Climate Responses to Tambora‐Size Volcanic Eruption and the Impact of Warming Climate

The climatic consequences of large volcanic eruptions depend on the direct radiative perturbation and the climate variability that amplifies or dampens the initial perturbation. Potential climate responses to future eruptions, however, have been rarely studied. Here we show perturbation of Tambora‐s...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 49; no. 10
Main Authors Yang, Linshan, Gao, Yujuan, Gao, Chaochao, Liu, Fei
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 28.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The climatic consequences of large volcanic eruptions depend on the direct radiative perturbation and the climate variability that amplifies or dampens the initial perturbation. Potential climate responses to future eruptions, however, have been rarely studied. Here we show perturbation of Tambora‐size causes significant but no inter‐scenario different global average climate responses, by using Community Earth System Model simulations under preindustrial and RCP8.5 scenarios. Regionally we find severe reduction in African and Asian‐Australian monsoon rainfall and emerge of El Niño‐like responses, largely due to the land‐ocean thermal contrast mechanism. Global warming significantly amplifies such El Niño‐like responses, which feed on the enhanced climatology atmospheric moisture and cause higher sensitivity of monsoon circulation to radiative forcing in the tropics. We also find prolonged Asian‐Australian monsoon suppression associated with the enhanced westerly anomalies over the Pacific, suggesting the complexity of climate responses and feedbacks to external forcing under future climate. Plain Language Summary Climate change often manifests itself as a result of a combination of external drivers and internal variabilities. The episodic eruptive characteristics and strong radiation effects of historical volcanic events provide a powerful tool for studying the response and feedback of internal variabilities to external drivers. In the present study, we use the 1815 eruption of Mt. Tambora as a test case, to simulate and compare the climate responses to Tambora‐size eruption under the preindustrial and RCP8.5 warming conditions. We show how future warming enhances the climate system responses to volcanic perturbation, profoundly in the tropical Indian and Pacific oceans. We demonstrate that the enhanced atmospheric moisture under warming conditions amplifies sensitivity of monsoon circulation to radiative forcing, causing stronger El Niño‐like responses. Key Points Influences of a Tambora‐size eruption on global‐mean climate are found the same in the preindustrial and RCP8.5 warming climate scenarios El Niño responses are found post‐eruption and enhanced under RCP8.5, due to increased moisture and higher sensitivity to monsoon weakening A new perspective on the feedback complexity of internal climate variations and their responses to external forcing under future climate
AbstractList The climatic consequences of large volcanic eruptions depend on the direct radiative perturbation and the climate variability that amplifies or dampens the initial perturbation. Potential climate responses to future eruptions, however, have been rarely studied. Here we show perturbation of Tambora‐size causes significant but no inter‐scenario different global average climate responses, by using Community Earth System Model simulations under preindustrial and RCP8.5 scenarios. Regionally we find severe reduction in African and Asian‐Australian monsoon rainfall and emerge of El Niño‐like responses, largely due to the land‐ocean thermal contrast mechanism. Global warming significantly amplifies such El Niño‐like responses, which feed on the enhanced climatology atmospheric moisture and cause higher sensitivity of monsoon circulation to radiative forcing in the tropics. We also find prolonged Asian‐Australian monsoon suppression associated with the enhanced westerly anomalies over the Pacific, suggesting the complexity of climate responses and feedbacks to external forcing under future climate. Climate change often manifests itself as a result of a combination of external drivers and internal variabilities. The episodic eruptive characteristics and strong radiation effects of historical volcanic events provide a powerful tool for studying the response and feedback of internal variabilities to external drivers. In the present study, we use the 1815 eruption of Mt. Tambora as a test case, to simulate and compare the climate responses to Tambora‐size eruption under the preindustrial and RCP8.5 warming conditions. We show how future warming enhances the climate system responses to volcanic perturbation, profoundly in the tropical Indian and Pacific oceans. We demonstrate that the enhanced atmospheric moisture under warming conditions amplifies sensitivity of monsoon circulation to radiative forcing, causing stronger El Niño‐like responses. Influences of a Tambora‐size eruption on global‐mean climate are found the same in the preindustrial and RCP8.5 warming climate scenarios El Niño responses are found post‐eruption and enhanced under RCP8.5, due to increased moisture and higher sensitivity to monsoon weakening A new perspective on the feedback complexity of internal climate variations and their responses to external forcing under future climate
The climatic consequences of large volcanic eruptions depend on the direct radiative perturbation and the climate variability that amplifies or dampens the initial perturbation. Potential climate responses to future eruptions, however, have been rarely studied. Here we show perturbation of Tambora‐size causes significant but no inter‐scenario different global average climate responses, by using Community Earth System Model simulations under preindustrial and RCP8.5 scenarios. Regionally we find severe reduction in African and Asian‐Australian monsoon rainfall and emerge of El Niño‐like responses, largely due to the land‐ocean thermal contrast mechanism. Global warming significantly amplifies such El Niño‐like responses, which feed on the enhanced climatology atmospheric moisture and cause higher sensitivity of monsoon circulation to radiative forcing in the tropics. We also find prolonged Asian‐Australian monsoon suppression associated with the enhanced westerly anomalies over the Pacific, suggesting the complexity of climate responses and feedbacks to external forcing under future climate.
The climatic consequences of large volcanic eruptions depend on the direct radiative perturbation and the climate variability that amplifies or dampens the initial perturbation. Potential climate responses to future eruptions, however, have been rarely studied. Here we show perturbation of Tambora‐size causes significant but no inter‐scenario different global average climate responses, by using Community Earth System Model simulations under preindustrial and RCP8.5 scenarios. Regionally we find severe reduction in African and Asian‐Australian monsoon rainfall and emerge of El Niño‐like responses, largely due to the land‐ocean thermal contrast mechanism. Global warming significantly amplifies such El Niño‐like responses, which feed on the enhanced climatology atmospheric moisture and cause higher sensitivity of monsoon circulation to radiative forcing in the tropics. We also find prolonged Asian‐Australian monsoon suppression associated with the enhanced westerly anomalies over the Pacific, suggesting the complexity of climate responses and feedbacks to external forcing under future climate. Plain Language Summary Climate change often manifests itself as a result of a combination of external drivers and internal variabilities. The episodic eruptive characteristics and strong radiation effects of historical volcanic events provide a powerful tool for studying the response and feedback of internal variabilities to external drivers. In the present study, we use the 1815 eruption of Mt. Tambora as a test case, to simulate and compare the climate responses to Tambora‐size eruption under the preindustrial and RCP8.5 warming conditions. We show how future warming enhances the climate system responses to volcanic perturbation, profoundly in the tropical Indian and Pacific oceans. We demonstrate that the enhanced atmospheric moisture under warming conditions amplifies sensitivity of monsoon circulation to radiative forcing, causing stronger El Niño‐like responses. Key Points Influences of a Tambora‐size eruption on global‐mean climate are found the same in the preindustrial and RCP8.5 warming climate scenarios El Niño responses are found post‐eruption and enhanced under RCP8.5, due to increased moisture and higher sensitivity to monsoon weakening A new perspective on the feedback complexity of internal climate variations and their responses to external forcing under future climate
Author Gao, Chaochao
Liu, Fei
Gao, Yujuan
Yang, Linshan
Author_xml – sequence: 1
  givenname: Linshan
  orcidid: 0000-0002-0706-036X
  surname: Yang
  fullname: Yang, Linshan
  organization: Zhejiang University
– sequence: 2
  givenname: Yujuan
  surname: Gao
  fullname: Gao, Yujuan
  organization: Zhejiang University
– sequence: 3
  givenname: Chaochao
  orcidid: 0000-0002-0414-3477
  surname: Gao
  fullname: Gao, Chaochao
  email: gaocc@zju.edu.cn
  organization: Zhejiang University
– sequence: 4
  givenname: Fei
  orcidid: 0000-0001-9223-0011
  surname: Liu
  fullname: Liu, Fei
  email: liufei26@mail.sysu.edu.cn
  organization: Key Laboratory of Tropical Atmosphere‐Ocean System Ministry of Education, and Southern Marine Science and Engineering Guangdong Laboratory
BookMark eNp9kM1Kw0AUhQepYFvd-QADbq3e-Ukms5RSa6Eg1GqXYTK90ZQ0E2dSpK58BJ_RJzGlXYigq3sX3zmHc3qkU7kKCTlncMWA62sOnI2noJVU6oh0mZZykACoDukC6PbnKj4hvRBWACBAsC5ZDMtibRqkMwy1qwIG2jg6N-vMefP18flQvCN9cqU1VWHpyG_qpnAVNdWSNi9IJ-va2Ia6nC6MXxfVMz34nZLj3JQBzw63Tx5vR_Ph3WB6P54Mb6YDI3TEB5mGpdSA2qLNLJeYGW1iKbTBLBIZAONLlnADWYRJbkEgjyQqoUySLZNIiD652PvW3r1uMDTpym181UamPFatXmqxo_iest6F4DFPbdGYXZPGm6JMGaS7AdOfA7aiy1-i2rfd_PYv_JDxVpS4_ZdNx7NpLJni4huxRYHN
CitedBy_id crossref_primary_10_1029_2022PA004540
crossref_primary_10_5194_cp_18_2021_2022
crossref_primary_10_1360_TB_2023_0140
crossref_primary_10_1016_j_accre_2024_09_007
crossref_primary_10_1360_N072022_0333
crossref_primary_10_1007_s41748_022_00331_z
crossref_primary_10_1007_s11430_022_1218_0
crossref_primary_10_1029_2022GL100609
crossref_primary_10_1029_2024GL109885
crossref_primary_10_1007_s00376_023_2341_1
crossref_primary_10_1007_s00382_023_06878_5
Cites_doi 10.1175/JCLI-D-17-0571.1
10.1038/nclimate3394
10.1029/2006GL026355
10.1029/2008JD011222
10.1007/s00382-017-3964-7
10.1029/2008JD010239
10.1002/qj.49710644905
10.1175/JCLI-D-16-0058.1
10.1175/BAMS-D-12-00121.1
10.1126/sciadv.aaz5006
10.1029/2020EF001803
10.1126/sciadv.aba1212
10.1007/s00382-018-4163-x
10.1038/srep24331
10.1002/9781119548164.ch12
10.1029/2019GL083975
10.1038/s41561-021-00730-3
10.5194/gmd-6-549-2013
10.11928/j.issn.1001-7410.2019.02.02
10.1029/2018GL081018
10.1029/2011GL050168
10.1007/s40641-017-0065-y
10.1007/s00382-015-2525-1
10.1029/2003JD004151
10.1007/s00376-020-2041-z
10.1175/JCLI-D-19-0186.1
10.1175/JCLI-D-12-00471.1
10.1038/s41467-017-01302-z
10.1002/wcc.407
10.1175/JCLI-D-15-0239.1
10.1073/pnas.1612505114
10.5194/acp-21-3317-2021
10.1029/1998RG000054
10.1029/2019GL086182
10.1029/2012JD017607
10.1007/s00382-017-3846-z
10.1002/jgrd.50229
10.1175/BAMS-D-14-00233.1
10.5194/esd-9-701-2018
10.1038/nclimate2743
10.1126/science.abc0502
10.1038/s41467-021-24943-7
10.1038/s41467-017-00755-6
10.1038/nclimate1936
10.1175/JCLI-D-12-00236.1
10.1126/science.abc5810
10.1175/JCLI-D-18-0290.1
10.1007/s00382-020-05453-6
10.1038/s41598-019-57027-0
10.1007/s00376-022-2034-1
10.5194/essd-9-809-2017
ContentType Journal Article
Copyright 2022. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2022. American Geophysical Union. All Rights Reserved.
DBID AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
DOI 10.1029/2021GL097477
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList CrossRef
Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage n/a
ExternalDocumentID 10_1029_2021GL097477
GRL64172
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 41875092; 41975107
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
8R4
8R5
A00
AAESR
AAHHS
AAIHA
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GODZA
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
PYCSY
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIH
WIN
WXSBR
WYJ
XSW
ZZTAW
~02
~OA
~~A
AAFWJ
AAYXX
ACTHY
CITATION
7TG
7TN
8FD
AAMMB
AEFGJ
AFPKN
AGXDD
AIDQK
AIDYY
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
ID FETCH-LOGICAL-a3952-b90d490e9cecbc24eba9a6439aeb53b0012d182a0b5e8fc03e254e737a8bd8533
ISSN 0094-8276
IngestDate Fri Jul 25 08:44:26 EDT 2025
Tue Jul 01 01:41:30 EDT 2025
Thu Apr 24 23:02:32 EDT 2025
Wed Jan 22 16:24:38 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a3952-b90d490e9cecbc24eba9a6439aeb53b0012d182a0b5e8fc03e254e737a8bd8533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0706-036X
0000-0002-0414-3477
0000-0001-9223-0011
PQID 2670014933
PQPubID 54723
PageCount 11
ParticipantIDs proquest_journals_2670014933
crossref_citationtrail_10_1029_2021GL097477
crossref_primary_10_1029_2021GL097477
wiley_primary_10_1029_2021GL097477_GRL64172
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 28 May 2022
PublicationDateYYYYMMDD 2022-05-28
PublicationDate_xml – month: 05
  year: 2022
  text: 28 May 2022
  day: 28
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2021; 9
2017; 7
2017; 8
2021; 21
2013; 3
2013; 26
2015; 5
2017; 3
2019; 52
2006; 33
2019; 32
2019; 39
2020; 369
2016; 97
2020; 37
2012; 39
2020; 55
2020; 33
2020; 10
2004; 109
2013; 6
2017; 114
2009; 114
2017; 9
2021; 14
2015; 45
1980; 106
2018; 9
2016; 6
2020; 6
2016; 7
2021; 12
2000; 38
2022
2021
2020
2019; 46
2013; 94
2013; 118
2021; 371
2020; 47
2016
2018; 51
2018; 50
2008; 113
2016; 29
2012; 117
2018; 31
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
Schneider U. (e_1_2_8_41_1) 2016
Taschetto A. S. (e_1_2_8_47_1) 2021
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – start-page: 267
  year: 2020
  end-page: 287
  article-title: The effect of strong volcanic eruptions on ENSO, El Niño Southern Oscillation in a Changing Climate
  publication-title: Geophysical Monograph Series
– volume: 39
  start-page: 282
  issue: 2
  year: 2019
  end-page: 293
  article-title: Modeling study of severe persistent drought events over eastern China during the last millennium
  publication-title: Quaternary Sciences
– volume: 114
  issue: D15
  year: 2009
  article-title: Climate response to large, high‐latitude and low‐latitude volcanic eruptions in the Community Climate System Model
  publication-title: Journal of Geophysical Research
– volume: 7
  start-page: 569
  issue: 4
  year: 2016
  end-page: 589
  article-title: Tambora 1815 as a test case for high impact volcanic eruptions: Earth system effects
  publication-title: Wiley Interdisciplinary Reviews. Climate Change
– volume: 47
  issue: 3
  year: 2020
  article-title: Relevance of relative sea surface temperature for tropical rainfall interannual variability
  publication-title: Geophysical Research Letters
– volume: 3
  start-page: 822
  issue: 9
  year: 2013
  end-page: 826
  article-title: El Niño modulations over the past seven centuries
  publication-title: Nature Climate Change
– volume: 371
  start-page: 1014
  issue: 6533
  year: 2021
  end-page: 1019
  article-title: Multidecadal climate oscillations during the past millennium driven by volcanic forcing
  publication-title: Science
– volume: 109
  issue: D5
  year: 2004
  article-title: Dynamic winter climate response to large tropical volcanic eruptions since 1600
  publication-title: Journal of Geophysical Research
– year: 2021
– volume: 94
  start-page: 1339
  issue: 9
  year: 2013
  end-page: 1360
  article-title: The community Earth system model: A framework for collaborative research
  publication-title: Bulletin of the American Meteorological Society
– volume: 26
  start-page: 5150
  issue: 14
  year: 2013
  end-page: 5168
  article-title: The mean climate of the Community Atmosphere Model (CAM4) in Forced SST and fully coupled experiments
  publication-title: Journal of Climate
– volume: 9
  start-page: 809
  issue: 2
  year: 2017
  end-page: 831
  article-title: Volcanic stratospheric sulfur injections and aerosol optical depth from 500 BCE to 1900 CE
  publication-title: Earth System Science Data
– volume: 6
  start-page: 549
  issue: 2
  year: 2013
  end-page: 561
  article-title: Simulating the mid‐Pliocene Warm Period with the CCSM4 model
  publication-title: Geoscientific Model Development
– year: 2022
  article-title: Volcanoes and climate: Sizing up the impact of the recent Hunga Tonga‐Hunga Ha'apai volcanic eruption from a historical perspective
  publication-title: Advances in Atmospheric Sciences
– volume: 9
  start-page: 701
  issue: 2
  year: 2018
  end-page: 715
  article-title: Assessing the impact of a future volcanic eruption on decadal predictions
  publication-title: Earth System Dynamics
– volume: 50
  start-page: 3799
  issue: 9–10
  year: 2018
  end-page: 3812
  article-title: Divergent El Niño responses to volcanic eruptions at different latitudes over the past millennium
  publication-title: Climate Dynamics
– volume: 6
  issue: 1
  year: 2016
  article-title: Global monsoon precipitation responses to large volcanic eruptions
  publication-title: Scientific Reports
– volume: 32
  start-page: 3245
  issue: 11
  year: 2019
  end-page: 3262
  article-title: How northern high‐latitude volcanic eruptions in different seasons affect ENSO
  publication-title: Journal of Climate
– volume: 10
  issue: 1
  year: 2020
  article-title: Ocean Sensitivity to periodic and constant Volcanism
  publication-title: Scientific Reports
– volume: 46
  start-page: 1602
  issue: 3
  year: 2019
  end-page: 1611
  article-title: Clarifying the relative role of forcing uncertainties and initial‐condition unknowns in spreading the climate response to volcanic eruptions
  publication-title: Geophysical Research Letters
– volume: 97
  start-page: 735
  issue: 5
  year: 2016
  end-page: 754
  article-title: Climate variability and change since 850 CE: An ensemble approach with the Community Earth System Model
  publication-title: Bulletin of the American Meteorological Society
– volume: 12
  issue: 1
  year: 2021
  article-title: Climate change modulates the stratospheric volcanic sulfate aerosol lifecycle and radiative forcing from tropical eruptions
  publication-title: Nature Communications
– volume: 118
  start-page: 4090
  issue: 10
  year: 2013
  end-page: 4106
  article-title: Background conditions influence the decadal climate response to strong volcanic eruptions
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 51
  start-page: 1449
  issue: 4
  year: 2018
  end-page: 1463
  article-title: Reduced cooling following future volcanic eruptions
  publication-title: Climate Dynamics
– volume: 8
  start-page: 1236
  issue: 1
  year: 2017
  article-title: The amplifying influence of increased ocean stratification on a future year without a summer
  publication-title: Nature Communications
– volume: 6
  issue: 21
  year: 2020
  article-title: Volcanic‐induced global monsoon drying modulated by diverse El Niño responses
  publication-title: Science Advances
– volume: 39
  issue: 2
  year: 2012
  article-title: Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea‐ice/ocean feedbacks
  publication-title: Geophysical Research Letters
– volume: 52
  start-page: 7495
  issue: 12
  year: 2019
  end-page: 7509
  article-title: A “La Niña‐like” state occurring in the second year after large tropical volcanic eruptions during the past 1500 years
  publication-title: Climate Dynamics
– volume: 55
  start-page: 3413
  issue: 11–12
  year: 2020
  end-page: 3429
  article-title: A robust equatorial Pacific westerly response to tropical volcanism in multiple models
  publication-title: Climate Dynamics
– volume: 46
  start-page: 10609
  issue: 17–18
  year: 2019
  end-page: 10618
  article-title: Impacts of climate change on volcanic strato‐spheric injections: Comparison of 1‐D and 3‐D plume model projections
  publication-title: Geophysical Research Letters
– volume: 33
  start-page: 2407
  issue: 6
  year: 2020
  end-page: 2426
  article-title: Boreal winter surface air temperature responses to large tropical volcanic eruptions in CMIP5 models
  publication-title: Journal of Climate
– volume: 26
  start-page: 5169
  issue: 14
  year: 2013
  end-page: 5182
  article-title: Impact of strong tropical volcanic eruptions on ENSO simulated in a coupled GCM
  publication-title: Journal of Climate
– volume: 31
  start-page: 6729
  issue: 17
  year: 2018
  end-page: 6744
  article-title: Different impacts of northern, tropical, and southern volcanic eruptions on the tropical pacific SST in the last millennium
  publication-title: Journal of Climate
– volume: 6
  issue: 23
  year: 2020
  article-title: ITCZ shift and extratropical teleconnections drive ENSO response to volcanic eruptions
  publication-title: Science Advances
– volume: 113
  issue: D23
  year: 2008
  article-title: Volcanic forcing of climate over the past 1500 years: An improved ice core‐based index for climate models
  publication-title: Journal of Geophysical Research
– volume: 45
  start-page: 3077
  issue: 11–12
  year: 2015
  end-page: 3090
  article-title: A tripole index for the interdecadal Pacific oscillation
  publication-title: Climate Dynamics
– volume: 38
  start-page: 191
  issue: 2
  year: 2000
  end-page: 219
  article-title: Volcanic eruptions and climate
  publication-title: Reviews of Geophysics
– volume: 5
  start-page: 849
  issue: 9
  year: 2015
  end-page: 859
  article-title: ENSO and greenhouse warming
  publication-title: Nature Climate Change
– volume: 29
  start-page: 5763
  issue: 16
  year: 2016
  end-page: 5778
  article-title: Time‐varying response of ENSO‐induced tropical pacific rainfall to global warming in CMIP5 models. Part I: Multimodel ensemble results
  publication-title: Journal of Climate
– year: 2016
– volume: 3
  start-page: 150
  issue: 2
  year: 2017
  end-page: 162
  article-title: Aerosol and solar irradiance effects on decadal climate variability and predictability
  publication-title: Current Climate Change Reports
– volume: 7
  start-page: 799
  issue: 11
  year: 2017
  end-page: 805
  article-title: Potential volcanic impacts on future climate variability
  publication-title: Nature Climate Change
– volume: 369
  issue: 6509
  year: 2020
  article-title: Comment on “No consistent ENSO response to volcanic forcing over the last millennium”
  publication-title: Science
– volume: 37
  start-page: 663
  issue: 7
  year: 2020
  end-page: 670
  article-title: Could the recent Taal volcano eruption trigger an El Niño and lead to Eurasian warming?
  publication-title: Advances in Atmospheric Sciences
– volume: 9
  issue: 3
  year: 2021
  article-title: Potential influences of volcanic eruptions on future global land monsoon precipitation changes
  publication-title: Earth's Future
– volume: 106
  start-page: 447
  issue: 449
  year: 1980
  end-page: 462
  article-title: Some simple solutions for heat‐induced tropical circulation
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 117
  issue: D17
  year: 2012
  article-title: Coupled Model Intercomparison Project 5 (CMIP5) simulations of climate following volcanic eruptions
  publication-title: Journal of Geophysical Research
– volume: 29
  start-page: 2907
  issue: 8
  year: 2016
  end-page: 2921
  article-title: “El Niño Like” hydroclimate responses to last millennium volcanic eruptions
  publication-title: Journal of Climate
– volume: 114
  start-page: 1822
  issue: 8
  year: 2017
  end-page: 1826
  article-title: Role of eruption season in reconciling model and proxy responses to tropical volcanism
  publication-title: Proceedings of the National Academy of Sciences ‐ PNAS
– volume: 33
  issue: 19
  year: 2006
  article-title: Thermocline flux exchange during the Pinatubo event
  publication-title: Geophysical Research Letters
– volume: 14
  start-page: 377
  issue: 6
  year: 2021
  end-page: 382
  article-title: Intensification of El Niño‐induced atmospheric anomalies under greenhouse warming
  publication-title: Nature Geoscience
– volume: 21
  start-page: 3317
  issue: 5
  year: 2021
  end-page: 3343
  article-title: Model physics and chemistry causing intermodel disagreement within the VolMIP‐Tambora Interactive Stratospheric Aerosol ensemble
  publication-title: Atmospheric Chemistry and Physics
– volume: 8
  issue: 1
  year: 2017
  article-title: Tropical explosive volcanic eruptions can trigger El Niño by cooling tropical Africa
  publication-title: Nature Communications
– ident: e_1_2_8_53_1
  doi: 10.1175/JCLI-D-17-0571.1
– ident: e_1_2_8_4_1
  doi: 10.1038/nclimate3394
– ident: e_1_2_8_9_1
  doi: 10.1029/2006GL026355
– ident: e_1_2_8_40_1
  doi: 10.1029/2008JD011222
– ident: e_1_2_8_15_1
  doi: 10.1007/s00382-017-3964-7
– ident: e_1_2_8_12_1
  doi: 10.1029/2008JD010239
– ident: e_1_2_8_13_1
  doi: 10.1002/qj.49710644905
– ident: e_1_2_8_17_1
  doi: 10.1175/JCLI-D-16-0058.1
– ident: e_1_2_8_18_1
  doi: 10.1175/BAMS-D-12-00121.1
– ident: e_1_2_8_34_1
  doi: 10.1126/sciadv.aaz5006
– ident: e_1_2_8_26_1
  doi: 10.1029/2020EF001803
– ident: e_1_2_8_33_1
  doi: 10.1126/sciadv.aba1212
– ident: e_1_2_8_45_1
  doi: 10.1007/s00382-018-4163-x
– ident: e_1_2_8_23_1
  doi: 10.1038/srep24331
– ident: e_1_2_8_28_1
  doi: 10.1002/9781119548164.ch12
– ident: e_1_2_8_2_1
  doi: 10.1029/2019GL083975
– volume-title: El Niño southern oscillation in a changing climate, geophusical monograph 253
  year: 2021
  ident: e_1_2_8_47_1
– ident: e_1_2_8_16_1
  doi: 10.1038/s41561-021-00730-3
– ident: e_1_2_8_39_1
  doi: 10.5194/gmd-6-549-2013
– ident: e_1_2_8_35_1
  doi: 10.11928/j.issn.1001-7410.2019.02.02
– ident: e_1_2_8_52_1
  doi: 10.1029/2018GL081018
– ident: e_1_2_8_29_1
  doi: 10.1029/2011GL050168
– ident: e_1_2_8_50_1
  doi: 10.1007/s40641-017-0065-y
– ident: e_1_2_8_14_1
  doi: 10.1007/s00382-015-2525-1
– ident: e_1_2_8_42_1
  doi: 10.1029/2003JD004151
– ident: e_1_2_8_25_1
  doi: 10.1007/s00376-020-2041-z
– ident: e_1_2_8_49_1
  doi: 10.1175/JCLI-D-19-0186.1
– ident: e_1_2_8_31_1
  doi: 10.1175/JCLI-D-12-00471.1
– ident: e_1_2_8_11_1
  doi: 10.1038/s41467-017-01302-z
– ident: e_1_2_8_36_1
  doi: 10.1002/wcc.407
– ident: e_1_2_8_44_1
  doi: 10.1175/JCLI-D-15-0239.1
– ident: e_1_2_8_43_1
  doi: 10.1073/pnas.1612505114
– ident: e_1_2_8_7_1
  doi: 10.5194/acp-21-3317-2021
– ident: e_1_2_8_37_1
  doi: 10.1029/1998RG000054
– ident: e_1_2_8_20_1
  doi: 10.1029/2019GL086182
– ident: e_1_2_8_10_1
  doi: 10.1029/2012JD017607
– ident: e_1_2_8_24_1
  doi: 10.1007/s00382-017-3846-z
– ident: e_1_2_8_51_1
  doi: 10.1002/jgrd.50229
– ident: e_1_2_8_32_1
  doi: 10.1175/BAMS-D-14-00233.1
– ident: e_1_2_8_19_1
  doi: 10.5194/esd-9-701-2018
– ident: e_1_2_8_5_1
  doi: 10.1038/nclimate2743
– ident: e_1_2_8_38_1
  doi: 10.1126/science.abc0502
– ident: e_1_2_8_3_1
  doi: 10.1038/s41467-021-24943-7
– ident: e_1_2_8_21_1
  doi: 10.1038/s41467-017-00755-6
– ident: e_1_2_8_22_1
  doi: 10.1038/nclimate1936
– ident: e_1_2_8_30_1
  doi: 10.1175/JCLI-D-12-00236.1
– ident: e_1_2_8_27_1
  doi: 10.1126/science.abc5810
– ident: e_1_2_8_46_1
  doi: 10.1175/JCLI-D-18-0290.1
– ident: e_1_2_8_6_1
  doi: 10.1007/s00382-020-05453-6
– ident: e_1_2_8_8_1
  doi: 10.1038/s41598-019-57027-0
– ident: e_1_2_8_54_1
  doi: 10.1007/s00376-022-2034-1
– ident: e_1_2_8_48_1
  doi: 10.5194/essd-9-809-2017
– volume-title: GPCC full data reanalysis version 7.0: Monthly land‐surface precipitation from rain gauges built on GTS based and historic Data
  year: 2016
  ident: e_1_2_8_41_1
SSID ssj0003031
Score 2.4475052
Snippet The climatic consequences of large volcanic eruptions depend on the direct radiative perturbation and the climate variability that amplifies or dampens the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Anomalies
Atmospheric circulation
Atmospheric moisture
Climate
Climate change
Climate system
Climate variability
Climatology
El Nino
El Nino phenomena
Future climates
Global warming
Moisture
Moisture effects
Monsoon circulation
Monsoon rainfall
Monsoons
Oceans
Perturbation
Radiation
Radiation effects
Radiative forcing
Rain
Rainfall
Sensitivity
Tropical climate
Tropical environments
Volcanic eruption effects
Volcanic eruptions
Volcanoes
Wind
Title Climate Responses to Tambora‐Size Volcanic Eruption and the Impact of Warming Climate
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2021GL097477
https://www.proquest.com/docview/2670014933
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZgV0hcEE-xsCAf4FQFUttp4mNV2BSoVoht98Elsl2HBpVmRZsDe-In8Bv5JYwdOwnqsgIOjSLLmkaeL-NvnHkg9CwHDt5X_TwQOacBE-CgCEKjQFAC8xMx4NJG-R4OxjP29jQ6bY-ybXbJRr5QF5fmlfyPVmEM9GqyZP9Bs41QGIB70C9cQcNw_Ssdj5YFEE7TecEGutbVGqbii9FrE8VwVFzo3nG5hDUsFNi9qjYSTeRkkyZ5IkxczKeek9qlrakuz71CXXmgRW9pM4EaTn7mTp7Bu10vWsylwh7GnlWfq63B0UKUCn5-eFJUlkzronsYAX5sGPnkbrtRbEf7bIV0mljGICGxK4Bdm13OYCys-996u1yXMvX4Cy-19yEx5VLhSfrpJDSuUdzua_5b_nh4lL1_dZBN3hy-u452CfgTYBB3h8ezj7Nm04advG6u6B7O5UiA_Jdd6b-zl9Yl6To2lplMb6NbzqXAwxofd9A1vbqLbqS2ZfM3uLNBvmp9D504zeIGL3hTYoeXn99_GKRgjxTskYIBKRiQgmuk4DLHDinYybuPZgevp6Nx4BprwCvIIxJIHs4ZDzVXWklFmJaCC0NNhZYRtTx7Dn6nCGWkk1yFVJOI6ZjGIpFz4Hf0AdpZlSv9EOEkToAFxRwUGLFBngvGmZR9IrU5CcjlHur5BcuUqzpvmp8sMxv9QHjWXd499LyZfV5XW_nDvH2_9pl7H9cZMRln4PBTCn9q9XGljCz9MBkw4O-Prhb2GN1skb6PdjZfK_0EiOhGPnUg-gXBF4Q0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TgMxEB1xCEGDOMWNC6jQio3tPVxQII4kECggAUSz2BsvihQSRIIQVHwCf8I_8SWMvU4IBUgUdFuMbGs8xxvvHAAbGWLwQlrIPJkJ5nGJAYqkLPAko0gfy1Aom-V7GpZq_OgquBqC914tTN4fov_gZjTD2muj4OZB2nUbME0yMWwvFCu-AcSRy6o81s9PGLN1dsr7eMGblB4eVPdKnhsrgAcQAfWU8Otc-FqkOlUp5VpJIY1jlloFzKKMOqJu6atAx1nqM41BlI5YJGNVR-_GcN1hGDVACtVodPeidl3rG3_0CPmQPsG9mEahy7XHE28Pnve7F_yCtoMA2Xq4wymYdNCU7OayNA1DujUDY0U7-vcZv2yyaNqZhcu9ZgOBriZneYKt7pBum1TlnZGnj9e388aLJhftJt5aIyUHD4_WLBHZqhOEm6RsCzNJOyOX0mTi3BK33hzU_oWT8zDSarf0ApA4itGbRkJwHvAwyyQXXKkCVdpElJlahK0ew5LUdS83QzSaif2LTkUyyN5F2OxT3-ddO36gW-nxPnG620moqVzCwJEx3NTex69rJMWzSsgRBy79iXodxkvVk0pSKZ8eL8MENVUVfuDReAVGug-PehWxTletOfkicPPfIv0Ju3AJKA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NThsxEB7RICouCNoifgL4UE7Vqhvb--MDhwhICESoogRQL4u9a6NIIUEkCMGJR-BJ-lB9EsZeJw2HVuLAbQ8j2xqP_X3jnR-ArwY5eC2vmUAawQIu0UGRlEWBZBTlUxkL5aJ8j-ODDj-8iC5m4Pc4F6asDzF5cLMnw93X9oDfFMYXG7A1MtFrrzXboeXDiQ-qPNIP9-iyDXdae7i_25Q29k93DwLfVQDnFxENlAgLLkItcp2rnHKtpJAWl6VWEXMko0DSLUMV6dTkIdPoQ-mEJTJVBYIbw3E_wGyEQBhWYLZ-1vnVmdz9CAhljz7Bg5QmsQ-1xxV_n17vaxD8y2yn-bEDuMYiLHhmSuqlKS3BjO5_grmm6_z7gF8uVjQffobz3V4Xea4mJ2V8rR6S0YCcymtrTn-enn92HzU5G_Rw07o52b-9c7cSkf2CINskLZeXSQaGnEsbiHNF_HhfoPMumlyGSn_Q1ytA0iRFME2E4DzisTGSC65UjSptHUqjVuHbWGFZ7ouX2x4avcz9RKcim1bvKmxPpG_Koh3_kKuOdZ_5ozvMqE1cQr-RMZzU7cd_x8iaJ-2YIw1ce5P0Fnz8sdfI2q3jo3WYpzanIowCmlahMrq90xvIdEZq05sXgcv3tugX0g0ISA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Climate+Responses+to+Tambora%E2%80%90Size+Volcanic+Eruption+and+the+Impact+of+Warming+Climate&rft.jtitle=Geophysical+research+letters&rft.au=Yang%2C+Linshan&rft.au=Gao%2C+Yujuan&rft.au=Gao%2C+Chaochao&rft.au=Liu%2C+Fei&rft.date=2022-05-28&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=49&rft.issue=10&rft_id=info:doi/10.1029%2F2021GL097477&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon