Membrane Design Criteria and Practical Viability of Pressure-Driven Distillation
Pressure-driven distillation (PD) is a novel desalination technology based on hydraulic pressure driving force and vapor transport across a hydrophobic porous membrane. In theory, PD offers near-perfect rejection for nonvolatile solutes, chlorine resistance, and the ability to decouple water and sol...
Saved in:
Published in | Environmental science & technology Vol. 57; no. 5; pp. 2129 - 2137 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
07.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pressure-driven distillation (PD) is a novel desalination technology based on hydraulic pressure driving force and vapor transport across a hydrophobic porous membrane. In theory, PD offers near-perfect rejection for nonvolatile solutes, chlorine resistance, and the ability to decouple water and solute transport. Despite its advantages, pore wetting and the development of a reverse transmembrane temperature difference are potential critical concerns in PD, with the former compromising the salt rejection and the latter reducing or even eliminating the driving force for vapor transport. We herein present an analysis to evaluate the practical viability and membrane design principles of PD with a focus on the dependence of flux and salt rejection (SR) on membrane properties. By modeling the mass transfer in a PD process under different conditions, we arrive at two important conclusions. First, a practically detrimental reverse transmembrane temperature difference does not develop in PD under all relevant circumstances and is thus not a practical concern. Second, for a PD process to achieve an acceptable SR, the membrane pores should be at the nanometer scale with a highly uniform pore size distribution. This analysis demonstrates the practical viability of PD and provides the principles for designing robust and high-performance PD membranes. |
---|---|
AbstractList | Pressure-driven distillation (PD) is a novel desalination technology based on hydraulic pressure driving force and vapor transport across a hydrophobic porous membrane. In theory, PD offers near-perfect rejection for nonvolatile solutes, chlorine resistance, and the ability to decouple water and solute transport. Despite its advantages, pore wetting and the development of a reverse transmembrane temperature difference are potential critical concerns in PD, with the former compromising the salt rejection and the latter reducing or even eliminating the driving force for vapor transport. We herein present an analysis to evaluate the practical viability and membrane design principles of PD with a focus on the dependence of flux and salt rejection (SR) on membrane properties. By modeling the mass transfer in a PD process under different conditions, we arrive at two important conclusions. First, a practically detrimental reverse transmembrane temperature difference does not develop in PD under all relevant circumstances and is thus not a practical concern. Second, for a PD process to achieve an acceptable SR, the membrane pores should be at the nanometer scale with a highly uniform pore size distribution. This analysis demonstrates the practical viability of PD and provides the principles for designing robust and high-performance PD membranes. Pressure-driven distillation (PD) is a novel desalination technology based on hydraulic pressure driving force and vapor transport across a hydrophobic porous membrane. In theory, PD offers near-perfect rejection for nonvolatile solutes, chlorine resistance, and the ability to decouple water and solute transport. Despite its advantages, pore wetting and the development of a reverse transmembrane temperature difference are potential critical concerns in PD, with the former compromising the salt rejection and the latter reducing or even eliminating the driving force for vapor transport. We herein present an analysis to evaluate the practical viability and membrane design principles of PD with a focus on the dependence of flux and salt rejection (SR) on membrane properties. By modeling the mass transfer in a PD process under different conditions, we arrive at two important conclusions. First, a practically detrimental reverse transmembrane temperature difference does not develop in PD under all relevant circumstances and is thus not a practical concern. Second, for a PD process to achieve an acceptable SR, the membrane pores should be at the nanometer scale with a highly uniform pore size distribution. This analysis demonstrates the practical viability of PD and provides the principles for designing robust and high-performance PD membranes.Pressure-driven distillation (PD) is a novel desalination technology based on hydraulic pressure driving force and vapor transport across a hydrophobic porous membrane. In theory, PD offers near-perfect rejection for nonvolatile solutes, chlorine resistance, and the ability to decouple water and solute transport. Despite its advantages, pore wetting and the development of a reverse transmembrane temperature difference are potential critical concerns in PD, with the former compromising the salt rejection and the latter reducing or even eliminating the driving force for vapor transport. We herein present an analysis to evaluate the practical viability and membrane design principles of PD with a focus on the dependence of flux and salt rejection (SR) on membrane properties. By modeling the mass transfer in a PD process under different conditions, we arrive at two important conclusions. First, a practically detrimental reverse transmembrane temperature difference does not develop in PD under all relevant circumstances and is thus not a practical concern. Second, for a PD process to achieve an acceptable SR, the membrane pores should be at the nanometer scale with a highly uniform pore size distribution. This analysis demonstrates the practical viability of PD and provides the principles for designing robust and high-performance PD membranes. |
Author | Liu, Weifan Straub, Anthony P. Lin, Shihong Wang, Ruoyu |
AuthorAffiliation | Department of Civil and Environmental Engineering Department of Civil, Environmental and Architectural Engineering Department of Chemical and Bimolecular Engineering |
AuthorAffiliation_xml | – name: Department of Civil and Environmental Engineering – name: Department of Chemical and Bimolecular Engineering – name: Department of Civil, Environmental and Architectural Engineering |
Author_xml | – sequence: 1 givenname: Weifan surname: Liu fullname: Liu, Weifan organization: Department of Civil and Environmental Engineering – sequence: 2 givenname: Ruoyu surname: Wang fullname: Wang, Ruoyu organization: Department of Civil and Environmental Engineering – sequence: 3 givenname: Anthony P. orcidid: 0000-0001-7233-6839 surname: Straub fullname: Straub, Anthony P. organization: Department of Civil, Environmental and Architectural Engineering – sequence: 4 givenname: Shihong orcidid: 0000-0001-9832-9127 surname: Lin fullname: Lin, Shihong email: shihing.lin@vanderbilt.edu organization: Department of Chemical and Bimolecular Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36693171$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9r2zAUx8XIWNJu592GYZdCcfJkWbJ8HEl_QUdzWMtuQpafh4IjZ5Jc6H8_pUl3KJSeBHqf79NX3-8JmbjBISFfKcwpFHShTZhjiPPCQFUJ_oHMKC8g55LTCZkBUJbXTPyekpMQNgBQMJCfyJQJUTNa0RlZ_8Rt47XDbIXB_nHZ0tuI3upMuzZbe22iNbrPHqxubG_jUzZ06RpDGD3mK28f0WUrG6Ltex3t4D6Tj53uA345nqfk_vLi1_I6v727uln-uM01q8uYo-CVMC1Nxk0nqSgYIgAXopMAbdtJVkioZFN2mlMB2JSGCQrQCFN3acROydlh784Pf8eUgdraYDC5cDiMQTEogckUhnwXLSpR8xokpQn9_grdDKN36SOJqkouK0nLRH07UmOzxVbtvN1q_6ReYk0APwDGDyF47JSx8Tme6LXtFQW1r0-l-tT-kWN9Sbd4pXtZ_bbi_KDYD_57fYv-B7ODqtw |
CitedBy_id | crossref_primary_10_1021_acsestengg_4c00644 crossref_primary_10_1021_acs_estlett_3c00391 crossref_primary_10_1126_sciadv_adg6638 crossref_primary_10_1002_dro2_110 crossref_primary_10_1021_acsaenm_4c00152 crossref_primary_10_1021_acs_est_4c05283 |
Cites_doi | 10.1007/978-94-009-1766-8 10.1021/acsnano.1c00987 10.1016/j.watres.2009.03.010 10.1016/j.memsci.2010.11.054 10.1016/s0376-7388(02)00603-8 10.1021/es4047632 10.1126/science.1200488 10.1021/acs.est.8b04790 10.1016/s0376-7388(02)00498-2 10.1038/s41467-019-11209-6 10.1016/0376-7388(94)80090-1 10.1021/nl103799d 10.1021/acsami.0c03577 10.1016/s0376-7388(00)80288-4 10.1006/jcis.2000.7106 10.1016/j.coche.2016.02.006 10.1016/j.memsci.2013.11.016 10.1016/s0009-2509(01)00412-2 10.1016/j.memsci.2020.118309 10.1038/s41598-022-17876-8 10.1021/acs.est.9b04788 10.1016/j.memsci.2009.04.056 10.1016/j.desal.2021.115168 10.1021/acs.estlett.6b00050 10.1126/science.aab0530 10.1038/s41565-018-0067-5 10.1016/j.joule.2017.10.002 10.1063/1.5137803 10.1016/j.memsci.2006.09.043 10.1021/acs.est.1c04443 10.1016/0376-7388(95)00102-i 10.1038/nnano.2014.28 10.1016/j.memsci.2017.05.017 10.1038/nenergy.2016.90 10.1038/nature06599 10.1021/acsestengg.0c00192 10.1021/acs.estlett.9b00686 10.1016/j.memsci.2019.117297 10.1061/(asce)ee.1943-7870.0000043 10.1063/1.3419751 10.1016/j.memsci.2021.119292 10.1016/j.ijheatmasstransfer.2019.06.044 |
ContentType | Journal Article |
Copyright | 2023 American Chemical Society Copyright American Chemical Society Feb 7, 2023 |
Copyright_xml | – notice: 2023 American Chemical Society – notice: Copyright American Chemical Society Feb 7, 2023 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 |
DOI | 10.1021/acs.est.2c07765 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE Biotechnology Research Abstracts AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1520-5851 |
EndPage | 2137 |
ExternalDocumentID | 36693171 10_1021_acs_est_2c07765 b829965750 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X ..I .DC .K2 3R3 4.4 4R4 55A 5GY 5VS 63O 6TJ 7~N 85S AABXI ABFLS ABFRP ABMVS ABOGM ABPPZ ABPTK ABQRX ABUCX ACGFS ACGOD ACIWK ACJ ACPRK ACS ADHLV AEESW AENEX AFEFF AFRAH AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 EBS ED~ F5P GGK GNL IH9 JG~ LG6 MS~ MW2 PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 XSW XZL YZZ ZCA 53G AAHBH AAYXX ABBLG ABJNI ABLBI ADUKH AGXLV CITATION CUPRZ CGR CUY CVF ECM EIF NPM YIN 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a394t-e6576cd12c0cf81623ee00566f800ddf8328078b4fa5160eb4c36100b6c9f2803 |
IEDL.DBID | ACS |
ISSN | 0013-936X 1520-5851 |
IngestDate | Fri Jul 11 02:02:45 EDT 2025 Fri Jul 11 04:37:52 EDT 2025 Mon Jun 30 02:17:13 EDT 2025 Wed Feb 19 02:24:44 EST 2025 Tue Jul 01 04:11:12 EDT 2025 Thu Apr 24 23:06:02 EDT 2025 Thu Feb 09 03:24:46 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | desalination membrane design nanoscale pore wetting heat transfer vapor transport |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a394t-e6576cd12c0cf81623ee00566f800ddf8328078b4fa5160eb4c36100b6c9f2803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9832-9127 0000-0001-7233-6839 |
PMID | 36693171 |
PQID | 2774587814 |
PQPubID | 45412 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_3040385208 proquest_miscellaneous_2769590811 proquest_journals_2774587814 pubmed_primary_36693171 crossref_citationtrail_10_1021_acs_est_2c07765 crossref_primary_10_1021_acs_est_2c07765 acs_journals_10_1021_acs_est_2c07765 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-07 |
PublicationDateYYYYMMDD | 2023-02-07 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref18/cit18 Adamson A. W. (ref27/cit27) 1997; 150 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 Mulder M. (ref16/cit16) 1996 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – volume-title: Basic Principles of Membrane Technology year: 1996 ident: ref16/cit16 doi: 10.1007/978-94-009-1766-8 – ident: ref24/cit24 doi: 10.1021/acsnano.1c00987 – ident: ref5/cit5 doi: 10.1016/j.watres.2009.03.010 – ident: ref12/cit12 doi: 10.1016/j.memsci.2010.11.054 – ident: ref40/cit40 doi: 10.1016/s0376-7388(02)00603-8 – ident: ref9/cit9 doi: 10.1021/es4047632 – ident: ref3/cit3 doi: 10.1126/science.1200488 – ident: ref10/cit10 doi: 10.1021/acs.est.8b04790 – ident: ref37/cit37 doi: 10.1016/s0376-7388(02)00498-2 – ident: ref33/cit33 doi: 10.1038/s41467-019-11209-6 – ident: ref38/cit38 doi: 10.1016/0376-7388(94)80090-1 – ident: ref20/cit20 doi: 10.1021/nl103799d – ident: ref21/cit21 doi: 10.1021/acsami.0c03577 – ident: ref31/cit31 doi: 10.1016/s0376-7388(00)80288-4 – ident: ref32/cit32 doi: 10.1006/jcis.2000.7106 – ident: ref41/cit41 doi: 10.1016/j.coche.2016.02.006 – ident: ref25/cit25 doi: 10.1016/j.memsci.2013.11.016 – ident: ref39/cit39 doi: 10.1016/s0009-2509(01)00412-2 – ident: ref18/cit18 doi: 10.1016/j.memsci.2020.118309 – ident: ref19/cit19 doi: 10.1038/s41598-022-17876-8 – ident: ref35/cit35 doi: 10.1021/acs.est.9b04788 – ident: ref42/cit42 doi: 10.1016/j.memsci.2009.04.056 – ident: ref36/cit36 doi: 10.1016/j.desal.2021.115168 – ident: ref6/cit6 doi: 10.1021/acs.estlett.6b00050 – ident: ref11/cit11 doi: 10.1126/science.aab0530 – ident: ref23/cit23 doi: 10.1038/s41565-018-0067-5 – ident: ref2/cit2 doi: 10.1016/j.joule.2017.10.002 – ident: ref43/cit43 doi: 10.1063/1.5137803 – ident: ref7/cit7 doi: 10.1016/j.memsci.2006.09.043 – ident: ref34/cit34 doi: 10.1021/acs.est.1c04443 – ident: ref17/cit17 doi: 10.1016/0376-7388(95)00102-i – ident: ref22/cit22 doi: 10.1038/nnano.2014.28 – ident: ref15/cit15 doi: 10.1016/j.memsci.2017.05.017 – volume: 150 volume-title: Physical Chemistry of Surfaces year: 1997 ident: ref27/cit27 – ident: ref26/cit26 doi: 10.1038/nenergy.2016.90 – ident: ref1/cit1 doi: 10.1038/nature06599 – ident: ref30/cit30 doi: 10.1021/acsestengg.0c00192 – ident: ref4/cit4 doi: 10.1021/acs.estlett.9b00686 – ident: ref13/cit13 doi: 10.1016/j.memsci.2019.117297 – ident: ref8/cit8 doi: 10.1061/(asce)ee.1943-7870.0000043 – ident: ref14/cit14 doi: 10.1063/1.3419751 – ident: ref29/cit29 doi: 10.1016/j.memsci.2021.119292 – ident: ref28/cit28 doi: 10.1016/j.ijheatmasstransfer.2019.06.044 |
SSID | ssj0002308 |
Score | 2.4656465 |
Snippet | Pressure-driven distillation (PD) is a novel desalination technology based on hydraulic pressure driving force and vapor transport across a hydrophobic porous... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2129 |
SubjectTerms | Chlorine Desalination Design criteria Distillation environmental science Hydraulic pressure Hydrophobicity Mass transfer Membranes Membranes, Artificial Pore size Pore size distribution porosity Pressure Principles Rejection Salt rejection Size distribution Sodium Chloride Solute transport Solutes Temperature Temperature gradients Treatment and Resource Recovery Vapors Viability Water - chemistry Water Purification Wettability Wetting |
Title | Membrane Design Criteria and Practical Viability of Pressure-Driven Distillation |
URI | http://dx.doi.org/10.1021/acs.est.2c07765 https://www.ncbi.nlm.nih.gov/pubmed/36693171 https://www.proquest.com/docview/2774587814 https://www.proquest.com/docview/2769590811 https://www.proquest.com/docview/3040385208 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RuLQHWmgpSwEZiQOXpLFje5Pjil2EkEBIPLS3KHZsqQKy1Wb3AL-emSSbbYtW5Zo40Wg8j2_k8TcAx4XkOddeBTKP-oF0Kg-MsgVWrcJEUlqja57Zyyt9ficvxmq8JIv-9wRf8J-5rUIMkKGwxDyjPsCG0Emf6qzB6U0XdBFJJ4thBWmsxx2Lz5sfUBqy1d9paAW2rHPM2eemO6uqqQmpteQhnM9MaF_eEjf-X_wvsNkiTTZoTGML1ly5DZ_-4B_chp3R8pobLm39vPoK15fuCcvo0rFh3eHBaCIC2SrLy4I1HEe4uez-V0Pz_cwmnjU3DacuGE4phLIhhY_HptfuG9ydjW5Pz4N29kKQx6mcBU5jIWILjmJbn3AESc4Rbaj2iDCLwmMgIKZ6I32uuI6ckTZGJBYZbVNPE692YL2clG4XmPSRsomOpJOYCgufIqbygnuhTSqFj3pwjErKWt-psvpYXPCMHqLmslZzPQgXO5bZlr-cxmg8rv7gpPvgd0PdsXrp_sIElnIIRMYqIUqwHhx1r9H76EgFd2AypzU6panxnK9eE2OcjBMloqQH3xvz6uSJtU4RwfG99-ngB3ykcfd113h_H9Zn07k7QFA0M4e1O7wCB1sFmg |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NThsxEB5BOEAPtKVQ0qbFlajEZdO11za7hx4iAgqFIKRClduy9tpS1TRB2USIPk1fpW_W8f4FWkXigsTVa1tez99nefwNwG7KaUKlFR5P_H2PG5F4SugUT61M-ZxrJXOe2f6Z7F3yLwMxWILf1VsYXESGM2X5Jf6cXYB-cm3oJ9tMOwKaKo3yxNze4CEt-3zcRYl-ZOzo8OKg55V1BLwkiPjUMxJBtU4pDtU2pBjwjXEUmNIiWkpTi0rtWNcVt4mg0jeK6wBRha-kjqyr3oTzLsMKQh_mjnedg6-1r0cAH1Y1EqJADmryoP8W7KKfzu5HvwWQNg9tR8_hT70peUbLj_Zsqtr61z98kU95117AeomrSacwhJewZEYb8OwO2-IGbB3OH_Vh19KrZa_gvG9-KozZhnTzfBbi6j84yyTJKCUFoxOqMvn2vSA1vyVjS4p3lRPjdScuYJCuc5bDIrNwEy4f5V-3oDEaj8w2EG59oUPpc8Mx8Kc2QgRpGbVMqogz6zdhF4USl54ii_MkAEZj14iSiktJNaFdKUqsS7Z2VzRkuHjAXj3guiAqWdy1VWnefB0MzwEidARoTfhQf0Zf4y6QUALjmesjIxEhiKSL-wQYFYJQMD9swutCq-v1BFJGiFfpm4ftwQ6s9i76p_Hp8dnJW1hjaG15vvx-CxrTycy8Qzg4Ve9ziyRw9djK_Bctb2YI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3dThQxFD5BSIxeCKLoCmpNMPFm1mmnLTMXXhCGDYgQEsXs3TDttIkRd8nObgw8D6_ie3nO_CGSTbwh8bbTNp2ev6_p6XcANgvJc669CmQebgXSqTwwyhZ4ahUmlNIaXfHMHh7pvRP5caiGC3DVvoXBRZQ4U1ld4pNVnxe-YRjg76kdfWVfWCKhaVMpD9zFTzyolR_2U5TqWyEGu1929oKmlkCQR4mcBk4jsLYFx6HWxxyDvnNEg6k9Iqai8KjYxLxupM8V16Ez0kaILEKjbeKpghPOew-W6JKQjnjbO587f48gPm7rJCSRHnYEQrcWTBHQljcj4BxYW4W3wTL86jamymr53p9NTd9e_sUZ-b_v3Ao8avA1264N4jEsuNEqPPyDdXEV1navH_dh18a7lU_g-ND9MBi7HUurvBZGdSDIQlk-KljN7IQqzb5-q8nNL9jYs_p95cQF6YQCB0vJaZ7VGYZP4eRO_nUNFkfjkXsOTPpQ2ViH0kkEAIVPEEl6wb3QJpHChz3YRKFkjccosyoZQPCMGlFSWSOpHvRbZclsw9pOxUPO5g941w04rwlL5nfdaLXveh0CzwMqJiK0HrzpPqPPoYsklMB4Rn10ohIEk3x-nwijQxQrEcY9eFZrdreeSOsEcSt_8W978BruH6eD7NP-0cE6PBBocFXa_NYGLE4nM_cSUeHUvKqMksHpXevybw2naIs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Membrane+Design+Criteria+and+Practical+Viability+of+Pressure-Driven+Distillation&rft.jtitle=Environmental+science+%26+technology&rft.au=Liu%2C+Weifan&rft.au=Wang%2C+Ruoyu&rft.au=Straub%2C+Anthony+P.&rft.au=Lin%2C+Shihong&rft.date=2023-02-07&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=57&rft.issue=5&rft.spage=2129&rft.epage=2137&rft_id=info:doi/10.1021%2Facs.est.2c07765&rft.externalDocID=b829965750 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |