Quantum Coherence Times Enhancement in Vanadium(IV)-based Potential Molecular Qubits: the Key Role of the Vanadyl Moiety
In the search for long-lived quantum coherence in spin systems, vanadium(IV) complexes have shown record phase memory times among molecular systems. When nuclear spin-free ligands are employed, vanadium(IV) complexes can show at low temperature sufficiently long quantum coherence times, T m, to pe...
Saved in:
Published in | Journal of the American Chemical Society Vol. 138; no. 35; pp. 11234 - 11244 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
WASHINGTON
American Chemical Society
07.09.2016
Amer Chemical Soc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the search for long-lived quantum coherence in spin systems, vanadium(IV) complexes have shown record phase memory times among molecular systems. When nuclear spin-free ligands are employed, vanadium(IV) complexes can show at low temperature sufficiently long quantum coherence times, T m, to perform quantum operations, but their use in real devices operating at room temperature is still hampered by the rapid decrease of T 1 caused by the efficient spin–phonon coupling. In this work we have investigated the effect of different coordination environments on the magnetization dynamics and the quantum coherence of two vanadium(IV)-based potential molecular spin qubits in the solid state by introducing a unique structural difference, i.e., an oxovanadium(IV) in a square pyramidal versus a vanadium(IV) in an octahedral environment featuring the same coordinating ligand, namely, the 1,3-dithiole-2-thione-4,5-dithiolate. This investigation, performed by a combined approach of alternate current (ac) susceptibility measurements and continuous wave (CW) and pulsed electron paramagnetic resonance (EPR) spectroscopies revealed that the effectiveness of the vanadyl moiety in enhancing quantum coherence up to room temperature is related to a less effective mechanism of spin–lattice relaxation that can be quantitatively evaluated by the exponent n (ca. 3) of the temperature dependence of the relaxation rate. A more rapid collapse is observed for the non-oxo counterpart (n = 4) hampering the observation of quantum coherence at room temperature. Record coherence time at room temperature (1.04 μs) and Rabi oscillations are also observed for the vanadyl derivative in a very high concentrated material (5 ± 1%) as a result of the additional benefit provided by the use of a nuclear spin-free ligand. |
---|---|
AbstractList | In the search for long-lived quantum coherence in spin systems, vanadium(IV) complexes have shown record phase memory times among molecular systems. When nuclear spin-free ligands are employed, vanadium(IV) complexes can show at low temperature sufficiently long quantum coherence times, Tm, to perform quantum operations, but their use in real devices operating at room temperature is still hampered by the rapid decrease of T1 caused by the efficient spin-phonon coupling. In this work we have investigated the effect of different coordination environments on the magnetization dynamics and the quantum coherence of two vanadium(IV)-based potential molecular spin qubits in the solid state by introducing a unique structural difference, i.e., an oxovanadium(IV) in a square pyramidal versus a vanadium(IV) in an octahedral environment featuring the same coordinating ligand, namely, the 1,3-dithiole-2-thione-4,5-dithiolate. This investigation, performed by a combined approach of alternate current (ac) susceptibility measurements and continuous wave (CW) and pulsed electron paramagnetic resonance (EPR) spectroscopies revealed that the effectiveness of the vanadyl moiety in enhancing quantum coherence up to room temperature is related to a less effective mechanism of spin-lattice relaxation that can be quantitatively evaluated by the exponent n (ca. 3) of the temperature dependence of the relaxation rate. A more rapid collapse is observed for the non-oxo counterpart (n = 4) hampering the observation of quantum coherence at room temperature. Record coherence time at room temperature (1.04 μs) and Rabi oscillations are also observed for the vanadyl derivative in a very high concentrated material (5 ± 1%) as a result of the additional benefit provided by the use of a nuclear spin-free ligand. In the search for long-lived quantum coherence in spin systems, vanadium(IV) complexes have shown record phase memory times among molecular systems. When nuclear spin-free ligands are employed, vanadium(IV) complexes can show at low temperature sufficiently long quantum coherence times, Tₘ, to perform quantum operations, but their use in real devices operating at room temperature is still hampered by the rapid decrease of T₁ caused by the efficient spin–phonon coupling. In this work we have investigated the effect of different coordination environments on the magnetization dynamics and the quantum coherence of two vanadium(IV)-based potential molecular spin qubits in the solid state by introducing a unique structural difference, i.e., an oxovanadium(IV) in a square pyramidal versus a vanadium(IV) in an octahedral environment featuring the same coordinating ligand, namely, the 1,3-dithiole-2-thione-4,5-dithiolate. This investigation, performed by a combined approach of alternate current (ac) susceptibility measurements and continuous wave (CW) and pulsed electron paramagnetic resonance (EPR) spectroscopies revealed that the effectiveness of the vanadyl moiety in enhancing quantum coherence up to room temperature is related to a less effective mechanism of spin–lattice relaxation that can be quantitatively evaluated by the exponent n (ca. 3) of the temperature dependence of the relaxation rate. A more rapid collapse is observed for the non-oxo counterpart (n = 4) hampering the observation of quantum coherence at room temperature. Record coherence time at room temperature (1.04 μs) and Rabi oscillations are also observed for the vanadyl derivative in a very high concentrated material (5 ± 1%) as a result of the additional benefit provided by the use of a nuclear spin-free ligand. In the search for long-lived quantum coherence in spin systems, vanadium(IV) complexes have shown record phase memory times among molecular systems. When nuclear spin-free ligands are employed, vanadium(IV) complexes can show at low temperature sufficiently long quantum coherence times, T m, to perform quantum operations, but their use in real devices operating at room temperature is still hampered by the rapid decrease of T 1 caused by the efficient spin–phonon coupling. In this work we have investigated the effect of different coordination environments on the magnetization dynamics and the quantum coherence of two vanadium(IV)-based potential molecular spin qubits in the solid state by introducing a unique structural difference, i.e., an oxovanadium(IV) in a square pyramidal versus a vanadium(IV) in an octahedral environment featuring the same coordinating ligand, namely, the 1,3-dithiole-2-thione-4,5-dithiolate. This investigation, performed by a combined approach of alternate current (ac) susceptibility measurements and continuous wave (CW) and pulsed electron paramagnetic resonance (EPR) spectroscopies revealed that the effectiveness of the vanadyl moiety in enhancing quantum coherence up to room temperature is related to a less effective mechanism of spin–lattice relaxation that can be quantitatively evaluated by the exponent n (ca. 3) of the temperature dependence of the relaxation rate. A more rapid collapse is observed for the non-oxo counterpart (n = 4) hampering the observation of quantum coherence at room temperature. Record coherence time at room temperature (1.04 μs) and Rabi oscillations are also observed for the vanadyl derivative in a very high concentrated material (5 ± 1%) as a result of the additional benefit provided by the use of a nuclear spin-free ligand. In the search for long-lived quantum coherence in spin systems, vanadium(IV) complexes have shown record phase memory times among molecular systems. When nuclear spin-free ligands are employed, vanadium(IV) complexes can show at low temperature sufficiently long quantum coherence times, Tm, to perform quantum operations, but their use in real devices operating at room temperature is still hampered by the rapid decrease of T1 caused by the efficient spin-phonon coupling. In this work we have investigated the effect of different coordination environments on the magnetization dynamics and the quantum coherence of two vanadium(IV)-based potential molecular spin qubits in the solid state by introducing a unique structural difference, i.e., an oxovanadium(IV) in a square pyramidal versus a vanadium(IV) in an octahedral environment featuring the same coordinating ligand, namely, the 1,3-dithiole-2-thione-4,5-dithiolate. This investigation, performed by a combined approach of alternate current (ac) susceptibility measurements and continuous wave (CW) and pulsed electron paramagnetic resonance (EPR) spectroscopies revealed that the effectiveness of the vanadyl moiety in enhancing quantum coherence up to room temperature is related to a less effective mechanism of spin-lattice relaxation that can be quantitatively evaluated by the exponent n (ca. 3) of the temperature dependence of the relaxation rate. A more rapid collapse is observed for the non-oxo counterpart (n = 4) hampering the observation of quantum coherence at room temperature. Record coherence time at room temperature (1.04 μs) and Rabi oscillations are also observed for the vanadyl derivative in a very high concentrated material (5 ± 1%) as a result of the additional benefit provided by the use of a nuclear spin-free ligand.In the search for long-lived quantum coherence in spin systems, vanadium(IV) complexes have shown record phase memory times among molecular systems. When nuclear spin-free ligands are employed, vanadium(IV) complexes can show at low temperature sufficiently long quantum coherence times, Tm, to perform quantum operations, but their use in real devices operating at room temperature is still hampered by the rapid decrease of T1 caused by the efficient spin-phonon coupling. In this work we have investigated the effect of different coordination environments on the magnetization dynamics and the quantum coherence of two vanadium(IV)-based potential molecular spin qubits in the solid state by introducing a unique structural difference, i.e., an oxovanadium(IV) in a square pyramidal versus a vanadium(IV) in an octahedral environment featuring the same coordinating ligand, namely, the 1,3-dithiole-2-thione-4,5-dithiolate. This investigation, performed by a combined approach of alternate current (ac) susceptibility measurements and continuous wave (CW) and pulsed electron paramagnetic resonance (EPR) spectroscopies revealed that the effectiveness of the vanadyl moiety in enhancing quantum coherence up to room temperature is related to a less effective mechanism of spin-lattice relaxation that can be quantitatively evaluated by the exponent n (ca. 3) of the temperature dependence of the relaxation rate. A more rapid collapse is observed for the non-oxo counterpart (n = 4) hampering the observation of quantum coherence at room temperature. Record coherence time at room temperature (1.04 μs) and Rabi oscillations are also observed for the vanadyl derivative in a very high concentrated material (5 ± 1%) as a result of the additional benefit provided by the use of a nuclear spin-free ligand. In the search for long-lived quantum coherence in spin systems, vanadium(IV) complexes have shown record phase memory times among molecular systems. When nuclear spin-free ligands are employed, vanadium(IV) complexes can show at low temperature sufficiently long quantum coherence times, T-m, to perform quantum operations, but their use in real devices operating at room temperature is still hampered by the rapid decrease of T-1 caused by the efficient spin phonon coupling. In this work we have investigated the effect of different coordination environments on the magnetization dynamics and the quantum coherence of two vanadium(IV)-based potential molecular spin qubits in the solid state by introducing a unique structural difference, i.e., an oxovanadium(IV) in a square pyramidal versus a vanadium(IV) in an octahedral environment featuring the same coordinating ligand, namely, the 1,3-dithiole-2-thione-4,5-dithiolate. This investigation, performed by a combined approach of alternate current (ac) susceptibility measurements and continuous wave (CW) and pulsed electron paramagnetic resonance (EPR) spectroscopies revealed that the effectiveness of the vanadyl moiety in enhancing quantum coherence up to room temperature is related to a less effective mechanism of spin-lattice relaxation that can be quantitatively evaluated by the exponent n (ca. 3) of the temperature dependence of the relaxation rate. A more rapid collapse is observed for the non-oxo counterpart (n = 4) hampering the observation of quantum coherence at room temperature. Record coherence time at room temperature (1.04 mu s) and Rabi oscillations are also observed for the vanadyl derivative in a very high concentrated material (5 +/- 1%) as a result of the additional benefit provided by the use of a nuclear spin-free ligand. |
Author | Tesi, Lorenzo Sessoli, Roberta Atzori, Matteo Chiesa, Mario Morra, Elena Albino, Andrea Sorace, Lorenzo |
AuthorAffiliation | Dipartimento di Chimica e NIS Centre Università di Torino Dipartimento di Chimica “Ugo Schiff” e INSTM Università degli Studi di Firenze |
AuthorAffiliation_xml | – name: Dipartimento di Chimica “Ugo Schiff” e INSTM – name: Università degli Studi di Firenze – name: Dipartimento di Chimica e NIS Centre – name: Università di Torino |
Author_xml | – sequence: 1 givenname: Matteo surname: Atzori fullname: Atzori, Matteo email: matteo.atzori@unifi.it – sequence: 2 givenname: Elena surname: Morra fullname: Morra, Elena – sequence: 3 givenname: Lorenzo surname: Tesi fullname: Tesi, Lorenzo – sequence: 4 givenname: Andrea surname: Albino fullname: Albino, Andrea – sequence: 5 givenname: Mario surname: Chiesa fullname: Chiesa, Mario – sequence: 6 givenname: Lorenzo surname: Sorace fullname: Sorace, Lorenzo – sequence: 7 givenname: Roberta surname: Sessoli fullname: Sessoli, Roberta email: roberta.sessoli@unifi.it |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27517709$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkkFv1DAQhS1URLeFG2fkYxGk2I4dJ9zQqkBFERSteo1sZ6L1KrHb2Bbsv8fphh4QCE7283xvRnqeE3TkvAOEnlNyTgmjb3bKhPNKEyEkf4RWVDBSCMqqI7QihLBC1lV5jE5C2GXJWU2foGMmBZWSNCv04zopF9OI134LEzgDeGNHCPjCbVVWI7iIrcM3yqnOpvHs8uZloVWADn_1MRetGvBnP4BJg5rwddI2hrc4bgF_gj3-livY9_f6vsV-pi3E_VP0uFdDgGfLeYo27y8264_F1ZcPl-t3V4UqGxELWuqy11Jq3elG9BXhIKuO9BWXnRGKdJz3wpREmEaAZIbmJLiiPZFNraArT9HZoe3t5O8ShNiONhgYBuXAp9CyHEoeJEX5T5TWVNac06bJ6IsFTXqErr2d7Kimffsr1wzUB-A7aN8HY-dkH7B5Zs0aQuv5xtc2qmi9W_vkYra--n9rpl8faDP5ECboH0hK2nk_2nk_2mU_Ms5-w80yPE7KDn8zLcHMjzufJpc_7M_oT_1EyRI |
CitedBy_id | crossref_primary_10_1039_D1DT01990B crossref_primary_10_1039_C9DT00981G crossref_primary_10_1103_PhysRevLett_122_037202 crossref_primary_10_1002_chem_202101922 crossref_primary_10_1021_acs_inorgchem_3c00275 crossref_primary_10_1002_asia_202200622 crossref_primary_10_1002_chem_201702047 crossref_primary_10_1021_acs_jpclett_1c01447 crossref_primary_10_1021_jacs_4c07288 crossref_primary_10_1039_C9SC02899D crossref_primary_10_1039_D2CC02495K crossref_primary_10_1002_chem_201900799 crossref_primary_10_1021_jacs_7b03123 crossref_primary_10_1039_C9SC00074G crossref_primary_10_1002_qute_202300367 crossref_primary_10_1002_chem_202100845 crossref_primary_10_1038_s41467_020_15475_7 crossref_primary_10_1002_ejic_201801050 crossref_primary_10_3390_magnetochemistry7060082 crossref_primary_10_1002_adma_202208998 crossref_primary_10_1002_jcc_26005 crossref_primary_10_1038_s41467_023_36852_y crossref_primary_10_1039_C8DT03809K crossref_primary_10_1039_C8SC04435J crossref_primary_10_1103_PhysRevB_99_235145 crossref_primary_10_1038_s41534_021_00466_3 crossref_primary_10_1021_acs_jpcc_3c02903 crossref_primary_10_1021_acs_macromol_3c01694 crossref_primary_10_1039_D2SC04969D crossref_primary_10_1039_D1CS00001B crossref_primary_10_1039_C8SC04500C crossref_primary_10_1246_bcsj_20200257 crossref_primary_10_1021_acs_inorgchem_9b01407 crossref_primary_10_1039_D2QI01607A crossref_primary_10_1103_PhysRevB_105_064415 crossref_primary_10_1039_D4QI00161C crossref_primary_10_1039_D0DT01414A crossref_primary_10_1039_D4MH01512F crossref_primary_10_1016_j_chempr_2023_09_013 crossref_primary_10_1063_5_0226942 crossref_primary_10_1021_acs_jpclett_3c01964 crossref_primary_10_1021_jacs_4c16571 crossref_primary_10_1016_j_cplett_2019_137034 crossref_primary_10_1002_adom_202303036 crossref_primary_10_1038_s42254_021_00340_3 crossref_primary_10_1134_S0022476617050158 crossref_primary_10_1021_jacsau_3c00121 crossref_primary_10_1039_C9CC09817H crossref_primary_10_1021_acs_inorgchem_7b01689 crossref_primary_10_1103_PhysRevApplied_18_064074 crossref_primary_10_1039_C6CP08161D crossref_primary_10_1002_cphc_202200618 crossref_primary_10_1039_C6CC07813C crossref_primary_10_1021_acscentsci_4c01177 crossref_primary_10_1016_j_isci_2020_100926 crossref_primary_10_1039_D2DT01564A crossref_primary_10_1021_acs_inorgchem_7b02450 crossref_primary_10_1021_acs_jpclett_0c01681 crossref_primary_10_1039_D3NJ04614A crossref_primary_10_1002_ange_202015058 crossref_primary_10_1016_j_ica_2020_120165 crossref_primary_10_1016_j_chempr_2016_10_010 crossref_primary_10_1002_chem_201804165 crossref_primary_10_1039_D4DT02311K crossref_primary_10_1103_PhysRevA_107_042423 crossref_primary_10_1021_acs_inorgchem_1c01267 crossref_primary_10_1038_s41598_017_13271_w crossref_primary_10_1039_C7SC05464E crossref_primary_10_1007_s00894_024_06052_6 crossref_primary_10_1021_acs_inorgchem_4c00834 crossref_primary_10_1021_jacs_8b05934 crossref_primary_10_1039_D1DT01862K crossref_primary_10_1021_acs_inorgchem_3c02265 crossref_primary_10_1038_s42004_020_00422_w crossref_primary_10_1080_00107514_2024_2381952 crossref_primary_10_3390_magnetochemistry7080117 crossref_primary_10_1021_acs_inorgchem_4c04542 crossref_primary_10_1038_s41534_024_00838_5 crossref_primary_10_12677_NAT_2021_113022 crossref_primary_10_1063_5_0160149 crossref_primary_10_3390_molecules24244582 crossref_primary_10_1021_acs_cgd_2c00754 crossref_primary_10_1021_acs_inorgchem_8b01117 crossref_primary_10_1016_j_chempr_2023_12_024 crossref_primary_10_1038_s41534_020_00296_9 crossref_primary_10_1021_acs_inorgchem_0c02163 crossref_primary_10_1039_D2CP06026D crossref_primary_10_1039_D4NR03484H crossref_primary_10_1088_0256_307X_38_3_030303 crossref_primary_10_1039_C8DT02312C crossref_primary_10_1039_D3DT02307A crossref_primary_10_1039_D0CP00852D crossref_primary_10_1021_acs_inorgchem_0c03259 crossref_primary_10_1039_C9CP00745H crossref_primary_10_3390_inorganics6040101 crossref_primary_10_1039_D1SC06130E crossref_primary_10_1016_j_poly_2020_114928 crossref_primary_10_1002_ejic_201601210 crossref_primary_10_1103_PhysRevResearch_4_043135 crossref_primary_10_1039_D4MH00454J crossref_primary_10_1021_acs_cgd_2c01270 crossref_primary_10_1103_PhysRevB_103_014401 crossref_primary_10_1002_adma_202300472 crossref_primary_10_1039_D0QI00098A crossref_primary_10_1021_acs_chemmater_6b05433 crossref_primary_10_1038_s41570_022_00424_3 crossref_primary_10_1039_D3QI01806G crossref_primary_10_1038_s41467_019_11309_3 crossref_primary_10_1039_C8DT03783C crossref_primary_10_1039_D4DT02832E crossref_primary_10_1039_D1DT00709B crossref_primary_10_1016_j_jinorgbio_2019_110806 crossref_primary_10_1080_00958972_2025_2453067 crossref_primary_10_1515_nanoph_2024_0420 crossref_primary_10_1002_asia_202401798 crossref_primary_10_1002_anie_202015058 crossref_primary_10_1039_C5CS00933B crossref_primary_10_1039_D4DT01779J crossref_primary_10_1021_acs_jpclett_7b00479 crossref_primary_10_1039_D0DT02448A crossref_primary_10_1021_acs_inorgchem_0c02573 crossref_primary_10_1039_D0SC03107K crossref_primary_10_1039_D1TC00851J crossref_primary_10_1039_C7SC03749J crossref_primary_10_1039_D0NR06114J crossref_primary_10_1039_D2DT03999K crossref_primary_10_1002_cphc_201800742 crossref_primary_10_1021_acs_inorgchem_6b03118 crossref_primary_10_1021_acs_nanolett_2c03161 crossref_primary_10_1002_anie_202014993 crossref_primary_10_3390_magnetochemistry2040040 crossref_primary_10_1039_C9CC01123D crossref_primary_10_1021_acs_inorgchem_9b00286 crossref_primary_10_1021_acs_cgd_2c01362 crossref_primary_10_3390_magnetochemistry2030036 crossref_primary_10_3390_magnetochemistry8090096 crossref_primary_10_1016_j_molstruc_2019_04_098 crossref_primary_10_1039_C7NJ01071K crossref_primary_10_1063_5_0053378 crossref_primary_10_1039_D0CC01854F crossref_primary_10_1039_D1SC01358K crossref_primary_10_1016_j_jmmm_2019_165325 crossref_primary_10_1126_science_aaw7505 crossref_primary_10_1002_ange_202014993 crossref_primary_10_1088_1367_2630_acf2bd crossref_primary_10_1002_cphc_202400914 crossref_primary_10_3762_bjnano_8_96 crossref_primary_10_1039_D1DT01832A crossref_primary_10_1002_chem_202303082 crossref_primary_10_1063_5_0072564 crossref_primary_10_1021_acs_inorgchem_7b00794 crossref_primary_10_1021_acs_jpca_0c07860 crossref_primary_10_1039_C8DT00139A crossref_primary_10_1039_C8SC04122A crossref_primary_10_1063_5_0211936 crossref_primary_10_1038_s42004_024_01183_6 crossref_primary_10_1039_C9CE00894B crossref_primary_10_1039_D2CP01228F crossref_primary_10_1007_s00723_020_01292_0 crossref_primary_10_1021_jacs_6b08467 crossref_primary_10_1039_D3SC05774G crossref_primary_10_1103_PhysRevLett_122_013205 crossref_primary_10_1039_D1SC01506K crossref_primary_10_1002_chem_202003052 crossref_primary_10_1002_ejic_201900942 crossref_primary_10_1021_jacs_7b01266 crossref_primary_10_1016_j_ccr_2017_03_004 crossref_primary_10_1088_2058_9565_ad985e crossref_primary_10_1039_D0DT01597K crossref_primary_10_1002_chem_202402660 crossref_primary_10_1021_jacs_2c08729 crossref_primary_10_3390_magnetochemistry7020024 crossref_primary_10_1002_cjoc_202400947 crossref_primary_10_1021_jacs_9b00984 crossref_primary_10_1021_acs_jpca_2c06854 crossref_primary_10_1126_sciadv_abn7880 crossref_primary_10_1021_acs_nanolett_9b03110 crossref_primary_10_1021_jacs_8b06733 crossref_primary_10_1021_acscentsci_0c00737 crossref_primary_10_1002_cphc_202200478 crossref_primary_10_1039_C6CC09824J crossref_primary_10_1039_C8SC01695J crossref_primary_10_1021_jacs_4c14367 crossref_primary_10_1103_PhysRevApplied_19_064060 crossref_primary_10_1021_acs_inorgchem_1c02779 crossref_primary_10_1126_sciadv_adr0168 crossref_primary_10_1021_acs_jpcc_1c06916 crossref_primary_10_1039_D3MH01926H crossref_primary_10_1021_jacs_6b13030 crossref_primary_10_1039_D3CP01047C crossref_primary_10_1021_acs_accounts_3c00556 crossref_primary_10_1002_ejic_201700977 crossref_primary_10_1039_D2QI02635J crossref_primary_10_1021_acs_jpcc_2c03083 crossref_primary_10_1088_1361_6633_ad1f81 crossref_primary_10_1016_j_poly_2021_115594 crossref_primary_10_1080_23746149_2018_1435305 crossref_primary_10_1039_D3DT00024A crossref_primary_10_1039_C9RA10851C crossref_primary_10_1021_acs_inorgchem_7b02616 |
Cites_doi | 10.1021/jacs.5b11802 10.1021/ja00398a013 10.1038/nmat2420 10.1038/ncomms10467 10.1103/PhysRev.127.32 10.1038/nature08812 10.1021/jacs.6b02702 10.1021/ja507846k 10.1063/1.1626791 10.1021/jacs.5b13408 10.15227/orgsyn.073.0270 10.1016/j.jmr.2012.11.026 10.1038/nature10314 10.1038/ncomms5300 10.1093/acprof:oso/9780198567530.001.0001 10.1038/nature16984 10.1016/j.jmr.2005.08.013 10.1007/0-306-47109-4_2 10.1016/S0020-1693(00)90128-2 10.1021/ic100344f 10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E 10.1038/ncomms6304 10.1038/nature12597 10.1016/j.jmr.2007.12.003 10.1080/00268976.2011.640954 10.1038/ncomms11377 10.1063/1.1716296 10.1103/PhysRev.57.426 10.1016/0031-8914(72)90070-5 10.1103/PhysRev.59.724 10.1006/jmra.1996.0079 10.1021/jp036020f 10.1039/C1CS15115K 10.1088/0034-4885/43/4/002 10.1126/science.1192739 10.1021/ic00299a013 10.1016/S1090-7807(03)00182-4 10.1039/c0cs00158a 10.1103/PhysRevB.88.094418 10.1103/PhysRev.94.630 10.1002/pssb.2221170202 10.1038/nmat3182 10.1007/978-1-4899-6539-4 10.1038/nature11449 10.1016/0022-2364(90)90113-N 10.1107/S0021889899006020 10.1039/C6DT02559E 10.1021/acscentsci.5b00338 10.1103/PhysRev.154.215 10.1039/C6CC00300A 10.1021/ed085p532 10.1039/C5SC04295J 10.1107/S0021889807067908 10.1039/c6dt02559e 10.1038/NMAT2420 10.1039/c6cc00300a 10.1038/NMAT3182 10.1039/c5sc04295j 10.1039/c1cs15115k |
ContentType | Journal Article |
Copyright | Copyright © 2016 American Chemical Society |
Copyright_xml | – notice: Copyright © 2016 American Chemical Society |
DBID | AAYXX CITATION 17B 1KM BLEPL DTL EGQ GYFQL NPM 7X8 7S9 L.6 |
DOI | 10.1021/jacs.6b05574 |
DatabaseName | CrossRef Web of Knowledge Index Chemicus Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) Web of Science - Science Citation Index Expanded - 2016 PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Web of Science PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic Web of Science |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KM name: Index Chemicus url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 11244 |
ExternalDocumentID | 27517709 000382901800034 10_1021_jacs_6b05574 a022726697 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Fondazione Ente Cassa di Risparmio di Firenze; Fondazione Cassa Risparmio Firenze – fundername: European Research Council (ERC) through AdG MolNano-MaS; European Research Council (ERC) grantid: 267746 – fundername: Italian MIUR through the project Futuro in Ricerca grantid: RBFR12RPD1 – fundername: European Research Council grantid: 267746 |
GroupedDBID | - .K2 02 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 17B 1KM AAYWT BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a395t-13b3fb77bbdb95f604e76d0f647dc5a0d44f5c305c95e72c16b04a1f0798aed3 |
IEDL.DBID | ACS |
ISICitedReferencesCount | 209 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000382901800034 |
ISSN | 0002-7863 1520-5126 |
IngestDate | Fri Jul 11 02:12:43 EDT 2025 Thu Jul 10 23:03:18 EDT 2025 Mon Jul 21 06:04:06 EDT 2025 Wed Aug 06 02:40:49 EDT 2025 Fri Aug 29 15:56:15 EDT 2025 Tue Jul 01 04:33:31 EDT 2025 Thu Apr 24 23:09:19 EDT 2025 Thu Aug 27 13:42:12 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 35 |
Keywords | SPIN-LATTICE-RELAXATION ELECTRON DESIGN NITROXYL RADICALS COMPLEXES PARAMAGNETIC RELAXATION LONG COHERENCE TRANSITIONS |
Language | English |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-a395t-13b3fb77bbdb95f604e76d0f647dc5a0d44f5c305c95e72c16b04a1f0798aed3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3783-2700 0000-0003-4001-8363 0000-0001-8128-8031 0000-0003-4785-1331 0000-0002-4044-5720 0000-0003-1357-6159 |
OpenAccessLink | http://hdl.handle.net/2158/1053387 |
PMID | 27517709 |
PQID | 1817844199 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | acs_journals_10_1021_jacs_6b05574 proquest_miscellaneous_1817844199 webofscience_primary_000382901800034 crossref_primary_10_1021_jacs_6b05574 proquest_miscellaneous_2000395753 pubmed_primary_27517709 webofscience_primary_000382901800034CitationCount crossref_citationtrail_10_1021_jacs_6b05574 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20160907 2016-09-07 |
PublicationDateYYYYMMDD | 2016-09-07 |
PublicationDate_xml | – month: 09 year: 2016 text: 20160907 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | WASHINGTON |
PublicationPlace_xml | – name: WASHINGTON – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAbbrev | J AM CHEM SOC |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2016 |
Publisher | American Chemical Society Amer Chemical Soc |
Publisher_xml | – name: American Chemical Society – name: Amer Chemical Soc |
References | ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 Nielsen M. A. (ref3/cit3) 2000 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 Sheldrick G. M. (ref54/cit54) 1996 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 Gatteschi D. (ref9/cit9) 2006 Abragam A. (ref45/cit45) 1986 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 Ladd, TD (WOS:000275117500031) 2010; 464 Zadrozny, JM (WOS:000344906100009) 2014; 136 Tesi, L (WOS:000371021900055) 2016; 7 Chuang, I. L. (000382901800034.33) 2000 Hansen, TK (WOS:A1996BE80E00028) 1996; 73 Troiani, F (WOS:000290866700006) 2011; 40 DiVincenzo, DP (WOS:000165241900003) 2000; 48 KURSHEV, VV (WOS:A1990DJ21000011) 1990; 88 Balasubramanian, G (WOS:000265783500015) 2009; 8 SHRIVASTAVA, KN (WOS:A1983RA06800001) 1983; 117 Eaton, S. S. (000382901800034.13) 2002 Owenius, R (WOS:000222483500012) 2004; 108 Du, JL (WOS:A1996UJ39800013) 1996; 119 Kennedy, TA (WOS:000186523400037) 2003; 83 Pla, JJ (WOS:000309167100045) 2012; 489 HUANG, CY (WOS:A19678995900001) 1967; 154 Warner, M (WOS:000327464200038) 2013; 503 Atzori, M (WOS:000371103900021) 2016; 138 Sproules, S (WOS:000278110100070) 2010; 49 MEIBOOM, S (WOS:A1958WH51500003) 1958; 29 Stoll, S (WOS:000234722700005) 2006; 178 Aromi, G (WOS:000298854900001) 2012; 41 Macrae, CF (WOS:000253992700027) 2008; 41 Pedersen, KS (WOS:000375889100016) 2016; 138 Vaughan, R. A. (000382901800034.45) 1969 Van Vleck, JH (WOS:000201628500010) 1940; 57 Escalera-Moreno, L. (000382901800034.14) 2015 Tyryshkin, AM (WOS:000299428700014) 2012; 11 DEVROOMEN, AC (WOS:A1972N469700006) 1972; 61 Sheldrick, G. M. (000382901800034.41) 1996 Farrugia, L. J. (000382901800034.15) 1999; 32 Gatteschi, D (WOS:000268131100001) 2006 SCOTT, PL (WOS:A19621474C00039) 1962; 127 Bader, K (WOS:000371008500005) 2016; 52 Hoffmann, SK (WOS:000314794600009) 2013; 227 Ferrando-Soria, J (WOS:000374683600001) 2016; 7 Van Vleck, JH (WOS:000201563600006) 1941; 59 CARR, HY (WOS:A1954UB48000018) 1954; 94 Takahashi, S (WOS:000293447300032) 2011; 476 Tesi, L (WOS:000387028500013) 2016; 45 Jakes, P (WOS:000301747100004) 2012; 110 HANSON, GR (WOS:A1981LM32700013) 1981; 103 Bleaney, B. (000382901800034.1) 1986 MATSUBAYASHI, G (WOS:A1988R628000013) 1988; 27 Zaripov, R (WOS:000324235100004) 2013; 88 Bain, GA (WOS:000253945400021) 2008; 85 MATSUBAYASHI, GE (WOS:A1988R191800002) 1988; 154 Gomez-Coca, S (WOS:000340613800008) 2014; 5 Sato, H (WOS:000253500700008) 2008; 191 Fataftah, MS (WOS:000369558000039) 2016; 138 Bader, K (WOS:000344061500003) 2014; 5 Harbridge, JR (WOS:000185095200006) 2003; 164 PILBROW, JR (WOS:A1980JW94000002) 1980; 43 Rechkemmer, Y (WOS:000371134300001) 2016; 7 Zadrozny, JM (WOS:000373180900008) 2015; 1 de Lange, G (WOS:000282334500032) 2010; 330 Shiddiq, M (WOS:000372064300048) 2016; 531 |
References_xml | – ident: ref10/cit10 doi: 10.1021/jacs.5b11802 – ident: ref53/cit53 doi: 10.1021/ja00398a013 – ident: ref6/cit6 doi: 10.1038/nmat2420 – ident: ref49/cit49 doi: 10.1038/ncomms10467 – ident: ref26/cit26 doi: 10.1103/PhysRev.127.32 – ident: ref4/cit4 doi: 10.1038/nature08812 – ident: ref11/cit11 doi: 10.1021/jacs.6b02702 – ident: ref18/cit18 doi: 10.1021/ja507846k – ident: ref5/cit5 doi: 10.1063/1.1626791 – ident: ref21/cit21 doi: 10.1021/jacs.5b13408 – ident: ref52/cit52 doi: 10.15227/orgsyn.073.0270 – ident: ref46/cit46 doi: 10.1016/j.jmr.2012.11.026 – volume-title: Electron Paramagnetic Resonance of Transition Ions year: 1986 ident: ref45/cit45 – ident: ref14/cit14 doi: 10.1038/nature10314 – ident: ref35/cit35 doi: 10.1038/ncomms5300 – volume-title: Programs for the Refinement of Crystal Structures year: 1996 ident: ref54/cit54 – volume-title: Molecular nanomagnets year: 2006 ident: ref9/cit9 doi: 10.1093/acprof:oso/9780198567530.001.0001 – ident: ref12/cit12 doi: 10.1038/nature16984 – ident: ref30/cit30 doi: 10.1016/j.jmr.2005.08.013 – ident: ref38/cit38 doi: 10.1007/0-306-47109-4_2 – ident: ref22/cit22 doi: 10.1016/S0020-1693(00)90128-2 – ident: ref24/cit24 doi: 10.1021/ic100344f – ident: ref13/cit13 doi: 10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E – ident: ref51/cit51 – ident: ref17/cit17 doi: 10.1038/ncomms6304 – ident: ref16/cit16 doi: 10.1038/nature12597 – ident: ref33/cit33 doi: 10.1016/j.jmr.2007.12.003 – ident: ref32/cit32 doi: 10.1080/00268976.2011.640954 – ident: ref15/cit15 doi: 10.1038/ncomms11377 – ident: ref40/cit40 doi: 10.1063/1.1716296 – ident: ref28/cit28 doi: 10.1103/PhysRev.57.426 – ident: ref29/cit29 doi: 10.1016/0031-8914(72)90070-5 – ident: ref25/cit25 doi: 10.1103/PhysRev.59.724 – ident: ref36/cit36 doi: 10.1006/jmra.1996.0079 – ident: ref34/cit34 doi: 10.1021/jp036020f – ident: ref2/cit2 doi: 10.1039/C1CS15115K – ident: ref31/cit31 doi: 10.1088/0034-4885/43/4/002 – ident: ref42/cit42 doi: 10.1126/science.1192739 – ident: ref23/cit23 doi: 10.1021/ic00299a013 – ident: ref41/cit41 doi: 10.1016/S1090-7807(03)00182-4 – ident: ref1/cit1 doi: 10.1039/c0cs00158a – ident: ref43/cit43 doi: 10.1103/PhysRevB.88.094418 – ident: ref39/cit39 doi: 10.1103/PhysRev.94.630 – ident: ref37/cit37 doi: 10.1002/pssb.2221170202 – ident: ref8/cit8 doi: 10.1038/nmat3182 – volume-title: Quantum Computation and Quantum Information year: 2000 ident: ref3/cit3 – ident: ref27/cit27 doi: 10.1007/978-1-4899-6539-4 – ident: ref7/cit7 doi: 10.1038/nature11449 – ident: ref44/cit44 doi: 10.1016/0022-2364(90)90113-N – ident: ref55/cit55 doi: 10.1107/S0021889899006020 – ident: ref47/cit47 doi: 10.1039/C6DT02559E – ident: ref19/cit19 doi: 10.1021/acscentsci.5b00338 – ident: ref48/cit48 doi: 10.1103/PhysRev.154.215 – ident: ref50/cit50 doi: 10.1039/C6CC00300A – ident: ref57/cit57 doi: 10.1021/ed085p532 – ident: ref20/cit20 doi: 10.1039/C5SC04295J – ident: ref56/cit56 doi: 10.1107/S0021889807067908 – start-page: 199 year: 1969 ident: 000382901800034.45 publication-title: Electron spin relaxation phenomena in solids – volume: 29 start-page: 688 year: 1958 ident: WOS:A1958WH51500003 article-title: MODIFIED SPIN-ECHO METHOD FOR MEASURING NUCLEAR RELAXATION TIMES publication-title: REVIEW OF SCIENTIFIC INSTRUMENTS – volume: 138 start-page: 5801 year: 2016 ident: WOS:000375889100016 article-title: Toward Molecular 4f Single-Ion Magnet Qubits publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.6b02702 – volume: 59 start-page: 724 year: 1941 ident: WOS:000201563600006 article-title: Paramagnetic relaxation and the equilibrium of lattice oscillators publication-title: PHYSICAL REVIEW – volume: 164 start-page: 44 year: 2003 ident: WOS:000185095200006 article-title: Comparison of electron spin relaxation times measured by Carr-Purcell-Meiboom-Gill and two-pulse spin-echo sequences publication-title: JOURNAL OF MAGNETIC RESONANCE doi: 10.1016/S1090-7807(03)00182-4 – volume: 5 start-page: ARTN 4300 year: 2014 ident: WOS:000340613800008 article-title: Origin of slow magnetic relaxation in Kramers ions with non-uniaxial anisotropy publication-title: NATURE COMMUNICATIONS doi: 10.1038/ncomms5300 – volume: 1 start-page: 488 year: 2015 ident: WOS:000373180900008 article-title: Millisecond Coherence Time in a Tunable Molecular Electronic Spin Qubit publication-title: ACS CENTRAL SCIENCE doi: 10.1021/acscentsci.5b00338 – volume: 45 start-page: 16635 year: 2016 ident: WOS:000387028500013 article-title: Giant spin-phonon bottleneck effects in evaporable vanadyl-based molecules with long spin coherence publication-title: DALTON TRANSACTIONS doi: 10.1039/c6dt02559e – volume: 8 start-page: 383 year: 2009 ident: WOS:000265783500015 article-title: Ultralong spin coherence time in isotopically engineered diamond publication-title: NATURE MATERIALS doi: 10.1038/NMAT2420 – year: 2015 ident: 000382901800034.14 publication-title: Theoretical determination of the spin-vibration coupling in the highly coherent molecular spin qubit [Cu(mnt)2]2 – volume: 41 start-page: 466 year: 2008 ident: WOS:000253992700027 article-title: Mercury CSD 2.0 - new features for the visualization and investigation of crystal structures publication-title: JOURNAL OF APPLIED CRYSTALLOGRAPHY doi: 10.1107/S0021889807067908 – volume: 7 start-page: ARTN 11377 year: 2016 ident: WOS:000374683600001 article-title: A modular design of molecular qubits to implement universal quantum gates publication-title: NATURE COMMUNICATIONS doi: 10.1038/ncomms11377 – volume: 32 start-page: 837 year: 1999 ident: 000382901800034.15 article-title: Wingx: suite for small-molecule single-crystal crystallography publication-title: J. Appl. Crystallogr. – year: 1996 ident: 000382901800034.41 publication-title: Programs for the Refinement of Crystal Structures – volume: 88 start-page: 126 year: 1990 ident: WOS:A1990DJ21000011 article-title: CARR-PURCELL TRAIN IN THE CONDITIONS OF PARTIAL EXCITATION OF MAGNETIC-RESONANCE SPECTRUM publication-title: JOURNAL OF MAGNETIC RESONANCE – volume: 52 start-page: 3623 year: 2016 ident: WOS:000371008500005 article-title: Tuning of molecular qubits: very long coherence and spin-lattice relaxation times publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c6cc00300a – start-page: 29 year: 2002 ident: 000382901800034.13 publication-title: Distance Measurements in Biological Systems by EPR – volume: 57 start-page: 426 year: 1940 ident: WOS:000201628500010 article-title: Paramagnetic relaxation times for titanium and chrome alum publication-title: PHYSICAL REVIEW – volume: 127 start-page: 32 year: 1962 ident: WOS:A19621474C00039 article-title: SPIN-LATTICE RELAXATION IN SOME RARE-EARTH SALTS AT HELIUM TEMPERATURES - OBSERVATION OF PHONON BOTTLENECK publication-title: PHYSICAL REVIEW – volume: 40 start-page: 3119 year: 2011 ident: WOS:000290866700006 article-title: Molecular spins for quantum information technologies publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c0cs00158a – volume: 117 start-page: 437 year: 1983 ident: WOS:A1983RA06800001 article-title: THEORY OF SPIN-LATTICE RELAXATION publication-title: PHYSICA STATUS SOLIDI B-BASIC RESEARCH – volume: 154 start-page: 215 year: 1967 ident: WOS:A19678995900001 article-title: OPTICAL PHONONS IN ELECTRON SPIN RELAXATION publication-title: PHYSICAL REVIEW – year: 2000 ident: 000382901800034.33 publication-title: Quantum Computation and Quantum Information – volume: 531 start-page: 348 year: 2016 ident: WOS:000372064300048 article-title: Enhancing coherence in molecular spin qubits via atomic clock transitions publication-title: NATURE doi: 10.1038/nature16984 – volume: 110 start-page: 277 year: 2012 ident: WOS:000301747100004 article-title: Characterization of tetravalent vanadium functional centres in metal oxides derived from a spin-Hamiltonian analysis publication-title: MOLECULAR PHYSICS doi: 10.1080/00268976.2011.640954 – year: 1986 ident: 000382901800034.1 publication-title: Electron Paramagnetic Resonance of Transition Ions – volume: 48 start-page: 771 year: 2000 ident: WOS:000165241900003 article-title: The physical implementation of quantum computation publication-title: FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS – volume: 330 start-page: 60 year: 2010 ident: WOS:000282334500032 article-title: Universal Dynamical Decoupling of a Single Solid-State Spin from a Spin Bath publication-title: SCIENCE doi: 10.1126/science.1192739 – volume: 11 start-page: 143 year: 2012 ident: WOS:000299428700014 article-title: Electron spin coherence exceeding seconds in high-purity silicon publication-title: NATURE MATERIALS doi: 10.1038/NMAT3182 – volume: 108 start-page: 9475 year: 2004 ident: WOS:000222483500012 article-title: Frequency dependence of electron spin relaxation of nitroxyl radicals in fluid solution publication-title: JOURNAL OF PHYSICAL CHEMISTRY B doi: 10.1021/jp036020f – volume: 178 start-page: 42 year: 2006 ident: WOS:000234722700005 article-title: EasySpin, a comprehensive software package for spectral simulation and analysis in EPR publication-title: JOURNAL OF MAGNETIC RESONANCE doi: 10.1016/j.jmr.2005.08.013 – volume: 136 start-page: 15841 year: 2014 ident: WOS:000344906100009 article-title: Multiple Quantum Coherences from Hyperfine Transitions in a Vanadium(IV) Complex publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja507846k – volume: 138 start-page: 2154 year: 2016 ident: WOS:000371103900021 article-title: Room-Temperature Quantum Coherence and Rabi Oscillations in Vanadyl Phthalocyanine: Toward Multifunctional Molecular Spin Qubits publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.5b13408 – volume: 27 start-page: 4744 year: 1988 ident: WOS:A1988R628000013 article-title: SPECTROSCOPIC AND ELECTRICAL-PROPERTIES OF VO (2-THIOXO-1,3-DITHIOLE-4,5-DITHIOLATE)2 AND V (2-THIOXO-1,3-DITHIOLE-4,5-DITHIOLATE)3 ANION COMPLEXES AND X-RAY CRYSTAL-STRUCTURE OF [N-METHYLPHENAZINIUM]2[V(2-THIOXO-1,3-DITHIOLE-4,5-DITHOLATE(3] publication-title: INORGANIC CHEMISTRY – volume: 103 start-page: 1953 year: 1981 ident: WOS:A1981LM32700013 article-title: ELECTRONIC-PROPERTIES OF THIOLATE COMPOUNDS OF OXOMOLYBDENUM(V) AND THEIR TUNGSTEN AND SELENIUM ANALOGS - EFFECTS OF O-17,MO-98, MO-95 ISOTOPE SUBSTITUTION UPON ESR-SPECTRA publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 94 start-page: 630 year: 1954 ident: WOS:A1954UB48000018 article-title: EFFECTS OF DIFFUSION ON FREE PRECESSION IN NUCLEAR MAGNETIC RESONANCE EXPERIMENTS publication-title: PHYSICAL REVIEW – volume: 43 start-page: 433 year: 1980 ident: WOS:A1980JW94000002 article-title: LOW-SYMMETRY EFFECTS IN ELECTRON-PARAMAGNETIC RESONANCE publication-title: REPORTS ON PROGRESS IN PHYSICS – volume: 138 start-page: 1344 year: 2016 ident: WOS:000369558000039 article-title: Employing Forbidden Transitions as Qubits in a Nuclear Spin-Free Chromium Complex publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.5b11802 – volume: 83 start-page: 4190 year: 2003 ident: WOS:000186523400037 article-title: Long coherence times at 300 K for nitrogen-vacancy center spins in diamond grown by chemical vapor deposition publication-title: APPLIED PHYSICS LETTERS doi: 10.1063/1.1626791 – volume: 88 start-page: ARTN 094418 year: 2013 ident: WOS:000324235100004 article-title: Boosting the electron spin coherence in binuclear Mn complexes by multiple microwave pulses publication-title: PHYSICAL REVIEW B doi: 10.1103/PhysRevB.88.094418 – volume: 7 start-page: 2074 year: 2016 ident: WOS:000371021900055 article-title: Quantum coherence in a processable vanadyl complex: new tools for the search of molecular spin qubits publication-title: CHEMICAL SCIENCE doi: 10.1039/c5sc04295j – volume: 227 start-page: 51 year: 2013 ident: WOS:000314794600009 article-title: Raman electron spin-lattice relaxation with the Debye-type and with real phonon spectra in crystals publication-title: JOURNAL OF MAGNETIC RESONANCE doi: 10.1016/j.jmr.2012.11.026 – volume: 154 start-page: 133 year: 1988 ident: WOS:A1988R191800002 article-title: X-RAY MOLECULAR-STRUCTURE OF BIS(TETRABUTYL-AMMONIUM)-BIS(4,5-DIMERCAPTO-1,3-DITHIOLE-2-THIONATE)OXOMOLYBDENUM AND ITS OXIDATION publication-title: INORGANICA CHIMICA ACTA – volume: 61 start-page: 241 year: 1972 ident: WOS:A1972N469700006 article-title: ELECTRON SPIN-LATTICE RELAXATION OF ZEEMAN AND INTERACTION SYSTEMS IN CUCS2(SO4)2.6H2O publication-title: PHYSICA – volume: 5 start-page: ARTN 5304 year: 2014 ident: WOS:000344061500003 article-title: Room temperature quantum coherence in a potential molecular qubit publication-title: NATURE COMMUNICATIONS doi: 10.1038/ncomms6304 – volume: 7 start-page: ARTN 10467 year: 2016 ident: WOS:000371134300001 article-title: A four-coordinate cobalt(II) single-ion magnet with coercivity and a very high energy barrier publication-title: NATURE COMMUNICATIONS doi: 10.1038/ncomms10467 – volume: 119 start-page: 240 year: 1996 ident: WOS:A1996UJ39800013 article-title: Electron spin relaxation in vanadyl, copper(II), and silver(II) porphyrins in glassy solvents and doped solids publication-title: JOURNAL OF MAGNETIC RESONANCE SERIES A – volume: 191 start-page: 66 year: 2008 ident: WOS:000253500700008 article-title: Electron spin-lattice relaxation of nitroxyl radicals in temperature ranges that span glassy solutions to low-viscosity liquids publication-title: JOURNAL OF MAGNETIC RESONANCE doi: 10.1016/j.jmr.2007.12.003 – volume: 503 start-page: 504 year: 2013 ident: WOS:000327464200038 article-title: Potential for spin-based information processing in a thin-film molecular semiconductor publication-title: NATURE doi: 10.1038/nature12597 – volume: 85 start-page: 532 year: 2008 ident: WOS:000253945400021 article-title: Diamagnetic corrections and Pascal's constants publication-title: JOURNAL OF CHEMICAL EDUCATION – volume: 476 start-page: 76 year: 2011 ident: WOS:000293447300032 article-title: Decoherence in crystals of quantum molecular magnets publication-title: NATURE doi: 10.1038/nature10314 – volume: 73 start-page: 270 year: 1996 ident: WOS:A1996BE80E00028 article-title: 4,5-dibenzoyl-1,3-dithiole-1-thione - (Benzenecarbothioic acid, S,S'-(2-thioxo-1,3-dithiole-4,5-diyl)ester) publication-title: ORGANIC SYNTHESIS, VOL 73 – volume: 49 start-page: 5241 year: 2010 ident: WOS:000278110100070 article-title: Six-Membered Electron Transfer Series [V(dithiolene)(3)](Z) (z=1+, 0, 1-, 2-, 3-, 4-). An X-ray Absorption Spectroscopic and Density Functional Theoretical Study publication-title: INORGANIC CHEMISTRY doi: 10.1021/ic100344f – start-page: 1 year: 2006 ident: WOS:000268131100001 article-title: MOLECULAR NANOMAGNETS INTRODUCTION publication-title: MOLECULAR NANOMAGNETS – volume: 489 start-page: 541 year: 2012 ident: WOS:000309167100045 article-title: A single-atom electron spin qubit in silicon publication-title: NATURE doi: 10.1038/nature11449 – volume: 464 start-page: 45 year: 2010 ident: WOS:000275117500031 article-title: Quantum computers publication-title: NATURE doi: 10.1038/nature08812 – volume: 41 start-page: 537 year: 2012 ident: WOS:000298854900001 article-title: Design of magnetic coordination complexes for quantum computing publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c1cs15115k |
SSID | ssj0004281 |
Score | 2.5257587 |
Snippet | In the search for long-lived quantum coherence in spin systems, vanadium(IV) complexes have shown record phase memory times among molecular systems. When... In the search for long-lived quantum coherence in spin systems, vanadium(IV) complexes have shown record phase memory times among molecular systems. When... |
Source | Web of Science |
SourceID | proquest pubmed webofscience crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 11234 |
SubjectTerms | ambient temperature Chemistry Chemistry, Multidisciplinary electron paramagnetic resonance spectroscopy ligands memory Physical Sciences Science & Technology vanadium |
Title | Quantum Coherence Times Enhancement in Vanadium(IV)-based Potential Molecular Qubits: the Key Role of the Vanadyl Moiety |
URI | http://dx.doi.org/10.1021/jacs.6b05574 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000382901800034 https://www.ncbi.nlm.nih.gov/pubmed/27517709 https://www.proquest.com/docview/1817844199 https://www.proquest.com/docview/2000395753 |
Volume | 138 |
WOS | 000382901800034 |
WOSCitedRecordID | wos000382901800034 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7xOJRLgZbSBVoZiUpFVVZxYsdJb9WKVxEIWoq4rWzHUVct2YpNJODXd8abLBRYlUukxGMntseZz54XwJYIC8e5sQHKRhMIbeNA69wEceq44xq3uZoO9I-Ok_0f4uuFvLgzkH2owY8oPpAddRNDsaLELMxHCa5fgkC973f-j1HKW5ir0iRuDNwf1iYBZEf_CqBHqPJJAeSFze4i7LUuO2Mbk1_dujJde_s4guN_-rEELxu8yb6MGWQZZlz5Cl702jRvr-H6tMbBrS8ZOWp41z_m3ULYTvmTOIJOD9mgZOfeOqy-_Hhwvh2Q7MvZybAiWyNs_qhNsstOazOoRp8Z4kp26G7YNyxhw8Lf-yZuiJoMRVfgbHfnrLcfNOkYAh1nkpLWm7gwShmTm0wWSSicSvKwSITKrdRhLkQhLf4_bCadiizHzgrNi1DhhLs8fgNz5bB0b4FpZaVBXGak1oKL3FiF20C8FkIrbLkDmzhY_WY1jfpeUR7hRoWeNkPYgU_tNPZtE86csmr8nkL9YUL9ZxzGYwrdZssRfZwHUp7o0g1r_IaUqxSxY5ZNp4m8qzMC4LgDq2N2mrwtUpIrFWLtrfv8NSn3OlpSaqc-ZlAH-HPIek3PKYBBtfaMYVuHBYR8ibeSUxswV13V7h3Cqsq892vqL8K1G6E |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_BeBgvML7LBnjSkEAoU5zYccLbVG3q2FoxKNPeIttxxARLEUmkjb-eOzfpYFCpL5ESnx1_XHI_-74AdkRYOs6NDVA2mkBoGwdaFyaIU8cd17jN1XSgP54koy_iw5k865zVyRcGO1FjS7VX4l9HF6AwQfgwMRQyStyGO4hDImLoveHnazfIKOU92lVpEnd27jdrkxyy9d9y6B9w-V855GXOwX2YLHrrTU2-7baN2bW_bgRyXHk4G3CvQ59sb84uD-CWqx7C-rBP-vYILk9anOr2gpHbhncEZN5JhO1XX4k_6CyRnVfs1NuKtRdvDk_fBiQJC_Zx1pDlETY_7lPuspPWnDf1e4Yokx25K_YJS9is9Pe-iSuiJrPRxzA92J8OR0GXnCHQcSYphb2JS6OUMYXJZJmEwqmkCMtEqMJKHRZClNLi38Rm0qnIchys0LwMFS6_K-InsFbNKvcMmFZWGkRpRmotuCiMVbgpxGsptMKWB7CNk5V331ade7V5hNsWetpN4QDe9auZ2y64OeXY-L6E-vWC-sc8qMcSuu2eMXJcB1Kl6MrNWuxDylWKSDLLltNE3vEZ4XA8gKdzrlq8LVKSKxVi7Z0_2WxR7jW2pOJOfQShAfBVyIbdyCmcQfN8hWl7Beuj6fg4Pz6cHG3CXQSDibefU1uw1vxs3QsEXI156T-z3-Z6JAI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB6VIgEv3MdyulKRQChVnNhxwlu1dNVSWrWlVH2LfEVU0GxFEony65nxJgsUViovkRJPHB_jzGfPBbAq4spzbmyEstFEQts00tqZKM0991zjNlfTgf7Obrb5Sbw_lsdLwAdfGGxEgzU1QYlPq_rMVX2EAQoVhAWZobBR4gpcJY0dMfX6-OMvV8gk5wPiVXmW9rbuF98mWWSbP2XRXwDzn7IoyJ3JLTiYtziYm3xZ61qzZn9cCOb4X126DTd7FMrWZ2xzB5Z8fReuj4fkb_fg-36HQ96dMnLfCA6BLDiLsI36M_EJnSmyk5odBZux7vTV1tHriCSiY3vTliyQsPqdIfUu2-_MSdu8ZYg22bY_ZwdYwqZVuA9VnBM1mY_eh8PJxuF4M-qTNEQ6LSSlsjdpZZQyxplCVlksvMpcXGVCOSt17ISopMW_ii2kV4nl2FmheRUrZAPv0gewXE9r_wiYVlYaRGtGai24cMYq3BzitRJaYc0jWMHBKvs11pRBfZ7g9oWe9kM4gjfDjJa2D3JOuTa-LqB-Oac-mwX3WEC3MjBHifNAKhVd-2mHbci5yhFRFsVimiQ4QCMsTkfwcMZZ868lSnKlYnx79XdWm5cHzS2puvMQSWgE_DJk477nFNagfXyJYXsB1_beTcoPW7vbT-AGYsIsmNGpp7Dcfuv8M8RdrXkeVtpPVGcmhQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Coherence+Times+Enhancement+in+Vanadium%28IV%29-based+Potential+Molecular+Qubits%3A+the+Key+Role+of+the+Vanadyl+Moiety&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Atzori%2C+Matteo&rft.au=Morra%2C+Elena&rft.au=Tesi%2C+Lorenzo&rft.au=Albino%2C+Andrea&rft.date=2016-09-07&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=138&rft.issue=35&rft.spage=11234&rft.epage=11244&rft_id=info:doi/10.1021%2Fjacs.6b05574&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_jacs_6b05574 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |