib0045 article-title: On understanding the physics of the Enceladus south polar plume via numerical simulation publication-title: Icarus contributor: fullname: Trafton – volume: 209 start-page: 696 year: 2010 end-page: 703 ident: bib0005 article-title: Collisional spreading of Enceladus’ neutral cloud publication-title: Icarus contributor: fullname: Johnson – volume: 264 start-page: 227 year: 2016 end-page: 238 ident: bib0008 article-title: Aggregate particles in the plumes of Enceladus publication-title: Icarus contributor: fullname: Ingersoll – volume: 44 start-page: 65 year: 1996 end-page: 70 ident: bib0001 article-title: Ancillary data services of NASA's navigation and ancillary information facility publication-title: Planet. Space Sci. contributor: fullname: Acton – volume: 257 start-page: 139 year: 2015 end-page: 162 ident: bib0024 article-title: Cassini INMS measurements of Enceladus plume density publication-title: Icarus contributor: fullname: McNutt – volume: 449 start-page: 695 year: 2007 end-page: 697 ident: bib0038 article-title: Association of the jets of Enceladus with the warmest regions on its south-polar fractures publication-title: Nature contributor: fullname: Porco – volume: 451 start-page: 685 year: 2008 end-page: 688 ident: bib0034 article-title: Slow dust in Enceladus’ plume from condensation and wall collisions in tiger stripe fractures publication-title: Nature contributor: fullname: Kempf – volume: 216 start-page: 492 year: 2011 end-page: 506 ident: bib0014 article-title: Total particulate mass in enceladus plumes and mass of Saturn's E ring inferred from Cassini ISS images publication-title: Icarus contributor: fullname: Ewald – volume: 644 start-page: L137 year: 2006 end-page: L139 ident: bib0017 article-title: The Enceladus and OH tori at Saturn publication-title: Astrohys. J. contributor: fullname: Tokar – volume: 110 start-page: A09220 year: 2005 ident: bib0019 article-title: A self-consistent model of plasma and neutrals at Saturn: neutral cloud morphology publication-title: J. Geophys. Res. contributor: fullname: Richardson – volume: 311 start-page: 1393 year: 2006 end-page: 1401 ident: bib0026 article-title: Cassini observes the active south pole of Enceladus publication-title: Science (80-) contributor: fullname: Squyres – year: 1994 ident: bib0002 article-title: Molecular Gas Dynamics and the Direct Simulation of Gas Flows contributor: fullname: Bird – year: 1990 ident: bib0016 article-title: Energetic Charged-Particle Interactions with Atmospheres and Surfaces contributor: fullname: Johnson – volume: 1333 start-page: 595 year: 2011 end-page: 600 ident: bib0031 article-title: Analysis of plume impingement effects from orion crew service module dual reaction control system engine firings publication-title: AIP Conf. Proc. contributor: fullname: LeBeau – volume: 35 start-page: L20105 year: 2008 ident: bib0033 article-title: Evidence for temporal variability of Enceladus’ gas jets: modeling of cassini observations publication-title: Geophys. Res. Lett. contributor: fullname: Pappalardo – volume: 47 start-page: 2600 year: 2016 ident: bib0027 article-title: Modeling of the Enceladus water vapor jets for interpreting UVIS star and solar occultation observations publication-title: Lunar Planet. Sci. contributor: fullname: Hansen – volume: 115 start-page: A09302 year: 2010 ident: bib0039 article-title: An approach to numerical simulation of the gas distribution in the atmosphere of Enceladus publication-title: J. Geophys. Res. contributor: fullname: Waite – volume: 188 start-page: 154 year: 2007 end-page: 161 ident: bib0041 article-title: Monte Carlo simulations of the water vapor plumes on Enceladus publication-title: Icarus contributor: fullname: Esposito – volume: 138 year: 2013 ident: bib0003 article-title: Development of a molecular-dynamics-based cluster-heat-capacity model for study of homogeneous condensation in supersonic water-vapor expansions publication-title: J. Chem. Phys. contributor: fullname: Levin – year: 2002 ident: bib0006 publication-title: Allen's Astrophysical Quantities – volume: 206 start-page: 594 year: 2010 end-page: 607 ident: bib0015 article-title: Subsurface heat transfer on Enceladus: conditions under which melting occurs publication-title: Icarus contributor: fullname: Pankine – volume: 21 start-page: 351 year: 2007 end-page: 368 ident: bib0042 article-title: Extension of the DSMC method to high pressure flows publication-title: Int. J. Comput. Fluid D. contributor: fullname: Levin – volume: 112 start-page: A06219 year: 2007 ident: bib0004 article-title: Understanding the escape of water from Enceladus publication-title: J. Geophys. Res. contributor: fullname: Shematovich – volume: 150 start-page: 96 year: 2015 ident: bib0013 article-title: Enceladus’ geysers: relation to geological features publication-title: Astron. J. contributor: fullname: Porco – volume: 116 start-page: A10204 year: 2011 ident: 10.1016/j.icarus.2016.08.028_bib0007 article-title: The water vapor plumes of Enceladus publication-title: J. Geophys. Res. doi: 10.1029/2011JA016693 contributor: fullname: Dong – volume: 150 start-page: 96 year: 2015 ident: 10.1016/j.icarus.2016.08.028_bib0013 article-title: Enceladus’ geysers: relation to geological features publication-title: Astron. J. doi: 10.1088/0004-6256/150/3/96 contributor: fullname: Helfenstein – volume: 103 start-page: 20245 year: 1998 ident: 10.1016/j.icarus.2016.08.028_bib0032 article-title: OH in saturn's magnetosphere: observations and implications publication-title: J. Geophys. Res. doi: 10.1029/98JE01127 contributor: fullname: Richardson – volume: 311 start-page: 1422 year: 2006 ident: 10.1016/j.icarus.2016.08.028_bib0009 article-title: Enceladus’ water vapor plume publication-title: Science doi: 10.1126/science.1121254 contributor: fullname: Hansen – volume: 459 start-page: 1098 year: 2009 ident: 10.1016/j.icarus.2016.08.028_bib0028 article-title: Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus publication-title: Nature doi: 10.1038/nature08046 contributor: fullname: Postberg – year: 1992 ident: 10.1016/j.icarus.2016.08.028_bib0030 contributor: fullname: Press – volume: 209 start-page: 696 year: 2010 ident: 10.1016/j.icarus.2016.08.028_bib0005 article-title: Collisional spreading of Enceladus’ neutral cloud publication-title: Icarus doi: 10.1016/j.icarus.2010.04.010 contributor: fullname: Cassidy – volume: 314 start-page: 1764 year: 2006 ident: 10.1016/j.icarus.2016.08.028_bib0020 article-title: A clathrate reservoir hypothesis for Enceladus’ south polar plume publication-title: Science (80-) doi: 10.1126/science.1133519 contributor: fullname: Kieffer – volume: 456 start-page: 477 year: 2008 ident: 10.1016/j.icarus.2016.08.028_bib0010 article-title: Water vapour jets inside the plume of gas leaving Enceladus publication-title: Nature doi: 10.1038/nature07542 contributor: fullname: Hansen – volume: 311 start-page: 1401 year: 2006 ident: 10.1016/j.icarus.2016.08.028_bib0036 article-title: Cassini encounters Enceladus: background and the discovery of a south polar hot spot publication-title: Science doi: 10.1126/science.1121661 contributor: fullname: Spencer – year: 2002 ident: 10.1016/j.icarus.2016.08.028_bib0006 – volume: 203 start-page: 238 year: 2009 ident: 10.1016/j.icarus.2016.08.028_bib0021 article-title: A redetermination of the ice/vapor ratio of Enceladus’ plumes: implications for sublimation and the lack of a liquid water reservoir publication-title: Icarus doi: 10.1016/j.icarus.2009.05.011 contributor: fullname: Kieffer – volume: 138 year: 2013 ident: 10.1016/j.icarus.2016.08.028_bib0003 article-title: Development of a molecular-dynamics-based cluster-heat-capacity model for study of homogeneous condensation in supersonic water-vapor expansions publication-title: J. Chem. Phys. doi: 10.1063/1.4790476 contributor: fullname: Borner – year: 1990 ident: 10.1016/j.icarus.2016.08.028_bib0016 contributor: fullname: Johnson – volume: 451 start-page: 685 year: 2008 ident: 10.1016/j.icarus.2016.08.028_bib0034 article-title: Slow dust in Enceladus’ plume from condensation and wall collisions in tiger stripe fractures publication-title: Nature doi: 10.1038/nature06491 contributor: fullname: Schmidt – volume: 521 start-page: 57 year: 2015 ident: 10.1016/j.icarus.2016.08.028_bib0037 article-title: Curtain eruptions form Enceladus’ south-polar terrain publication-title: Nature doi: 10.1038/nature14368 contributor: fullname: Spitale – volume: 216 start-page: 492 year: 2011 ident: 10.1016/j.icarus.2016.08.028_bib0014 article-title: Total particulate mass in enceladus plumes and mass of Saturn's E ring inferred from Cassini ISS images publication-title: Icarus doi: 10.1016/j.icarus.2011.09.018 contributor: fullname: Ingersoll – volume: 474 start-page: 620 year: 2011 ident: 10.1016/j.icarus.2016.08.028_bib0029 article-title: A salt-water reservoir as the source of a compositionally stratified plume on Enceladus publication-title: Nature doi: 10.1038/nature10175 contributor: fullname: Postberg – volume: 44 start-page: 65 year: 1996 ident: 10.1016/j.icarus.2016.08.028_bib0001 article-title: Ancillary data services of NASA's navigation and ancillary information facility publication-title: Planet. Space Sci. doi: 10.1016/0032-0633(95)00107-7 contributor: fullname: Acton – volume: 38 start-page: L11202 year: 2011 ident: 10.1016/j.icarus.2016.08.028_bib0011 article-title: The composition and structure of the Enceladus plume publication-title: Geophys. Res. Lett. doi: 10.1029/2011GL047415 contributor: fullname: Hansen – volume: 449 start-page: 695 year: 2007 ident: 10.1016/j.icarus.2016.08.028_bib0038 article-title: Association of the jets of Enceladus with the warmest regions on its south-polar fractures publication-title: Nature doi: 10.1038/nature06217 contributor: fullname: Spitale – volume: 264 start-page: 227 year: 2016 ident: 10.1016/j.icarus.2016.08.028_bib0008 article-title: Aggregate particles in the plumes of Enceladus publication-title: Icarus doi: 10.1016/j.icarus.2015.09.030 contributor: fullname: Gao – volume: 47 start-page: 2600 year: 2016 ident: 10.1016/j.icarus.2016.08.028_bib0027 article-title: Modeling of the Enceladus water vapor jets for interpreting UVIS star and solar occultation observations publication-title: Lunar Planet. Sci. contributor: fullname: Portyankina – volume: 206 start-page: 594 year: 2010 ident: 10.1016/j.icarus.2016.08.028_bib0015 article-title: Subsurface heat transfer on Enceladus: conditions under which melting occurs publication-title: Icarus doi: 10.1016/j.icarus.2009.09.015 contributor: fullname: Ingersoll – volume: 148 start-page: 45 year: 2014 ident: 10.1016/j.icarus.2016.08.028_bib0025 article-title: How the geysers, tidal stresses, and thermal emission across the south polar terrain of Enceladus are related publication-title: Astron. J. doi: 10.1088/0004-6256/148/3/45 contributor: fullname: Porco – volume: 35 start-page: L20105 year: 2008 ident: 10.1016/j.icarus.2016.08.028_bib0033 article-title: Evidence for temporal variability of Enceladus’ gas jets: modeling of cassini observations publication-title: Geophys. Res. Lett. doi: 10.1029/2008GL035811 contributor: fullname: Saur – year: 1967 ident: 10.1016/j.icarus.2016.08.028_bib0022 contributor: fullname: Mack – volume: 81A start-page: 5 year: 1976 ident: 10.1016/j.icarus.2016.08.028_bib0044 article-title: Vapor pressure formulation for ice publication-title: J. Res. Nat. Bur. Stand. doi: 10.6028/jres.081A.003 contributor: fullname: Wexler – volume: 257 start-page: 139 year: 2015 ident: 10.1016/j.icarus.2016.08.028_bib0024 article-title: Cassini INMS measurements of Enceladus plume density publication-title: Icarus doi: 10.1016/j.icarus.2015.04.037 contributor: fullname: Perry – volume: 21 start-page: 351 year: 2007 ident: 10.1016/j.icarus.2016.08.028_bib0042 article-title: Extension of the DSMC method to high pressure flows publication-title: Int. J. Comput. Fluid D. doi: 10.1080/10618560701736221 contributor: fullname: Titov – volume: 29 start-page: 2172 year: 2002 ident: 10.1016/j.icarus.2016.08.028_bib0018 article-title: Saturn: search for a missing water source publication-title: Geophys. Res. Lett. doi: 10.1029/2002GL015855 contributor: fullname: Jurac – volume: 115 start-page: A09302 year: 2010 ident: 10.1016/j.icarus.2016.08.028_bib0039 article-title: An approach to numerical simulation of the gas distribution in the atmosphere of Enceladus publication-title: J. Geophys. Res. doi: 10.1029/2009JA015223 contributor: fullname: Tenishev – volume: 112 start-page: A06219 year: 2007 ident: 10.1016/j.icarus.2016.08.028_bib0004 article-title: Understanding the escape of water from Enceladus publication-title: J. Geophys. Res. doi: 10.1029/2006JA012086 contributor: fullname: Burger – volume: 115 start-page: A10252 year: 2010 ident: 10.1016/j.icarus.2016.08.028_bib0035 article-title: Enceladus plume variability and the neutral gas densities in saturn's magnetosphere publication-title: J. Geophys. Res. doi: 10.1029/2009JA015184 contributor: fullname: Smith – volume: 1333 start-page: 595 year: 2011 ident: 10.1016/j.icarus.2016.08.028_bib0031 article-title: Analysis of plume impingement effects from orion crew service module dual reaction control system engine firings publication-title: AIP Conf. Proc. doi: 10.1063/1.3562712 contributor: fullname: Prisbell – volume: 500 start-page: 182 year: 2013 ident: 10.1016/j.icarus.2016.08.028_bib0012 article-title: An observed correlation between plume activity and tidal stresses on Enceladus publication-title: Nature doi: 10.1038/nature12371 contributor: fullname: Hedman – volume: 119 start-page: 2658 year: 2014 ident: 10.1016/j.icarus.2016.08.028_bib0040 article-title: Effect of the tiger stripes on the water vapor distribution in Enceladus' exosphere publication-title: J. Geophys. Res. Planets doi: 10.1002/2014JE004700 contributor: fullname: Tenishev – volume: 188 start-page: 154 year: 2007 ident: 10.1016/j.icarus.2016.08.028_bib0041 article-title: Monte Carlo simulations of the water vapor plumes on Enceladus publication-title: Icarus doi: 10.1016/j.icarus.2006.11.010 contributor: fullname: Tian – volume: 311 start-page: 1419 year: 2006 ident: 10.1016/j.icarus.2016.08.028_bib0043 article-title: Cassini ion and neutral mass Spectrometer: Enceladus plume composition and structure publication-title: Science (80-) doi: 10.1126/science.1121290 contributor: fullname: Waite – volume: 644 start-page: L137 year: 2006 ident: 10.1016/j.icarus.2016.08.028_bib0017 article-title: The Enceladus and OH tori at Saturn publication-title: Astrohys. J. doi: 10.1086/505750 contributor: fullname: Johnson – volume: 257 start-page: 251 year: 2015 ident: 10.1016/j.icarus.2016.08.028_bib0023 article-title: Three-dimensional simulation of gas and dust in Io's Pele plume publication-title: Icarus doi: 10.1016/j.icarus.2015.03.019 contributor: fullname: McDoniel – volume: 110 start-page: A09220 year: 2005 ident: 10.1016/j.icarus.2016.08.028_bib0019 article-title: A self-consistent model of plasma and neutrals at Saturn: neutral cloud morphology publication-title: J. Geophys. Res. doi: 10.1029/2004JA010635 contributor: fullname: Jurac – year: 1994 ident: 10.1016/j.icarus.2016.08.028_bib0002 contributor: fullname: Bird – volume: 311 start-page: 1393 year: 2006 ident: 10.1016/j.icarus.2016.08.028_bib0026 article-title: Cassini observes the active south pole of Enceladus publication-title: Science (80-) doi: 10.1126/science.1123013 contributor: fullname: Porco – volume: 253 start-page: 205 year: 2015 ident: 10.1016/j.icarus.2016.08.028_bib0045 article-title: On understanding the physics of the Enceladus south polar plume via numerical simulation publication-title: Icarus doi: 10.1016/j.icarus.2015.02.020 contributor: fullname: Yeoh |
SSID | ssj0005893 |
Score | 2.333076 |
Snippet | •We model the gas component of the Enceladus plume using detailed gas dynamics.•We constrain the model using several INMS and UVIS data sets.•We estimate H2O... Since its discovery, the Enceladus plume has been subjected to intense study due to the major effects that it has on the Saturnian system and the window that... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 357 |
SubjectTerms | Cassini mission Constraining Enceladus High Mach number Jets Plumes Satellites, atmospheres Saturn, satellites Spreading Vents |
Title | Constraining the Enceladus plume using numerical simulation and Cassini data |
URI | https://dx.doi.org/10.1016/j.icarus.2016.08.028 https://search.proquest.com/docview/1837313585 https://search.proquest.com/docview/1845804974 |
Volume | 281 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXgRn9RXWUG8rW2yj2yOpbTUV08Wegub7EYqbVra5uDF3-5MHqAiCpJLSCZkM7uZ-WZ2HoRcJwkXVgRd5gnbZYCINYudnzKXcgvo1QXcoqH4NFajibifymmD9OtcGAyrrGR_KdMLaV1d6VTc7KxmM8zxBVsDN8IUrFmuppjBDuoP1vTt-6cwD10V3vVChtR1-lwR4wV8WOdYtNtTRSFP7Mn-s3r6JqgL7TPcJ3sVbKS9cmQHpOGyQ9LqbdCRvVy80RtanJd-is0RecRGnHX7Bwogjw7gy-bG5hu6QnlEMeD9hWZ5uWMzp5vZourkRU1maR9ANTxMMYL0mEyGg-f-iFWNE5jhodwy4eAwPHGofLXSMkHvDqjibgpwyqjYaOl8lcTSM6CbpLZKhiKEG2EMEI_zE9LMlplrEQocS0NuASaZGIvR6zSIbQKMgjcZafUpYTW_olVZHyOqA8deo5K_EfI3wm6XPtAHNVOjL_McgQj_48mreg4i-AVwX8NkbglEIJUC7nEwfH6jEVKDNRSIs3-P4Jzs-qjUCwfMBWlu17m7BEiyjdvFmmuTnd7dw2j8AaLv4Mw |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWBBPMUbIyE206a2E2esqlYF2k6t1M1yYgcVtWnVx8DCb-cuDwkQAglliRJHcT47d9-dz3eE3MUxF1YEdeYJW2fAiBWLXCNhLuEW2KsLuEVDsT_wuyPxNJbjCmmVe2EwrLKQ_blMz6R1caVWoFlbTCa4xxdsDVwI82HOcn-8RbYF8mOY1A_vn-I8VJF51wsZNi_3z2VBXgDEcoNZuz0_y-SJRdl_1k_fJHWmfjr7ZK_gjbSZd-2AVFx6SE6bK_Rkz2dv9J5m57mjYnVEeliJs6z_QIHl0TZ82tTYzYouUCBRjHh_oekmX7KZ0tVkVpTyoia1tAWsGh6mGEJ6TEad9rDVZUXlBGZ4KNdMODgMjx1qX-UrGaN7B3RxPQE-ZfzIKOkafhxJz4Byksr6MhQh3Agj4Hicn5BqOk_dKaGAWBJyCzzJRJiNXiVBZGMACt5kpFVnhJV46UWeIEOXkWOvOsdXI74ay102oH1Qgqq_DLQGGf7Hk7flGGj4B3Bhw6RuDo1ALAXc42D5_NZGSAXmUCDO_92DG7LTHfZ7uvc4eL4guw3U8Jk35pJU18uNuwJ-so6us_n3Afo54mU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constraining+the+Enceladus+plume+using+numerical+simulation+and+Cassini+data&rft.jtitle=Icarus+%28New+York%2C+N.Y.+1962%29&rft.au=Yeoh%2C+Seng+Keat&rft.au=Li%2C+Zheng&rft.au=Goldstein%2C+David+B.&rft.au=Varghese%2C+Philip+L.&rft.date=2017-01-01&rft.issn=0019-1035&rft.volume=281&rft.spage=357&rft.epage=378&rft_id=info:doi/10.1016%2Fj.icarus.2016.08.028&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_icarus_2016_08_028 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-1035&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-1035&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-1035&client=summon |