Quantum Coherence Times Enhancement in Vanadium(IV)-based Potential Molecular Qubits: the Key Role of the Vanadyl Moiety

In the search for long-lived quantum coherence in spin systems, vanadium­(IV) complexes have shown record phase memory times among molecular systems. When nuclear spin-free ligands are employed, vanadium­(IV) complexes can show at low temperature sufficiently long quantum coherence times, T m, to pe...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 138; no. 35; pp. 11234 - 11244
Main Authors Atzori, Matteo, Morra, Elena, Tesi, Lorenzo, Albino, Andrea, Chiesa, Mario, Sorace, Lorenzo, Sessoli, Roberta
Format Journal Article
LanguageEnglish
Published WASHINGTON American Chemical Society 07.09.2016
Amer Chemical Soc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the search for long-lived quantum coherence in spin systems, vanadium­(IV) complexes have shown record phase memory times among molecular systems. When nuclear spin-free ligands are employed, vanadium­(IV) complexes can show at low temperature sufficiently long quantum coherence times, T m, to perform quantum operations, but their use in real devices operating at room temperature is still hampered by the rapid decrease of T 1 caused by the efficient spin–phonon coupling. In this work we have investigated the effect of different coordination environments on the magnetization dynamics and the quantum coherence of two vanadium­(IV)-based potential molecular spin qubits in the solid state by introducing a unique structural difference, i.e., an oxovanadium­(IV) in a square pyramidal versus a vanadium­(IV) in an octahedral environment featuring the same coordinating ligand, namely, the 1,3-dithiole-2-thione-4,5-dithiolate. This investigation, performed by a combined approach of alternate current (ac) susceptibility measurements and continuous wave (CW) and pulsed electron paramagnetic resonance (EPR) spectroscopies revealed that the effectiveness of the vanadyl moiety in enhancing quantum coherence up to room temperature is related to a less effective mechanism of spin–lattice relaxation that can be quantitatively evaluated by the exponent n (ca. 3) of the temperature dependence of the relaxation rate. A more rapid collapse is observed for the non-oxo counterpart (n = 4) hampering the observation of quantum coherence at room temperature. Record coherence time at room temperature (1.04 μs) and Rabi oscillations are also observed for the vanadyl derivative in a very high concentrated material (5 ± 1%) as a result of the additional benefit provided by the use of a nuclear spin-free ligand.
AbstractList In the search for long-lived quantum coherence in spin systems, vanadium(IV) complexes have shown record phase memory times among molecular systems. When nuclear spin-free ligands are employed, vanadium(IV) complexes can show at low temperature sufficiently long quantum coherence times, Tm, to perform quantum operations, but their use in real devices operating at room temperature is still hampered by the rapid decrease of T1 caused by the efficient spin-phonon coupling. In this work we have investigated the effect of different coordination environments on the magnetization dynamics and the quantum coherence of two vanadium(IV)-based potential molecular spin qubits in the solid state by introducing a unique structural difference, i.e., an oxovanadium(IV) in a square pyramidal versus a vanadium(IV) in an octahedral environment featuring the same coordinating ligand, namely, the 1,3-dithiole-2-thione-4,5-dithiolate. This investigation, performed by a combined approach of alternate current (ac) susceptibility measurements and continuous wave (CW) and pulsed electron paramagnetic resonance (EPR) spectroscopies revealed that the effectiveness of the vanadyl moiety in enhancing quantum coherence up to room temperature is related to a less effective mechanism of spin-lattice relaxation that can be quantitatively evaluated by the exponent n (ca. 3) of the temperature dependence of the relaxation rate. A more rapid collapse is observed for the non-oxo counterpart (n = 4) hampering the observation of quantum coherence at room temperature. Record coherence time at room temperature (1.04 μs) and Rabi oscillations are also observed for the vanadyl derivative in a very high concentrated material (5 ± 1%) as a result of the additional benefit provided by the use of a nuclear spin-free ligand.
In the search for long-lived quantum coherence in spin systems, vanadium(IV) complexes have shown record phase memory times among molecular systems. When nuclear spin-free ligands are employed, vanadium(IV) complexes can show at low temperature sufficiently long quantum coherence times, Tₘ, to perform quantum operations, but their use in real devices operating at room temperature is still hampered by the rapid decrease of T₁ caused by the efficient spin–phonon coupling. In this work we have investigated the effect of different coordination environments on the magnetization dynamics and the quantum coherence of two vanadium(IV)-based potential molecular spin qubits in the solid state by introducing a unique structural difference, i.e., an oxovanadium(IV) in a square pyramidal versus a vanadium(IV) in an octahedral environment featuring the same coordinating ligand, namely, the 1,3-dithiole-2-thione-4,5-dithiolate. This investigation, performed by a combined approach of alternate current (ac) susceptibility measurements and continuous wave (CW) and pulsed electron paramagnetic resonance (EPR) spectroscopies revealed that the effectiveness of the vanadyl moiety in enhancing quantum coherence up to room temperature is related to a less effective mechanism of spin–lattice relaxation that can be quantitatively evaluated by the exponent n (ca. 3) of the temperature dependence of the relaxation rate. A more rapid collapse is observed for the non-oxo counterpart (n = 4) hampering the observation of quantum coherence at room temperature. Record coherence time at room temperature (1.04 μs) and Rabi oscillations are also observed for the vanadyl derivative in a very high concentrated material (5 ± 1%) as a result of the additional benefit provided by the use of a nuclear spin-free ligand.
In the search for long-lived quantum coherence in spin systems, vanadium­(IV) complexes have shown record phase memory times among molecular systems. When nuclear spin-free ligands are employed, vanadium­(IV) complexes can show at low temperature sufficiently long quantum coherence times, T m, to perform quantum operations, but their use in real devices operating at room temperature is still hampered by the rapid decrease of T 1 caused by the efficient spin–phonon coupling. In this work we have investigated the effect of different coordination environments on the magnetization dynamics and the quantum coherence of two vanadium­(IV)-based potential molecular spin qubits in the solid state by introducing a unique structural difference, i.e., an oxovanadium­(IV) in a square pyramidal versus a vanadium­(IV) in an octahedral environment featuring the same coordinating ligand, namely, the 1,3-dithiole-2-thione-4,5-dithiolate. This investigation, performed by a combined approach of alternate current (ac) susceptibility measurements and continuous wave (CW) and pulsed electron paramagnetic resonance (EPR) spectroscopies revealed that the effectiveness of the vanadyl moiety in enhancing quantum coherence up to room temperature is related to a less effective mechanism of spin–lattice relaxation that can be quantitatively evaluated by the exponent n (ca. 3) of the temperature dependence of the relaxation rate. A more rapid collapse is observed for the non-oxo counterpart (n = 4) hampering the observation of quantum coherence at room temperature. Record coherence time at room temperature (1.04 μs) and Rabi oscillations are also observed for the vanadyl derivative in a very high concentrated material (5 ± 1%) as a result of the additional benefit provided by the use of a nuclear spin-free ligand.
In the search for long-lived quantum coherence in spin systems, vanadium(IV) complexes have shown record phase memory times among molecular systems. When nuclear spin-free ligands are employed, vanadium(IV) complexes can show at low temperature sufficiently long quantum coherence times, Tm, to perform quantum operations, but their use in real devices operating at room temperature is still hampered by the rapid decrease of T1 caused by the efficient spin-phonon coupling. In this work we have investigated the effect of different coordination environments on the magnetization dynamics and the quantum coherence of two vanadium(IV)-based potential molecular spin qubits in the solid state by introducing a unique structural difference, i.e., an oxovanadium(IV) in a square pyramidal versus a vanadium(IV) in an octahedral environment featuring the same coordinating ligand, namely, the 1,3-dithiole-2-thione-4,5-dithiolate. This investigation, performed by a combined approach of alternate current (ac) susceptibility measurements and continuous wave (CW) and pulsed electron paramagnetic resonance (EPR) spectroscopies revealed that the effectiveness of the vanadyl moiety in enhancing quantum coherence up to room temperature is related to a less effective mechanism of spin-lattice relaxation that can be quantitatively evaluated by the exponent n (ca. 3) of the temperature dependence of the relaxation rate. A more rapid collapse is observed for the non-oxo counterpart (n = 4) hampering the observation of quantum coherence at room temperature. Record coherence time at room temperature (1.04 μs) and Rabi oscillations are also observed for the vanadyl derivative in a very high concentrated material (5 ± 1%) as a result of the additional benefit provided by the use of a nuclear spin-free ligand.In the search for long-lived quantum coherence in spin systems, vanadium(IV) complexes have shown record phase memory times among molecular systems. When nuclear spin-free ligands are employed, vanadium(IV) complexes can show at low temperature sufficiently long quantum coherence times, Tm, to perform quantum operations, but their use in real devices operating at room temperature is still hampered by the rapid decrease of T1 caused by the efficient spin-phonon coupling. In this work we have investigated the effect of different coordination environments on the magnetization dynamics and the quantum coherence of two vanadium(IV)-based potential molecular spin qubits in the solid state by introducing a unique structural difference, i.e., an oxovanadium(IV) in a square pyramidal versus a vanadium(IV) in an octahedral environment featuring the same coordinating ligand, namely, the 1,3-dithiole-2-thione-4,5-dithiolate. This investigation, performed by a combined approach of alternate current (ac) susceptibility measurements and continuous wave (CW) and pulsed electron paramagnetic resonance (EPR) spectroscopies revealed that the effectiveness of the vanadyl moiety in enhancing quantum coherence up to room temperature is related to a less effective mechanism of spin-lattice relaxation that can be quantitatively evaluated by the exponent n (ca. 3) of the temperature dependence of the relaxation rate. A more rapid collapse is observed for the non-oxo counterpart (n = 4) hampering the observation of quantum coherence at room temperature. Record coherence time at room temperature (1.04 μs) and Rabi oscillations are also observed for the vanadyl derivative in a very high concentrated material (5 ± 1%) as a result of the additional benefit provided by the use of a nuclear spin-free ligand.
In the search for long-lived quantum coherence in spin systems, vanadium(IV) complexes have shown record phase memory times among molecular systems. When nuclear spin-free ligands are employed, vanadium(IV) complexes can show at low temperature sufficiently long quantum coherence times, T-m, to perform quantum operations, but their use in real devices operating at room temperature is still hampered by the rapid decrease of T-1 caused by the efficient spin phonon coupling. In this work we have investigated the effect of different coordination environments on the magnetization dynamics and the quantum coherence of two vanadium(IV)-based potential molecular spin qubits in the solid state by introducing a unique structural difference, i.e., an oxovanadium(IV) in a square pyramidal versus a vanadium(IV) in an octahedral environment featuring the same coordinating ligand, namely, the 1,3-dithiole-2-thione-4,5-dithiolate. This investigation, performed by a combined approach of alternate current (ac) susceptibility measurements and continuous wave (CW) and pulsed electron paramagnetic resonance (EPR) spectroscopies revealed that the effectiveness of the vanadyl moiety in enhancing quantum coherence up to room temperature is related to a less effective mechanism of spin-lattice relaxation that can be quantitatively evaluated by the exponent n (ca. 3) of the temperature dependence of the relaxation rate. A more rapid collapse is observed for the non-oxo counterpart (n = 4) hampering the observation of quantum coherence at room temperature. Record coherence time at room temperature (1.04 mu s) and Rabi oscillations are also observed for the vanadyl derivative in a very high concentrated material (5 +/- 1%) as a result of the additional benefit provided by the use of a nuclear spin-free ligand.
Author Tesi, Lorenzo
Sessoli, Roberta
Atzori, Matteo
Chiesa, Mario
Morra, Elena
Albino, Andrea
Sorace, Lorenzo
AuthorAffiliation Dipartimento di Chimica e NIS Centre
Università di Torino
Dipartimento di Chimica “Ugo Schiff” e INSTM
Università degli Studi di Firenze
AuthorAffiliation_xml – name: Dipartimento di Chimica “Ugo Schiff” e INSTM
– name: Università degli Studi di Firenze
– name: Dipartimento di Chimica e NIS Centre
– name: Università di Torino
Author_xml – sequence: 1
  givenname: Matteo
  surname: Atzori
  fullname: Atzori, Matteo
  email: matteo.atzori@unifi.it
– sequence: 2
  givenname: Elena
  surname: Morra
  fullname: Morra, Elena
– sequence: 3
  givenname: Lorenzo
  surname: Tesi
  fullname: Tesi, Lorenzo
– sequence: 4
  givenname: Andrea
  surname: Albino
  fullname: Albino, Andrea
– sequence: 5
  givenname: Mario
  surname: Chiesa
  fullname: Chiesa, Mario
– sequence: 6
  givenname: Lorenzo
  surname: Sorace
  fullname: Sorace, Lorenzo
– sequence: 7
  givenname: Roberta
  surname: Sessoli
  fullname: Sessoli, Roberta
  email: roberta.sessoli@unifi.it
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27517709$$D View this record in MEDLINE/PubMed
BookMark eNqNkkFv1DAQhS1URLeFG2fkYxGk2I4dJ9zQqkBFERSteo1sZ6L1KrHb2Bbsv8fphh4QCE7283xvRnqeE3TkvAOEnlNyTgmjb3bKhPNKEyEkf4RWVDBSCMqqI7QihLBC1lV5jE5C2GXJWU2foGMmBZWSNCv04zopF9OI134LEzgDeGNHCPjCbVVWI7iIrcM3yqnOpvHs8uZloVWADn_1MRetGvBnP4BJg5rwddI2hrc4bgF_gj3-livY9_f6vsV-pi3E_VP0uFdDgGfLeYo27y8264_F1ZcPl-t3V4UqGxELWuqy11Jq3elG9BXhIKuO9BWXnRGKdJz3wpREmEaAZIbmJLiiPZFNraArT9HZoe3t5O8ShNiONhgYBuXAp9CyHEoeJEX5T5TWVNac06bJ6IsFTXqErr2d7Kimffsr1wzUB-A7aN8HY-dkH7B5Zs0aQuv5xtc2qmi9W_vkYra--n9rpl8faDP5ECboH0hK2nk_2nk_2mU_Ms5-w80yPE7KDn8zLcHMjzufJpc_7M_oT_1EyRI
CitedBy_id crossref_primary_10_1039_D1DT01990B
crossref_primary_10_1039_C9DT00981G
crossref_primary_10_1103_PhysRevLett_122_037202
crossref_primary_10_1002_chem_202101922
crossref_primary_10_1021_acs_inorgchem_3c00275
crossref_primary_10_1002_asia_202200622
crossref_primary_10_1002_chem_201702047
crossref_primary_10_1021_acs_jpclett_1c01447
crossref_primary_10_1021_jacs_4c07288
crossref_primary_10_1039_C9SC02899D
crossref_primary_10_1039_D2CC02495K
crossref_primary_10_1002_chem_201900799
crossref_primary_10_1021_jacs_7b03123
crossref_primary_10_1039_C9SC00074G
crossref_primary_10_1002_qute_202300367
crossref_primary_10_1002_chem_202100845
crossref_primary_10_1038_s41467_020_15475_7
crossref_primary_10_1002_ejic_201801050
crossref_primary_10_3390_magnetochemistry7060082
crossref_primary_10_1002_adma_202208998
crossref_primary_10_1002_jcc_26005
crossref_primary_10_1038_s41467_023_36852_y
crossref_primary_10_1039_C8DT03809K
crossref_primary_10_1039_C8SC04435J
crossref_primary_10_1103_PhysRevB_99_235145
crossref_primary_10_1038_s41534_021_00466_3
crossref_primary_10_1021_acs_jpcc_3c02903
crossref_primary_10_1021_acs_macromol_3c01694
crossref_primary_10_1039_D2SC04969D
crossref_primary_10_1039_D1CS00001B
crossref_primary_10_1039_C8SC04500C
crossref_primary_10_1246_bcsj_20200257
crossref_primary_10_1021_acs_inorgchem_9b01407
crossref_primary_10_1039_D2QI01607A
crossref_primary_10_1103_PhysRevB_105_064415
crossref_primary_10_1039_D4QI00161C
crossref_primary_10_1039_D0DT01414A
crossref_primary_10_1039_D4MH01512F
crossref_primary_10_1016_j_chempr_2023_09_013
crossref_primary_10_1063_5_0226942
crossref_primary_10_1021_acs_jpclett_3c01964
crossref_primary_10_1021_jacs_4c16571
crossref_primary_10_1016_j_cplett_2019_137034
crossref_primary_10_1002_adom_202303036
crossref_primary_10_1038_s42254_021_00340_3
crossref_primary_10_1134_S0022476617050158
crossref_primary_10_1021_jacsau_3c00121
crossref_primary_10_1039_C9CC09817H
crossref_primary_10_1021_acs_inorgchem_7b01689
crossref_primary_10_1103_PhysRevApplied_18_064074
crossref_primary_10_1039_C6CP08161D
crossref_primary_10_1002_cphc_202200618
crossref_primary_10_1039_C6CC07813C
crossref_primary_10_1021_acscentsci_4c01177
crossref_primary_10_1016_j_isci_2020_100926
crossref_primary_10_1039_D2DT01564A
crossref_primary_10_1021_acs_inorgchem_7b02450
crossref_primary_10_1021_acs_jpclett_0c01681
crossref_primary_10_1039_D3NJ04614A
crossref_primary_10_1002_ange_202015058
crossref_primary_10_1016_j_ica_2020_120165
crossref_primary_10_1016_j_chempr_2016_10_010
crossref_primary_10_1002_chem_201804165
crossref_primary_10_1039_D4DT02311K
crossref_primary_10_1103_PhysRevA_107_042423
crossref_primary_10_1021_acs_inorgchem_1c01267
crossref_primary_10_1038_s41598_017_13271_w
crossref_primary_10_1039_C7SC05464E
crossref_primary_10_1007_s00894_024_06052_6
crossref_primary_10_1021_acs_inorgchem_4c00834
crossref_primary_10_1021_jacs_8b05934
crossref_primary_10_1039_D1DT01862K
crossref_primary_10_1021_acs_inorgchem_3c02265
crossref_primary_10_1038_s42004_020_00422_w
crossref_primary_10_1080_00107514_2024_2381952
crossref_primary_10_3390_magnetochemistry7080117
crossref_primary_10_1021_acs_inorgchem_4c04542
crossref_primary_10_1038_s41534_024_00838_5
crossref_primary_10_12677_NAT_2021_113022
crossref_primary_10_1063_5_0160149
crossref_primary_10_3390_molecules24244582
crossref_primary_10_1021_acs_cgd_2c00754
crossref_primary_10_1021_acs_inorgchem_8b01117
crossref_primary_10_1016_j_chempr_2023_12_024
crossref_primary_10_1038_s41534_020_00296_9
crossref_primary_10_1021_acs_inorgchem_0c02163
crossref_primary_10_1039_D2CP06026D
crossref_primary_10_1039_D4NR03484H
crossref_primary_10_1088_0256_307X_38_3_030303
crossref_primary_10_1039_C8DT02312C
crossref_primary_10_1039_D3DT02307A
crossref_primary_10_1039_D0CP00852D
crossref_primary_10_1021_acs_inorgchem_0c03259
crossref_primary_10_1039_C9CP00745H
crossref_primary_10_3390_inorganics6040101
crossref_primary_10_1039_D1SC06130E
crossref_primary_10_1016_j_poly_2020_114928
crossref_primary_10_1002_ejic_201601210
crossref_primary_10_1103_PhysRevResearch_4_043135
crossref_primary_10_1039_D4MH00454J
crossref_primary_10_1021_acs_cgd_2c01270
crossref_primary_10_1103_PhysRevB_103_014401
crossref_primary_10_1002_adma_202300472
crossref_primary_10_1039_D0QI00098A
crossref_primary_10_1021_acs_chemmater_6b05433
crossref_primary_10_1038_s41570_022_00424_3
crossref_primary_10_1039_D3QI01806G
crossref_primary_10_1038_s41467_019_11309_3
crossref_primary_10_1039_C8DT03783C
crossref_primary_10_1039_D4DT02832E
crossref_primary_10_1039_D1DT00709B
crossref_primary_10_1016_j_jinorgbio_2019_110806
crossref_primary_10_1080_00958972_2025_2453067
crossref_primary_10_1515_nanoph_2024_0420
crossref_primary_10_1002_asia_202401798
crossref_primary_10_1002_anie_202015058
crossref_primary_10_1039_C5CS00933B
crossref_primary_10_1039_D4DT01779J
crossref_primary_10_1021_acs_jpclett_7b00479
crossref_primary_10_1039_D0DT02448A
crossref_primary_10_1021_acs_inorgchem_0c02573
crossref_primary_10_1039_D0SC03107K
crossref_primary_10_1039_D1TC00851J
crossref_primary_10_1039_C7SC03749J
crossref_primary_10_1039_D0NR06114J
crossref_primary_10_1039_D2DT03999K
crossref_primary_10_1002_cphc_201800742
crossref_primary_10_1021_acs_inorgchem_6b03118
crossref_primary_10_1021_acs_nanolett_2c03161
crossref_primary_10_1002_anie_202014993
crossref_primary_10_3390_magnetochemistry2040040
crossref_primary_10_1039_C9CC01123D
crossref_primary_10_1021_acs_inorgchem_9b00286
crossref_primary_10_1021_acs_cgd_2c01362
crossref_primary_10_3390_magnetochemistry2030036
crossref_primary_10_3390_magnetochemistry8090096
crossref_primary_10_1016_j_molstruc_2019_04_098
crossref_primary_10_1039_C7NJ01071K
crossref_primary_10_1063_5_0053378
crossref_primary_10_1039_D0CC01854F
crossref_primary_10_1039_D1SC01358K
crossref_primary_10_1016_j_jmmm_2019_165325
crossref_primary_10_1126_science_aaw7505
crossref_primary_10_1002_ange_202014993
crossref_primary_10_1088_1367_2630_acf2bd
crossref_primary_10_1002_cphc_202400914
crossref_primary_10_3762_bjnano_8_96
crossref_primary_10_1039_D1DT01832A
crossref_primary_10_1002_chem_202303082
crossref_primary_10_1063_5_0072564
crossref_primary_10_1021_acs_inorgchem_7b00794
crossref_primary_10_1021_acs_jpca_0c07860
crossref_primary_10_1039_C8DT00139A
crossref_primary_10_1039_C8SC04122A
crossref_primary_10_1063_5_0211936
crossref_primary_10_1038_s42004_024_01183_6
crossref_primary_10_1039_C9CE00894B
crossref_primary_10_1039_D2CP01228F
crossref_primary_10_1007_s00723_020_01292_0
crossref_primary_10_1021_jacs_6b08467
crossref_primary_10_1039_D3SC05774G
crossref_primary_10_1103_PhysRevLett_122_013205
crossref_primary_10_1039_D1SC01506K
crossref_primary_10_1002_chem_202003052
crossref_primary_10_1002_ejic_201900942
crossref_primary_10_1021_jacs_7b01266
crossref_primary_10_1016_j_ccr_2017_03_004
crossref_primary_10_1088_2058_9565_ad985e
crossref_primary_10_1039_D0DT01597K
crossref_primary_10_1002_chem_202402660
crossref_primary_10_1021_jacs_2c08729
crossref_primary_10_3390_magnetochemistry7020024
crossref_primary_10_1002_cjoc_202400947
crossref_primary_10_1021_jacs_9b00984
crossref_primary_10_1021_acs_jpca_2c06854
crossref_primary_10_1126_sciadv_abn7880
crossref_primary_10_1021_acs_nanolett_9b03110
crossref_primary_10_1021_jacs_8b06733
crossref_primary_10_1021_acscentsci_0c00737
crossref_primary_10_1002_cphc_202200478
crossref_primary_10_1039_C6CC09824J
crossref_primary_10_1039_C8SC01695J
crossref_primary_10_1021_jacs_4c14367
crossref_primary_10_1103_PhysRevApplied_19_064060
crossref_primary_10_1021_acs_inorgchem_1c02779
crossref_primary_10_1126_sciadv_adr0168
crossref_primary_10_1021_acs_jpcc_1c06916
crossref_primary_10_1039_D3MH01926H
crossref_primary_10_1021_jacs_6b13030
crossref_primary_10_1039_D3CP01047C
crossref_primary_10_1021_acs_accounts_3c00556
crossref_primary_10_1002_ejic_201700977
crossref_primary_10_1039_D2QI02635J
crossref_primary_10_1021_acs_jpcc_2c03083
crossref_primary_10_1088_1361_6633_ad1f81
crossref_primary_10_1016_j_poly_2021_115594
crossref_primary_10_1080_23746149_2018_1435305
crossref_primary_10_1039_D3DT00024A
crossref_primary_10_1039_C9RA10851C
crossref_primary_10_1021_acs_inorgchem_7b02616
Cites_doi 10.1021/jacs.5b11802
10.1021/ja00398a013
10.1038/nmat2420
10.1038/ncomms10467
10.1103/PhysRev.127.32
10.1038/nature08812
10.1021/jacs.6b02702
10.1021/ja507846k
10.1063/1.1626791
10.1021/jacs.5b13408
10.15227/orgsyn.073.0270
10.1016/j.jmr.2012.11.026
10.1038/nature10314
10.1038/ncomms5300
10.1093/acprof:oso/9780198567530.001.0001
10.1038/nature16984
10.1016/j.jmr.2005.08.013
10.1007/0-306-47109-4_2
10.1016/S0020-1693(00)90128-2
10.1021/ic100344f
10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
10.1038/ncomms6304
10.1038/nature12597
10.1016/j.jmr.2007.12.003
10.1080/00268976.2011.640954
10.1038/ncomms11377
10.1063/1.1716296
10.1103/PhysRev.57.426
10.1016/0031-8914(72)90070-5
10.1103/PhysRev.59.724
10.1006/jmra.1996.0079
10.1021/jp036020f
10.1039/C1CS15115K
10.1088/0034-4885/43/4/002
10.1126/science.1192739
10.1021/ic00299a013
10.1016/S1090-7807(03)00182-4
10.1039/c0cs00158a
10.1103/PhysRevB.88.094418
10.1103/PhysRev.94.630
10.1002/pssb.2221170202
10.1038/nmat3182
10.1007/978-1-4899-6539-4
10.1038/nature11449
10.1016/0022-2364(90)90113-N
10.1107/S0021889899006020
10.1039/C6DT02559E
10.1021/acscentsci.5b00338
10.1103/PhysRev.154.215
10.1039/C6CC00300A
10.1021/ed085p532
10.1039/C5SC04295J
10.1107/S0021889807067908
10.1039/c6dt02559e
10.1038/NMAT2420
10.1039/c6cc00300a
10.1038/NMAT3182
10.1039/c5sc04295j
10.1039/c1cs15115k
ContentType Journal Article
Copyright Copyright © 2016 American Chemical Society
Copyright_xml – notice: Copyright © 2016 American Chemical Society
DBID AAYXX
CITATION
17B
1KM
BLEPL
DTL
EGQ
GYFQL
NPM
7X8
7S9
L.6
DOI 10.1021/jacs.6b05574
DatabaseName CrossRef
Web of Knowledge
Index Chemicus
Web of Science Core Collection
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
Web of Science - Science Citation Index Expanded - 2016
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Web of Science
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
AGRICOLA

MEDLINE - Academic
Web of Science
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 1KM
  name: Index Chemicus
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC
  sourceTypes:
    Enrichment Source
    Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 11244
ExternalDocumentID 27517709
000382901800034
10_1021_jacs_6b05574
a022726697
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Fondazione Ente Cassa di Risparmio di Firenze; Fondazione Cassa Risparmio Firenze
– fundername: European Research Council (ERC) through AdG MolNano-MaS; European Research Council (ERC)
  grantid: 267746
– fundername: Italian MIUR through the project Futuro in Ricerca
  grantid: RBFR12RPD1
– fundername: European Research Council
  grantid: 267746
GroupedDBID -
.K2
02
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
4.4
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
17B
1KM
AAYWT
BLEPL
DTL
GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED
GROUPED_WOS_WEB_OF_SCIENCE
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a395t-13b3fb77bbdb95f604e76d0f647dc5a0d44f5c305c95e72c16b04a1f0798aed3
IEDL.DBID ACS
ISICitedReferencesCount 209
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000382901800034
ISSN 0002-7863
1520-5126
IngestDate Fri Jul 11 02:12:43 EDT 2025
Thu Jul 10 23:03:18 EDT 2025
Mon Jul 21 06:04:06 EDT 2025
Wed Aug 06 02:40:49 EDT 2025
Fri Aug 29 15:56:15 EDT 2025
Tue Jul 01 04:33:31 EDT 2025
Thu Apr 24 23:09:19 EDT 2025
Thu Aug 27 13:42:12 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 35
Keywords SPIN-LATTICE-RELAXATION
ELECTRON
DESIGN
NITROXYL RADICALS
COMPLEXES
PARAMAGNETIC RELAXATION
LONG COHERENCE
TRANSITIONS
Language English
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-a395t-13b3fb77bbdb95f604e76d0f647dc5a0d44f5c305c95e72c16b04a1f0798aed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3783-2700
0000-0003-4001-8363
0000-0001-8128-8031
0000-0003-4785-1331
0000-0002-4044-5720
0000-0003-1357-6159
OpenAccessLink http://hdl.handle.net/2158/1053387
PMID 27517709
PQID 1817844199
PQPubID 23479
PageCount 11
ParticipantIDs acs_journals_10_1021_jacs_6b05574
proquest_miscellaneous_1817844199
webofscience_primary_000382901800034
crossref_primary_10_1021_jacs_6b05574
proquest_miscellaneous_2000395753
pubmed_primary_27517709
webofscience_primary_000382901800034CitationCount
crossref_citationtrail_10_1021_jacs_6b05574
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20160907
2016-09-07
PublicationDateYYYYMMDD 2016-09-07
PublicationDate_xml – month: 09
  year: 2016
  text: 20160907
  day: 07
PublicationDecade 2010
PublicationPlace WASHINGTON
PublicationPlace_xml – name: WASHINGTON
– name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAbbrev J AM CHEM SOC
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2016
Publisher American Chemical Society
Amer Chemical Soc
Publisher_xml – name: American Chemical Society
– name: Amer Chemical Soc
References ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
Nielsen M. A. (ref3/cit3) 2000
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
Sheldrick G. M. (ref54/cit54) 1996
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
Gatteschi D. (ref9/cit9) 2006
Abragam A. (ref45/cit45) 1986
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
Ladd, TD (WOS:000275117500031) 2010; 464
Zadrozny, JM (WOS:000344906100009) 2014; 136
Tesi, L (WOS:000371021900055) 2016; 7
Chuang, I. L. (000382901800034.33) 2000
Hansen, TK (WOS:A1996BE80E00028) 1996; 73
Troiani, F (WOS:000290866700006) 2011; 40
DiVincenzo, DP (WOS:000165241900003) 2000; 48
KURSHEV, VV (WOS:A1990DJ21000011) 1990; 88
Balasubramanian, G (WOS:000265783500015) 2009; 8
SHRIVASTAVA, KN (WOS:A1983RA06800001) 1983; 117
Eaton, S. S. (000382901800034.13) 2002
Owenius, R (WOS:000222483500012) 2004; 108
Du, JL (WOS:A1996UJ39800013) 1996; 119
Kennedy, TA (WOS:000186523400037) 2003; 83
Pla, JJ (WOS:000309167100045) 2012; 489
HUANG, CY (WOS:A19678995900001) 1967; 154
Warner, M (WOS:000327464200038) 2013; 503
Atzori, M (WOS:000371103900021) 2016; 138
Sproules, S (WOS:000278110100070) 2010; 49
MEIBOOM, S (WOS:A1958WH51500003) 1958; 29
Stoll, S (WOS:000234722700005) 2006; 178
Aromi, G (WOS:000298854900001) 2012; 41
Macrae, CF (WOS:000253992700027) 2008; 41
Pedersen, KS (WOS:000375889100016) 2016; 138
Vaughan, R. A. (000382901800034.45) 1969
Van Vleck, JH (WOS:000201628500010) 1940; 57
Escalera-Moreno, L. (000382901800034.14) 2015
Tyryshkin, AM (WOS:000299428700014) 2012; 11
DEVROOMEN, AC (WOS:A1972N469700006) 1972; 61
Sheldrick, G. M. (000382901800034.41) 1996
Farrugia, L. J. (000382901800034.15) 1999; 32
Gatteschi, D (WOS:000268131100001) 2006
SCOTT, PL (WOS:A19621474C00039) 1962; 127
Bader, K (WOS:000371008500005) 2016; 52
Hoffmann, SK (WOS:000314794600009) 2013; 227
Ferrando-Soria, J (WOS:000374683600001) 2016; 7
Van Vleck, JH (WOS:000201563600006) 1941; 59
CARR, HY (WOS:A1954UB48000018) 1954; 94
Takahashi, S (WOS:000293447300032) 2011; 476
Tesi, L (WOS:000387028500013) 2016; 45
Jakes, P (WOS:000301747100004) 2012; 110
HANSON, GR (WOS:A1981LM32700013) 1981; 103
Bleaney, B. (000382901800034.1) 1986
MATSUBAYASHI, G (WOS:A1988R628000013) 1988; 27
Zaripov, R (WOS:000324235100004) 2013; 88
Bain, GA (WOS:000253945400021) 2008; 85
MATSUBAYASHI, GE (WOS:A1988R191800002) 1988; 154
Gomez-Coca, S (WOS:000340613800008) 2014; 5
Sato, H (WOS:000253500700008) 2008; 191
Fataftah, MS (WOS:000369558000039) 2016; 138
Bader, K (WOS:000344061500003) 2014; 5
Harbridge, JR (WOS:000185095200006) 2003; 164
PILBROW, JR (WOS:A1980JW94000002) 1980; 43
Rechkemmer, Y (WOS:000371134300001) 2016; 7
Zadrozny, JM (WOS:000373180900008) 2015; 1
de Lange, G (WOS:000282334500032) 2010; 330
Shiddiq, M (WOS:000372064300048) 2016; 531
References_xml – ident: ref10/cit10
  doi: 10.1021/jacs.5b11802
– ident: ref53/cit53
  doi: 10.1021/ja00398a013
– ident: ref6/cit6
  doi: 10.1038/nmat2420
– ident: ref49/cit49
  doi: 10.1038/ncomms10467
– ident: ref26/cit26
  doi: 10.1103/PhysRev.127.32
– ident: ref4/cit4
  doi: 10.1038/nature08812
– ident: ref11/cit11
  doi: 10.1021/jacs.6b02702
– ident: ref18/cit18
  doi: 10.1021/ja507846k
– ident: ref5/cit5
  doi: 10.1063/1.1626791
– ident: ref21/cit21
  doi: 10.1021/jacs.5b13408
– ident: ref52/cit52
  doi: 10.15227/orgsyn.073.0270
– ident: ref46/cit46
  doi: 10.1016/j.jmr.2012.11.026
– volume-title: Electron Paramagnetic Resonance of Transition Ions
  year: 1986
  ident: ref45/cit45
– ident: ref14/cit14
  doi: 10.1038/nature10314
– ident: ref35/cit35
  doi: 10.1038/ncomms5300
– volume-title: Programs for the Refinement of Crystal Structures
  year: 1996
  ident: ref54/cit54
– volume-title: Molecular nanomagnets
  year: 2006
  ident: ref9/cit9
  doi: 10.1093/acprof:oso/9780198567530.001.0001
– ident: ref12/cit12
  doi: 10.1038/nature16984
– ident: ref30/cit30
  doi: 10.1016/j.jmr.2005.08.013
– ident: ref38/cit38
  doi: 10.1007/0-306-47109-4_2
– ident: ref22/cit22
  doi: 10.1016/S0020-1693(00)90128-2
– ident: ref24/cit24
  doi: 10.1021/ic100344f
– ident: ref13/cit13
  doi: 10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
– ident: ref51/cit51
– ident: ref17/cit17
  doi: 10.1038/ncomms6304
– ident: ref16/cit16
  doi: 10.1038/nature12597
– ident: ref33/cit33
  doi: 10.1016/j.jmr.2007.12.003
– ident: ref32/cit32
  doi: 10.1080/00268976.2011.640954
– ident: ref15/cit15
  doi: 10.1038/ncomms11377
– ident: ref40/cit40
  doi: 10.1063/1.1716296
– ident: ref28/cit28
  doi: 10.1103/PhysRev.57.426
– ident: ref29/cit29
  doi: 10.1016/0031-8914(72)90070-5
– ident: ref25/cit25
  doi: 10.1103/PhysRev.59.724
– ident: ref36/cit36
  doi: 10.1006/jmra.1996.0079
– ident: ref34/cit34
  doi: 10.1021/jp036020f
– ident: ref2/cit2
  doi: 10.1039/C1CS15115K
– ident: ref31/cit31
  doi: 10.1088/0034-4885/43/4/002
– ident: ref42/cit42
  doi: 10.1126/science.1192739
– ident: ref23/cit23
  doi: 10.1021/ic00299a013
– ident: ref41/cit41
  doi: 10.1016/S1090-7807(03)00182-4
– ident: ref1/cit1
  doi: 10.1039/c0cs00158a
– ident: ref43/cit43
  doi: 10.1103/PhysRevB.88.094418
– ident: ref39/cit39
  doi: 10.1103/PhysRev.94.630
– ident: ref37/cit37
  doi: 10.1002/pssb.2221170202
– ident: ref8/cit8
  doi: 10.1038/nmat3182
– volume-title: Quantum Computation and Quantum Information
  year: 2000
  ident: ref3/cit3
– ident: ref27/cit27
  doi: 10.1007/978-1-4899-6539-4
– ident: ref7/cit7
  doi: 10.1038/nature11449
– ident: ref44/cit44
  doi: 10.1016/0022-2364(90)90113-N
– ident: ref55/cit55
  doi: 10.1107/S0021889899006020
– ident: ref47/cit47
  doi: 10.1039/C6DT02559E
– ident: ref19/cit19
  doi: 10.1021/acscentsci.5b00338
– ident: ref48/cit48
  doi: 10.1103/PhysRev.154.215
– ident: ref50/cit50
  doi: 10.1039/C6CC00300A
– ident: ref57/cit57
  doi: 10.1021/ed085p532
– ident: ref20/cit20
  doi: 10.1039/C5SC04295J
– ident: ref56/cit56
  doi: 10.1107/S0021889807067908
– start-page: 199
  year: 1969
  ident: 000382901800034.45
  publication-title: Electron spin relaxation phenomena in solids
– volume: 29
  start-page: 688
  year: 1958
  ident: WOS:A1958WH51500003
  article-title: MODIFIED SPIN-ECHO METHOD FOR MEASURING NUCLEAR RELAXATION TIMES
  publication-title: REVIEW OF SCIENTIFIC INSTRUMENTS
– volume: 138
  start-page: 5801
  year: 2016
  ident: WOS:000375889100016
  article-title: Toward Molecular 4f Single-Ion Magnet Qubits
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.6b02702
– volume: 59
  start-page: 724
  year: 1941
  ident: WOS:000201563600006
  article-title: Paramagnetic relaxation and the equilibrium of lattice oscillators
  publication-title: PHYSICAL REVIEW
– volume: 164
  start-page: 44
  year: 2003
  ident: WOS:000185095200006
  article-title: Comparison of electron spin relaxation times measured by Carr-Purcell-Meiboom-Gill and two-pulse spin-echo sequences
  publication-title: JOURNAL OF MAGNETIC RESONANCE
  doi: 10.1016/S1090-7807(03)00182-4
– volume: 5
  start-page: ARTN 4300
  year: 2014
  ident: WOS:000340613800008
  article-title: Origin of slow magnetic relaxation in Kramers ions with non-uniaxial anisotropy
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/ncomms5300
– volume: 1
  start-page: 488
  year: 2015
  ident: WOS:000373180900008
  article-title: Millisecond Coherence Time in a Tunable Molecular Electronic Spin Qubit
  publication-title: ACS CENTRAL SCIENCE
  doi: 10.1021/acscentsci.5b00338
– volume: 45
  start-page: 16635
  year: 2016
  ident: WOS:000387028500013
  article-title: Giant spin-phonon bottleneck effects in evaporable vanadyl-based molecules with long spin coherence
  publication-title: DALTON TRANSACTIONS
  doi: 10.1039/c6dt02559e
– volume: 8
  start-page: 383
  year: 2009
  ident: WOS:000265783500015
  article-title: Ultralong spin coherence time in isotopically engineered diamond
  publication-title: NATURE MATERIALS
  doi: 10.1038/NMAT2420
– year: 2015
  ident: 000382901800034.14
  publication-title: Theoretical determination of the spin-vibration coupling in the highly coherent molecular spin qubit [Cu(mnt)2]2
– volume: 41
  start-page: 466
  year: 2008
  ident: WOS:000253992700027
  article-title: Mercury CSD 2.0 - new features for the visualization and investigation of crystal structures
  publication-title: JOURNAL OF APPLIED CRYSTALLOGRAPHY
  doi: 10.1107/S0021889807067908
– volume: 7
  start-page: ARTN 11377
  year: 2016
  ident: WOS:000374683600001
  article-title: A modular design of molecular qubits to implement universal quantum gates
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/ncomms11377
– volume: 32
  start-page: 837
  year: 1999
  ident: 000382901800034.15
  article-title: Wingx: suite for small-molecule single-crystal crystallography
  publication-title: J. Appl. Crystallogr.
– year: 1996
  ident: 000382901800034.41
  publication-title: Programs for the Refinement of Crystal Structures
– volume: 88
  start-page: 126
  year: 1990
  ident: WOS:A1990DJ21000011
  article-title: CARR-PURCELL TRAIN IN THE CONDITIONS OF PARTIAL EXCITATION OF MAGNETIC-RESONANCE SPECTRUM
  publication-title: JOURNAL OF MAGNETIC RESONANCE
– volume: 52
  start-page: 3623
  year: 2016
  ident: WOS:000371008500005
  article-title: Tuning of molecular qubits: very long coherence and spin-lattice relaxation times
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/c6cc00300a
– start-page: 29
  year: 2002
  ident: 000382901800034.13
  publication-title: Distance Measurements in Biological Systems by EPR
– volume: 57
  start-page: 426
  year: 1940
  ident: WOS:000201628500010
  article-title: Paramagnetic relaxation times for titanium and chrome alum
  publication-title: PHYSICAL REVIEW
– volume: 127
  start-page: 32
  year: 1962
  ident: WOS:A19621474C00039
  article-title: SPIN-LATTICE RELAXATION IN SOME RARE-EARTH SALTS AT HELIUM TEMPERATURES - OBSERVATION OF PHONON BOTTLENECK
  publication-title: PHYSICAL REVIEW
– volume: 40
  start-page: 3119
  year: 2011
  ident: WOS:000290866700006
  article-title: Molecular spins for quantum information technologies
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c0cs00158a
– volume: 117
  start-page: 437
  year: 1983
  ident: WOS:A1983RA06800001
  article-title: THEORY OF SPIN-LATTICE RELAXATION
  publication-title: PHYSICA STATUS SOLIDI B-BASIC RESEARCH
– volume: 154
  start-page: 215
  year: 1967
  ident: WOS:A19678995900001
  article-title: OPTICAL PHONONS IN ELECTRON SPIN RELAXATION
  publication-title: PHYSICAL REVIEW
– year: 2000
  ident: 000382901800034.33
  publication-title: Quantum Computation and Quantum Information
– volume: 531
  start-page: 348
  year: 2016
  ident: WOS:000372064300048
  article-title: Enhancing coherence in molecular spin qubits via atomic clock transitions
  publication-title: NATURE
  doi: 10.1038/nature16984
– volume: 110
  start-page: 277
  year: 2012
  ident: WOS:000301747100004
  article-title: Characterization of tetravalent vanadium functional centres in metal oxides derived from a spin-Hamiltonian analysis
  publication-title: MOLECULAR PHYSICS
  doi: 10.1080/00268976.2011.640954
– year: 1986
  ident: 000382901800034.1
  publication-title: Electron Paramagnetic Resonance of Transition Ions
– volume: 48
  start-page: 771
  year: 2000
  ident: WOS:000165241900003
  article-title: The physical implementation of quantum computation
  publication-title: FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS
– volume: 330
  start-page: 60
  year: 2010
  ident: WOS:000282334500032
  article-title: Universal Dynamical Decoupling of a Single Solid-State Spin from a Spin Bath
  publication-title: SCIENCE
  doi: 10.1126/science.1192739
– volume: 11
  start-page: 143
  year: 2012
  ident: WOS:000299428700014
  article-title: Electron spin coherence exceeding seconds in high-purity silicon
  publication-title: NATURE MATERIALS
  doi: 10.1038/NMAT3182
– volume: 108
  start-page: 9475
  year: 2004
  ident: WOS:000222483500012
  article-title: Frequency dependence of electron spin relaxation of nitroxyl radicals in fluid solution
  publication-title: JOURNAL OF PHYSICAL CHEMISTRY B
  doi: 10.1021/jp036020f
– volume: 178
  start-page: 42
  year: 2006
  ident: WOS:000234722700005
  article-title: EasySpin, a comprehensive software package for spectral simulation and analysis in EPR
  publication-title: JOURNAL OF MAGNETIC RESONANCE
  doi: 10.1016/j.jmr.2005.08.013
– volume: 136
  start-page: 15841
  year: 2014
  ident: WOS:000344906100009
  article-title: Multiple Quantum Coherences from Hyperfine Transitions in a Vanadium(IV) Complex
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja507846k
– volume: 138
  start-page: 2154
  year: 2016
  ident: WOS:000371103900021
  article-title: Room-Temperature Quantum Coherence and Rabi Oscillations in Vanadyl Phthalocyanine: Toward Multifunctional Molecular Spin Qubits
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.5b13408
– volume: 27
  start-page: 4744
  year: 1988
  ident: WOS:A1988R628000013
  article-title: SPECTROSCOPIC AND ELECTRICAL-PROPERTIES OF VO (2-THIOXO-1,3-DITHIOLE-4,5-DITHIOLATE)2 AND V (2-THIOXO-1,3-DITHIOLE-4,5-DITHIOLATE)3 ANION COMPLEXES AND X-RAY CRYSTAL-STRUCTURE OF [N-METHYLPHENAZINIUM]2[V(2-THIOXO-1,3-DITHIOLE-4,5-DITHOLATE(3]
  publication-title: INORGANIC CHEMISTRY
– volume: 103
  start-page: 1953
  year: 1981
  ident: WOS:A1981LM32700013
  article-title: ELECTRONIC-PROPERTIES OF THIOLATE COMPOUNDS OF OXOMOLYBDENUM(V) AND THEIR TUNGSTEN AND SELENIUM ANALOGS - EFFECTS OF O-17,MO-98, MO-95 ISOTOPE SUBSTITUTION UPON ESR-SPECTRA
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
– volume: 94
  start-page: 630
  year: 1954
  ident: WOS:A1954UB48000018
  article-title: EFFECTS OF DIFFUSION ON FREE PRECESSION IN NUCLEAR MAGNETIC RESONANCE EXPERIMENTS
  publication-title: PHYSICAL REVIEW
– volume: 43
  start-page: 433
  year: 1980
  ident: WOS:A1980JW94000002
  article-title: LOW-SYMMETRY EFFECTS IN ELECTRON-PARAMAGNETIC RESONANCE
  publication-title: REPORTS ON PROGRESS IN PHYSICS
– volume: 138
  start-page: 1344
  year: 2016
  ident: WOS:000369558000039
  article-title: Employing Forbidden Transitions as Qubits in a Nuclear Spin-Free Chromium Complex
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.5b11802
– volume: 83
  start-page: 4190
  year: 2003
  ident: WOS:000186523400037
  article-title: Long coherence times at 300 K for nitrogen-vacancy center spins in diamond grown by chemical vapor deposition
  publication-title: APPLIED PHYSICS LETTERS
  doi: 10.1063/1.1626791
– volume: 88
  start-page: ARTN 094418
  year: 2013
  ident: WOS:000324235100004
  article-title: Boosting the electron spin coherence in binuclear Mn complexes by multiple microwave pulses
  publication-title: PHYSICAL REVIEW B
  doi: 10.1103/PhysRevB.88.094418
– volume: 7
  start-page: 2074
  year: 2016
  ident: WOS:000371021900055
  article-title: Quantum coherence in a processable vanadyl complex: new tools for the search of molecular spin qubits
  publication-title: CHEMICAL SCIENCE
  doi: 10.1039/c5sc04295j
– volume: 227
  start-page: 51
  year: 2013
  ident: WOS:000314794600009
  article-title: Raman electron spin-lattice relaxation with the Debye-type and with real phonon spectra in crystals
  publication-title: JOURNAL OF MAGNETIC RESONANCE
  doi: 10.1016/j.jmr.2012.11.026
– volume: 154
  start-page: 133
  year: 1988
  ident: WOS:A1988R191800002
  article-title: X-RAY MOLECULAR-STRUCTURE OF BIS(TETRABUTYL-AMMONIUM)-BIS(4,5-DIMERCAPTO-1,3-DITHIOLE-2-THIONATE)OXOMOLYBDENUM AND ITS OXIDATION
  publication-title: INORGANICA CHIMICA ACTA
– volume: 61
  start-page: 241
  year: 1972
  ident: WOS:A1972N469700006
  article-title: ELECTRON SPIN-LATTICE RELAXATION OF ZEEMAN AND INTERACTION SYSTEMS IN CUCS2(SO4)2.6H2O
  publication-title: PHYSICA
– volume: 5
  start-page: ARTN 5304
  year: 2014
  ident: WOS:000344061500003
  article-title: Room temperature quantum coherence in a potential molecular qubit
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/ncomms6304
– volume: 7
  start-page: ARTN 10467
  year: 2016
  ident: WOS:000371134300001
  article-title: A four-coordinate cobalt(II) single-ion magnet with coercivity and a very high energy barrier
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/ncomms10467
– volume: 119
  start-page: 240
  year: 1996
  ident: WOS:A1996UJ39800013
  article-title: Electron spin relaxation in vanadyl, copper(II), and silver(II) porphyrins in glassy solvents and doped solids
  publication-title: JOURNAL OF MAGNETIC RESONANCE SERIES A
– volume: 191
  start-page: 66
  year: 2008
  ident: WOS:000253500700008
  article-title: Electron spin-lattice relaxation of nitroxyl radicals in temperature ranges that span glassy solutions to low-viscosity liquids
  publication-title: JOURNAL OF MAGNETIC RESONANCE
  doi: 10.1016/j.jmr.2007.12.003
– volume: 503
  start-page: 504
  year: 2013
  ident: WOS:000327464200038
  article-title: Potential for spin-based information processing in a thin-film molecular semiconductor
  publication-title: NATURE
  doi: 10.1038/nature12597
– volume: 85
  start-page: 532
  year: 2008
  ident: WOS:000253945400021
  article-title: Diamagnetic corrections and Pascal's constants
  publication-title: JOURNAL OF CHEMICAL EDUCATION
– volume: 476
  start-page: 76
  year: 2011
  ident: WOS:000293447300032
  article-title: Decoherence in crystals of quantum molecular magnets
  publication-title: NATURE
  doi: 10.1038/nature10314
– volume: 73
  start-page: 270
  year: 1996
  ident: WOS:A1996BE80E00028
  article-title: 4,5-dibenzoyl-1,3-dithiole-1-thione - (Benzenecarbothioic acid, S,S'-(2-thioxo-1,3-dithiole-4,5-diyl)ester)
  publication-title: ORGANIC SYNTHESIS, VOL 73
– volume: 49
  start-page: 5241
  year: 2010
  ident: WOS:000278110100070
  article-title: Six-Membered Electron Transfer Series [V(dithiolene)(3)](Z) (z=1+, 0, 1-, 2-, 3-, 4-). An X-ray Absorption Spectroscopic and Density Functional Theoretical Study
  publication-title: INORGANIC CHEMISTRY
  doi: 10.1021/ic100344f
– start-page: 1
  year: 2006
  ident: WOS:000268131100001
  article-title: MOLECULAR NANOMAGNETS INTRODUCTION
  publication-title: MOLECULAR NANOMAGNETS
– volume: 489
  start-page: 541
  year: 2012
  ident: WOS:000309167100045
  article-title: A single-atom electron spin qubit in silicon
  publication-title: NATURE
  doi: 10.1038/nature11449
– volume: 464
  start-page: 45
  year: 2010
  ident: WOS:000275117500031
  article-title: Quantum computers
  publication-title: NATURE
  doi: 10.1038/nature08812
– volume: 41
  start-page: 537
  year: 2012
  ident: WOS:000298854900001
  article-title: Design of magnetic coordination complexes for quantum computing
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c1cs15115k
SSID ssj0004281
Score 2.5257587
Snippet In the search for long-lived quantum coherence in spin systems, vanadium­(IV) complexes have shown record phase memory times among molecular systems. When...
In the search for long-lived quantum coherence in spin systems, vanadium(IV) complexes have shown record phase memory times among molecular systems. When...
Source Web of Science
SourceID proquest
pubmed
webofscience
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11234
SubjectTerms ambient temperature
Chemistry
Chemistry, Multidisciplinary
electron paramagnetic resonance spectroscopy
ligands
memory
Physical Sciences
Science & Technology
vanadium
Title Quantum Coherence Times Enhancement in Vanadium(IV)-based Potential Molecular Qubits: the Key Role of the Vanadyl Moiety
URI http://dx.doi.org/10.1021/jacs.6b05574
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000382901800034
https://www.ncbi.nlm.nih.gov/pubmed/27517709
https://www.proquest.com/docview/1817844199
https://www.proquest.com/docview/2000395753
Volume 138
WOS 000382901800034
WOSCitedRecordID wos000382901800034
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7xOJRLgZbSBVoZiUpFVVZxYsdJb9WKVxEIWoq4rWzHUVct2YpNJODXd8abLBRYlUukxGMntseZz54XwJYIC8e5sQHKRhMIbeNA69wEceq44xq3uZoO9I-Ok_0f4uuFvLgzkH2owY8oPpAddRNDsaLELMxHCa5fgkC973f-j1HKW5ir0iRuDNwf1iYBZEf_CqBHqPJJAeSFze4i7LUuO2Mbk1_dujJde_s4guN_-rEELxu8yb6MGWQZZlz5Cl702jRvr-H6tMbBrS8ZOWp41z_m3ULYTvmTOIJOD9mgZOfeOqy-_Hhwvh2Q7MvZybAiWyNs_qhNsstOazOoRp8Z4kp26G7YNyxhw8Lf-yZuiJoMRVfgbHfnrLcfNOkYAh1nkpLWm7gwShmTm0wWSSicSvKwSITKrdRhLkQhLf4_bCadiizHzgrNi1DhhLs8fgNz5bB0b4FpZaVBXGak1oKL3FiF20C8FkIrbLkDmzhY_WY1jfpeUR7hRoWeNkPYgU_tNPZtE86csmr8nkL9YUL9ZxzGYwrdZssRfZwHUp7o0g1r_IaUqxSxY5ZNp4m8qzMC4LgDq2N2mrwtUpIrFWLtrfv8NSn3OlpSaqc-ZlAH-HPIek3PKYBBtfaMYVuHBYR8ibeSUxswV13V7h3Cqsq892vqL8K1G6E
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_BeBgvML7LBnjSkEAoU5zYccLbVG3q2FoxKNPeIttxxARLEUmkjb-eOzfpYFCpL5ESnx1_XHI_-74AdkRYOs6NDVA2mkBoGwdaFyaIU8cd17jN1XSgP54koy_iw5k865zVyRcGO1FjS7VX4l9HF6AwQfgwMRQyStyGO4hDImLoveHnazfIKOU92lVpEnd27jdrkxyy9d9y6B9w-V855GXOwX2YLHrrTU2-7baN2bW_bgRyXHk4G3CvQ59sb84uD-CWqx7C-rBP-vYILk9anOr2gpHbhncEZN5JhO1XX4k_6CyRnVfs1NuKtRdvDk_fBiQJC_Zx1pDlETY_7lPuspPWnDf1e4Yokx25K_YJS9is9Pe-iSuiJrPRxzA92J8OR0GXnCHQcSYphb2JS6OUMYXJZJmEwqmkCMtEqMJKHRZClNLi38Rm0qnIchys0LwMFS6_K-InsFbNKvcMmFZWGkRpRmotuCiMVbgpxGsptMKWB7CNk5V331ade7V5hNsWetpN4QDe9auZ2y64OeXY-L6E-vWC-sc8qMcSuu2eMXJcB1Kl6MrNWuxDylWKSDLLltNE3vEZ4XA8gKdzrlq8LVKSKxVi7Z0_2WxR7jW2pOJOfQShAfBVyIbdyCmcQfN8hWl7Beuj6fg4Pz6cHG3CXQSDibefU1uw1vxs3QsEXI156T-z3-Z6JAI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB6VIgEv3MdyulKRQChVnNhxwlu1dNVSWrWlVH2LfEVU0GxFEony65nxJgsUViovkRJPHB_jzGfPBbAq4spzbmyEstFEQts00tqZKM0991zjNlfTgf7Obrb5Sbw_lsdLwAdfGGxEgzU1QYlPq_rMVX2EAQoVhAWZobBR4gpcJY0dMfX6-OMvV8gk5wPiVXmW9rbuF98mWWSbP2XRXwDzn7IoyJ3JLTiYtziYm3xZ61qzZn9cCOb4X126DTd7FMrWZ2xzB5Z8fReuj4fkb_fg-36HQ96dMnLfCA6BLDiLsI36M_EJnSmyk5odBZux7vTV1tHriCSiY3vTliyQsPqdIfUu2-_MSdu8ZYg22bY_ZwdYwqZVuA9VnBM1mY_eh8PJxuF4M-qTNEQ6LSSlsjdpZZQyxplCVlksvMpcXGVCOSt17ISopMW_ii2kV4nl2FmheRUrZAPv0gewXE9r_wiYVlYaRGtGai24cMYq3BzitRJaYc0jWMHBKvs11pRBfZ7g9oWe9kM4gjfDjJa2D3JOuTa-LqB-Oac-mwX3WEC3MjBHifNAKhVd-2mHbci5yhFRFsVimiQ4QCMsTkfwcMZZ868lSnKlYnx79XdWm5cHzS2puvMQSWgE_DJk477nFNagfXyJYXsB1_beTcoPW7vbT-AGYsIsmNGpp7Dcfuv8M8RdrXkeVtpPVGcmhQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Coherence+Times+Enhancement+in+Vanadium%28IV%29-based+Potential+Molecular+Qubits%3A+the+Key+Role+of+the+Vanadyl+Moiety&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Atzori%2C+Matteo&rft.au=Morra%2C+Elena&rft.au=Tesi%2C+Lorenzo&rft.au=Albino%2C+Andrea&rft.date=2016-09-07&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=138&rft.issue=35&rft.spage=11234&rft.epage=11244&rft_id=info:doi/10.1021%2Fjacs.6b05574&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_jacs_6b05574
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon