Removable and Recyclable Conjugated Polymers for Highly Selective and High-Yield Dispersion and Release of Low-Cost Carbon Nanotubes
High-purity semiconducting single-walled carbon nanotubes (s-SWNTs) with little contamination are desired for high-performance electronic devices. Although conjugated polymer wrapping has been demonstrated as a powerful and scalable strategy for enriching s-SWNTs, this approach suffers from signific...
Saved in:
Published in | Journal of the American Chemical Society Vol. 138; no. 3; pp. 802 - 805 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
27.01.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | High-purity semiconducting single-walled carbon nanotubes (s-SWNTs) with little contamination are desired for high-performance electronic devices. Although conjugated polymer wrapping has been demonstrated as a powerful and scalable strategy for enriching s-SWNTs, this approach suffers from significant contaminations by polymer residues and high cost of conjugated polymers. Here, we present a simple but general approach using removable and recoverable conjugated polymers for separating s-SWNTs with little polymer contamination. A conjugated polymer with imine linkages was synthesized to demonstrate this concept. Moreover, the SWNTs used are without prepurifications and very low cost. The polymer exhibits strong dispersion for large-diameter s-SWNTs with high yield (23.7%) and high selectivity (99.7%). After s-SWNT separation, the polymer can be depolymerized into monomers and be cleanly removed under mild acidic conditions, yielding polymer-free s-SWNTs. The monomers can be almost quantitatively recovered to resynthesize polymer. This approach enables isolation of “clean” s-SWNTs and, at the same time, greatly lowers costs for SWNT separation. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0002-7863 1520-5126 1520-5126 |
DOI: | 10.1021/jacs.5b12797 |