Crystalline Liquid-like Behavior: Surface-Induced Secondary Grain Growth of Photovoltaic Perovskite Thin Film

Surface effects usually become negligible on the micrometer or sub-micrometer scale due to lower surface-to-bulk ratio compared to nanomaterials. In lead halide perovskites, however, their “soft” nature renders them highly responsive to the external field, allowing for extended depth scale affected...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 141; no. 35; pp. 13948 - 13953
Main Authors Xue, Jingjing, Wang, Rui, Wang, Kai-Li, Wang, Zhao-Kui, Yavuz, Ilhan, Wang, Yang, Yang, Yingguo, Gao, Xingyu, Huang, Tianyi, Nuryyeva, Selbi, Lee, Jin-Wook, Duan, Yu, Liao, Liang-Sheng, Kaner, Richard, Yang, Yang
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 04.09.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Surface effects usually become negligible on the micrometer or sub-micrometer scale due to lower surface-to-bulk ratio compared to nanomaterials. In lead halide perovskites, however, their “soft” nature renders them highly responsive to the external field, allowing for extended depth scale affected by the surface. Herein, by taking advantage of this unique feature of perovskites we demonstrate a methodology for property manipulation of perovskite thin films based on secondary grain growth, where tuning of the surface induces the internal property evolution of the entire perovskite film. While in conventional microelectronic techniques secondary grain growth generally involves harsh conditions such as high temperature and straining, it is easily triggered in a perovskite thin film by a simple surface post-treatment, producing enlarged grain sizes of up to 4 μm. The resulting photovoltaic devices exhibit significantly enhanced power conversion efficiency and operational stability over a course of 1000 h and an ambient shelf stability of over 4000 h while maintaining over 90% of its original efficiency.
AbstractList Surface effects usually become negligible on the micrometer or sub-micrometer scale due to lower surface-to-bulk ratio compared to nanomaterials. In lead halide perovskites, however, their "soft" nature renders them highly responsive to the external field, allowing for extended depth scale affected by the surface. Herein, by taking advantage of this unique feature of perovskites we demonstrate a methodology for property manipulation of perovskite thin films based on secondary grain growth, where tuning of the surface induces the internal property evolution of the entire perovskite film. While in conventional microelectronic techniques secondary grain growth generally involves harsh conditions such as high temperature and straining, it is easily triggered in a perovskite thin film by a simple surface post-treatment, producing enlarged grain sizes of up to 4 μm. The resulting photovoltaic devices exhibit significantly enhanced power conversion efficiency and operational stability over a course of 1000 h and an ambient shelf stability of over 4000 h while maintaining over 90% of its original efficiency.Surface effects usually become negligible on the micrometer or sub-micrometer scale due to lower surface-to-bulk ratio compared to nanomaterials. In lead halide perovskites, however, their "soft" nature renders them highly responsive to the external field, allowing for extended depth scale affected by the surface. Herein, by taking advantage of this unique feature of perovskites we demonstrate a methodology for property manipulation of perovskite thin films based on secondary grain growth, where tuning of the surface induces the internal property evolution of the entire perovskite film. While in conventional microelectronic techniques secondary grain growth generally involves harsh conditions such as high temperature and straining, it is easily triggered in a perovskite thin film by a simple surface post-treatment, producing enlarged grain sizes of up to 4 μm. The resulting photovoltaic devices exhibit significantly enhanced power conversion efficiency and operational stability over a course of 1000 h and an ambient shelf stability of over 4000 h while maintaining over 90% of its original efficiency.
Surface effects usually become negligible on the micrometer or sub-micrometer scale due to lower surface-to-bulk ratio compared to nanomaterials. In lead halide perovskites, however, their “soft” nature renders them highly responsive to the external field, allowing for extended depth scale affected by the surface. Herein, by taking advantage of this unique feature of perovskites we demonstrate a methodology for property manipulation of perovskite thin films based on secondary grain growth, where tuning of the surface induces the internal property evolution of the entire perovskite film. While in conventional microelectronic techniques secondary grain growth generally involves harsh conditions such as high temperature and straining, it is easily triggered in a perovskite thin film by a simple surface post-treatment, producing enlarged grain sizes of up to 4 μm. The resulting photovoltaic devices exhibit significantly enhanced power conversion efficiency and operational stability over a course of 1000 h and an ambient shelf stability of over 4000 h while maintaining over 90% of its original efficiency.
Surface effects usually become negligible on the micron or submicron scale due to lower surface-to-bulk ratio compared to nano-materials. In lead halide perovskites, however, their "soft" nature renders them highly responsive to the external field allowing for extended depth scale affected by the surface. Herein, by taking advantage of this unique feature of perovskites we demonstrate a methodology for property manipulation of perovskite thin films based on secondary grain growth, where tuning of the surface induces the internal property evolution of the entire perovskite film. While in conventional microelectronic techniques secondary grain growth generally involves harsh conditions such as high temperature and straining, it is easily triggered in perovskite thin film by a simple surface post-treatment, producing enlarged grain sizes of up to 4 μm. The resulting photovoltaic devices exhibit significantly enhanced power conversion efficiency and operational stability over a course of 1000 h and an ambient shelf stability of over 4000 h while maintaining over 90% of its original efficiency.
Author Gao, Xingyu
Huang, Tianyi
Kaner, Richard
Nuryyeva, Selbi
Yang, Yang
Wang, Rui
Yang, Yingguo
Wang, Zhao-Kui
Wang, Yang
Liao, Liang-Sheng
Wang, Kai-Li
Lee, Jin-Wook
Yavuz, Ilhan
Xue, Jingjing
Duan, Yu
AuthorAffiliation Chinese Academy of Sciences
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices
Yangzhou University
Shanghai Synchrotron Radiation Facility (SSRF), Zhangjiang Lab, Shanghai Advanced Research Institute
Department of Materials Science and Engineering and California NanoSystems Institute
School of Chemistry and Chemical Engineering
Department of Physics
AuthorAffiliation_xml – name: Department of Materials Science and Engineering and California NanoSystems Institute
– name: School of Chemistry and Chemical Engineering
– name: Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices
– name: Chinese Academy of Sciences
– name: Shanghai Synchrotron Radiation Facility (SSRF), Zhangjiang Lab, Shanghai Advanced Research Institute
– name: Department of Physics
– name: Yangzhou University
Author_xml – sequence: 1
  givenname: Jingjing
  surname: Xue
  fullname: Xue, Jingjing
  organization: Department of Materials Science and Engineering and California NanoSystems Institute
– sequence: 2
  givenname: Rui
  surname: Wang
  fullname: Wang, Rui
  organization: Department of Materials Science and Engineering and California NanoSystems Institute
– sequence: 3
  givenname: Kai-Li
  surname: Wang
  fullname: Wang, Kai-Li
  organization: Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices
– sequence: 4
  givenname: Zhao-Kui
  orcidid: 0000-0003-1707-499X
  surname: Wang
  fullname: Wang, Zhao-Kui
  email: zkwang@suda.edu.cn
  organization: Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices
– sequence: 5
  givenname: Ilhan
  orcidid: 0000-0002-3268-6268
  surname: Yavuz
  fullname: Yavuz, Ilhan
  organization: Department of Physics
– sequence: 6
  givenname: Yang
  orcidid: 0000-0003-2540-2199
  surname: Wang
  fullname: Wang, Yang
  organization: Yangzhou University
– sequence: 7
  givenname: Yingguo
  orcidid: 0000-0002-1749-2799
  surname: Yang
  fullname: Yang, Yingguo
  organization: Chinese Academy of Sciences
– sequence: 8
  givenname: Xingyu
  orcidid: 0000-0003-1477-0092
  surname: Gao
  fullname: Gao, Xingyu
  organization: Chinese Academy of Sciences
– sequence: 9
  givenname: Tianyi
  surname: Huang
  fullname: Huang, Tianyi
  organization: Department of Materials Science and Engineering and California NanoSystems Institute
– sequence: 10
  givenname: Selbi
  surname: Nuryyeva
  fullname: Nuryyeva, Selbi
  organization: Department of Materials Science and Engineering and California NanoSystems Institute
– sequence: 11
  givenname: Jin-Wook
  surname: Lee
  fullname: Lee, Jin-Wook
  organization: Department of Materials Science and Engineering and California NanoSystems Institute
– sequence: 12
  givenname: Yu
  orcidid: 0000-0002-2155-7188
  surname: Duan
  fullname: Duan, Yu
  organization: Department of Materials Science and Engineering and California NanoSystems Institute
– sequence: 13
  givenname: Liang-Sheng
  orcidid: 0000-0002-2352-9666
  surname: Liao
  fullname: Liao, Liang-Sheng
  email: lsliao@suda.edu.cn
  organization: Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices
– sequence: 14
  givenname: Richard
  orcidid: 0000-0003-0345-4924
  surname: Kaner
  fullname: Kaner, Richard
  organization: Department of Materials Science and Engineering and California NanoSystems Institute
– sequence: 15
  givenname: Yang
  orcidid: 0000-0001-8833-7641
  surname: Yang
  fullname: Yang, Yang
  email: yangy@ucla.edu
  organization: Department of Materials Science and Engineering and California NanoSystems Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31403287$$D View this record in MEDLINE/PubMed
BookMark eNqF0c1LBCEYBnCJoraPW-fw2KEpddz56FZLX7BQUJ0HR99h3RwtdTb2v8-lrUMUXRTlp-jz7KJN6ywgdEjJKSWMns2FDKd1S4qakw00omNGsjFlxSYaEUJYVlZFvoN2Q5inJWcV3UY7OeUkZ1U5Qv3EL0MUxmgLeKrfBq0yo18AX8JMLLTz5_hx8J2QkN1ZNUhQ-BGks0r4Jb7xQts0uvc4w67DDzMX3cKZKLTED-DdIrzoCPhplti1Nv0-2uqECXCwnvfQ8_XV0-Q2m97f3E0uppnIax4z4GPBi_QJIau2UwXwulacK8Y4awUtCeQVSKkktIp0XdtWJWkVp0A7wSqm8j10_Hnvq3dvA4TY9DpIMEZYcENoWE7GtKxoQf-nrGSMFim3RI_WdGh7UM2r132KoflKM4GTTyC9C8FD900oaVZlNauymnVZibMfXOooonY2pmDNX4fW711tzt3gbQryd_oBDfSmhw
CitedBy_id crossref_primary_10_1016_j_jallcom_2021_161971
crossref_primary_10_1007_s40820_020_00509_y
crossref_primary_10_1021_acsami_1c21081
crossref_primary_10_1021_acs_jpcc_4c01204
crossref_primary_10_1021_jacs_0c02227
crossref_primary_10_1002_adfm_202300396
crossref_primary_10_1002_adfm_202309894
crossref_primary_10_1016_j_solener_2025_113243
crossref_primary_10_1016_j_cej_2024_156686
crossref_primary_10_1002_solr_202000270
crossref_primary_10_1016_j_chemphys_2023_111847
crossref_primary_10_1016_j_jechem_2021_01_037
crossref_primary_10_1016_j_mtener_2023_101381
crossref_primary_10_1021_acs_chemmater_1c03237
crossref_primary_10_1002_advs_202000421
crossref_primary_10_1016_j_cej_2024_149345
crossref_primary_10_1016_j_cej_2021_133845
crossref_primary_10_1039_C9TC06293A
crossref_primary_10_1002_adma_202404185
crossref_primary_10_1021_acssuschemeng_2c05816
crossref_primary_10_1016_j_jmat_2021_02_004
crossref_primary_10_1016_j_mtener_2021_100837
crossref_primary_10_1039_D3SE00435J
crossref_primary_10_1016_j_apsusc_2024_160542
crossref_primary_10_1002_adma_202202301
crossref_primary_10_1021_acsami_0c13116
crossref_primary_10_1002_adts_202500115
crossref_primary_10_1002_advs_202412666
crossref_primary_10_1002_solr_202101082
crossref_primary_10_1093_nsr_nwad305
crossref_primary_10_1002_adma_201907769
crossref_primary_10_1016_j_cap_2021_07_013
crossref_primary_10_1002_aenm_202201787
crossref_primary_10_1002_anie_202412409
crossref_primary_10_1021_acsenergylett_2c01391
crossref_primary_10_1016_j_nanoen_2022_107126
crossref_primary_10_1039_D3TA01749D
crossref_primary_10_1002_adfm_202402632
crossref_primary_10_1038_s41566_024_01468_1
crossref_primary_10_1038_s41560_024_01567_x
crossref_primary_10_1039_D2CC06511H
crossref_primary_10_1021_acsami_2c03153
crossref_primary_10_2139_ssrn_4066209
crossref_primary_10_3390_molecules28010372
crossref_primary_10_1002_anie_202106394
crossref_primary_10_1002_adfm_202203704
crossref_primary_10_1002_inf2_12246
crossref_primary_10_1016_j_mattod_2023_06_002
crossref_primary_10_1021_acsaem_1c03733
crossref_primary_10_1016_j_jechem_2023_05_046
crossref_primary_10_1016_j_scib_2020_09_017
crossref_primary_10_23919_IEN_2024_0025
crossref_primary_10_1021_acs_chemmater_4c00935
crossref_primary_10_1021_acs_jpcc_0c05649
crossref_primary_10_1016_j_mattod_2021_11_017
crossref_primary_10_1016_j_joule_2024_09_001
crossref_primary_10_1002_solr_202000344
crossref_primary_10_1016_j_chemphys_2022_111651
crossref_primary_10_1016_j_enchem_2020_100032
crossref_primary_10_1002_ange_202412409
crossref_primary_10_1002_ange_202319282
crossref_primary_10_1021_acsaem_1c02210
crossref_primary_10_1016_j_apsusc_2022_156229
crossref_primary_10_1039_D2QI02448A
crossref_primary_10_1002_aenm_201903674
crossref_primary_10_1002_smtd_202401045
crossref_primary_10_1016_j_apsusc_2020_148559
crossref_primary_10_1039_D4EE01863J
crossref_primary_10_1016_j_nanoen_2021_106866
crossref_primary_10_1002_smll_202104100
crossref_primary_10_1016_j_jallcom_2024_173913
crossref_primary_10_1039_D1SC04221A
crossref_primary_10_1002_adma_202211962
crossref_primary_10_1016_j_joule_2024_04_002
crossref_primary_10_1021_acsaem_3c00463
crossref_primary_10_1002_adfm_201909972
crossref_primary_10_1002_advs_202403778
crossref_primary_10_1002_adom_202300806
crossref_primary_10_1039_D2CP00109H
crossref_primary_10_1002_solr_202201079
crossref_primary_10_1002_adfm_202421447
crossref_primary_10_1007_s10854_023_10004_w
crossref_primary_10_1021_acsami_1c13792
crossref_primary_10_1021_jacs_9b06796
crossref_primary_10_1002_aenm_202304276
crossref_primary_10_1021_acs_analchem_1c04348
crossref_primary_10_1002_admi_202200636
crossref_primary_10_1021_acs_chemrev_2c00166
crossref_primary_10_1039_D3TC00275F
crossref_primary_10_1016_j_jechem_2023_01_029
crossref_primary_10_1039_D2EE00288D
crossref_primary_10_1016_j_dyepig_2021_109385
crossref_primary_10_1002_admi_202201296
crossref_primary_10_1039_D2MH00980C
crossref_primary_10_1002_anie_202319282
crossref_primary_10_1038_s41467_020_15338_1
crossref_primary_10_1038_s41578_020_0221_1
crossref_primary_10_1039_D0TA11916D
crossref_primary_10_1016_j_mtnano_2021_100118
crossref_primary_10_1021_acs_jpcc_1c09739
crossref_primary_10_1002_aenm_202003576
crossref_primary_10_1002_aenm_202000501
crossref_primary_10_1007_s11771_020_4353_7
crossref_primary_10_1039_C9TA13352F
crossref_primary_10_1002_ange_202106394
crossref_primary_10_1002_aenm_202203471
crossref_primary_10_1016_j_mtnano_2021_100143
crossref_primary_10_1039_D0TC01892A
crossref_primary_10_1021_acs_chemrev_3c00396
crossref_primary_10_1021_accountsmr_1c00056
crossref_primary_10_1002_smll_202100678
crossref_primary_10_1002_aenm_202201854
crossref_primary_10_1007_s40820_021_00688_2
crossref_primary_10_1002_smll_202201930
crossref_primary_10_1002_aenm_202402142
crossref_primary_10_1007_s10853_024_10096_7
crossref_primary_10_1002_adfm_202413104
crossref_primary_10_1016_j_joule_2024_01_016
crossref_primary_10_1002_adfm_202207206
crossref_primary_10_1002_cssc_202100992
crossref_primary_10_1039_D1TC00277E
crossref_primary_10_1016_j_jechem_2023_02_017
crossref_primary_10_1021_acsami_3c18471
crossref_primary_10_1021_acsami_0c16939
crossref_primary_10_1002_solr_202000321
crossref_primary_10_1039_D3TA06808K
crossref_primary_10_1016_j_matt_2021_04_024
crossref_primary_10_1016_j_scib_2021_02_029
crossref_primary_10_1002_aenm_202201274
crossref_primary_10_1126_science_abj1186
crossref_primary_10_1016_j_cej_2022_137307
crossref_primary_10_1039_D3TA02378H
crossref_primary_10_1039_D0TA10581C
crossref_primary_10_1002_aenm_202302337
crossref_primary_10_1016_j_jechem_2021_04_058
crossref_primary_10_3390_cryst14050399
crossref_primary_10_1002_admi_202201809
crossref_primary_10_1002_adma_202205066
crossref_primary_10_1016_j_joule_2022_05_013
crossref_primary_10_1021_acs_chemmater_3c01194
crossref_primary_10_1002_inf2_12522
crossref_primary_10_1021_acsaem_3c01808
crossref_primary_10_1021_acsami_1c05903
crossref_primary_10_1002_adfm_202403690
crossref_primary_10_1021_acs_inorgchem_4c03117
crossref_primary_10_1016_j_apsusc_2022_155787
crossref_primary_10_1016_j_scib_2023_03_029
crossref_primary_10_1039_D2SE00357K
crossref_primary_10_1021_acsami_9b23468
crossref_primary_10_1039_D0EE00215A
crossref_primary_10_1021_acsami_3c11658
crossref_primary_10_1016_j_jechem_2021_12_048
crossref_primary_10_1002_admi_202102585
crossref_primary_10_1016_j_joule_2020_12_010
crossref_primary_10_1002_solr_202100880
crossref_primary_10_1021_accountsmr_1c00099
crossref_primary_10_1021_acs_inorgchem_4c00318
crossref_primary_10_1021_acsami_0c09571
crossref_primary_10_1016_j_jpowsour_2020_228965
crossref_primary_10_1016_j_cej_2023_146267
crossref_primary_10_7498_aps_73_20231847
crossref_primary_10_1021_acs_jpcc_0c11258
crossref_primary_10_1002_adma_202309428
crossref_primary_10_1016_j_optmat_2023_114258
crossref_primary_10_1039_D1TC04615B
crossref_primary_10_1002_anie_202412915
crossref_primary_10_1016_j_cej_2022_136242
crossref_primary_10_1002_anie_202416284
crossref_primary_10_1016_j_jallcom_2021_159601
crossref_primary_10_1016_j_nantod_2023_102046
crossref_primary_10_1016_j_chempr_2021_11_010
crossref_primary_10_3390_app131910715
crossref_primary_10_1002_smtd_202101079
crossref_primary_10_1016_j_matt_2023_06_039
crossref_primary_10_1002_adma_201906995
crossref_primary_10_1021_acsenergylett_2c00140
crossref_primary_10_1016_j_mtadv_2020_100068
crossref_primary_10_1039_D0TA05118G
crossref_primary_10_1002_aenm_202101538
crossref_primary_10_1002_adma_202210106
crossref_primary_10_1039_D1EE01562A
crossref_primary_10_1002_solr_202400903
crossref_primary_10_1021_acs_nanolett_1c02897
crossref_primary_10_1039_D4QI01729C
crossref_primary_10_1039_D2TA09363D
crossref_primary_10_1039_C9SE01041F
crossref_primary_10_1002_ange_202416284
crossref_primary_10_1002_smll_202402997
crossref_primary_10_1039_D4TC04760E
crossref_primary_10_1002_adfm_202412482
crossref_primary_10_1038_s41566_021_00809_8
crossref_primary_10_1002_adma_202204342
crossref_primary_10_1002_ange_202412915
crossref_primary_10_1016_j_cej_2022_135974
crossref_primary_10_1016_j_orgel_2020_105726
crossref_primary_10_1002_advs_202305582
crossref_primary_10_1038_s44160_024_00687_2
Cites_doi 10.1063/1.339460
10.1088/2053-1591/3/11/115021
10.1103/PhysRevLett.121.085502
10.1038/s41467-018-05076-w
10.1039/C6EE00413J
10.1002/adma.201800544
10.1126/science.1218948
10.1038/nnano.2014.181
10.1146/annurev.ms.20.080190.001333
10.1533/9781845694005
10.1126/science.1238017
10.1002/adma.201803054
10.1063/1.336194
10.1002/adma.201706576
10.1063/1.90779
10.1126/science.1241727
10.1038/nenergy.2016.81
10.1063/1.4817829
10.1126/science.aaf9570
10.1016/B978-075066385-4/50009-1
10.1002/adma.201601995
10.1038/nmat977
10.1002/solr.201800239
10.1016/j.scriptamat.2009.07.021
10.1021/la400921h
10.1038/natrevmats.2017.42
10.1073/pnas.1812718115
10.1021/jacs.8b10520
10.1146/annurev.matsci.30.1.159
10.1038/nmat4032
10.1021/acs.chemrev.5b00063
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/jacs.9b06940
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 13953
ExternalDocumentID 31403287
10_1021_jacs_9b06940
a613044476
Genre Journal Article
GroupedDBID -
.K2
02
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
4.4
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
NPM
YIN
7X8
7S9
AAYWT
L.6
ID FETCH-LOGICAL-a394t-e45a46512ac8bfd6e499d44d2242ba170e38eccdcebd0ffbb870bd41e1fa282d3
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Tue Aug 05 10:10:14 EDT 2025
Fri Jul 11 08:58:48 EDT 2025
Wed Feb 19 02:34:31 EST 2025
Tue Jul 01 03:21:50 EDT 2025
Thu Apr 24 23:10:53 EDT 2025
Thu Aug 27 13:41:54 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 35
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a394t-e45a46512ac8bfd6e499d44d2242ba170e38eccdcebd0ffbb870bd41e1fa282d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1707-499X
0000-0002-1749-2799
0000-0003-0345-4924
0000-0002-2155-7188
0000-0003-1477-0092
0000-0001-8833-7641
0000-0003-2540-2199
0000-0002-2352-9666
0000-0002-3268-6268
PMID 31403287
PQID 2272216281
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_2305178161
proquest_miscellaneous_2272216281
pubmed_primary_31403287
crossref_primary_10_1021_jacs_9b06940
crossref_citationtrail_10_1021_jacs_9b06940
acs_journals_10_1021_jacs_9b06940
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-04
PublicationDateYYYYMMDD 2019-09-04
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-04
  day: 04
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref3/cit3
ref18/cit18
Boles M. A. (ref1/cit1) 2016
Nam J. K. (ref27/cit27) 2018
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
Miyata K. (ref11/cit11) 2017
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref24/cit24
ref7/cit7
References_xml – ident: ref23/cit23
  doi: 10.1063/1.339460
– ident: ref5/cit5
  doi: 10.1088/2053-1591/3/11/115021
– ident: ref26/cit26
  doi: 10.1103/PhysRevLett.121.085502
– ident: ref33/cit33
  doi: 10.1038/s41467-018-05076-w
– ident: ref34/cit34
  doi: 10.1039/C6EE00413J
– ident: ref29/cit29
  doi: 10.1002/adma.201800544
– ident: ref17/cit17
  doi: 10.1126/science.1218948
– ident: ref30/cit30
  doi: 10.1038/nnano.2014.181
– ident: ref15/cit15
  doi: 10.1146/annurev.ms.20.080190.001333
– ident: ref14/cit14
  doi: 10.1533/9781845694005
– ident: ref12/cit12
  doi: 10.1126/science.1238017
– ident: ref9/cit9
  doi: 10.1002/adma.201803054
– ident: ref13/cit13
  doi: 10.1063/1.336194
– ident: ref31/cit31
  doi: 10.1002/adma.201706576
– ident: ref18/cit18
  doi: 10.1063/1.90779
– ident: ref6/cit6
  doi: 10.1126/science.1241727
– start-page: 1800509
  volume-title: Advanced Science
  year: 2018
  ident: ref27/cit27
– ident: ref20/cit20
  doi: 10.1038/nenergy.2016.81
– ident: ref22/cit22
  doi: 10.1063/1.4817829
– start-page: 141
  volume-title: Nature Materials
  year: 2016
  ident: ref1/cit1
– ident: ref8/cit8
  doi: 10.1126/science.aaf9570
– ident: ref16/cit16
  doi: 10.1016/B978-075066385-4/50009-1
– ident: ref19/cit19
  doi: 10.1002/adma.201601995
– ident: ref25/cit25
  doi: 10.1126/science.1238017
– ident: ref4/cit4
  doi: 10.1038/nmat977
– ident: ref28/cit28
  doi: 10.1002/solr.201800239
– ident: ref24/cit24
  doi: 10.1016/j.scriptamat.2009.07.021
– ident: ref7/cit7
  doi: 10.1021/la400921h
– ident: ref35/cit35
  doi: 10.1038/natrevmats.2017.42
– ident: ref10/cit10
  doi: 10.1073/pnas.1812718115
– start-page: e1701469
  volume-title: Science Advances
  year: 2017
  ident: ref11/cit11
– ident: ref32/cit32
  doi: 10.1021/jacs.8b10520
– ident: ref21/cit21
  doi: 10.1146/annurev.matsci.30.1.159
– ident: ref3/cit3
  doi: 10.1038/nmat4032
– ident: ref2/cit2
  doi: 10.1021/acs.chemrev.5b00063
SSID ssj0004281
Score 2.6443832
Snippet Surface effects usually become negligible on the micrometer or sub-micrometer scale due to lower surface-to-bulk ratio compared to nanomaterials. In lead...
Surface effects usually become negligible on the micron or submicron scale due to lower surface-to-bulk ratio compared to nano-materials. In lead halide...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 13948
SubjectTerms lead
nanomaterials
photovoltaic cells
temperature
Title Crystalline Liquid-like Behavior: Surface-Induced Secondary Grain Growth of Photovoltaic Perovskite Thin Film
URI http://dx.doi.org/10.1021/jacs.9b06940
https://www.ncbi.nlm.nih.gov/pubmed/31403287
https://www.proquest.com/docview/2272216281
https://www.proquest.com/docview/2305178161
Volume 141
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9xADB5VcGgvlJaWLtBqkOCEskomk2SWG1p1QVWLkBYkbtE8HBGxbNo8QPDrsTcJqFTb9pJD5LxsT_x5xvOZsT302QiUSTwdRTR140feCHzrWWNVbJ0AvSD1-XEan1zIb5fR5XOB7MsVfEH8QLYajgxt0MTUfFXEKqEk62g8fd7_KFTQw9xExWFX4P7yagpAtvo9AC1BlYvoMnnLjvs9Om1RyfWwqc3QPvxJ2fiPF19nax3A5EetR7xjr2D-nr0e933dNtjNuLxHSEhc3MC_57-a3Hmz_Bp4R5VYHvJpU2bagkd9PSw4PqWs2enynh9TRwk8Fnf1FS8yfnZV1AX-4WqdW34GZXFb0XQwp3agfJLPbj6wi8nX8_GJ1zVd8HQ4krUHMtLUH11oq0zmYsCUyEnpMNQLo4PEh1Ch2Z0F4_wsMwYHvHEygCDTmL658CNbmRdz-MS4Dy5wWZDEWklpfIfGBzcKfbybjbV1A7aLKkq7QVOli_VwgfkIne0UN2AHvbVS27GWU_OM2RLp_Sfpny1bxxK53d7wKWqf1kj0HIqmSoVIhAhidKi_yIREbKYQKw_YZus1T08Lif8Qs9Ct__i2bfYG4VdbsSZ32EpdNvAZIU5tviz8-xG3JPdU
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB6VcigX3pTw3Er0hFzZ6_UjSByqQEhpWlVKK_Vm9jFWraYx-EEV_gt_hd_GrGOnolIQl0pcfFiN1t7dzzvf7OMbgDeE2QBjFTkyCOzSjRs4fXS1o5WOQ204ykbU5-AwHJ2Iz6fB6Rr87O7C0EeUVFPZbOJfqQtYmSAq7Ct7T9Ntz1Du4_ySIrTy_d4HGs5tzocfjwcjp00i4Ei_LyoHRSBtvm8udaxSEyJRfCOEIdfFlfQiF_2YmmE0KuOmqVIEYGWEh14qKRwxPtV7C24T7-E2ttsdTK6uXfLY69h1FId-e67--tdav6fLP_3eCjLbOLXhPfi17I7mLMv5Tl2pHf3jmlLkf9tf9-FuS6fZ7gL_D2ANZw9hY9BlsXsEF4NiTgTYKo8jG2ff6sw40-wcWSsMWbxjk7pIpUbHZjHRaNjErhEYWczZJ5s_g575ZXXG8pQdneVVTvN5JTPNjrDIv5d28ZvZ5KdsmE0vHsPJjbT2CazP8hk-Beai8UzqRaGMhVCuIaij6fsu1aZDqU0PtmhIknaKKJNm959T9GVL24HqwdsOJIluNdptqpDpCuvtpfXXhTbJCrutDm8J9b7dEZIzzOsy4Tzi3AsJx3-x8a2MW0yRQQ82F2Bdvs23ao8Ucz_7h7a9ho3R8cE4Ge8d7j-HO0Q8F2f1xAtYr4oaXxK5q9Sr5hdj8OWmMfoboVNdZQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Zb9NAEB6VIgEv3Ec4txJ9Qq7s9RkkHqqU0NJSRQqV-mb2GKtW07j4oAr_hr_CL2PGcYKoFMRLJV78YI_We3y7M7M7-w3Aa8JsiImOHRWGvHXjhk4fXeMYbZLIWImqJfX5dBjtHgUfj8PjNfixuAtDlaiopKo9xOdZfW6zjmGAqYLoQ1_zXU23i6Pcx9kFeWnVu70dGtJNKYfvPw92nS6RgKP8flA7GISKc35LZRKd2QjJzLdBYEl9Sa282EU_oaZYg9q6WaY1gVjbwEMvU-SSWJ_KvQbX-YSQ_bvtwfj31UuZeAsLO04iv4utv1xb1n2m-lP3rTBoW8U2vAM_l13SxrOcbjW13jLfL7FF_td9dhdud2a12J7Pg3uwhtP7cHOwyGb3AM4G5YwMYWYgR3GQf21y60zyUxQdQWT5VoybMlMGHc5mYtCKMe8VWFXOxAfOo0HP4qI-EUUmRidFXdC6XqvciBGWxbeKN8EFJ0EVw3xy9hCOrqS1j2B9WkzxCQgXrWczL45UEgTatQR5tH3fpdJMpIztwQYNSdotFVXaRgFI8sL4bTdQPXizAEpqOq52ThkyWSG9uZQ-n3OUrJDbWGAupd7nkyE1xaKpUiljKb2IsPwXGZ_p3BLyEHrweA7Y5d98Zn0k3_vpP7TtFdwY7QzTg73D_Wdwi-zPeche8BzW67LBF2Tj1fplO8sEfLlqiP4CBKJf6A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crystalline+Liquid-like+Behavior%3A+Surface-Induced+Secondary+Grain+Growth+of+Photovoltaic+Perovskite+Thin+Film&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Xue%2C+Jingjing&rft.au=Wang%2C+Rui&rft.au=Wang%2C+Kai-Li&rft.au=Wang%2C+Zhao-Kui&rft.date=2019-09-04&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=141&rft.issue=35&rft.spage=13948&rft.epage=13953&rft_id=info:doi/10.1021%2Fjacs.9b06940&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_jacs_9b06940
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon