Membrane Design Criteria and Practical Viability of Pressure-Driven Distillation

Pressure-driven distillation (PD) is a novel desalination technology based on hydraulic pressure driving force and vapor transport across a hydrophobic porous membrane. In theory, PD offers near-perfect rejection for nonvolatile solutes, chlorine resistance, and the ability to decouple water and sol...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 57; no. 5; pp. 2129 - 2137
Main Authors Liu, Weifan, Wang, Ruoyu, Straub, Anthony P., Lin, Shihong
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 07.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pressure-driven distillation (PD) is a novel desalination technology based on hydraulic pressure driving force and vapor transport across a hydrophobic porous membrane. In theory, PD offers near-perfect rejection for nonvolatile solutes, chlorine resistance, and the ability to decouple water and solute transport. Despite its advantages, pore wetting and the development of a reverse transmembrane temperature difference are potential critical concerns in PD, with the former compromising the salt rejection and the latter reducing or even eliminating the driving force for vapor transport. We herein present an analysis to evaluate the practical viability and membrane design principles of PD with a focus on the dependence of flux and salt rejection (SR) on membrane properties. By modeling the mass transfer in a PD process under different conditions, we arrive at two important conclusions. First, a practically detrimental reverse transmembrane temperature difference does not develop in PD under all relevant circumstances and is thus not a practical concern. Second, for a PD process to achieve an acceptable SR, the membrane pores should be at the nanometer scale with a highly uniform pore size distribution. This analysis demonstrates the practical viability of PD and provides the principles for designing robust and high-performance PD membranes.
AbstractList Pressure-driven distillation (PD) is a novel desalination technology based on hydraulic pressure driving force and vapor transport across a hydrophobic porous membrane. In theory, PD offers near-perfect rejection for nonvolatile solutes, chlorine resistance, and the ability to decouple water and solute transport. Despite its advantages, pore wetting and the development of a reverse transmembrane temperature difference are potential critical concerns in PD, with the former compromising the salt rejection and the latter reducing or even eliminating the driving force for vapor transport. We herein present an analysis to evaluate the practical viability and membrane design principles of PD with a focus on the dependence of flux and salt rejection (SR) on membrane properties. By modeling the mass transfer in a PD process under different conditions, we arrive at two important conclusions. First, a practically detrimental reverse transmembrane temperature difference does not develop in PD under all relevant circumstances and is thus not a practical concern. Second, for a PD process to achieve an acceptable SR, the membrane pores should be at the nanometer scale with a highly uniform pore size distribution. This analysis demonstrates the practical viability of PD and provides the principles for designing robust and high-performance PD membranes.
Pressure-driven distillation (PD) is a novel desalination technology based on hydraulic pressure driving force and vapor transport across a hydrophobic porous membrane. In theory, PD offers near-perfect rejection for nonvolatile solutes, chlorine resistance, and the ability to decouple water and solute transport. Despite its advantages, pore wetting and the development of a reverse transmembrane temperature difference are potential critical concerns in PD, with the former compromising the salt rejection and the latter reducing or even eliminating the driving force for vapor transport. We herein present an analysis to evaluate the practical viability and membrane design principles of PD with a focus on the dependence of flux and salt rejection (SR) on membrane properties. By modeling the mass transfer in a PD process under different conditions, we arrive at two important conclusions. First, a practically detrimental reverse transmembrane temperature difference does not develop in PD under all relevant circumstances and is thus not a practical concern. Second, for a PD process to achieve an acceptable SR, the membrane pores should be at the nanometer scale with a highly uniform pore size distribution. This analysis demonstrates the practical viability of PD and provides the principles for designing robust and high-performance PD membranes.Pressure-driven distillation (PD) is a novel desalination technology based on hydraulic pressure driving force and vapor transport across a hydrophobic porous membrane. In theory, PD offers near-perfect rejection for nonvolatile solutes, chlorine resistance, and the ability to decouple water and solute transport. Despite its advantages, pore wetting and the development of a reverse transmembrane temperature difference are potential critical concerns in PD, with the former compromising the salt rejection and the latter reducing or even eliminating the driving force for vapor transport. We herein present an analysis to evaluate the practical viability and membrane design principles of PD with a focus on the dependence of flux and salt rejection (SR) on membrane properties. By modeling the mass transfer in a PD process under different conditions, we arrive at two important conclusions. First, a practically detrimental reverse transmembrane temperature difference does not develop in PD under all relevant circumstances and is thus not a practical concern. Second, for a PD process to achieve an acceptable SR, the membrane pores should be at the nanometer scale with a highly uniform pore size distribution. This analysis demonstrates the practical viability of PD and provides the principles for designing robust and high-performance PD membranes.
Author Liu, Weifan
Straub, Anthony P.
Lin, Shihong
Wang, Ruoyu
AuthorAffiliation Department of Civil and Environmental Engineering
Department of Civil, Environmental and Architectural Engineering
Department of Chemical and Bimolecular Engineering
AuthorAffiliation_xml – name: Department of Civil and Environmental Engineering
– name: Department of Chemical and Bimolecular Engineering
– name: Department of Civil, Environmental and Architectural Engineering
Author_xml – sequence: 1
  givenname: Weifan
  surname: Liu
  fullname: Liu, Weifan
  organization: Department of Civil and Environmental Engineering
– sequence: 2
  givenname: Ruoyu
  surname: Wang
  fullname: Wang, Ruoyu
  organization: Department of Civil and Environmental Engineering
– sequence: 3
  givenname: Anthony P.
  orcidid: 0000-0001-7233-6839
  surname: Straub
  fullname: Straub, Anthony P.
  organization: Department of Civil, Environmental and Architectural Engineering
– sequence: 4
  givenname: Shihong
  orcidid: 0000-0001-9832-9127
  surname: Lin
  fullname: Lin, Shihong
  email: shihing.lin@vanderbilt.edu
  organization: Department of Chemical and Bimolecular Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36693171$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9r2zAUx8XIWNJu592GYZdCcfJkWbJ8HEl_QUdzWMtuQpafh4IjZ5Jc6H8_pUl3KJSeBHqf79NX3-8JmbjBISFfKcwpFHShTZhjiPPCQFUJ_oHMKC8g55LTCZkBUJbXTPyekpMQNgBQMJCfyJQJUTNa0RlZ_8Rt47XDbIXB_nHZ0tuI3upMuzZbe22iNbrPHqxubG_jUzZ06RpDGD3mK28f0WUrG6Ltex3t4D6Tj53uA345nqfk_vLi1_I6v727uln-uM01q8uYo-CVMC1Nxk0nqSgYIgAXopMAbdtJVkioZFN2mlMB2JSGCQrQCFN3acROydlh784Pf8eUgdraYDC5cDiMQTEogckUhnwXLSpR8xokpQn9_grdDKN36SOJqkouK0nLRH07UmOzxVbtvN1q_6ReYk0APwDGDyF47JSx8Tme6LXtFQW1r0-l-tT-kWN9Sbd4pXtZ_bbi_KDYD_57fYv-B7ODqtw
CitedBy_id crossref_primary_10_1021_acsestengg_4c00644
crossref_primary_10_1021_acs_estlett_3c00391
crossref_primary_10_1126_sciadv_adg6638
crossref_primary_10_1002_dro2_110
crossref_primary_10_1021_acsaenm_4c00152
crossref_primary_10_1021_acs_est_4c05283
Cites_doi 10.1007/978-94-009-1766-8
10.1021/acsnano.1c00987
10.1016/j.watres.2009.03.010
10.1016/j.memsci.2010.11.054
10.1016/s0376-7388(02)00603-8
10.1021/es4047632
10.1126/science.1200488
10.1021/acs.est.8b04790
10.1016/s0376-7388(02)00498-2
10.1038/s41467-019-11209-6
10.1016/0376-7388(94)80090-1
10.1021/nl103799d
10.1021/acsami.0c03577
10.1016/s0376-7388(00)80288-4
10.1006/jcis.2000.7106
10.1016/j.coche.2016.02.006
10.1016/j.memsci.2013.11.016
10.1016/s0009-2509(01)00412-2
10.1016/j.memsci.2020.118309
10.1038/s41598-022-17876-8
10.1021/acs.est.9b04788
10.1016/j.memsci.2009.04.056
10.1016/j.desal.2021.115168
10.1021/acs.estlett.6b00050
10.1126/science.aab0530
10.1038/s41565-018-0067-5
10.1016/j.joule.2017.10.002
10.1063/1.5137803
10.1016/j.memsci.2006.09.043
10.1021/acs.est.1c04443
10.1016/0376-7388(95)00102-i
10.1038/nnano.2014.28
10.1016/j.memsci.2017.05.017
10.1038/nenergy.2016.90
10.1038/nature06599
10.1021/acsestengg.0c00192
10.1021/acs.estlett.9b00686
10.1016/j.memsci.2019.117297
10.1061/(asce)ee.1943-7870.0000043
10.1063/1.3419751
10.1016/j.memsci.2021.119292
10.1016/j.ijheatmasstransfer.2019.06.044
ContentType Journal Article
Copyright 2023 American Chemical Society
Copyright American Chemical Society Feb 7, 2023
Copyright_xml – notice: 2023 American Chemical Society
– notice: Copyright American Chemical Society Feb 7, 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7S9
L.6
DOI 10.1021/acs.est.2c07765
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE

Biotechnology Research Abstracts
AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1520-5851
EndPage 2137
ExternalDocumentID 36693171
10_1021_acs_est_2c07765
b829965750
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
..I
.DC
.K2
3R3
4.4
4R4
55A
5GY
5VS
63O
6TJ
7~N
85S
AABXI
ABFLS
ABFRP
ABMVS
ABOGM
ABPPZ
ABPTK
ABQRX
ABUCX
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
ADHLV
AEESW
AENEX
AFEFF
AFRAH
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
EBS
ED~
F5P
GGK
GNL
IH9
JG~
LG6
MS~
MW2
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
XSW
XZL
YZZ
ZCA
53G
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ADUKH
AGXLV
CITATION
CUPRZ
CGR
CUY
CVF
ECM
EIF
NPM
YIN
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-a394t-e6576cd12c0cf81623ee00566f800ddf8328078b4fa5160eb4c36100b6c9f2803
IEDL.DBID ACS
ISSN 0013-936X
1520-5851
IngestDate Fri Jul 11 02:02:45 EDT 2025
Fri Jul 11 04:37:52 EDT 2025
Mon Jun 30 02:17:13 EDT 2025
Wed Feb 19 02:24:44 EST 2025
Tue Jul 01 04:11:12 EDT 2025
Thu Apr 24 23:06:02 EDT 2025
Thu Feb 09 03:24:46 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords desalination
membrane design
nanoscale
pore wetting
heat transfer
vapor transport
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a394t-e6576cd12c0cf81623ee00566f800ddf8328078b4fa5160eb4c36100b6c9f2803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9832-9127
0000-0001-7233-6839
PMID 36693171
PQID 2774587814
PQPubID 45412
PageCount 9
ParticipantIDs proquest_miscellaneous_3040385208
proquest_miscellaneous_2769590811
proquest_journals_2774587814
pubmed_primary_36693171
crossref_citationtrail_10_1021_acs_est_2c07765
crossref_primary_10_1021_acs_est_2c07765
acs_journals_10_1021_acs_est_2c07765
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-07
PublicationDateYYYYMMDD 2023-02-07
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-07
  day: 07
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref18/cit18
Adamson A. W. (ref27/cit27) 1997; 150
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
Mulder M. (ref16/cit16) 1996
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – volume-title: Basic Principles of Membrane Technology
  year: 1996
  ident: ref16/cit16
  doi: 10.1007/978-94-009-1766-8
– ident: ref24/cit24
  doi: 10.1021/acsnano.1c00987
– ident: ref5/cit5
  doi: 10.1016/j.watres.2009.03.010
– ident: ref12/cit12
  doi: 10.1016/j.memsci.2010.11.054
– ident: ref40/cit40
  doi: 10.1016/s0376-7388(02)00603-8
– ident: ref9/cit9
  doi: 10.1021/es4047632
– ident: ref3/cit3
  doi: 10.1126/science.1200488
– ident: ref10/cit10
  doi: 10.1021/acs.est.8b04790
– ident: ref37/cit37
  doi: 10.1016/s0376-7388(02)00498-2
– ident: ref33/cit33
  doi: 10.1038/s41467-019-11209-6
– ident: ref38/cit38
  doi: 10.1016/0376-7388(94)80090-1
– ident: ref20/cit20
  doi: 10.1021/nl103799d
– ident: ref21/cit21
  doi: 10.1021/acsami.0c03577
– ident: ref31/cit31
  doi: 10.1016/s0376-7388(00)80288-4
– ident: ref32/cit32
  doi: 10.1006/jcis.2000.7106
– ident: ref41/cit41
  doi: 10.1016/j.coche.2016.02.006
– ident: ref25/cit25
  doi: 10.1016/j.memsci.2013.11.016
– ident: ref39/cit39
  doi: 10.1016/s0009-2509(01)00412-2
– ident: ref18/cit18
  doi: 10.1016/j.memsci.2020.118309
– ident: ref19/cit19
  doi: 10.1038/s41598-022-17876-8
– ident: ref35/cit35
  doi: 10.1021/acs.est.9b04788
– ident: ref42/cit42
  doi: 10.1016/j.memsci.2009.04.056
– ident: ref36/cit36
  doi: 10.1016/j.desal.2021.115168
– ident: ref6/cit6
  doi: 10.1021/acs.estlett.6b00050
– ident: ref11/cit11
  doi: 10.1126/science.aab0530
– ident: ref23/cit23
  doi: 10.1038/s41565-018-0067-5
– ident: ref2/cit2
  doi: 10.1016/j.joule.2017.10.002
– ident: ref43/cit43
  doi: 10.1063/1.5137803
– ident: ref7/cit7
  doi: 10.1016/j.memsci.2006.09.043
– ident: ref34/cit34
  doi: 10.1021/acs.est.1c04443
– ident: ref17/cit17
  doi: 10.1016/0376-7388(95)00102-i
– ident: ref22/cit22
  doi: 10.1038/nnano.2014.28
– ident: ref15/cit15
  doi: 10.1016/j.memsci.2017.05.017
– volume: 150
  volume-title: Physical Chemistry of Surfaces
  year: 1997
  ident: ref27/cit27
– ident: ref26/cit26
  doi: 10.1038/nenergy.2016.90
– ident: ref1/cit1
  doi: 10.1038/nature06599
– ident: ref30/cit30
  doi: 10.1021/acsestengg.0c00192
– ident: ref4/cit4
  doi: 10.1021/acs.estlett.9b00686
– ident: ref13/cit13
  doi: 10.1016/j.memsci.2019.117297
– ident: ref8/cit8
  doi: 10.1061/(asce)ee.1943-7870.0000043
– ident: ref14/cit14
  doi: 10.1063/1.3419751
– ident: ref29/cit29
  doi: 10.1016/j.memsci.2021.119292
– ident: ref28/cit28
  doi: 10.1016/j.ijheatmasstransfer.2019.06.044
SSID ssj0002308
Score 2.4656465
Snippet Pressure-driven distillation (PD) is a novel desalination technology based on hydraulic pressure driving force and vapor transport across a hydrophobic porous...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2129
SubjectTerms Chlorine
Desalination
Design criteria
Distillation
environmental science
Hydraulic pressure
Hydrophobicity
Mass transfer
Membranes
Membranes, Artificial
Pore size
Pore size distribution
porosity
Pressure
Principles
Rejection
Salt rejection
Size distribution
Sodium Chloride
Solute transport
Solutes
Temperature
Temperature gradients
Treatment and Resource Recovery
Vapors
Viability
Water - chemistry
Water Purification
Wettability
Wetting
Title Membrane Design Criteria and Practical Viability of Pressure-Driven Distillation
URI http://dx.doi.org/10.1021/acs.est.2c07765
https://www.ncbi.nlm.nih.gov/pubmed/36693171
https://www.proquest.com/docview/2774587814
https://www.proquest.com/docview/2769590811
https://www.proquest.com/docview/3040385208
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RuLQHWmgpSwEZiQOXpLFje5Pjil2EkEBIPLS3KHZsqQKy1Wb3AL-emSSbbYtW5Zo40Wg8j2_k8TcAx4XkOddeBTKP-oF0Kg-MsgVWrcJEUlqja57Zyyt9ficvxmq8JIv-9wRf8J-5rUIMkKGwxDyjPsCG0Emf6qzB6U0XdBFJJ4thBWmsxx2Lz5sfUBqy1d9paAW2rHPM2eemO6uqqQmpteQhnM9MaF_eEjf-X_wvsNkiTTZoTGML1ly5DZ_-4B_chp3R8pobLm39vPoK15fuCcvo0rFh3eHBaCIC2SrLy4I1HEe4uez-V0Pz_cwmnjU3DacuGE4phLIhhY_HptfuG9ydjW5Pz4N29kKQx6mcBU5jIWILjmJbn3AESc4Rbaj2iDCLwmMgIKZ6I32uuI6ckTZGJBYZbVNPE692YL2clG4XmPSRsomOpJOYCgufIqbygnuhTSqFj3pwjErKWt-psvpYXPCMHqLmslZzPQgXO5bZlr-cxmg8rv7gpPvgd0PdsXrp_sIElnIIRMYqIUqwHhx1r9H76EgFd2AypzU6panxnK9eE2OcjBMloqQH3xvz6uSJtU4RwfG99-ngB3ykcfd113h_H9Zn07k7QFA0M4e1O7wCB1sFmg
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NThsxEB5BOEAPtKVQ0qbFlajEZdO11za7hx4iAgqFIKRClduy9tpS1TRB2USIPk1fpW_W8f4FWkXigsTVa1tez99nefwNwG7KaUKlFR5P_H2PG5F4SugUT61M-ZxrJXOe2f6Z7F3yLwMxWILf1VsYXESGM2X5Jf6cXYB-cm3oJ9tMOwKaKo3yxNze4CEt-3zcRYl-ZOzo8OKg55V1BLwkiPjUMxJBtU4pDtU2pBjwjXEUmNIiWkpTi0rtWNcVt4mg0jeK6wBRha-kjqyr3oTzLsMKQh_mjnedg6-1r0cAH1Y1EqJADmryoP8W7KKfzu5HvwWQNg9tR8_hT70peUbLj_Zsqtr61z98kU95117AeomrSacwhJewZEYb8OwO2-IGbB3OH_Vh19KrZa_gvG9-KozZhnTzfBbi6j84yyTJKCUFoxOqMvn2vSA1vyVjS4p3lRPjdScuYJCuc5bDIrNwEy4f5V-3oDEaj8w2EG59oUPpc8Mx8Kc2QgRpGbVMqogz6zdhF4USl54ii_MkAEZj14iSiktJNaFdKUqsS7Z2VzRkuHjAXj3guiAqWdy1VWnefB0MzwEidARoTfhQf0Zf4y6QUALjmesjIxEhiKSL-wQYFYJQMD9swutCq-v1BFJGiFfpm4ftwQ6s9i76p_Hp8dnJW1hjaG15vvx-CxrTycy8Qzg4Ve9ziyRw9djK_Bctb2YI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3dThQxFD5BSIxeCKLoCmpNMPFm1mmnLTMXXhCGDYgQEsXs3TDttIkRd8nObgw8D6_ie3nO_CGSTbwh8bbTNp2ev6_p6XcANgvJc669CmQebgXSqTwwyhZ4ahUmlNIaXfHMHh7pvRP5caiGC3DVvoXBRZQ4U1ld4pNVnxe-YRjg76kdfWVfWCKhaVMpD9zFTzyolR_2U5TqWyEGu1929oKmlkCQR4mcBk4jsLYFx6HWxxyDvnNEg6k9Iqai8KjYxLxupM8V16Ez0kaILEKjbeKpghPOew-W6JKQjnjbO587f48gPm7rJCSRHnYEQrcWTBHQljcj4BxYW4W3wTL86jamymr53p9NTd9e_sUZ-b_v3Ao8avA1264N4jEsuNEqPPyDdXEV1navH_dh18a7lU_g-ND9MBi7HUurvBZGdSDIQlk-KljN7IQqzb5-q8nNL9jYs_p95cQF6YQCB0vJaZ7VGYZP4eRO_nUNFkfjkXsOTPpQ2ViH0kkEAIVPEEl6wb3QJpHChz3YRKFkjccosyoZQPCMGlFSWSOpHvRbZclsw9pOxUPO5g941w04rwlL5nfdaLXveh0CzwMqJiK0HrzpPqPPoYsklMB4Rn10ohIEk3x-nwijQxQrEcY9eFZrdreeSOsEcSt_8W978BruH6eD7NP-0cE6PBBocFXa_NYGLE4nM_cSUeHUvKqMksHpXevybw2naIs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Membrane+Design+Criteria+and+Practical+Viability+of+Pressure-Driven+Distillation&rft.jtitle=Environmental+science+%26+technology&rft.au=Liu%2C+Weifan&rft.au=Wang%2C+Ruoyu&rft.au=Straub%2C+Anthony+P.&rft.au=Lin%2C+Shihong&rft.date=2023-02-07&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=57&rft.issue=5&rft.spage=2129&rft.epage=2137&rft_id=info:doi/10.1021%2Facs.est.2c07765&rft.externalDocID=b829965750
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon