Crystalline Liquid-like Behavior: Surface-Induced Secondary Grain Growth of Photovoltaic Perovskite Thin Film
Surface effects usually become negligible on the micrometer or sub-micrometer scale due to lower surface-to-bulk ratio compared to nanomaterials. In lead halide perovskites, however, their “soft” nature renders them highly responsive to the external field, allowing for extended depth scale affected...
Saved in:
Published in | Journal of the American Chemical Society Vol. 141; no. 35; pp. 13948 - 13953 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
04.09.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Surface effects usually become negligible on the micrometer or sub-micrometer scale due to lower surface-to-bulk ratio compared to nanomaterials. In lead halide perovskites, however, their “soft” nature renders them highly responsive to the external field, allowing for extended depth scale affected by the surface. Herein, by taking advantage of this unique feature of perovskites we demonstrate a methodology for property manipulation of perovskite thin films based on secondary grain growth, where tuning of the surface induces the internal property evolution of the entire perovskite film. While in conventional microelectronic techniques secondary grain growth generally involves harsh conditions such as high temperature and straining, it is easily triggered in a perovskite thin film by a simple surface post-treatment, producing enlarged grain sizes of up to 4 μm. The resulting photovoltaic devices exhibit significantly enhanced power conversion efficiency and operational stability over a course of 1000 h and an ambient shelf stability of over 4000 h while maintaining over 90% of its original efficiency. |
---|---|
AbstractList | Surface effects usually become negligible on the micrometer or sub-micrometer scale due to lower surface-to-bulk ratio compared to nanomaterials. In lead halide perovskites, however, their "soft" nature renders them highly responsive to the external field, allowing for extended depth scale affected by the surface. Herein, by taking advantage of this unique feature of perovskites we demonstrate a methodology for property manipulation of perovskite thin films based on secondary grain growth, where tuning of the surface induces the internal property evolution of the entire perovskite film. While in conventional microelectronic techniques secondary grain growth generally involves harsh conditions such as high temperature and straining, it is easily triggered in a perovskite thin film by a simple surface post-treatment, producing enlarged grain sizes of up to 4 μm. The resulting photovoltaic devices exhibit significantly enhanced power conversion efficiency and operational stability over a course of 1000 h and an ambient shelf stability of over 4000 h while maintaining over 90% of its original efficiency.Surface effects usually become negligible on the micrometer or sub-micrometer scale due to lower surface-to-bulk ratio compared to nanomaterials. In lead halide perovskites, however, their "soft" nature renders them highly responsive to the external field, allowing for extended depth scale affected by the surface. Herein, by taking advantage of this unique feature of perovskites we demonstrate a methodology for property manipulation of perovskite thin films based on secondary grain growth, where tuning of the surface induces the internal property evolution of the entire perovskite film. While in conventional microelectronic techniques secondary grain growth generally involves harsh conditions such as high temperature and straining, it is easily triggered in a perovskite thin film by a simple surface post-treatment, producing enlarged grain sizes of up to 4 μm. The resulting photovoltaic devices exhibit significantly enhanced power conversion efficiency and operational stability over a course of 1000 h and an ambient shelf stability of over 4000 h while maintaining over 90% of its original efficiency. Surface effects usually become negligible on the micrometer or sub-micrometer scale due to lower surface-to-bulk ratio compared to nanomaterials. In lead halide perovskites, however, their “soft” nature renders them highly responsive to the external field, allowing for extended depth scale affected by the surface. Herein, by taking advantage of this unique feature of perovskites we demonstrate a methodology for property manipulation of perovskite thin films based on secondary grain growth, where tuning of the surface induces the internal property evolution of the entire perovskite film. While in conventional microelectronic techniques secondary grain growth generally involves harsh conditions such as high temperature and straining, it is easily triggered in a perovskite thin film by a simple surface post-treatment, producing enlarged grain sizes of up to 4 μm. The resulting photovoltaic devices exhibit significantly enhanced power conversion efficiency and operational stability over a course of 1000 h and an ambient shelf stability of over 4000 h while maintaining over 90% of its original efficiency. Surface effects usually become negligible on the micron or submicron scale due to lower surface-to-bulk ratio compared to nano-materials. In lead halide perovskites, however, their "soft" nature renders them highly responsive to the external field allowing for extended depth scale affected by the surface. Herein, by taking advantage of this unique feature of perovskites we demonstrate a methodology for property manipulation of perovskite thin films based on secondary grain growth, where tuning of the surface induces the internal property evolution of the entire perovskite film. While in conventional microelectronic techniques secondary grain growth generally involves harsh conditions such as high temperature and straining, it is easily triggered in perovskite thin film by a simple surface post-treatment, producing enlarged grain sizes of up to 4 μm. The resulting photovoltaic devices exhibit significantly enhanced power conversion efficiency and operational stability over a course of 1000 h and an ambient shelf stability of over 4000 h while maintaining over 90% of its original efficiency. |
Author | Gao, Xingyu Huang, Tianyi Kaner, Richard Nuryyeva, Selbi Yang, Yang Wang, Rui Yang, Yingguo Wang, Zhao-Kui Wang, Yang Liao, Liang-Sheng Wang, Kai-Li Lee, Jin-Wook Yavuz, Ilhan Xue, Jingjing Duan, Yu |
AuthorAffiliation | Chinese Academy of Sciences Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Yangzhou University Shanghai Synchrotron Radiation Facility (SSRF), Zhangjiang Lab, Shanghai Advanced Research Institute Department of Materials Science and Engineering and California NanoSystems Institute School of Chemistry and Chemical Engineering Department of Physics |
AuthorAffiliation_xml | – name: Department of Materials Science and Engineering and California NanoSystems Institute – name: School of Chemistry and Chemical Engineering – name: Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices – name: Chinese Academy of Sciences – name: Shanghai Synchrotron Radiation Facility (SSRF), Zhangjiang Lab, Shanghai Advanced Research Institute – name: Department of Physics – name: Yangzhou University |
Author_xml | – sequence: 1 givenname: Jingjing surname: Xue fullname: Xue, Jingjing organization: Department of Materials Science and Engineering and California NanoSystems Institute – sequence: 2 givenname: Rui surname: Wang fullname: Wang, Rui organization: Department of Materials Science and Engineering and California NanoSystems Institute – sequence: 3 givenname: Kai-Li surname: Wang fullname: Wang, Kai-Li organization: Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices – sequence: 4 givenname: Zhao-Kui orcidid: 0000-0003-1707-499X surname: Wang fullname: Wang, Zhao-Kui email: zkwang@suda.edu.cn organization: Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices – sequence: 5 givenname: Ilhan orcidid: 0000-0002-3268-6268 surname: Yavuz fullname: Yavuz, Ilhan organization: Department of Physics – sequence: 6 givenname: Yang orcidid: 0000-0003-2540-2199 surname: Wang fullname: Wang, Yang organization: Yangzhou University – sequence: 7 givenname: Yingguo orcidid: 0000-0002-1749-2799 surname: Yang fullname: Yang, Yingguo organization: Chinese Academy of Sciences – sequence: 8 givenname: Xingyu orcidid: 0000-0003-1477-0092 surname: Gao fullname: Gao, Xingyu organization: Chinese Academy of Sciences – sequence: 9 givenname: Tianyi surname: Huang fullname: Huang, Tianyi organization: Department of Materials Science and Engineering and California NanoSystems Institute – sequence: 10 givenname: Selbi surname: Nuryyeva fullname: Nuryyeva, Selbi organization: Department of Materials Science and Engineering and California NanoSystems Institute – sequence: 11 givenname: Jin-Wook surname: Lee fullname: Lee, Jin-Wook organization: Department of Materials Science and Engineering and California NanoSystems Institute – sequence: 12 givenname: Yu orcidid: 0000-0002-2155-7188 surname: Duan fullname: Duan, Yu organization: Department of Materials Science and Engineering and California NanoSystems Institute – sequence: 13 givenname: Liang-Sheng orcidid: 0000-0002-2352-9666 surname: Liao fullname: Liao, Liang-Sheng email: lsliao@suda.edu.cn organization: Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices – sequence: 14 givenname: Richard orcidid: 0000-0003-0345-4924 surname: Kaner fullname: Kaner, Richard organization: Department of Materials Science and Engineering and California NanoSystems Institute – sequence: 15 givenname: Yang orcidid: 0000-0001-8833-7641 surname: Yang fullname: Yang, Yang email: yangy@ucla.edu organization: Department of Materials Science and Engineering and California NanoSystems Institute |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31403287$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0c1LBCEYBnCJoraPW-fw2KEpddz56FZLX7BQUJ0HR99h3RwtdTb2v8-lrUMUXRTlp-jz7KJN6ywgdEjJKSWMns2FDKd1S4qakw00omNGsjFlxSYaEUJYVlZFvoN2Q5inJWcV3UY7OeUkZ1U5Qv3EL0MUxmgLeKrfBq0yo18AX8JMLLTz5_hx8J2QkN1ZNUhQ-BGks0r4Jb7xQts0uvc4w67DDzMX3cKZKLTED-DdIrzoCPhplti1Nv0-2uqECXCwnvfQ8_XV0-Q2m97f3E0uppnIax4z4GPBi_QJIau2UwXwulacK8Y4awUtCeQVSKkktIp0XdtWJWkVp0A7wSqm8j10_Hnvq3dvA4TY9DpIMEZYcENoWE7GtKxoQf-nrGSMFim3RI_WdGh7UM2r132KoflKM4GTTyC9C8FD900oaVZlNauymnVZibMfXOooonY2pmDNX4fW711tzt3gbQryd_oBDfSmhw |
CitedBy_id | crossref_primary_10_1016_j_jallcom_2021_161971 crossref_primary_10_1007_s40820_020_00509_y crossref_primary_10_1021_acsami_1c21081 crossref_primary_10_1021_acs_jpcc_4c01204 crossref_primary_10_1021_jacs_0c02227 crossref_primary_10_1002_adfm_202300396 crossref_primary_10_1002_adfm_202309894 crossref_primary_10_1016_j_solener_2025_113243 crossref_primary_10_1016_j_cej_2024_156686 crossref_primary_10_1002_solr_202000270 crossref_primary_10_1016_j_chemphys_2023_111847 crossref_primary_10_1016_j_jechem_2021_01_037 crossref_primary_10_1016_j_mtener_2023_101381 crossref_primary_10_1021_acs_chemmater_1c03237 crossref_primary_10_1002_advs_202000421 crossref_primary_10_1016_j_cej_2024_149345 crossref_primary_10_1016_j_cej_2021_133845 crossref_primary_10_1039_C9TC06293A crossref_primary_10_1002_adma_202404185 crossref_primary_10_1021_acssuschemeng_2c05816 crossref_primary_10_1016_j_jmat_2021_02_004 crossref_primary_10_1016_j_mtener_2021_100837 crossref_primary_10_1039_D3SE00435J crossref_primary_10_1016_j_apsusc_2024_160542 crossref_primary_10_1002_adma_202202301 crossref_primary_10_1021_acsami_0c13116 crossref_primary_10_1002_adts_202500115 crossref_primary_10_1002_advs_202412666 crossref_primary_10_1002_solr_202101082 crossref_primary_10_1093_nsr_nwad305 crossref_primary_10_1002_adma_201907769 crossref_primary_10_1016_j_cap_2021_07_013 crossref_primary_10_1002_aenm_202201787 crossref_primary_10_1002_anie_202412409 crossref_primary_10_1021_acsenergylett_2c01391 crossref_primary_10_1016_j_nanoen_2022_107126 crossref_primary_10_1039_D3TA01749D crossref_primary_10_1002_adfm_202402632 crossref_primary_10_1038_s41566_024_01468_1 crossref_primary_10_1038_s41560_024_01567_x crossref_primary_10_1039_D2CC06511H crossref_primary_10_1021_acsami_2c03153 crossref_primary_10_2139_ssrn_4066209 crossref_primary_10_3390_molecules28010372 crossref_primary_10_1002_anie_202106394 crossref_primary_10_1002_adfm_202203704 crossref_primary_10_1002_inf2_12246 crossref_primary_10_1016_j_mattod_2023_06_002 crossref_primary_10_1021_acsaem_1c03733 crossref_primary_10_1016_j_jechem_2023_05_046 crossref_primary_10_1016_j_scib_2020_09_017 crossref_primary_10_23919_IEN_2024_0025 crossref_primary_10_1021_acs_chemmater_4c00935 crossref_primary_10_1021_acs_jpcc_0c05649 crossref_primary_10_1016_j_mattod_2021_11_017 crossref_primary_10_1016_j_joule_2024_09_001 crossref_primary_10_1002_solr_202000344 crossref_primary_10_1016_j_chemphys_2022_111651 crossref_primary_10_1016_j_enchem_2020_100032 crossref_primary_10_1002_ange_202412409 crossref_primary_10_1002_ange_202319282 crossref_primary_10_1021_acsaem_1c02210 crossref_primary_10_1016_j_apsusc_2022_156229 crossref_primary_10_1039_D2QI02448A crossref_primary_10_1002_aenm_201903674 crossref_primary_10_1002_smtd_202401045 crossref_primary_10_1016_j_apsusc_2020_148559 crossref_primary_10_1039_D4EE01863J crossref_primary_10_1016_j_nanoen_2021_106866 crossref_primary_10_1002_smll_202104100 crossref_primary_10_1016_j_jallcom_2024_173913 crossref_primary_10_1039_D1SC04221A crossref_primary_10_1002_adma_202211962 crossref_primary_10_1016_j_joule_2024_04_002 crossref_primary_10_1021_acsaem_3c00463 crossref_primary_10_1002_adfm_201909972 crossref_primary_10_1002_advs_202403778 crossref_primary_10_1002_adom_202300806 crossref_primary_10_1039_D2CP00109H crossref_primary_10_1002_solr_202201079 crossref_primary_10_1002_adfm_202421447 crossref_primary_10_1007_s10854_023_10004_w crossref_primary_10_1021_acsami_1c13792 crossref_primary_10_1021_jacs_9b06796 crossref_primary_10_1002_aenm_202304276 crossref_primary_10_1021_acs_analchem_1c04348 crossref_primary_10_1002_admi_202200636 crossref_primary_10_1021_acs_chemrev_2c00166 crossref_primary_10_1039_D3TC00275F crossref_primary_10_1016_j_jechem_2023_01_029 crossref_primary_10_1039_D2EE00288D crossref_primary_10_1016_j_dyepig_2021_109385 crossref_primary_10_1002_admi_202201296 crossref_primary_10_1039_D2MH00980C crossref_primary_10_1002_anie_202319282 crossref_primary_10_1038_s41467_020_15338_1 crossref_primary_10_1038_s41578_020_0221_1 crossref_primary_10_1039_D0TA11916D crossref_primary_10_1016_j_mtnano_2021_100118 crossref_primary_10_1021_acs_jpcc_1c09739 crossref_primary_10_1002_aenm_202003576 crossref_primary_10_1002_aenm_202000501 crossref_primary_10_1007_s11771_020_4353_7 crossref_primary_10_1039_C9TA13352F crossref_primary_10_1002_ange_202106394 crossref_primary_10_1002_aenm_202203471 crossref_primary_10_1016_j_mtnano_2021_100143 crossref_primary_10_1039_D0TC01892A crossref_primary_10_1021_acs_chemrev_3c00396 crossref_primary_10_1021_accountsmr_1c00056 crossref_primary_10_1002_smll_202100678 crossref_primary_10_1002_aenm_202201854 crossref_primary_10_1007_s40820_021_00688_2 crossref_primary_10_1002_smll_202201930 crossref_primary_10_1002_aenm_202402142 crossref_primary_10_1007_s10853_024_10096_7 crossref_primary_10_1002_adfm_202413104 crossref_primary_10_1016_j_joule_2024_01_016 crossref_primary_10_1002_adfm_202207206 crossref_primary_10_1002_cssc_202100992 crossref_primary_10_1039_D1TC00277E crossref_primary_10_1016_j_jechem_2023_02_017 crossref_primary_10_1021_acsami_3c18471 crossref_primary_10_1021_acsami_0c16939 crossref_primary_10_1002_solr_202000321 crossref_primary_10_1039_D3TA06808K crossref_primary_10_1016_j_matt_2021_04_024 crossref_primary_10_1016_j_scib_2021_02_029 crossref_primary_10_1002_aenm_202201274 crossref_primary_10_1126_science_abj1186 crossref_primary_10_1016_j_cej_2022_137307 crossref_primary_10_1039_D3TA02378H crossref_primary_10_1039_D0TA10581C crossref_primary_10_1002_aenm_202302337 crossref_primary_10_1016_j_jechem_2021_04_058 crossref_primary_10_3390_cryst14050399 crossref_primary_10_1002_admi_202201809 crossref_primary_10_1002_adma_202205066 crossref_primary_10_1016_j_joule_2022_05_013 crossref_primary_10_1021_acs_chemmater_3c01194 crossref_primary_10_1002_inf2_12522 crossref_primary_10_1021_acsaem_3c01808 crossref_primary_10_1021_acsami_1c05903 crossref_primary_10_1002_adfm_202403690 crossref_primary_10_1021_acs_inorgchem_4c03117 crossref_primary_10_1016_j_apsusc_2022_155787 crossref_primary_10_1016_j_scib_2023_03_029 crossref_primary_10_1039_D2SE00357K crossref_primary_10_1021_acsami_9b23468 crossref_primary_10_1039_D0EE00215A crossref_primary_10_1021_acsami_3c11658 crossref_primary_10_1016_j_jechem_2021_12_048 crossref_primary_10_1002_admi_202102585 crossref_primary_10_1016_j_joule_2020_12_010 crossref_primary_10_1002_solr_202100880 crossref_primary_10_1021_accountsmr_1c00099 crossref_primary_10_1021_acs_inorgchem_4c00318 crossref_primary_10_1021_acsami_0c09571 crossref_primary_10_1016_j_jpowsour_2020_228965 crossref_primary_10_1016_j_cej_2023_146267 crossref_primary_10_7498_aps_73_20231847 crossref_primary_10_1021_acs_jpcc_0c11258 crossref_primary_10_1002_adma_202309428 crossref_primary_10_1016_j_optmat_2023_114258 crossref_primary_10_1039_D1TC04615B crossref_primary_10_1002_anie_202412915 crossref_primary_10_1016_j_cej_2022_136242 crossref_primary_10_1002_anie_202416284 crossref_primary_10_1016_j_jallcom_2021_159601 crossref_primary_10_1016_j_nantod_2023_102046 crossref_primary_10_1016_j_chempr_2021_11_010 crossref_primary_10_3390_app131910715 crossref_primary_10_1002_smtd_202101079 crossref_primary_10_1016_j_matt_2023_06_039 crossref_primary_10_1002_adma_201906995 crossref_primary_10_1021_acsenergylett_2c00140 crossref_primary_10_1016_j_mtadv_2020_100068 crossref_primary_10_1039_D0TA05118G crossref_primary_10_1002_aenm_202101538 crossref_primary_10_1002_adma_202210106 crossref_primary_10_1039_D1EE01562A crossref_primary_10_1002_solr_202400903 crossref_primary_10_1021_acs_nanolett_1c02897 crossref_primary_10_1039_D4QI01729C crossref_primary_10_1039_D2TA09363D crossref_primary_10_1039_C9SE01041F crossref_primary_10_1002_ange_202416284 crossref_primary_10_1002_smll_202402997 crossref_primary_10_1039_D4TC04760E crossref_primary_10_1002_adfm_202412482 crossref_primary_10_1038_s41566_021_00809_8 crossref_primary_10_1002_adma_202204342 crossref_primary_10_1002_ange_202412915 crossref_primary_10_1016_j_cej_2022_135974 crossref_primary_10_1016_j_orgel_2020_105726 crossref_primary_10_1002_advs_202305582 crossref_primary_10_1038_s44160_024_00687_2 |
Cites_doi | 10.1063/1.339460 10.1088/2053-1591/3/11/115021 10.1103/PhysRevLett.121.085502 10.1038/s41467-018-05076-w 10.1039/C6EE00413J 10.1002/adma.201800544 10.1126/science.1218948 10.1038/nnano.2014.181 10.1146/annurev.ms.20.080190.001333 10.1533/9781845694005 10.1126/science.1238017 10.1002/adma.201803054 10.1063/1.336194 10.1002/adma.201706576 10.1063/1.90779 10.1126/science.1241727 10.1038/nenergy.2016.81 10.1063/1.4817829 10.1126/science.aaf9570 10.1016/B978-075066385-4/50009-1 10.1002/adma.201601995 10.1038/nmat977 10.1002/solr.201800239 10.1016/j.scriptamat.2009.07.021 10.1021/la400921h 10.1038/natrevmats.2017.42 10.1073/pnas.1812718115 10.1021/jacs.8b10520 10.1146/annurev.matsci.30.1.159 10.1038/nmat4032 10.1021/acs.chemrev.5b00063 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/jacs.9b06940 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 13953 |
ExternalDocumentID | 31403287 10_1021_jacs_9b06940 a613044476 |
Genre | Journal Article |
GroupedDBID | - .K2 02 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 NPM YIN 7X8 7S9 AAYWT L.6 |
ID | FETCH-LOGICAL-a394t-e45a46512ac8bfd6e499d44d2242ba170e38eccdcebd0ffbb870bd41e1fa282d3 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Tue Aug 05 10:10:14 EDT 2025 Fri Jul 11 08:58:48 EDT 2025 Wed Feb 19 02:34:31 EST 2025 Tue Jul 01 03:21:50 EDT 2025 Thu Apr 24 23:10:53 EDT 2025 Thu Aug 27 13:41:54 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 35 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a394t-e45a46512ac8bfd6e499d44d2242ba170e38eccdcebd0ffbb870bd41e1fa282d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1707-499X 0000-0002-1749-2799 0000-0003-0345-4924 0000-0002-2155-7188 0000-0003-1477-0092 0000-0001-8833-7641 0000-0003-2540-2199 0000-0002-2352-9666 0000-0002-3268-6268 |
PMID | 31403287 |
PQID | 2272216281 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2305178161 proquest_miscellaneous_2272216281 pubmed_primary_31403287 crossref_primary_10_1021_jacs_9b06940 crossref_citationtrail_10_1021_jacs_9b06940 acs_journals_10_1021_jacs_9b06940 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-04 |
PublicationDateYYYYMMDD | 2019-09-04 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref3/cit3 ref18/cit18 Boles M. A. (ref1/cit1) 2016 Nam J. K. (ref27/cit27) 2018 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 Miyata K. (ref11/cit11) 2017 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref24/cit24 ref7/cit7 |
References_xml | – ident: ref23/cit23 doi: 10.1063/1.339460 – ident: ref5/cit5 doi: 10.1088/2053-1591/3/11/115021 – ident: ref26/cit26 doi: 10.1103/PhysRevLett.121.085502 – ident: ref33/cit33 doi: 10.1038/s41467-018-05076-w – ident: ref34/cit34 doi: 10.1039/C6EE00413J – ident: ref29/cit29 doi: 10.1002/adma.201800544 – ident: ref17/cit17 doi: 10.1126/science.1218948 – ident: ref30/cit30 doi: 10.1038/nnano.2014.181 – ident: ref15/cit15 doi: 10.1146/annurev.ms.20.080190.001333 – ident: ref14/cit14 doi: 10.1533/9781845694005 – ident: ref12/cit12 doi: 10.1126/science.1238017 – ident: ref9/cit9 doi: 10.1002/adma.201803054 – ident: ref13/cit13 doi: 10.1063/1.336194 – ident: ref31/cit31 doi: 10.1002/adma.201706576 – ident: ref18/cit18 doi: 10.1063/1.90779 – ident: ref6/cit6 doi: 10.1126/science.1241727 – start-page: 1800509 volume-title: Advanced Science year: 2018 ident: ref27/cit27 – ident: ref20/cit20 doi: 10.1038/nenergy.2016.81 – ident: ref22/cit22 doi: 10.1063/1.4817829 – start-page: 141 volume-title: Nature Materials year: 2016 ident: ref1/cit1 – ident: ref8/cit8 doi: 10.1126/science.aaf9570 – ident: ref16/cit16 doi: 10.1016/B978-075066385-4/50009-1 – ident: ref19/cit19 doi: 10.1002/adma.201601995 – ident: ref25/cit25 doi: 10.1126/science.1238017 – ident: ref4/cit4 doi: 10.1038/nmat977 – ident: ref28/cit28 doi: 10.1002/solr.201800239 – ident: ref24/cit24 doi: 10.1016/j.scriptamat.2009.07.021 – ident: ref7/cit7 doi: 10.1021/la400921h – ident: ref35/cit35 doi: 10.1038/natrevmats.2017.42 – ident: ref10/cit10 doi: 10.1073/pnas.1812718115 – start-page: e1701469 volume-title: Science Advances year: 2017 ident: ref11/cit11 – ident: ref32/cit32 doi: 10.1021/jacs.8b10520 – ident: ref21/cit21 doi: 10.1146/annurev.matsci.30.1.159 – ident: ref3/cit3 doi: 10.1038/nmat4032 – ident: ref2/cit2 doi: 10.1021/acs.chemrev.5b00063 |
SSID | ssj0004281 |
Score | 2.6443832 |
Snippet | Surface effects usually become negligible on the micrometer or sub-micrometer scale due to lower surface-to-bulk ratio compared to nanomaterials. In lead... Surface effects usually become negligible on the micron or submicron scale due to lower surface-to-bulk ratio compared to nano-materials. In lead halide... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 13948 |
SubjectTerms | lead nanomaterials photovoltaic cells temperature |
Title | Crystalline Liquid-like Behavior: Surface-Induced Secondary Grain Growth of Photovoltaic Perovskite Thin Film |
URI | http://dx.doi.org/10.1021/jacs.9b06940 https://www.ncbi.nlm.nih.gov/pubmed/31403287 https://www.proquest.com/docview/2272216281 https://www.proquest.com/docview/2305178161 |
Volume | 141 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9xADB5VcGgvlJaWLtBqkOCEskomk2SWG1p1QVWLkBYkbtE8HBGxbNo8QPDrsTcJqFTb9pJD5LxsT_x5xvOZsT302QiUSTwdRTR140feCHzrWWNVbJ0AvSD1-XEan1zIb5fR5XOB7MsVfEH8QLYajgxt0MTUfFXEKqEk62g8fd7_KFTQw9xExWFX4P7yagpAtvo9AC1BlYvoMnnLjvs9Om1RyfWwqc3QPvxJ2fiPF19nax3A5EetR7xjr2D-nr0e933dNtjNuLxHSEhc3MC_57-a3Hmz_Bp4R5VYHvJpU2bagkd9PSw4PqWs2enynh9TRwk8Fnf1FS8yfnZV1AX-4WqdW34GZXFb0XQwp3agfJLPbj6wi8nX8_GJ1zVd8HQ4krUHMtLUH11oq0zmYsCUyEnpMNQLo4PEh1Ch2Z0F4_wsMwYHvHEygCDTmL658CNbmRdz-MS4Dy5wWZDEWklpfIfGBzcKfbybjbV1A7aLKkq7QVOli_VwgfkIne0UN2AHvbVS27GWU_OM2RLp_Sfpny1bxxK53d7wKWqf1kj0HIqmSoVIhAhidKi_yIREbKYQKw_YZus1T08Lif8Qs9Ct__i2bfYG4VdbsSZ32EpdNvAZIU5tviz8-xG3JPdU |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB6VcigX3pTw3Er0hFzZ6_UjSByqQEhpWlVKK_Vm9jFWraYx-EEV_gt_hd_GrGOnolIQl0pcfFiN1t7dzzvf7OMbgDeE2QBjFTkyCOzSjRs4fXS1o5WOQ204ykbU5-AwHJ2Iz6fB6Rr87O7C0EeUVFPZbOJfqQtYmSAq7Ct7T9Ntz1Du4_ySIrTy_d4HGs5tzocfjwcjp00i4Ei_LyoHRSBtvm8udaxSEyJRfCOEIdfFlfQiF_2YmmE0KuOmqVIEYGWEh14qKRwxPtV7C24T7-E2ttsdTK6uXfLY69h1FId-e67--tdav6fLP_3eCjLbOLXhPfi17I7mLMv5Tl2pHf3jmlLkf9tf9-FuS6fZ7gL_D2ANZw9hY9BlsXsEF4NiTgTYKo8jG2ff6sw40-wcWSsMWbxjk7pIpUbHZjHRaNjErhEYWczZJ5s_g575ZXXG8pQdneVVTvN5JTPNjrDIv5d28ZvZ5KdsmE0vHsPJjbT2CazP8hk-Beai8UzqRaGMhVCuIaij6fsu1aZDqU0PtmhIknaKKJNm959T9GVL24HqwdsOJIluNdptqpDpCuvtpfXXhTbJCrutDm8J9b7dEZIzzOsy4Tzi3AsJx3-x8a2MW0yRQQ82F2Bdvs23ao8Ucz_7h7a9ho3R8cE4Ge8d7j-HO0Q8F2f1xAtYr4oaXxK5q9Sr5hdj8OWmMfoboVNdZQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Zb9NAEB6VIgEv3Ec4txJ9Qq7s9RkkHqqU0NJSRQqV-mb2GKtW07j4oAr_hr_CL2PGcYKoFMRLJV78YI_We3y7M7M7-w3Aa8JsiImOHRWGvHXjhk4fXeMYbZLIWImqJfX5dBjtHgUfj8PjNfixuAtDlaiopKo9xOdZfW6zjmGAqYLoQ1_zXU23i6Pcx9kFeWnVu70dGtJNKYfvPw92nS6RgKP8flA7GISKc35LZRKd2QjJzLdBYEl9Sa282EU_oaZYg9q6WaY1gVjbwEMvU-SSWJ_KvQbX-YSQ_bvtwfj31UuZeAsLO04iv4utv1xb1n2m-lP3rTBoW8U2vAM_l13SxrOcbjW13jLfL7FF_td9dhdud2a12J7Pg3uwhtP7cHOwyGb3AM4G5YwMYWYgR3GQf21y60zyUxQdQWT5VoybMlMGHc5mYtCKMe8VWFXOxAfOo0HP4qI-EUUmRidFXdC6XqvciBGWxbeKN8EFJ0EVw3xy9hCOrqS1j2B9WkzxCQgXrWczL45UEgTatQR5tH3fpdJMpIztwQYNSdotFVXaRgFI8sL4bTdQPXizAEpqOq52ThkyWSG9uZQ-n3OUrJDbWGAupd7nkyE1xaKpUiljKb2IsPwXGZ_p3BLyEHrweA7Y5d98Zn0k3_vpP7TtFdwY7QzTg73D_Wdwi-zPeche8BzW67LBF2Tj1fplO8sEfLlqiP4CBKJf6A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crystalline+Liquid-like+Behavior%3A+Surface-Induced+Secondary+Grain+Growth+of+Photovoltaic+Perovskite+Thin+Film&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Xue%2C+Jingjing&rft.au=Wang%2C+Rui&rft.au=Wang%2C+Kai-Li&rft.au=Wang%2C+Zhao-Kui&rft.date=2019-09-04&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=141&rft.issue=35&rft.spage=13948&rft.epage=13953&rft_id=info:doi/10.1021%2Fjacs.9b06940&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_jacs_9b06940 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |