Climate Responses to Tambora‐Size Volcanic Eruption and the Impact of Warming Climate
The climatic consequences of large volcanic eruptions depend on the direct radiative perturbation and the climate variability that amplifies or dampens the initial perturbation. Potential climate responses to future eruptions, however, have been rarely studied. Here we show perturbation of Tambora‐s...
Saved in:
Published in | Geophysical research letters Vol. 49; no. 10 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Washington
John Wiley & Sons, Inc
28.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The climatic consequences of large volcanic eruptions depend on the direct radiative perturbation and the climate variability that amplifies or dampens the initial perturbation. Potential climate responses to future eruptions, however, have been rarely studied. Here we show perturbation of Tambora‐size causes significant but no inter‐scenario different global average climate responses, by using Community Earth System Model simulations under preindustrial and RCP8.5 scenarios. Regionally we find severe reduction in African and Asian‐Australian monsoon rainfall and emerge of El Niño‐like responses, largely due to the land‐ocean thermal contrast mechanism. Global warming significantly amplifies such El Niño‐like responses, which feed on the enhanced climatology atmospheric moisture and cause higher sensitivity of monsoon circulation to radiative forcing in the tropics. We also find prolonged Asian‐Australian monsoon suppression associated with the enhanced westerly anomalies over the Pacific, suggesting the complexity of climate responses and feedbacks to external forcing under future climate.
Plain Language Summary
Climate change often manifests itself as a result of a combination of external drivers and internal variabilities. The episodic eruptive characteristics and strong radiation effects of historical volcanic events provide a powerful tool for studying the response and feedback of internal variabilities to external drivers. In the present study, we use the 1815 eruption of Mt. Tambora as a test case, to simulate and compare the climate responses to Tambora‐size eruption under the preindustrial and RCP8.5 warming conditions. We show how future warming enhances the climate system responses to volcanic perturbation, profoundly in the tropical Indian and Pacific oceans. We demonstrate that the enhanced atmospheric moisture under warming conditions amplifies sensitivity of monsoon circulation to radiative forcing, causing stronger El Niño‐like responses.
Key Points
Influences of a Tambora‐size eruption on global‐mean climate are found the same in the preindustrial and RCP8.5 warming climate scenarios
El Niño responses are found post‐eruption and enhanced under RCP8.5, due to increased moisture and higher sensitivity to monsoon weakening
A new perspective on the feedback complexity of internal climate variations and their responses to external forcing under future climate |
---|---|
AbstractList | The climatic consequences of large volcanic eruptions depend on the direct radiative perturbation and the climate variability that amplifies or dampens the initial perturbation. Potential climate responses to future eruptions, however, have been rarely studied. Here we show perturbation of Tambora‐size causes significant but no inter‐scenario different global average climate responses, by using Community Earth System Model simulations under preindustrial and RCP8.5 scenarios. Regionally we find severe reduction in African and Asian‐Australian monsoon rainfall and emerge of El Niño‐like responses, largely due to the land‐ocean thermal contrast mechanism. Global warming significantly amplifies such El Niño‐like responses, which feed on the enhanced climatology atmospheric moisture and cause higher sensitivity of monsoon circulation to radiative forcing in the tropics. We also find prolonged Asian‐Australian monsoon suppression associated with the enhanced westerly anomalies over the Pacific, suggesting the complexity of climate responses and feedbacks to external forcing under future climate.
Climate change often manifests itself as a result of a combination of external drivers and internal variabilities. The episodic eruptive characteristics and strong radiation effects of historical volcanic events provide a powerful tool for studying the response and feedback of internal variabilities to external drivers. In the present study, we use the 1815 eruption of Mt. Tambora as a test case, to simulate and compare the climate responses to Tambora‐size eruption under the preindustrial and RCP8.5 warming conditions. We show how future warming enhances the climate system responses to volcanic perturbation, profoundly in the tropical Indian and Pacific oceans. We demonstrate that the enhanced atmospheric moisture under warming conditions amplifies sensitivity of monsoon circulation to radiative forcing, causing stronger El Niño‐like responses.
Influences of a Tambora‐size eruption on global‐mean climate are found the same in the preindustrial and RCP8.5 warming climate scenarios
El Niño responses are found post‐eruption and enhanced under RCP8.5, due to increased moisture and higher sensitivity to monsoon weakening
A new perspective on the feedback complexity of internal climate variations and their responses to external forcing under future climate The climatic consequences of large volcanic eruptions depend on the direct radiative perturbation and the climate variability that amplifies or dampens the initial perturbation. Potential climate responses to future eruptions, however, have been rarely studied. Here we show perturbation of Tambora‐size causes significant but no inter‐scenario different global average climate responses, by using Community Earth System Model simulations under preindustrial and RCP8.5 scenarios. Regionally we find severe reduction in African and Asian‐Australian monsoon rainfall and emerge of El Niño‐like responses, largely due to the land‐ocean thermal contrast mechanism. Global warming significantly amplifies such El Niño‐like responses, which feed on the enhanced climatology atmospheric moisture and cause higher sensitivity of monsoon circulation to radiative forcing in the tropics. We also find prolonged Asian‐Australian monsoon suppression associated with the enhanced westerly anomalies over the Pacific, suggesting the complexity of climate responses and feedbacks to external forcing under future climate. The climatic consequences of large volcanic eruptions depend on the direct radiative perturbation and the climate variability that amplifies or dampens the initial perturbation. Potential climate responses to future eruptions, however, have been rarely studied. Here we show perturbation of Tambora‐size causes significant but no inter‐scenario different global average climate responses, by using Community Earth System Model simulations under preindustrial and RCP8.5 scenarios. Regionally we find severe reduction in African and Asian‐Australian monsoon rainfall and emerge of El Niño‐like responses, largely due to the land‐ocean thermal contrast mechanism. Global warming significantly amplifies such El Niño‐like responses, which feed on the enhanced climatology atmospheric moisture and cause higher sensitivity of monsoon circulation to radiative forcing in the tropics. We also find prolonged Asian‐Australian monsoon suppression associated with the enhanced westerly anomalies over the Pacific, suggesting the complexity of climate responses and feedbacks to external forcing under future climate. Plain Language Summary Climate change often manifests itself as a result of a combination of external drivers and internal variabilities. The episodic eruptive characteristics and strong radiation effects of historical volcanic events provide a powerful tool for studying the response and feedback of internal variabilities to external drivers. In the present study, we use the 1815 eruption of Mt. Tambora as a test case, to simulate and compare the climate responses to Tambora‐size eruption under the preindustrial and RCP8.5 warming conditions. We show how future warming enhances the climate system responses to volcanic perturbation, profoundly in the tropical Indian and Pacific oceans. We demonstrate that the enhanced atmospheric moisture under warming conditions amplifies sensitivity of monsoon circulation to radiative forcing, causing stronger El Niño‐like responses. Key Points Influences of a Tambora‐size eruption on global‐mean climate are found the same in the preindustrial and RCP8.5 warming climate scenarios El Niño responses are found post‐eruption and enhanced under RCP8.5, due to increased moisture and higher sensitivity to monsoon weakening A new perspective on the feedback complexity of internal climate variations and their responses to external forcing under future climate |
Author | Gao, Chaochao Liu, Fei Gao, Yujuan Yang, Linshan |
Author_xml | – sequence: 1 givenname: Linshan orcidid: 0000-0002-0706-036X surname: Yang fullname: Yang, Linshan organization: Zhejiang University – sequence: 2 givenname: Yujuan surname: Gao fullname: Gao, Yujuan organization: Zhejiang University – sequence: 3 givenname: Chaochao orcidid: 0000-0002-0414-3477 surname: Gao fullname: Gao, Chaochao email: gaocc@zju.edu.cn organization: Zhejiang University – sequence: 4 givenname: Fei orcidid: 0000-0001-9223-0011 surname: Liu fullname: Liu, Fei email: liufei26@mail.sysu.edu.cn organization: Key Laboratory of Tropical Atmosphere‐Ocean System Ministry of Education, and Southern Marine Science and Engineering Guangdong Laboratory |
BookMark | eNp9kM1Kw0AUhQepYFvd-QADbq3e-Ukms5RSa6Eg1GqXYTK90ZQ0E2dSpK58BJ_RJzGlXYigq3sX3zmHc3qkU7kKCTlncMWA62sOnI2noJVU6oh0mZZykACoDukC6PbnKj4hvRBWACBAsC5ZDMtibRqkMwy1qwIG2jg6N-vMefP18flQvCN9cqU1VWHpyG_qpnAVNdWSNi9IJ-va2Ia6nC6MXxfVMz34nZLj3JQBzw63Tx5vR_Ph3WB6P54Mb6YDI3TEB5mGpdSA2qLNLJeYGW1iKbTBLBIZAONLlnADWYRJbkEgjyQqoUySLZNIiD652PvW3r1uMDTpym181UamPFatXmqxo_iest6F4DFPbdGYXZPGm6JMGaS7AdOfA7aiy1-i2rfd_PYv_JDxVpS4_ZdNx7NpLJni4huxRYHN |
CitedBy_id | crossref_primary_10_1029_2022PA004540 crossref_primary_10_5194_cp_18_2021_2022 crossref_primary_10_1360_TB_2023_0140 crossref_primary_10_1016_j_accre_2024_09_007 crossref_primary_10_1360_N072022_0333 crossref_primary_10_1007_s41748_022_00331_z crossref_primary_10_1007_s11430_022_1218_0 crossref_primary_10_1029_2022GL100609 crossref_primary_10_1029_2024GL109885 crossref_primary_10_1007_s00376_023_2341_1 crossref_primary_10_1007_s00382_023_06878_5 |
Cites_doi | 10.1175/JCLI-D-17-0571.1 10.1038/nclimate3394 10.1029/2006GL026355 10.1029/2008JD011222 10.1007/s00382-017-3964-7 10.1029/2008JD010239 10.1002/qj.49710644905 10.1175/JCLI-D-16-0058.1 10.1175/BAMS-D-12-00121.1 10.1126/sciadv.aaz5006 10.1029/2020EF001803 10.1126/sciadv.aba1212 10.1007/s00382-018-4163-x 10.1038/srep24331 10.1002/9781119548164.ch12 10.1029/2019GL083975 10.1038/s41561-021-00730-3 10.5194/gmd-6-549-2013 10.11928/j.issn.1001-7410.2019.02.02 10.1029/2018GL081018 10.1029/2011GL050168 10.1007/s40641-017-0065-y 10.1007/s00382-015-2525-1 10.1029/2003JD004151 10.1007/s00376-020-2041-z 10.1175/JCLI-D-19-0186.1 10.1175/JCLI-D-12-00471.1 10.1038/s41467-017-01302-z 10.1002/wcc.407 10.1175/JCLI-D-15-0239.1 10.1073/pnas.1612505114 10.5194/acp-21-3317-2021 10.1029/1998RG000054 10.1029/2019GL086182 10.1029/2012JD017607 10.1007/s00382-017-3846-z 10.1002/jgrd.50229 10.1175/BAMS-D-14-00233.1 10.5194/esd-9-701-2018 10.1038/nclimate2743 10.1126/science.abc0502 10.1038/s41467-021-24943-7 10.1038/s41467-017-00755-6 10.1038/nclimate1936 10.1175/JCLI-D-12-00236.1 10.1126/science.abc5810 10.1175/JCLI-D-18-0290.1 10.1007/s00382-020-05453-6 10.1038/s41598-019-57027-0 10.1007/s00376-022-2034-1 10.5194/essd-9-809-2017 |
ContentType | Journal Article |
Copyright | 2022. American Geophysical Union. All Rights Reserved. |
Copyright_xml | – notice: 2022. American Geophysical Union. All Rights Reserved. |
DBID | AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M |
DOI | 10.1029/2021GL097477 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Physics |
EISSN | 1944-8007 |
EndPage | n/a |
ExternalDocumentID | 10_1029_2021GL097477 GRL64172 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 41875092; 41975107 |
GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 8R4 8R5 A00 AAESR AAHHS AAIHA AAXRX AAZKR ABCUV ABPPZ ACAHQ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB AVUZU AZFZN AZVAB BENPR BFHJK BMXJE BRXPI CS3 DCZOG DPXWK DRFUL DRSTM DU5 EBS F5P G-S GODZA HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W PYCSY Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIH WIN WXSBR WYJ XSW ZZTAW ~02 ~OA ~~A AAFWJ AAYXX ACTHY CITATION 7TG 7TN 8FD AAMMB AEFGJ AFPKN AGXDD AIDQK AIDYY F1W FR3 H8D H96 KL. KR7 L.G L7M |
ID | FETCH-LOGICAL-a3952-b90d490e9cecbc24eba9a6439aeb53b0012d182a0b5e8fc03e254e737a8bd8533 |
ISSN | 0094-8276 |
IngestDate | Fri Jul 25 08:44:26 EDT 2025 Tue Jul 01 01:41:30 EDT 2025 Thu Apr 24 23:02:32 EDT 2025 Wed Jan 22 16:24:38 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a3952-b90d490e9cecbc24eba9a6439aeb53b0012d182a0b5e8fc03e254e737a8bd8533 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0706-036X 0000-0002-0414-3477 0000-0001-9223-0011 |
PQID | 2670014933 |
PQPubID | 54723 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2670014933 crossref_citationtrail_10_1029_2021GL097477 crossref_primary_10_1029_2021GL097477 wiley_primary_10_1029_2021GL097477_GRL64172 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 28 May 2022 |
PublicationDateYYYYMMDD | 2022-05-28 |
PublicationDate_xml | – month: 05 year: 2022 text: 28 May 2022 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Geophysical research letters |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2021; 9 2017; 7 2017; 8 2021; 21 2013; 3 2013; 26 2015; 5 2017; 3 2019; 52 2006; 33 2019; 32 2019; 39 2020; 369 2016; 97 2020; 37 2012; 39 2020; 55 2020; 33 2020; 10 2004; 109 2013; 6 2017; 114 2009; 114 2017; 9 2021; 14 2015; 45 1980; 106 2018; 9 2016; 6 2020; 6 2016; 7 2021; 12 2000; 38 2022 2021 2020 2019; 46 2013; 94 2013; 118 2021; 371 2020; 47 2016 2018; 51 2018; 50 2008; 113 2016; 29 2012; 117 2018; 31 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 Schneider U. (e_1_2_8_41_1) 2016 Taschetto A. S. (e_1_2_8_47_1) 2021 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – start-page: 267 year: 2020 end-page: 287 article-title: The effect of strong volcanic eruptions on ENSO, El Niño Southern Oscillation in a Changing Climate publication-title: Geophysical Monograph Series – volume: 39 start-page: 282 issue: 2 year: 2019 end-page: 293 article-title: Modeling study of severe persistent drought events over eastern China during the last millennium publication-title: Quaternary Sciences – volume: 114 issue: D15 year: 2009 article-title: Climate response to large, high‐latitude and low‐latitude volcanic eruptions in the Community Climate System Model publication-title: Journal of Geophysical Research – volume: 7 start-page: 569 issue: 4 year: 2016 end-page: 589 article-title: Tambora 1815 as a test case for high impact volcanic eruptions: Earth system effects publication-title: Wiley Interdisciplinary Reviews. Climate Change – volume: 47 issue: 3 year: 2020 article-title: Relevance of relative sea surface temperature for tropical rainfall interannual variability publication-title: Geophysical Research Letters – volume: 3 start-page: 822 issue: 9 year: 2013 end-page: 826 article-title: El Niño modulations over the past seven centuries publication-title: Nature Climate Change – volume: 371 start-page: 1014 issue: 6533 year: 2021 end-page: 1019 article-title: Multidecadal climate oscillations during the past millennium driven by volcanic forcing publication-title: Science – volume: 109 issue: D5 year: 2004 article-title: Dynamic winter climate response to large tropical volcanic eruptions since 1600 publication-title: Journal of Geophysical Research – year: 2021 – volume: 94 start-page: 1339 issue: 9 year: 2013 end-page: 1360 article-title: The community Earth system model: A framework for collaborative research publication-title: Bulletin of the American Meteorological Society – volume: 26 start-page: 5150 issue: 14 year: 2013 end-page: 5168 article-title: The mean climate of the Community Atmosphere Model (CAM4) in Forced SST and fully coupled experiments publication-title: Journal of Climate – volume: 9 start-page: 809 issue: 2 year: 2017 end-page: 831 article-title: Volcanic stratospheric sulfur injections and aerosol optical depth from 500 BCE to 1900 CE publication-title: Earth System Science Data – volume: 6 start-page: 549 issue: 2 year: 2013 end-page: 561 article-title: Simulating the mid‐Pliocene Warm Period with the CCSM4 model publication-title: Geoscientific Model Development – year: 2022 article-title: Volcanoes and climate: Sizing up the impact of the recent Hunga Tonga‐Hunga Ha'apai volcanic eruption from a historical perspective publication-title: Advances in Atmospheric Sciences – volume: 9 start-page: 701 issue: 2 year: 2018 end-page: 715 article-title: Assessing the impact of a future volcanic eruption on decadal predictions publication-title: Earth System Dynamics – volume: 50 start-page: 3799 issue: 9–10 year: 2018 end-page: 3812 article-title: Divergent El Niño responses to volcanic eruptions at different latitudes over the past millennium publication-title: Climate Dynamics – volume: 6 issue: 1 year: 2016 article-title: Global monsoon precipitation responses to large volcanic eruptions publication-title: Scientific Reports – volume: 32 start-page: 3245 issue: 11 year: 2019 end-page: 3262 article-title: How northern high‐latitude volcanic eruptions in different seasons affect ENSO publication-title: Journal of Climate – volume: 10 issue: 1 year: 2020 article-title: Ocean Sensitivity to periodic and constant Volcanism publication-title: Scientific Reports – volume: 46 start-page: 1602 issue: 3 year: 2019 end-page: 1611 article-title: Clarifying the relative role of forcing uncertainties and initial‐condition unknowns in spreading the climate response to volcanic eruptions publication-title: Geophysical Research Letters – volume: 97 start-page: 735 issue: 5 year: 2016 end-page: 754 article-title: Climate variability and change since 850 CE: An ensemble approach with the Community Earth System Model publication-title: Bulletin of the American Meteorological Society – volume: 12 issue: 1 year: 2021 article-title: Climate change modulates the stratospheric volcanic sulfate aerosol lifecycle and radiative forcing from tropical eruptions publication-title: Nature Communications – volume: 118 start-page: 4090 issue: 10 year: 2013 end-page: 4106 article-title: Background conditions influence the decadal climate response to strong volcanic eruptions publication-title: Journal of Geophysical Research: Atmospheres – volume: 51 start-page: 1449 issue: 4 year: 2018 end-page: 1463 article-title: Reduced cooling following future volcanic eruptions publication-title: Climate Dynamics – volume: 8 start-page: 1236 issue: 1 year: 2017 article-title: The amplifying influence of increased ocean stratification on a future year without a summer publication-title: Nature Communications – volume: 6 issue: 21 year: 2020 article-title: Volcanic‐induced global monsoon drying modulated by diverse El Niño responses publication-title: Science Advances – volume: 39 issue: 2 year: 2012 article-title: Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea‐ice/ocean feedbacks publication-title: Geophysical Research Letters – volume: 52 start-page: 7495 issue: 12 year: 2019 end-page: 7509 article-title: A “La Niña‐like” state occurring in the second year after large tropical volcanic eruptions during the past 1500 years publication-title: Climate Dynamics – volume: 55 start-page: 3413 issue: 11–12 year: 2020 end-page: 3429 article-title: A robust equatorial Pacific westerly response to tropical volcanism in multiple models publication-title: Climate Dynamics – volume: 46 start-page: 10609 issue: 17–18 year: 2019 end-page: 10618 article-title: Impacts of climate change on volcanic strato‐spheric injections: Comparison of 1‐D and 3‐D plume model projections publication-title: Geophysical Research Letters – volume: 33 start-page: 2407 issue: 6 year: 2020 end-page: 2426 article-title: Boreal winter surface air temperature responses to large tropical volcanic eruptions in CMIP5 models publication-title: Journal of Climate – volume: 26 start-page: 5169 issue: 14 year: 2013 end-page: 5182 article-title: Impact of strong tropical volcanic eruptions on ENSO simulated in a coupled GCM publication-title: Journal of Climate – volume: 31 start-page: 6729 issue: 17 year: 2018 end-page: 6744 article-title: Different impacts of northern, tropical, and southern volcanic eruptions on the tropical pacific SST in the last millennium publication-title: Journal of Climate – volume: 6 issue: 23 year: 2020 article-title: ITCZ shift and extratropical teleconnections drive ENSO response to volcanic eruptions publication-title: Science Advances – volume: 113 issue: D23 year: 2008 article-title: Volcanic forcing of climate over the past 1500 years: An improved ice core‐based index for climate models publication-title: Journal of Geophysical Research – volume: 45 start-page: 3077 issue: 11–12 year: 2015 end-page: 3090 article-title: A tripole index for the interdecadal Pacific oscillation publication-title: Climate Dynamics – volume: 38 start-page: 191 issue: 2 year: 2000 end-page: 219 article-title: Volcanic eruptions and climate publication-title: Reviews of Geophysics – volume: 5 start-page: 849 issue: 9 year: 2015 end-page: 859 article-title: ENSO and greenhouse warming publication-title: Nature Climate Change – volume: 29 start-page: 5763 issue: 16 year: 2016 end-page: 5778 article-title: Time‐varying response of ENSO‐induced tropical pacific rainfall to global warming in CMIP5 models. Part I: Multimodel ensemble results publication-title: Journal of Climate – year: 2016 – volume: 3 start-page: 150 issue: 2 year: 2017 end-page: 162 article-title: Aerosol and solar irradiance effects on decadal climate variability and predictability publication-title: Current Climate Change Reports – volume: 7 start-page: 799 issue: 11 year: 2017 end-page: 805 article-title: Potential volcanic impacts on future climate variability publication-title: Nature Climate Change – volume: 369 issue: 6509 year: 2020 article-title: Comment on “No consistent ENSO response to volcanic forcing over the last millennium” publication-title: Science – volume: 37 start-page: 663 issue: 7 year: 2020 end-page: 670 article-title: Could the recent Taal volcano eruption trigger an El Niño and lead to Eurasian warming? publication-title: Advances in Atmospheric Sciences – volume: 9 issue: 3 year: 2021 article-title: Potential influences of volcanic eruptions on future global land monsoon precipitation changes publication-title: Earth's Future – volume: 106 start-page: 447 issue: 449 year: 1980 end-page: 462 article-title: Some simple solutions for heat‐induced tropical circulation publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 117 issue: D17 year: 2012 article-title: Coupled Model Intercomparison Project 5 (CMIP5) simulations of climate following volcanic eruptions publication-title: Journal of Geophysical Research – volume: 29 start-page: 2907 issue: 8 year: 2016 end-page: 2921 article-title: “El Niño Like” hydroclimate responses to last millennium volcanic eruptions publication-title: Journal of Climate – volume: 114 start-page: 1822 issue: 8 year: 2017 end-page: 1826 article-title: Role of eruption season in reconciling model and proxy responses to tropical volcanism publication-title: Proceedings of the National Academy of Sciences ‐ PNAS – volume: 33 issue: 19 year: 2006 article-title: Thermocline flux exchange during the Pinatubo event publication-title: Geophysical Research Letters – volume: 14 start-page: 377 issue: 6 year: 2021 end-page: 382 article-title: Intensification of El Niño‐induced atmospheric anomalies under greenhouse warming publication-title: Nature Geoscience – volume: 21 start-page: 3317 issue: 5 year: 2021 end-page: 3343 article-title: Model physics and chemistry causing intermodel disagreement within the VolMIP‐Tambora Interactive Stratospheric Aerosol ensemble publication-title: Atmospheric Chemistry and Physics – volume: 8 issue: 1 year: 2017 article-title: Tropical explosive volcanic eruptions can trigger El Niño by cooling tropical Africa publication-title: Nature Communications – ident: e_1_2_8_53_1 doi: 10.1175/JCLI-D-17-0571.1 – ident: e_1_2_8_4_1 doi: 10.1038/nclimate3394 – ident: e_1_2_8_9_1 doi: 10.1029/2006GL026355 – ident: e_1_2_8_40_1 doi: 10.1029/2008JD011222 – ident: e_1_2_8_15_1 doi: 10.1007/s00382-017-3964-7 – ident: e_1_2_8_12_1 doi: 10.1029/2008JD010239 – ident: e_1_2_8_13_1 doi: 10.1002/qj.49710644905 – ident: e_1_2_8_17_1 doi: 10.1175/JCLI-D-16-0058.1 – ident: e_1_2_8_18_1 doi: 10.1175/BAMS-D-12-00121.1 – ident: e_1_2_8_34_1 doi: 10.1126/sciadv.aaz5006 – ident: e_1_2_8_26_1 doi: 10.1029/2020EF001803 – ident: e_1_2_8_33_1 doi: 10.1126/sciadv.aba1212 – ident: e_1_2_8_45_1 doi: 10.1007/s00382-018-4163-x – ident: e_1_2_8_23_1 doi: 10.1038/srep24331 – ident: e_1_2_8_28_1 doi: 10.1002/9781119548164.ch12 – ident: e_1_2_8_2_1 doi: 10.1029/2019GL083975 – volume-title: El Niño southern oscillation in a changing climate, geophusical monograph 253 year: 2021 ident: e_1_2_8_47_1 – ident: e_1_2_8_16_1 doi: 10.1038/s41561-021-00730-3 – ident: e_1_2_8_39_1 doi: 10.5194/gmd-6-549-2013 – ident: e_1_2_8_35_1 doi: 10.11928/j.issn.1001-7410.2019.02.02 – ident: e_1_2_8_52_1 doi: 10.1029/2018GL081018 – ident: e_1_2_8_29_1 doi: 10.1029/2011GL050168 – ident: e_1_2_8_50_1 doi: 10.1007/s40641-017-0065-y – ident: e_1_2_8_14_1 doi: 10.1007/s00382-015-2525-1 – ident: e_1_2_8_42_1 doi: 10.1029/2003JD004151 – ident: e_1_2_8_25_1 doi: 10.1007/s00376-020-2041-z – ident: e_1_2_8_49_1 doi: 10.1175/JCLI-D-19-0186.1 – ident: e_1_2_8_31_1 doi: 10.1175/JCLI-D-12-00471.1 – ident: e_1_2_8_11_1 doi: 10.1038/s41467-017-01302-z – ident: e_1_2_8_36_1 doi: 10.1002/wcc.407 – ident: e_1_2_8_44_1 doi: 10.1175/JCLI-D-15-0239.1 – ident: e_1_2_8_43_1 doi: 10.1073/pnas.1612505114 – ident: e_1_2_8_7_1 doi: 10.5194/acp-21-3317-2021 – ident: e_1_2_8_37_1 doi: 10.1029/1998RG000054 – ident: e_1_2_8_20_1 doi: 10.1029/2019GL086182 – ident: e_1_2_8_10_1 doi: 10.1029/2012JD017607 – ident: e_1_2_8_24_1 doi: 10.1007/s00382-017-3846-z – ident: e_1_2_8_51_1 doi: 10.1002/jgrd.50229 – ident: e_1_2_8_32_1 doi: 10.1175/BAMS-D-14-00233.1 – ident: e_1_2_8_19_1 doi: 10.5194/esd-9-701-2018 – ident: e_1_2_8_5_1 doi: 10.1038/nclimate2743 – ident: e_1_2_8_38_1 doi: 10.1126/science.abc0502 – ident: e_1_2_8_3_1 doi: 10.1038/s41467-021-24943-7 – ident: e_1_2_8_21_1 doi: 10.1038/s41467-017-00755-6 – ident: e_1_2_8_22_1 doi: 10.1038/nclimate1936 – ident: e_1_2_8_30_1 doi: 10.1175/JCLI-D-12-00236.1 – ident: e_1_2_8_27_1 doi: 10.1126/science.abc5810 – ident: e_1_2_8_46_1 doi: 10.1175/JCLI-D-18-0290.1 – ident: e_1_2_8_6_1 doi: 10.1007/s00382-020-05453-6 – ident: e_1_2_8_8_1 doi: 10.1038/s41598-019-57027-0 – ident: e_1_2_8_54_1 doi: 10.1007/s00376-022-2034-1 – ident: e_1_2_8_48_1 doi: 10.5194/essd-9-809-2017 – volume-title: GPCC full data reanalysis version 7.0: Monthly land‐surface precipitation from rain gauges built on GTS based and historic Data year: 2016 ident: e_1_2_8_41_1 |
SSID | ssj0003031 |
Score | 2.4475052 |
Snippet | The climatic consequences of large volcanic eruptions depend on the direct radiative perturbation and the climate variability that amplifies or dampens the... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Anomalies Atmospheric circulation Atmospheric moisture Climate Climate change Climate system Climate variability Climatology El Nino El Nino phenomena Future climates Global warming Moisture Moisture effects Monsoon circulation Monsoon rainfall Monsoons Oceans Perturbation Radiation Radiation effects Radiative forcing Rain Rainfall Sensitivity Tropical climate Tropical environments Volcanic eruption effects Volcanic eruptions Volcanoes Wind |
Title | Climate Responses to Tambora‐Size Volcanic Eruption and the Impact of Warming Climate |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2021GL097477 https://www.proquest.com/docview/2670014933 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZgV0hcEE-xsCAf4FQFUttp4mNV2BSoVoht98Elsl2HBpVmRZsDe-In8Bv5JYwdOwnqsgIOjSLLmkaeL-NvnHkg9CwHDt5X_TwQOacBE-CgCEKjQFAC8xMx4NJG-R4OxjP29jQ6bY-ybXbJRr5QF5fmlfyPVmEM9GqyZP9Bs41QGIB70C9cQcNw_Ssdj5YFEE7TecEGutbVGqbii9FrE8VwVFzo3nG5hDUsFNi9qjYSTeRkkyZ5IkxczKeek9qlrakuz71CXXmgRW9pM4EaTn7mTp7Bu10vWsylwh7GnlWfq63B0UKUCn5-eFJUlkzronsYAX5sGPnkbrtRbEf7bIV0mljGICGxK4Bdm13OYCys-996u1yXMvX4Cy-19yEx5VLhSfrpJDSuUdzua_5b_nh4lL1_dZBN3hy-u452CfgTYBB3h8ezj7Nm04advG6u6B7O5UiA_Jdd6b-zl9Yl6To2lplMb6NbzqXAwxofd9A1vbqLbqS2ZfM3uLNBvmp9D504zeIGL3hTYoeXn99_GKRgjxTskYIBKRiQgmuk4DLHDinYybuPZgevp6Nx4BprwCvIIxJIHs4ZDzVXWklFmJaCC0NNhZYRtTx7Dn6nCGWkk1yFVJOI6ZjGIpFz4Hf0AdpZlSv9EOEkToAFxRwUGLFBngvGmZR9IrU5CcjlHur5BcuUqzpvmp8sMxv9QHjWXd499LyZfV5XW_nDvH2_9pl7H9cZMRln4PBTCn9q9XGljCz9MBkw4O-Prhb2GN1skb6PdjZfK_0EiOhGPnUg-gXBF4Q0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TgMxEB1xCEGDOMWNC6jQio3tPVxQII4kECggAUSz2BsvihQSRIIQVHwCf8I_8SWMvU4IBUgUdFuMbGs8xxvvHAAbGWLwQlrIPJkJ5nGJAYqkLPAko0gfy1Aom-V7GpZq_OgquBqC914tTN4fov_gZjTD2muj4OZB2nUbME0yMWwvFCu-AcSRy6o81s9PGLN1dsr7eMGblB4eVPdKnhsrgAcQAfWU8Otc-FqkOlUp5VpJIY1jlloFzKKMOqJu6atAx1nqM41BlI5YJGNVR-_GcN1hGDVACtVodPeidl3rG3_0CPmQPsG9mEahy7XHE28Pnve7F_yCtoMA2Xq4wymYdNCU7OayNA1DujUDY0U7-vcZv2yyaNqZhcu9ZgOBriZneYKt7pBum1TlnZGnj9e388aLJhftJt5aIyUHD4_WLBHZqhOEm6RsCzNJOyOX0mTi3BK33hzU_oWT8zDSarf0ApA4itGbRkJwHvAwyyQXXKkCVdpElJlahK0ew5LUdS83QzSaif2LTkUyyN5F2OxT3-ddO36gW-nxPnG620moqVzCwJEx3NTex69rJMWzSsgRBy79iXodxkvVk0pSKZ8eL8MENVUVfuDReAVGug-PehWxTletOfkicPPfIv0Ju3AJKA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NThsxEB7RICouCNoifgL4UE7Vqhvb--MDhwhICESoogRQL4u9a6NIIUEkCMGJR-BJ-lB9EsZeJw2HVuLAbQ8j2xqP_X3jnR-ArwY5eC2vmUAawQIu0UGRlEWBZBTlUxkL5aJ8j-ODDj-8iC5m4Pc4F6asDzF5cLMnw93X9oDfFMYXG7A1MtFrrzXboeXDiQ-qPNIP9-iyDXdae7i_25Q29k93DwLfVQDnFxENlAgLLkItcp2rnHKtpJAWl6VWEXMko0DSLUMV6dTkIdPoQ-mEJTJVBYIbw3E_wGyEQBhWYLZ-1vnVmdz9CAhljz7Bg5QmsQ-1xxV_n17vaxD8y2yn-bEDuMYiLHhmSuqlKS3BjO5_grmm6_z7gF8uVjQffobz3V4Xea4mJ2V8rR6S0YCcymtrTn-enn92HzU5G_Rw07o52b-9c7cSkf2CINskLZeXSQaGnEsbiHNF_HhfoPMumlyGSn_Q1ytA0iRFME2E4DzisTGSC65UjSptHUqjVuHbWGFZ7ouX2x4avcz9RKcim1bvKmxPpG_Koh3_kKuOdZ_5ozvMqE1cQr-RMZzU7cd_x8iaJ-2YIw1ce5P0Fnz8sdfI2q3jo3WYpzanIowCmlahMrq90xvIdEZq05sXgcv3tugX0g0ISA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Climate+Responses+to+Tambora%E2%80%90Size+Volcanic+Eruption+and+the+Impact+of+Warming+Climate&rft.jtitle=Geophysical+research+letters&rft.au=Yang%2C+Linshan&rft.au=Gao%2C+Yujuan&rft.au=Gao%2C+Chaochao&rft.au=Liu%2C+Fei&rft.date=2022-05-28&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=49&rft.issue=10&rft_id=info:doi/10.1029%2F2021GL097477&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |