Inorganic Nanotubes and Fullerene-like Nanoparticles at the Crossroads between Solid-State Chemistry and Nanotechnology
Inorganic nanotubes (NTs) and fullerene-like nanoparticles (NPs) of WS2 were discovered some 25 years ago and are produced now on a commercial scale for various applications. This Perspective provides a brief description of recent progress in this scientific discipline. The conceptual evolution lead...
Saved in:
Published in | Journal of the American Chemical Society Vol. 139; no. 37; pp. 12865 - 12878 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
20.09.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0002-7863 1520-5126 1520-5126 |
DOI | 10.1021/jacs.7b01652 |
Cover
Loading…
Abstract | Inorganic nanotubes (NTs) and fullerene-like nanoparticles (NPs) of WS2 were discovered some 25 years ago and are produced now on a commercial scale for various applications. This Perspective provides a brief description of recent progress in this scientific discipline. The conceptual evolution leading to the discovery of these NTs and NPs is briefly discussed. Subsequently, recent progress in the synthesis of such NPs from a variety of inorganic compounds with layered (2D) structure is described. In particular, we discuss the synthesis of NTs from chalcogenide- and oxide-based ternary misfit layered compounds, as well as their structure and different growth mechanisms. Next we deliberate on the mechanical, optical, electrical, and electromechanical properties, which delineate them from their bulk counterparts and also from their graphene-like analogues. Here, different experiments with individual NTs coupled with first-principles and molecular dynamics calculations demonstrate the unique physical nature of these quasi-1D nanostructures. Finally, the various applications of the fullerene-like NPs of WS2 and NTs formed therefrom are deliberated. Foremost among the possibilities are their extensive uses as superior solid lubricants. Combined with their nontoxicity and their facile dispersion, these NTs, with an ultimate strength of about 20 GPa, are likely to find numerous applications in reinforcing polymers, adhesives, textiles, medical devices, metallic alloys, and even concrete. Other potential applications in energy-harvesting and catalysis are discussed in brief. |
---|---|
AbstractList | Inorganic nanotubes (NTs) and fullerene-like nanoparticles (NPs) of WS
were discovered some 25 years ago and are produced now on a commercial scale for various applications. This Perspective provides a brief description of recent progress in this scientific discipline. The conceptual evolution leading to the discovery of these NTs and NPs is briefly discussed. Subsequently, recent progress in the synthesis of such NPs from a variety of inorganic compounds with layered (2D) structure is described. In particular, we discuss the synthesis of NTs from chalcogenide- and oxide-based ternary misfit layered compounds, as well as their structure and different growth mechanisms. Next we deliberate on the mechanical, optical, electrical, and electromechanical properties, which delineate them from their bulk counterparts and also from their graphene-like analogues. Here, different experiments with individual NTs coupled with first-principles and molecular dynamics calculations demonstrate the unique physical nature of these quasi-1D nanostructures. Finally, the various applications of the fullerene-like NPs of WS
and NTs formed therefrom are deliberated. Foremost among the possibilities are their extensive uses as superior solid lubricants. Combined with their nontoxicity and their facile dispersion, these NTs, with an ultimate strength of about 20 GPa, are likely to find numerous applications in reinforcing polymers, adhesives, textiles, medical devices, metallic alloys, and even concrete. Other potential applications in energy-harvesting and catalysis are discussed in brief. Inorganic nanotubes (NTs) and fullerene-like nanoparticles (NPs) of WS₂ were discovered some 25 years ago and are produced now on a commercial scale for various applications. This Perspective provides a brief description of recent progress in this scientific discipline. The conceptual evolution leading to the discovery of these NTs and NPs is briefly discussed. Subsequently, recent progress in the synthesis of such NPs from a variety of inorganic compounds with layered (2D) structure is described. In particular, we discuss the synthesis of NTs from chalcogenide- and oxide-based ternary misfit layered compounds, as well as their structure and different growth mechanisms. Next we deliberate on the mechanical, optical, electrical, and electromechanical properties, which delineate them from their bulk counterparts and also from their graphene-like analogues. Here, different experiments with individual NTs coupled with first-principles and molecular dynamics calculations demonstrate the unique physical nature of these quasi-1D nanostructures. Finally, the various applications of the fullerene-like NPs of WS₂ and NTs formed therefrom are deliberated. Foremost among the possibilities are their extensive uses as superior solid lubricants. Combined with their nontoxicity and their facile dispersion, these NTs, with an ultimate strength of about 20 GPa, are likely to find numerous applications in reinforcing polymers, adhesives, textiles, medical devices, metallic alloys, and even concrete. Other potential applications in energy-harvesting and catalysis are discussed in brief. Inorganic nanotubes (NTs) and fullerene-like nanoparticles (NPs) of WS2 were discovered some 25 years ago and are produced now on a commercial scale for various applications. This Perspective provides a brief description of recent progress in this scientific discipline. The conceptual evolution leading to the discovery of these NTs and NPs is briefly discussed. Subsequently, recent progress in the synthesis of such NPs from a variety of inorganic compounds with layered (2D) structure is described. In particular, we discuss the synthesis of NTs from chalcogenide- and oxide-based ternary misfit layered compounds, as well as their structure and different growth mechanisms. Next we deliberate on the mechanical, optical, electrical, and electromechanical properties, which delineate them from their bulk counterparts and also from their graphene-like analogues. Here, different experiments with individual NTs coupled with first-principles and molecular dynamics calculations demonstrate the unique physical nature of these quasi-1D nanostructures. Finally, the various applications of the fullerene-like NPs of WS2 and NTs formed therefrom are deliberated. Foremost among the possibilities are their extensive uses as superior solid lubricants. Combined with their nontoxicity and their facile dispersion, these NTs, with an ultimate strength of about 20 GPa, are likely to find numerous applications in reinforcing polymers, adhesives, textiles, medical devices, metallic alloys, and even concrete. Other potential applications in energy-harvesting and catalysis are discussed in brief. Inorganic nanotubes (NTs) and fullerene-like nanoparticles (NPs) of WS2 were discovered some 25 years ago and are produced now on a commercial scale for various applications. This Perspective provides a brief description of recent progress in this scientific discipline. The conceptual evolution leading to the discovery of these NTs and NPs is briefly discussed. Subsequently, recent progress in the synthesis of such NPs from a variety of inorganic compounds with layered (2D) structure is described. In particular, we discuss the synthesis of NTs from chalcogenide- and oxide-based ternary misfit layered compounds, as well as their structure and different growth mechanisms. Next we deliberate on the mechanical, optical, electrical, and electromechanical properties, which delineate them from their bulk counterparts and also from their graphene-like analogues. Here, different experiments with individual NTs coupled with first-principles and molecular dynamics calculations demonstrate the unique physical nature of these quasi-1D nanostructures. Finally, the various applications of the fullerene-like NPs of WS2 and NTs formed therefrom are deliberated. Foremost among the possibilities are their extensive uses as superior solid lubricants. Combined with their nontoxicity and their facile dispersion, these NTs, with an ultimate strength of about 20 GPa, are likely to find numerous applications in reinforcing polymers, adhesives, textiles, medical devices, metallic alloys, and even concrete. Other potential applications in energy-harvesting and catalysis are discussed in brief.Inorganic nanotubes (NTs) and fullerene-like nanoparticles (NPs) of WS2 were discovered some 25 years ago and are produced now on a commercial scale for various applications. This Perspective provides a brief description of recent progress in this scientific discipline. The conceptual evolution leading to the discovery of these NTs and NPs is briefly discussed. Subsequently, recent progress in the synthesis of such NPs from a variety of inorganic compounds with layered (2D) structure is described. In particular, we discuss the synthesis of NTs from chalcogenide- and oxide-based ternary misfit layered compounds, as well as their structure and different growth mechanisms. Next we deliberate on the mechanical, optical, electrical, and electromechanical properties, which delineate them from their bulk counterparts and also from their graphene-like analogues. Here, different experiments with individual NTs coupled with first-principles and molecular dynamics calculations demonstrate the unique physical nature of these quasi-1D nanostructures. Finally, the various applications of the fullerene-like NPs of WS2 and NTs formed therefrom are deliberated. Foremost among the possibilities are their extensive uses as superior solid lubricants. Combined with their nontoxicity and their facile dispersion, these NTs, with an ultimate strength of about 20 GPa, are likely to find numerous applications in reinforcing polymers, adhesives, textiles, medical devices, metallic alloys, and even concrete. Other potential applications in energy-harvesting and catalysis are discussed in brief. |
Author | Tenne, Reshef Panchakarla, Leela Srinivas Višić, Bojana |
AuthorAffiliation | Department of Chemistry Department of Materials and Interfaces Weizmann Institute |
AuthorAffiliation_xml | – name: Department of Chemistry – name: Department of Materials and Interfaces – name: Weizmann Institute |
Author_xml | – sequence: 1 givenname: Bojana orcidid: 0000-0002-2065-0727 surname: Višić fullname: Višić, Bojana email: bojana.visic@ijs.si organization: Weizmann Institute – sequence: 2 givenname: Leela Srinivas surname: Panchakarla fullname: Panchakarla, Leela Srinivas organization: Department of Chemistry – sequence: 3 givenname: Reshef orcidid: 0000-0003-4071-0325 surname: Tenne fullname: Tenne, Reshef email: reshef.tenne@weizmann.ac.il organization: Weizmann Institute |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28777567$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9PwyAYhonR6JzePJsePVgFWqA9msVfidHDvDeUfnVMBhNozP572ZwejMYTge_hzZfnPUS71llA6ITgC4IpuZxLFS5EiwlndAeNCKM4Z4TyXTTCGNNcVLw4QIchzNO1pBXZRwe0EkIwLkbo_d46_yKtVtmjtC4OLYRM2i67GYwBDxZyo19hM1xKH7UyayBmcQbZxLsQvJNdyFqI7wA2mzqju3waZUzjGSx0iH61CdzEg5pZZ9zL6gjt9dIEON6eY_R8c_08ucsfnm7vJ1cPuSzqMuZACsxkXRYlK5USveRC1ayDosWd6DHtcM2o4JSXrGopF7wtVIv7uuw5VSCLMTr7jF169zZAiE3aSIEx0oIbQkMJ4XXSUuJ_UVJTzitOGUno6RYd2gV0zdLrhfSr5ktrAs4_AbUxBP03QnCzbq1Zt9ZsW0s4_YErnQxqZ6OX2vz1abvv-nHuBm-Tx9_RD2pEqSs |
CitedBy_id | crossref_primary_10_1039_D4BM00815D crossref_primary_10_1021_acs_chemmater_8b03632 crossref_primary_10_1063_5_0047243 crossref_primary_10_1002_pssb_202100188 crossref_primary_10_3390_cryst12091185 crossref_primary_10_1016_j_ceramint_2019_04_166 crossref_primary_10_3390_cryst12030391 crossref_primary_10_1021_acsami_8b14976 crossref_primary_10_1016_j_vacuum_2022_111725 crossref_primary_10_1007_s10853_020_04562_1 crossref_primary_10_1557_mrc_2020_26 crossref_primary_10_1186_s13065_024_01259_3 crossref_primary_10_1016_j_surfcoat_2018_11_026 crossref_primary_10_1063_5_0031667 crossref_primary_10_1080_00958972_2018_1485019 crossref_primary_10_1021_acsnano_9b09284 crossref_primary_10_1007_s10853_021_05979_y crossref_primary_10_1002_slct_202004560 crossref_primary_10_1002_chem_201801877 crossref_primary_10_1016_j_jwpe_2022_103309 crossref_primary_10_1002_cnma_202300205 crossref_primary_10_1016_j_aca_2019_10_026 crossref_primary_10_1002_chem_201803189 crossref_primary_10_1002_adma_202104623 crossref_primary_10_3390_en15166083 crossref_primary_10_1016_j_microc_2020_105522 crossref_primary_10_1063_5_0049121 crossref_primary_10_1021_acs_jpcc_3c00244 crossref_primary_10_1016_j_sna_2019_06_054 crossref_primary_10_1002_adfm_202408703 crossref_primary_10_1016_j_colsurfb_2019_05_008 crossref_primary_10_1021_acs_nanolett_3c00416 crossref_primary_10_1021_jacs_1c07517 crossref_primary_10_1021_acs_jpcc_8b05342 crossref_primary_10_1134_S1070427219090106 crossref_primary_10_1063_1_5043544 crossref_primary_10_1021_acsnano_8b01638 crossref_primary_10_1021_acsnanoscienceau_1c00023 crossref_primary_10_1002_admi_202300501 crossref_primary_10_1021_jacs_0c05175 crossref_primary_10_1002_gch2_202300255 crossref_primary_10_1038_s41598_024_67605_6 crossref_primary_10_1016_j_compositesb_2019_107222 crossref_primary_10_1038_s41598_018_28446_2 crossref_primary_10_1039_C8CP02245C crossref_primary_10_1021_acsanm_2c00489 crossref_primary_10_1016_j_mattod_2022_09_002 crossref_primary_10_1021_acs_inorgchem_0c00450 crossref_primary_10_1103_PhysRevResearch_1_033046 crossref_primary_10_1039_C9NR01880H crossref_primary_10_1039_D3NJ00872J crossref_primary_10_1016_j_mtchem_2023_101886 crossref_primary_10_1039_D0NR06660E |
Cites_doi | 10.1016/j.triboint.2016.10.013 10.1002/anie.201105324 10.1016/j.jssc.2006.10.014 10.1016/j.cemconcomp.2016.05.012 10.1002/adma.201605327 10.1021/acsomega.7b00409 10.1073/pnas.0505640103 10.1063/1.4766451 10.1021/cm501316g 10.1016/S1369-7021(10)70163-2 10.1002/adma.200306428 10.1021/nn102941b 10.1002/anie.201404189 10.1002/adma.200803720 10.1103/PhysRevLett.95.116805 10.1038/ncomms14465 10.1021/nl304244h 10.1039/C6RA05803E 10.1021/nn5000354 10.1021/jz500037k 10.1016/j.solidstatesciences.2003.12.004 10.1126/science.203.4385.1105 10.1038/360444a0 10.1038/nnano.2016.151 10.1038/354056a0 10.3390/inorganics2020155 10.1007/978-3-662-44581-5 10.1002/adma.201102579 10.1021/ar400138h 10.7567/APEX.10.015001 10.1002/app.44641 10.1038/ncomms9756 10.1103/PhysRevLett.9.9 10.1088/1361-6528/aa715f 10.1021/acs.nanolett.6b03764 10.1021/jp403976d 10.1002/adfm.200800841 10.1021/cm301491v 10.1039/a904413b 10.1007/BF01571690 10.1063/1.4906066 10.1021/nl303601d 10.1039/C5TC02983J 10.1021/acsnano.6b02430 10.1038/42910 10.1016/j.jallcom.2015.09.066 10.1103/PhysRevB.56.R12685 10.1002/(SICI)1521-4095(199802)10:3<246::AID-ADMA246>3.0.CO;2-6 10.1016/S0927-0248(98)00187-1 10.1021/es500065z 10.1021/ja01659a020 10.1016/j.actbio.2013.05.018 10.1016/0079-6786(95)00007-0 10.3109/17435390.2012.710661 10.1016/j.wear.2012.11.084 10.1107/S0365110X6600330X 10.1021/acs.jpcc.6b04361 10.1103/PhysRevB.62.166 10.1103/PhysRevB.76.233414 10.1038/329529a0 10.1103/PhysRevLett.85.146 10.1073/pnas.0502848102 10.1557/JMR.1998.0335 10.1080/1536383X.2010.488594 10.1089/ten.tea.2014.0163 10.1021/acs.chemmater.6b04396 10.1038/318162a0 10.1021/ja036057d 10.1021/ac60028a009 10.1126/science.111.2889.512 10.1039/c3nr00651d 10.1002/anie.201104520 10.1143/JJAP.39.L531 10.3390/inorganics2020177 10.1021/acs.chemmater.5b03365 10.1088/0268-1242/29/6/064006 10.1007/978-3-642-20595-8_16 10.1038/365113b0 10.1007/3-540-10655-3_3 10.4028/www.scientific.net/MSF.100-101.101 10.1021/jp2076325 10.3390/ma8042000 10.1021/jp3080139 10.1103/PhysRevB.47.12727 10.1073/pnas.1607202113 10.1007/s11671-010-9765-0 10.1063/1.4894440 10.1103/PhysRevB.35.6203 10.1021/acsnano.7b02943 10.1109/TED.2008.2005166 10.1021/nl401675k 10.1002/pssa.201329325 10.1524/zkri.1931.76.1.201 10.1021/jz5016845 10.1002/celc.201600291 10.1073/pnas.16.9.578 10.1007/978-3-540-47971-0_2 10.1021/nn400464g 10.1107/S0365110X67003524 10.1021/am509096x 10.1002/smll.201600345 10.1021/acs.nanolett.6b03012 10.1016/j.carbon.2017.07.031 10.1680/nme.14.00020 10.1021/acsnano.5b05468 10.1103/PhysRevLett.101.195501 10.1007/s11249-014-0337-9 10.1063/1.4729144 10.1039/C6TA02034H 10.1039/c3sm51279g 10.1016/j.matchemphys.2016.06.069 10.1007/s11249-017-0868-y 10.1021/cm9601446 10.1039/C5RA21370C 10.1002/adma.201603812 10.1103/PhysRevB.35.6195 10.1142/S1793292009001551 10.1002/ijch.201400124 10.1007/978-3-642-24624-1_1 10.1063/1.4752440 10.1021/ja01431a019 10.1021/acsnano.5b02412 10.1016/j.eurpolymj.2017.02.027 10.1038/nature01450 10.1002/jemt.1060030108 10.1021/acs.jpcc.5b05811 |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Chemical Society |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/jacs.7b01652 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 12878 |
ExternalDocumentID | 28777567 10_1021_jacs_7b01652 f77220958 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 NPM YIN 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a394t-e1305a943454cc7fa67c95de3b0d7f02d09527626458b2676b3cb0f94f62cea3 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Fri Jul 11 01:19:46 EDT 2025 Thu Jul 10 19:16:15 EDT 2025 Wed Feb 19 02:41:49 EST 2025 Tue Jul 01 03:21:19 EDT 2025 Thu Apr 24 23:09:50 EDT 2025 Thu Aug 27 13:42:09 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 37 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a394t-e1305a943454cc7fa67c95de3b0d7f02d09527626458b2676b3cb0f94f62cea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2065-0727 0000-0003-4071-0325 |
PMID | 28777567 |
PQID | 1926686251 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2116900440 proquest_miscellaneous_1926686251 pubmed_primary_28777567 crossref_primary_10_1021_jacs_7b01652 crossref_citationtrail_10_1021_jacs_7b01652 acs_journals_10_1021_jacs_7b01652 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-09-20 |
PublicationDateYYYYMMDD | 2017-09-20 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2017 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref45/cit45 ref99/cit99 Bauer E. (ref107/cit107) 2012; 847 ref3/cit3 ref81/cit81 ref16/cit16 ref52/cit52 ref114/cit114 ref23/cit23 ref115/cit115 ref116/cit116 ref110/cit110 ref111/cit111 ref2/cit2 ref112/cit112 ref77/cit77 ref113/cit113 ref71/cit71 ref117/cit117 ref48/cit48 ref118/cit118 ref74/cit74 ref119/cit119 ref10/cit10 ref35/cit35 ref89/cit89 ref93/cit93 ref42/cit42 ref96/cit96 ref120/cit120 ref109/cit109 ref13/cit13 ref122/cit122 ref105/cit105 ref61/cit61 ref67/cit67 ref38/cit38 ref90/cit90 ref124/cit124 ref64/cit64 ref126/cit126 ref54/cit54 ref6/cit6 ref65/cit65 ref97/cit97 ref101/cit101 ref11/cit11 ref102/cit102 ref29/cit29 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref5/cit5 ref43/cit43 ref80/cit80 ref28/cit28 ref91/cit91 Levi R. (ref20/cit20) 2013 ref55/cit55 ref12/cit12 ref66/cit66 ref22/cit22 ref121/cit121 ref33/cit33 ref87/cit87 ref106/cit106 ref44/cit44 ref70/cit70 ref98/cit98 ref125/cit125 ref9/cit9 ref27/cit27 ref63/cit63 ref56/cit56 ref92/cit92 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref37/cit37 ref60/cit60 ref88/cit88 ref17/cit17 ref82/cit82 ref53/cit53 ref21/cit21 ref46/cit46 Makovicky E. (ref34/cit34) 1981; 48 ref49/cit49 ref75/cit75 ref24/cit24 ref50/cit50 ref78/cit78 ref36/cit36 ref83/cit83 ref79/cit79 ref100/cit100 ref25/cit25 ref103/cit103 ref72/cit72 ref14/cit14 ref57/cit57 ref51/cit51 ref40/cit40 ref68/cit68 ref94/cit94 ref26/cit26 Èvarestov R. A. (ref19/cit19) 2015; 76 ref73/cit73 ref69/cit69 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref95/cit95 ref108/cit108 ref104/cit104 ref4/cit4 Enyashin A. N. (ref18/cit18) 2007 ref30/cit30 ref47/cit47 ref84/cit84 ref1/cit1 ref123/cit123 ref7/cit7 |
References_xml | – ident: ref114/cit114 doi: 10.1016/j.triboint.2016.10.013 – ident: ref24/cit24 doi: 10.1002/anie.201105324 – ident: ref70/cit70 doi: 10.1016/j.jssc.2006.10.014 – ident: ref31/cit31 doi: 10.1016/j.cemconcomp.2016.05.012 – ident: ref42/cit42 doi: 10.1002/adma.201605327 – ident: ref40/cit40 doi: 10.1021/acsomega.7b00409 – ident: ref75/cit75 doi: 10.1073/pnas.0505640103 – ident: ref103/cit103 doi: 10.1063/1.4766451 – ident: ref56/cit56 doi: 10.1021/cm501316g – ident: ref62/cit62 doi: 10.1016/S1369-7021(10)70163-2 – ident: ref22/cit22 doi: 10.1002/adma.200306428 – ident: ref47/cit47 doi: 10.1021/nn102941b – ident: ref59/cit59 doi: 10.1002/anie.201404189 – ident: ref21/cit21 doi: 10.1002/adma.200803720 – ident: ref102/cit102 doi: 10.1103/PhysRevLett.95.116805 – ident: ref30/cit30 doi: 10.1038/ncomms14465 – ident: ref76/cit76 doi: 10.1021/nl304244h – ident: ref116/cit116 doi: 10.1039/C6RA05803E – ident: ref90/cit90 doi: 10.1021/nn5000354 – ident: ref91/cit91 doi: 10.1021/jz500037k – ident: ref69/cit69 doi: 10.1016/j.solidstatesciences.2003.12.004 – ident: ref14/cit14 doi: 10.1126/science.203.4385.1105 – ident: ref13/cit13 doi: 10.1038/360444a0 – ident: ref74/cit74 doi: 10.1038/nnano.2016.151 – ident: ref11/cit11 doi: 10.1038/354056a0 – ident: ref79/cit79 doi: 10.3390/inorganics2020155 – volume: 76 volume-title: Theoretical modeling of inorganic nanostructures: Symmetry and ab-initio calculations of nanolayers, nanotubes and nanowires year: 2015 ident: ref19/cit19 doi: 10.1007/978-3-662-44581-5 – ident: ref80/cit80 doi: 10.1002/adma.201102579 – ident: ref37/cit37 doi: 10.1021/ar400138h – ident: ref112/cit112 doi: 10.7567/APEX.10.015001 – ident: ref77/cit77 doi: 10.1002/app.44641 – ident: ref32/cit32 doi: 10.1038/ncomms9756 – ident: ref108/cit108 doi: 10.1103/PhysRevLett.9.9 – ident: ref46/cit46 doi: 10.1088/1361-6528/aa715f – ident: ref45/cit45 doi: 10.1021/acs.nanolett.6b03764 – ident: ref93/cit93 doi: 10.1021/jp403976d – ident: ref122/cit122 doi: 10.1002/adfm.200800841 – ident: ref58/cit58 doi: 10.1021/cm301491v – ident: ref67/cit67 doi: 10.1039/a904413b – ident: ref86/cit86 doi: 10.1007/BF01571690 – ident: ref105/cit105 doi: 10.1063/1.4906066 – ident: ref73/cit73 doi: 10.1021/nl303601d – ident: ref57/cit57 doi: 10.1039/C5TC02983J – ident: ref71/cit71 doi: 10.1021/acsnano.6b02430 – ident: ref113/cit113 doi: 10.1038/42910 – ident: ref118/cit118 doi: 10.1016/j.jallcom.2015.09.066 – ident: ref63/cit63 doi: 10.1103/PhysRevB.56.R12685 – ident: ref106/cit106 doi: 10.1002/(SICI)1521-4095(199802)10:3<246::AID-ADMA246>3.0.CO;2-6 – ident: ref100/cit100 doi: 10.1016/S0927-0248(98)00187-1 – ident: ref28/cit28 doi: 10.1021/es500065z – ident: ref2/cit2 doi: 10.1021/ja01659a020 – ident: ref27/cit27 doi: 10.1016/j.actbio.2013.05.018 – ident: ref50/cit50 doi: 10.1016/0079-6786(95)00007-0 – ident: ref78/cit78 doi: 10.3109/17435390.2012.710661 – ident: ref23/cit23 doi: 10.1016/j.wear.2012.11.084 – ident: ref7/cit7 doi: 10.1107/S0365110X6600330X – ident: ref44/cit44 doi: 10.1021/acs.jpcc.6b04361 – ident: ref65/cit65 doi: 10.1103/PhysRevB.62.166 – ident: ref87/cit87 doi: 10.1103/PhysRevB.76.233414 – ident: ref10/cit10 doi: 10.1038/329529a0 – ident: ref88/cit88 doi: 10.1103/PhysRevLett.85.146 – ident: ref16/cit16 doi: 10.1073/pnas.0502848102 – ident: ref89/cit89 doi: 10.1557/JMR.1998.0335 – ident: ref29/cit29 doi: 10.1080/1536383X.2010.488594 – ident: ref26/cit26 doi: 10.1089/ten.tea.2014.0163 – ident: ref72/cit72 doi: 10.1021/acs.chemmater.6b04396 – ident: ref9/cit9 doi: 10.1038/318162a0 – ident: ref53/cit53 doi: 10.1021/ja036057d – ident: ref5/cit5 doi: 10.1021/ac60028a009 – ident: ref6/cit6 doi: 10.1126/science.111.2889.512 – ident: ref81/cit81 doi: 10.1039/c3nr00651d – ident: ref55/cit55 doi: 10.1002/anie.201104520 – ident: ref66/cit66 doi: 10.1143/JJAP.39.L531 – ident: ref38/cit38 doi: 10.3390/inorganics2020177 – ident: ref52/cit52 doi: 10.1021/acs.chemmater.5b03365 – ident: ref61/cit61 doi: 10.1088/0268-1242/29/6/064006 – start-page: 605 volume-title: Springer Handbook of Nanomaterials year: 2013 ident: ref20/cit20 doi: 10.1007/978-3-642-20595-8_16 – ident: ref12/cit12 doi: 10.1038/365113b0 – volume: 48 start-page: 101 volume-title: Inorganic Chemistry year: 1981 ident: ref34/cit34 doi: 10.1007/3-540-10655-3_3 – ident: ref35/cit35 doi: 10.4028/www.scientific.net/MSF.100-101.101 – ident: ref48/cit48 doi: 10.1021/jp2076325 – ident: ref51/cit51 doi: 10.3390/ma8042000 – ident: ref94/cit94 doi: 10.1021/jp3080139 – ident: ref111/cit111 doi: 10.1103/PhysRevB.47.12727 – ident: ref83/cit83 doi: 10.1073/pnas.1607202113 – ident: ref97/cit97 doi: 10.1007/s11671-010-9765-0 – ident: ref104/cit104 doi: 10.1063/1.4894440 – ident: ref84/cit84 doi: 10.1103/PhysRevB.35.6203 – ident: ref126/cit126 doi: 10.1021/acsnano.7b02943 – ident: ref96/cit96 doi: 10.1109/TED.2008.2005166 – ident: ref101/cit101 doi: 10.1021/nl401675k – ident: ref120/cit120 doi: 10.1002/pssa.201329325 – ident: ref3/cit3 doi: 10.1524/zkri.1931.76.1.201 – ident: ref36/cit36 doi: 10.1021/jz5016845 – ident: ref49/cit49 doi: 10.1002/celc.201600291 – ident: ref4/cit4 doi: 10.1073/pnas.16.9.578 – start-page: 33 volume-title: Materials for tomorrow year: 2007 ident: ref18/cit18 doi: 10.1007/978-3-540-47971-0_2 – ident: ref95/cit95 doi: 10.1021/nn400464g – ident: ref8/cit8 doi: 10.1107/S0365110X67003524 – ident: ref17/cit17 doi: 10.1021/am509096x – ident: ref33/cit33 doi: 10.1002/smll.201600345 – ident: ref110/cit110 doi: 10.1021/acs.nanolett.6b03012 – ident: ref124/cit124 doi: 10.1016/j.carbon.2017.07.031 – ident: ref25/cit25 doi: 10.1680/nme.14.00020 – ident: ref109/cit109 doi: 10.1021/acsnano.5b05468 – ident: ref82/cit82 doi: 10.1103/PhysRevLett.101.195501 – ident: ref115/cit115 doi: 10.1007/s11249-014-0337-9 – ident: ref98/cit98 doi: 10.1063/1.4729144 – ident: ref43/cit43 doi: 10.1039/C6TA02034H – ident: ref119/cit119 doi: 10.1039/c3sm51279g – ident: ref39/cit39 doi: 10.1016/j.matchemphys.2016.06.069 – ident: ref125/cit125 doi: 10.1007/s11249-017-0868-y – ident: ref68/cit68 doi: 10.1021/cm9601446 – ident: ref123/cit123 doi: 10.1039/C5RA21370C – ident: ref41/cit41 doi: 10.1002/adma.201603812 – ident: ref85/cit85 doi: 10.1103/PhysRevB.35.6195 – ident: ref92/cit92 doi: 10.1142/S1793292009001551 – ident: ref121/cit121 doi: 10.1002/ijch.201400124 – volume: 847 volume-title: Non-centrosymmetric superconductors: introduction and overview year: 2012 ident: ref107/cit107 doi: 10.1007/978-3-642-24624-1_1 – ident: ref99/cit99 doi: 10.1063/1.4752440 – ident: ref1/cit1 doi: 10.1021/ja01431a019 – ident: ref54/cit54 doi: 10.1021/acsnano.5b02412 – ident: ref117/cit117 doi: 10.1016/j.eurpolymj.2017.02.027 – ident: ref64/cit64 doi: 10.1038/nature01450 – ident: ref15/cit15 doi: 10.1002/jemt.1060030108 – ident: ref60/cit60 doi: 10.1021/acs.jpcc.5b05811 |
SSID | ssj0004281 |
Score | 2.4710214 |
Snippet | Inorganic nanotubes (NTs) and fullerene-like nanoparticles (NPs) of WS2 were discovered some 25 years ago and are produced now on a commercial scale for... Inorganic nanotubes (NTs) and fullerene-like nanoparticles (NPs) of WS were discovered some 25 years ago and are produced now on a commercial scale for various... Inorganic nanotubes (NTs) and fullerene-like nanoparticles (NPs) of WS₂ were discovered some 25 years ago and are produced now on a commercial scale for... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12865 |
SubjectTerms | adhesives alloys catalytic activity concrete fabrics lubricants medical equipment molecular dynamics nanoparticles nanotubes polymers |
Title | Inorganic Nanotubes and Fullerene-like Nanoparticles at the Crossroads between Solid-State Chemistry and Nanotechnology |
URI | http://dx.doi.org/10.1021/jacs.7b01652 https://www.ncbi.nlm.nih.gov/pubmed/28777567 https://www.proquest.com/docview/1926686251 https://www.proquest.com/docview/2116900440 |
Volume | 139 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYqeigXaHkutJWR6Al5lXX8iI_VqluKBJfdStxWfkqIVYJIVkj8esZOsquCVvSaTOzYGc98k3khdC5HgVvvPAlKBcI846TIrSMg-hyjhoMGitnI1zfi8i-7uuW36wDZ1x58GusD2XooTUy7AVH7kQo4vxECjafr_EdajHqYKwuRdwHur5-OCsjW_yqgDagyaZfJLvrd5-i0QSX3w2Vjhvb5bcnGd178M9rpACb-2XLEF_TBl3vo07jv67aPnv6UbSsni0G0Vs3S-Brr0uFojaZeKWRxd-_TzYc-bg7rBgNUxOO0pkq7GncRXnhaLe4cSaAVr6ZJA6bhV7_uD9Bs8ms2viRd-wWic8Ua4kG9cR3rx3FmrQxaSKu487nJnAwZdYDOKMhSwXhhqJDC5NZkQbEgqPU6P0RbZVX6Y4SzzLi8MFoCnGM8uEKLwJhyllunuKUDdAZ7Ne9OTz1PjnEKhkm82u3gAF30n21uu_LlsYvGYgP1jxX1Q1u2YwPdWc8Bc9if6CzRpa-W8A4KoAuYe3y0mQaMZ6FS0-4BOmrZZzUbjYUWuZAn_7G2U7RNI1qIzq7sK9pqHpf-G2CdxnxPjP4CtwD5pQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS-RAEG5ED-5l13066rot7J6WlkynH-mjDMr4mouz4C30E8QhkU0GwV9vdU8SURjwmlT6lUrVV6kXQr_lOHDrnSdBqUCYZ5wUuXUERJ9j1HDQQDEb-Xompv_YxS2_7ZLVYy4MLKKBkZrkxH-pLhDLBMFFaWL2DUjcLcAhNDL0yeTmJQ2SFuMe7cpC5F2c-9unox6yzWs9tAZcJiVz9gnNhuWl2JL742Vrju3Tm8qN717_DvrYwU18suKPz2jDV1_Q9qTv8vYVPZ5Xq8ZOFoOgrdul8Q3WlcPRNk2dU8ji7t6nmw99FB3WLQbgiCdpa7V2De7ivfBNvbhzJEFYPEyTBkzDDz_yv6H52el8MiVdMwaic8Va4kHZcR2ryXFmrQxaSKu487nJnAwZdYDVKEhWwXhhqJDC5NZkQbEgqPU6_442q7ryuwhnmXF5YbQEcMd4cIUWgTHlLLdOcUtH6AjOquy-paZMbnIKZkq82p3gCP3t315pu2LmsafGYg31n4H6YVXEYw3dUc8IJZxPdJ3oytdLWIMCIAPGHx-vpwFTWqjUwnuEfqy4aJiNxrKLXMi9d-ztF9qezq-vyqvz2eU--kAjjohusOwAbbb_l_4noKDWHCbefwb9ZgIV |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Za9wwEB5CCm1feh_bU4H2qSh4ZR3WY9h2SXqE0qSQN6MTQhZ7qb0U-us70touDSy0r9ZYl0eabzwXwBs1j8IFH2jUOlIeuKBV6TzFq89zZgVKoBSN_OVUHn_nHy_ExR7Mx1gYnESHPXXZiJ9O9drHIcNAShWEDcqmCBy8dW8ki11i6qPF2Z9QSFbNR8SrKlkOvu7X306yyHV_y6IdADMLmuVd-DZNMfuXXB1uenvofl3L3vhfa7gHdwbYSY62fHIf9kLzAG4txmpvD-HnSbMt8OQIXrhtv7GhI6bxJOmouYIKXV1ehdy4Hr3piOkJAkiyyMtrje_I4PdFztrVpacZypJpmNxh7n76of8IzpcfzhfHdCjKQE2peU8DCj1hUlY5wZ1T0UjltPChtIVXsWAeMRvDG1ZyUVkmlbSls0XUPErmgikfw37TNuEpkKKwvqysUQjyuIi-MjJyrr0Tzmvh2AwOcK_q4Ux1dTaXM1RX0tNhB2fwbvyCtRuSmqfaGqsd1G8n6vU2mccOuoORGWrcn2RCMU1oNzgHjYAGlUAx302DKrXUuZT3DJ5sOWkajaX0i0KqZ_-wttdw8-v7Zf355PTTc7jNEpxI1rDiBez3PzbhJYKh3r7K7P8bWUsEmA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inorganic+Nanotubes+and+Fullerene-like+Nanoparticles+at+the+Crossroads+between+Solid-State+Chemistry+and+Nanotechnology&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Vis%CC%8Cic%CC%81%2C+Bojana&rft.au=Panchakarla%2C+Leela+Srinivas&rft.au=Tenne%2C+Reshef&rft.date=2017-09-20&rft.pub=American+Chemical+Society&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=139&rft.issue=37&rft.spage=12865&rft.epage=12878&rft_id=info:doi/10.1021%2Fjacs.7b01652&rft.externalDocID=f77220958 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |