Inorganic Nanotubes and Fullerene-like Nanoparticles at the Crossroads between Solid-State Chemistry and Nanotechnology

Inorganic nanotubes (NTs) and fullerene-like nanoparticles (NPs) of WS2 were discovered some 25 years ago and are produced now on a commercial scale for various applications. This Perspective provides a brief description of recent progress in this scientific discipline. The conceptual evolution lead...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 139; no. 37; pp. 12865 - 12878
Main Authors Višić, Bojana, Panchakarla, Leela Srinivas, Tenne, Reshef
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 20.09.2017
Subjects
Online AccessGet full text
ISSN0002-7863
1520-5126
1520-5126
DOI10.1021/jacs.7b01652

Cover

Loading…
Abstract Inorganic nanotubes (NTs) and fullerene-like nanoparticles (NPs) of WS2 were discovered some 25 years ago and are produced now on a commercial scale for various applications. This Perspective provides a brief description of recent progress in this scientific discipline. The conceptual evolution leading to the discovery of these NTs and NPs is briefly discussed. Subsequently, recent progress in the synthesis of such NPs from a variety of inorganic compounds with layered (2D) structure is described. In particular, we discuss the synthesis of NTs from chalcogenide- and oxide-based ternary misfit layered compounds, as well as their structure and different growth mechanisms. Next we deliberate on the mechanical, optical, electrical, and electromechanical properties, which delineate them from their bulk counterparts and also from their graphene-like analogues. Here, different experiments with individual NTs coupled with first-principles and molecular dynamics calculations demonstrate the unique physical nature of these quasi-1D nanostructures. Finally, the various applications of the fullerene-like NPs of WS2 and NTs formed therefrom are deliberated. Foremost among the possibilities are their extensive uses as superior solid lubricants. Combined with their nontoxicity and their facile dispersion, these NTs, with an ultimate strength of about 20 GPa, are likely to find numerous applications in reinforcing polymers, adhesives, textiles, medical devices, metallic alloys, and even concrete. Other potential applications in energy-harvesting and catalysis are discussed in brief.
AbstractList Inorganic nanotubes (NTs) and fullerene-like nanoparticles (NPs) of WS were discovered some 25 years ago and are produced now on a commercial scale for various applications. This Perspective provides a brief description of recent progress in this scientific discipline. The conceptual evolution leading to the discovery of these NTs and NPs is briefly discussed. Subsequently, recent progress in the synthesis of such NPs from a variety of inorganic compounds with layered (2D) structure is described. In particular, we discuss the synthesis of NTs from chalcogenide- and oxide-based ternary misfit layered compounds, as well as their structure and different growth mechanisms. Next we deliberate on the mechanical, optical, electrical, and electromechanical properties, which delineate them from their bulk counterparts and also from their graphene-like analogues. Here, different experiments with individual NTs coupled with first-principles and molecular dynamics calculations demonstrate the unique physical nature of these quasi-1D nanostructures. Finally, the various applications of the fullerene-like NPs of WS and NTs formed therefrom are deliberated. Foremost among the possibilities are their extensive uses as superior solid lubricants. Combined with their nontoxicity and their facile dispersion, these NTs, with an ultimate strength of about 20 GPa, are likely to find numerous applications in reinforcing polymers, adhesives, textiles, medical devices, metallic alloys, and even concrete. Other potential applications in energy-harvesting and catalysis are discussed in brief.
Inorganic nanotubes (NTs) and fullerene-like nanoparticles (NPs) of WS₂ were discovered some 25 years ago and are produced now on a commercial scale for various applications. This Perspective provides a brief description of recent progress in this scientific discipline. The conceptual evolution leading to the discovery of these NTs and NPs is briefly discussed. Subsequently, recent progress in the synthesis of such NPs from a variety of inorganic compounds with layered (2D) structure is described. In particular, we discuss the synthesis of NTs from chalcogenide- and oxide-based ternary misfit layered compounds, as well as their structure and different growth mechanisms. Next we deliberate on the mechanical, optical, electrical, and electromechanical properties, which delineate them from their bulk counterparts and also from their graphene-like analogues. Here, different experiments with individual NTs coupled with first-principles and molecular dynamics calculations demonstrate the unique physical nature of these quasi-1D nanostructures. Finally, the various applications of the fullerene-like NPs of WS₂ and NTs formed therefrom are deliberated. Foremost among the possibilities are their extensive uses as superior solid lubricants. Combined with their nontoxicity and their facile dispersion, these NTs, with an ultimate strength of about 20 GPa, are likely to find numerous applications in reinforcing polymers, adhesives, textiles, medical devices, metallic alloys, and even concrete. Other potential applications in energy-harvesting and catalysis are discussed in brief.
Inorganic nanotubes (NTs) and fullerene-like nanoparticles (NPs) of WS2 were discovered some 25 years ago and are produced now on a commercial scale for various applications. This Perspective provides a brief description of recent progress in this scientific discipline. The conceptual evolution leading to the discovery of these NTs and NPs is briefly discussed. Subsequently, recent progress in the synthesis of such NPs from a variety of inorganic compounds with layered (2D) structure is described. In particular, we discuss the synthesis of NTs from chalcogenide- and oxide-based ternary misfit layered compounds, as well as their structure and different growth mechanisms. Next we deliberate on the mechanical, optical, electrical, and electromechanical properties, which delineate them from their bulk counterparts and also from their graphene-like analogues. Here, different experiments with individual NTs coupled with first-principles and molecular dynamics calculations demonstrate the unique physical nature of these quasi-1D nanostructures. Finally, the various applications of the fullerene-like NPs of WS2 and NTs formed therefrom are deliberated. Foremost among the possibilities are their extensive uses as superior solid lubricants. Combined with their nontoxicity and their facile dispersion, these NTs, with an ultimate strength of about 20 GPa, are likely to find numerous applications in reinforcing polymers, adhesives, textiles, medical devices, metallic alloys, and even concrete. Other potential applications in energy-harvesting and catalysis are discussed in brief.
Inorganic nanotubes (NTs) and fullerene-like nanoparticles (NPs) of WS2 were discovered some 25 years ago and are produced now on a commercial scale for various applications. This Perspective provides a brief description of recent progress in this scientific discipline. The conceptual evolution leading to the discovery of these NTs and NPs is briefly discussed. Subsequently, recent progress in the synthesis of such NPs from a variety of inorganic compounds with layered (2D) structure is described. In particular, we discuss the synthesis of NTs from chalcogenide- and oxide-based ternary misfit layered compounds, as well as their structure and different growth mechanisms. Next we deliberate on the mechanical, optical, electrical, and electromechanical properties, which delineate them from their bulk counterparts and also from their graphene-like analogues. Here, different experiments with individual NTs coupled with first-principles and molecular dynamics calculations demonstrate the unique physical nature of these quasi-1D nanostructures. Finally, the various applications of the fullerene-like NPs of WS2 and NTs formed therefrom are deliberated. Foremost among the possibilities are their extensive uses as superior solid lubricants. Combined with their nontoxicity and their facile dispersion, these NTs, with an ultimate strength of about 20 GPa, are likely to find numerous applications in reinforcing polymers, adhesives, textiles, medical devices, metallic alloys, and even concrete. Other potential applications in energy-harvesting and catalysis are discussed in brief.Inorganic nanotubes (NTs) and fullerene-like nanoparticles (NPs) of WS2 were discovered some 25 years ago and are produced now on a commercial scale for various applications. This Perspective provides a brief description of recent progress in this scientific discipline. The conceptual evolution leading to the discovery of these NTs and NPs is briefly discussed. Subsequently, recent progress in the synthesis of such NPs from a variety of inorganic compounds with layered (2D) structure is described. In particular, we discuss the synthesis of NTs from chalcogenide- and oxide-based ternary misfit layered compounds, as well as their structure and different growth mechanisms. Next we deliberate on the mechanical, optical, electrical, and electromechanical properties, which delineate them from their bulk counterparts and also from their graphene-like analogues. Here, different experiments with individual NTs coupled with first-principles and molecular dynamics calculations demonstrate the unique physical nature of these quasi-1D nanostructures. Finally, the various applications of the fullerene-like NPs of WS2 and NTs formed therefrom are deliberated. Foremost among the possibilities are their extensive uses as superior solid lubricants. Combined with their nontoxicity and their facile dispersion, these NTs, with an ultimate strength of about 20 GPa, are likely to find numerous applications in reinforcing polymers, adhesives, textiles, medical devices, metallic alloys, and even concrete. Other potential applications in energy-harvesting and catalysis are discussed in brief.
Author Tenne, Reshef
Panchakarla, Leela Srinivas
Višić, Bojana
AuthorAffiliation Department of Chemistry
Department of Materials and Interfaces
Weizmann Institute
AuthorAffiliation_xml – name: Department of Chemistry
– name: Department of Materials and Interfaces
– name: Weizmann Institute
Author_xml – sequence: 1
  givenname: Bojana
  orcidid: 0000-0002-2065-0727
  surname: Višić
  fullname: Višić, Bojana
  email: bojana.visic@ijs.si
  organization: Weizmann Institute
– sequence: 2
  givenname: Leela Srinivas
  surname: Panchakarla
  fullname: Panchakarla, Leela Srinivas
  organization: Department of Chemistry
– sequence: 3
  givenname: Reshef
  orcidid: 0000-0003-4071-0325
  surname: Tenne
  fullname: Tenne, Reshef
  email: reshef.tenne@weizmann.ac.il
  organization: Weizmann Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28777567$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9PwyAYhonR6JzePJsePVgFWqA9msVfidHDvDeUfnVMBhNozP572ZwejMYTge_hzZfnPUS71llA6ITgC4IpuZxLFS5EiwlndAeNCKM4Z4TyXTTCGNNcVLw4QIchzNO1pBXZRwe0EkIwLkbo_d46_yKtVtmjtC4OLYRM2i67GYwBDxZyo19hM1xKH7UyayBmcQbZxLsQvJNdyFqI7wA2mzqju3waZUzjGSx0iH61CdzEg5pZZ9zL6gjt9dIEON6eY_R8c_08ucsfnm7vJ1cPuSzqMuZACsxkXRYlK5USveRC1ayDosWd6DHtcM2o4JSXrGopF7wtVIv7uuw5VSCLMTr7jF169zZAiE3aSIEx0oIbQkMJ4XXSUuJ_UVJTzitOGUno6RYd2gV0zdLrhfSr5ktrAs4_AbUxBP03QnCzbq1Zt9ZsW0s4_YErnQxqZ6OX2vz1abvv-nHuBm-Tx9_RD2pEqSs
CitedBy_id crossref_primary_10_1039_D4BM00815D
crossref_primary_10_1021_acs_chemmater_8b03632
crossref_primary_10_1063_5_0047243
crossref_primary_10_1002_pssb_202100188
crossref_primary_10_3390_cryst12091185
crossref_primary_10_1016_j_ceramint_2019_04_166
crossref_primary_10_3390_cryst12030391
crossref_primary_10_1021_acsami_8b14976
crossref_primary_10_1016_j_vacuum_2022_111725
crossref_primary_10_1007_s10853_020_04562_1
crossref_primary_10_1557_mrc_2020_26
crossref_primary_10_1186_s13065_024_01259_3
crossref_primary_10_1016_j_surfcoat_2018_11_026
crossref_primary_10_1063_5_0031667
crossref_primary_10_1080_00958972_2018_1485019
crossref_primary_10_1021_acsnano_9b09284
crossref_primary_10_1007_s10853_021_05979_y
crossref_primary_10_1002_slct_202004560
crossref_primary_10_1002_chem_201801877
crossref_primary_10_1016_j_jwpe_2022_103309
crossref_primary_10_1002_cnma_202300205
crossref_primary_10_1016_j_aca_2019_10_026
crossref_primary_10_1002_chem_201803189
crossref_primary_10_1002_adma_202104623
crossref_primary_10_3390_en15166083
crossref_primary_10_1016_j_microc_2020_105522
crossref_primary_10_1063_5_0049121
crossref_primary_10_1021_acs_jpcc_3c00244
crossref_primary_10_1016_j_sna_2019_06_054
crossref_primary_10_1002_adfm_202408703
crossref_primary_10_1016_j_colsurfb_2019_05_008
crossref_primary_10_1021_acs_nanolett_3c00416
crossref_primary_10_1021_jacs_1c07517
crossref_primary_10_1021_acs_jpcc_8b05342
crossref_primary_10_1134_S1070427219090106
crossref_primary_10_1063_1_5043544
crossref_primary_10_1021_acsnano_8b01638
crossref_primary_10_1021_acsnanoscienceau_1c00023
crossref_primary_10_1002_admi_202300501
crossref_primary_10_1021_jacs_0c05175
crossref_primary_10_1002_gch2_202300255
crossref_primary_10_1038_s41598_024_67605_6
crossref_primary_10_1016_j_compositesb_2019_107222
crossref_primary_10_1038_s41598_018_28446_2
crossref_primary_10_1039_C8CP02245C
crossref_primary_10_1021_acsanm_2c00489
crossref_primary_10_1016_j_mattod_2022_09_002
crossref_primary_10_1021_acs_inorgchem_0c00450
crossref_primary_10_1103_PhysRevResearch_1_033046
crossref_primary_10_1039_C9NR01880H
crossref_primary_10_1039_D3NJ00872J
crossref_primary_10_1016_j_mtchem_2023_101886
crossref_primary_10_1039_D0NR06660E
Cites_doi 10.1016/j.triboint.2016.10.013
10.1002/anie.201105324
10.1016/j.jssc.2006.10.014
10.1016/j.cemconcomp.2016.05.012
10.1002/adma.201605327
10.1021/acsomega.7b00409
10.1073/pnas.0505640103
10.1063/1.4766451
10.1021/cm501316g
10.1016/S1369-7021(10)70163-2
10.1002/adma.200306428
10.1021/nn102941b
10.1002/anie.201404189
10.1002/adma.200803720
10.1103/PhysRevLett.95.116805
10.1038/ncomms14465
10.1021/nl304244h
10.1039/C6RA05803E
10.1021/nn5000354
10.1021/jz500037k
10.1016/j.solidstatesciences.2003.12.004
10.1126/science.203.4385.1105
10.1038/360444a0
10.1038/nnano.2016.151
10.1038/354056a0
10.3390/inorganics2020155
10.1007/978-3-662-44581-5
10.1002/adma.201102579
10.1021/ar400138h
10.7567/APEX.10.015001
10.1002/app.44641
10.1038/ncomms9756
10.1103/PhysRevLett.9.9
10.1088/1361-6528/aa715f
10.1021/acs.nanolett.6b03764
10.1021/jp403976d
10.1002/adfm.200800841
10.1021/cm301491v
10.1039/a904413b
10.1007/BF01571690
10.1063/1.4906066
10.1021/nl303601d
10.1039/C5TC02983J
10.1021/acsnano.6b02430
10.1038/42910
10.1016/j.jallcom.2015.09.066
10.1103/PhysRevB.56.R12685
10.1002/(SICI)1521-4095(199802)10:3<246::AID-ADMA246>3.0.CO;2-6
10.1016/S0927-0248(98)00187-1
10.1021/es500065z
10.1021/ja01659a020
10.1016/j.actbio.2013.05.018
10.1016/0079-6786(95)00007-0
10.3109/17435390.2012.710661
10.1016/j.wear.2012.11.084
10.1107/S0365110X6600330X
10.1021/acs.jpcc.6b04361
10.1103/PhysRevB.62.166
10.1103/PhysRevB.76.233414
10.1038/329529a0
10.1103/PhysRevLett.85.146
10.1073/pnas.0502848102
10.1557/JMR.1998.0335
10.1080/1536383X.2010.488594
10.1089/ten.tea.2014.0163
10.1021/acs.chemmater.6b04396
10.1038/318162a0
10.1021/ja036057d
10.1021/ac60028a009
10.1126/science.111.2889.512
10.1039/c3nr00651d
10.1002/anie.201104520
10.1143/JJAP.39.L531
10.3390/inorganics2020177
10.1021/acs.chemmater.5b03365
10.1088/0268-1242/29/6/064006
10.1007/978-3-642-20595-8_16
10.1038/365113b0
10.1007/3-540-10655-3_3
10.4028/www.scientific.net/MSF.100-101.101
10.1021/jp2076325
10.3390/ma8042000
10.1021/jp3080139
10.1103/PhysRevB.47.12727
10.1073/pnas.1607202113
10.1007/s11671-010-9765-0
10.1063/1.4894440
10.1103/PhysRevB.35.6203
10.1021/acsnano.7b02943
10.1109/TED.2008.2005166
10.1021/nl401675k
10.1002/pssa.201329325
10.1524/zkri.1931.76.1.201
10.1021/jz5016845
10.1002/celc.201600291
10.1073/pnas.16.9.578
10.1007/978-3-540-47971-0_2
10.1021/nn400464g
10.1107/S0365110X67003524
10.1021/am509096x
10.1002/smll.201600345
10.1021/acs.nanolett.6b03012
10.1016/j.carbon.2017.07.031
10.1680/nme.14.00020
10.1021/acsnano.5b05468
10.1103/PhysRevLett.101.195501
10.1007/s11249-014-0337-9
10.1063/1.4729144
10.1039/C6TA02034H
10.1039/c3sm51279g
10.1016/j.matchemphys.2016.06.069
10.1007/s11249-017-0868-y
10.1021/cm9601446
10.1039/C5RA21370C
10.1002/adma.201603812
10.1103/PhysRevB.35.6195
10.1142/S1793292009001551
10.1002/ijch.201400124
10.1007/978-3-642-24624-1_1
10.1063/1.4752440
10.1021/ja01431a019
10.1021/acsnano.5b02412
10.1016/j.eurpolymj.2017.02.027
10.1038/nature01450
10.1002/jemt.1060030108
10.1021/acs.jpcc.5b05811
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/jacs.7b01652
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
AGRICOLA

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 12878
ExternalDocumentID 28777567
10_1021_jacs_7b01652
f77220958
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
4.4
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
NPM
YIN
7X8
7S9
L.6
ID FETCH-LOGICAL-a394t-e1305a943454cc7fa67c95de3b0d7f02d09527626458b2676b3cb0f94f62cea3
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Fri Jul 11 01:19:46 EDT 2025
Thu Jul 10 19:16:15 EDT 2025
Wed Feb 19 02:41:49 EST 2025
Tue Jul 01 03:21:19 EDT 2025
Thu Apr 24 23:09:50 EDT 2025
Thu Aug 27 13:42:09 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 37
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a394t-e1305a943454cc7fa67c95de3b0d7f02d09527626458b2676b3cb0f94f62cea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2065-0727
0000-0003-4071-0325
PMID 28777567
PQID 1926686251
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_2116900440
proquest_miscellaneous_1926686251
pubmed_primary_28777567
crossref_primary_10_1021_jacs_7b01652
crossref_citationtrail_10_1021_jacs_7b01652
acs_journals_10_1021_jacs_7b01652
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-09-20
PublicationDateYYYYMMDD 2017-09-20
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-20
  day: 20
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref99/cit99
Bauer E. (ref107/cit107) 2012; 847
ref3/cit3
ref81/cit81
ref16/cit16
ref52/cit52
ref114/cit114
ref23/cit23
ref115/cit115
ref116/cit116
ref110/cit110
ref111/cit111
ref2/cit2
ref112/cit112
ref77/cit77
ref113/cit113
ref71/cit71
ref117/cit117
ref48/cit48
ref118/cit118
ref74/cit74
ref119/cit119
ref10/cit10
ref35/cit35
ref89/cit89
ref93/cit93
ref42/cit42
ref96/cit96
ref120/cit120
ref109/cit109
ref13/cit13
ref122/cit122
ref105/cit105
ref61/cit61
ref67/cit67
ref38/cit38
ref90/cit90
ref124/cit124
ref64/cit64
ref126/cit126
ref54/cit54
ref6/cit6
ref65/cit65
ref97/cit97
ref101/cit101
ref11/cit11
ref102/cit102
ref29/cit29
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref5/cit5
ref43/cit43
ref80/cit80
ref28/cit28
ref91/cit91
Levi R. (ref20/cit20) 2013
ref55/cit55
ref12/cit12
ref66/cit66
ref22/cit22
ref121/cit121
ref33/cit33
ref87/cit87
ref106/cit106
ref44/cit44
ref70/cit70
ref98/cit98
ref125/cit125
ref9/cit9
ref27/cit27
ref63/cit63
ref56/cit56
ref92/cit92
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref37/cit37
ref60/cit60
ref88/cit88
ref17/cit17
ref82/cit82
ref53/cit53
ref21/cit21
ref46/cit46
Makovicky E. (ref34/cit34) 1981; 48
ref49/cit49
ref75/cit75
ref24/cit24
ref50/cit50
ref78/cit78
ref36/cit36
ref83/cit83
ref79/cit79
ref100/cit100
ref25/cit25
ref103/cit103
ref72/cit72
ref14/cit14
ref57/cit57
ref51/cit51
ref40/cit40
ref68/cit68
ref94/cit94
ref26/cit26
Èvarestov R. A. (ref19/cit19) 2015; 76
ref73/cit73
ref69/cit69
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref95/cit95
ref108/cit108
ref104/cit104
ref4/cit4
Enyashin A. N. (ref18/cit18) 2007
ref30/cit30
ref47/cit47
ref84/cit84
ref1/cit1
ref123/cit123
ref7/cit7
References_xml – ident: ref114/cit114
  doi: 10.1016/j.triboint.2016.10.013
– ident: ref24/cit24
  doi: 10.1002/anie.201105324
– ident: ref70/cit70
  doi: 10.1016/j.jssc.2006.10.014
– ident: ref31/cit31
  doi: 10.1016/j.cemconcomp.2016.05.012
– ident: ref42/cit42
  doi: 10.1002/adma.201605327
– ident: ref40/cit40
  doi: 10.1021/acsomega.7b00409
– ident: ref75/cit75
  doi: 10.1073/pnas.0505640103
– ident: ref103/cit103
  doi: 10.1063/1.4766451
– ident: ref56/cit56
  doi: 10.1021/cm501316g
– ident: ref62/cit62
  doi: 10.1016/S1369-7021(10)70163-2
– ident: ref22/cit22
  doi: 10.1002/adma.200306428
– ident: ref47/cit47
  doi: 10.1021/nn102941b
– ident: ref59/cit59
  doi: 10.1002/anie.201404189
– ident: ref21/cit21
  doi: 10.1002/adma.200803720
– ident: ref102/cit102
  doi: 10.1103/PhysRevLett.95.116805
– ident: ref30/cit30
  doi: 10.1038/ncomms14465
– ident: ref76/cit76
  doi: 10.1021/nl304244h
– ident: ref116/cit116
  doi: 10.1039/C6RA05803E
– ident: ref90/cit90
  doi: 10.1021/nn5000354
– ident: ref91/cit91
  doi: 10.1021/jz500037k
– ident: ref69/cit69
  doi: 10.1016/j.solidstatesciences.2003.12.004
– ident: ref14/cit14
  doi: 10.1126/science.203.4385.1105
– ident: ref13/cit13
  doi: 10.1038/360444a0
– ident: ref74/cit74
  doi: 10.1038/nnano.2016.151
– ident: ref11/cit11
  doi: 10.1038/354056a0
– ident: ref79/cit79
  doi: 10.3390/inorganics2020155
– volume: 76
  volume-title: Theoretical modeling of inorganic nanostructures: Symmetry and ab-initio calculations of nanolayers, nanotubes and nanowires
  year: 2015
  ident: ref19/cit19
  doi: 10.1007/978-3-662-44581-5
– ident: ref80/cit80
  doi: 10.1002/adma.201102579
– ident: ref37/cit37
  doi: 10.1021/ar400138h
– ident: ref112/cit112
  doi: 10.7567/APEX.10.015001
– ident: ref77/cit77
  doi: 10.1002/app.44641
– ident: ref32/cit32
  doi: 10.1038/ncomms9756
– ident: ref108/cit108
  doi: 10.1103/PhysRevLett.9.9
– ident: ref46/cit46
  doi: 10.1088/1361-6528/aa715f
– ident: ref45/cit45
  doi: 10.1021/acs.nanolett.6b03764
– ident: ref93/cit93
  doi: 10.1021/jp403976d
– ident: ref122/cit122
  doi: 10.1002/adfm.200800841
– ident: ref58/cit58
  doi: 10.1021/cm301491v
– ident: ref67/cit67
  doi: 10.1039/a904413b
– ident: ref86/cit86
  doi: 10.1007/BF01571690
– ident: ref105/cit105
  doi: 10.1063/1.4906066
– ident: ref73/cit73
  doi: 10.1021/nl303601d
– ident: ref57/cit57
  doi: 10.1039/C5TC02983J
– ident: ref71/cit71
  doi: 10.1021/acsnano.6b02430
– ident: ref113/cit113
  doi: 10.1038/42910
– ident: ref118/cit118
  doi: 10.1016/j.jallcom.2015.09.066
– ident: ref63/cit63
  doi: 10.1103/PhysRevB.56.R12685
– ident: ref106/cit106
  doi: 10.1002/(SICI)1521-4095(199802)10:3<246::AID-ADMA246>3.0.CO;2-6
– ident: ref100/cit100
  doi: 10.1016/S0927-0248(98)00187-1
– ident: ref28/cit28
  doi: 10.1021/es500065z
– ident: ref2/cit2
  doi: 10.1021/ja01659a020
– ident: ref27/cit27
  doi: 10.1016/j.actbio.2013.05.018
– ident: ref50/cit50
  doi: 10.1016/0079-6786(95)00007-0
– ident: ref78/cit78
  doi: 10.3109/17435390.2012.710661
– ident: ref23/cit23
  doi: 10.1016/j.wear.2012.11.084
– ident: ref7/cit7
  doi: 10.1107/S0365110X6600330X
– ident: ref44/cit44
  doi: 10.1021/acs.jpcc.6b04361
– ident: ref65/cit65
  doi: 10.1103/PhysRevB.62.166
– ident: ref87/cit87
  doi: 10.1103/PhysRevB.76.233414
– ident: ref10/cit10
  doi: 10.1038/329529a0
– ident: ref88/cit88
  doi: 10.1103/PhysRevLett.85.146
– ident: ref16/cit16
  doi: 10.1073/pnas.0502848102
– ident: ref89/cit89
  doi: 10.1557/JMR.1998.0335
– ident: ref29/cit29
  doi: 10.1080/1536383X.2010.488594
– ident: ref26/cit26
  doi: 10.1089/ten.tea.2014.0163
– ident: ref72/cit72
  doi: 10.1021/acs.chemmater.6b04396
– ident: ref9/cit9
  doi: 10.1038/318162a0
– ident: ref53/cit53
  doi: 10.1021/ja036057d
– ident: ref5/cit5
  doi: 10.1021/ac60028a009
– ident: ref6/cit6
  doi: 10.1126/science.111.2889.512
– ident: ref81/cit81
  doi: 10.1039/c3nr00651d
– ident: ref55/cit55
  doi: 10.1002/anie.201104520
– ident: ref66/cit66
  doi: 10.1143/JJAP.39.L531
– ident: ref38/cit38
  doi: 10.3390/inorganics2020177
– ident: ref52/cit52
  doi: 10.1021/acs.chemmater.5b03365
– ident: ref61/cit61
  doi: 10.1088/0268-1242/29/6/064006
– start-page: 605
  volume-title: Springer Handbook of Nanomaterials
  year: 2013
  ident: ref20/cit20
  doi: 10.1007/978-3-642-20595-8_16
– ident: ref12/cit12
  doi: 10.1038/365113b0
– volume: 48
  start-page: 101
  volume-title: Inorganic Chemistry
  year: 1981
  ident: ref34/cit34
  doi: 10.1007/3-540-10655-3_3
– ident: ref35/cit35
  doi: 10.4028/www.scientific.net/MSF.100-101.101
– ident: ref48/cit48
  doi: 10.1021/jp2076325
– ident: ref51/cit51
  doi: 10.3390/ma8042000
– ident: ref94/cit94
  doi: 10.1021/jp3080139
– ident: ref111/cit111
  doi: 10.1103/PhysRevB.47.12727
– ident: ref83/cit83
  doi: 10.1073/pnas.1607202113
– ident: ref97/cit97
  doi: 10.1007/s11671-010-9765-0
– ident: ref104/cit104
  doi: 10.1063/1.4894440
– ident: ref84/cit84
  doi: 10.1103/PhysRevB.35.6203
– ident: ref126/cit126
  doi: 10.1021/acsnano.7b02943
– ident: ref96/cit96
  doi: 10.1109/TED.2008.2005166
– ident: ref101/cit101
  doi: 10.1021/nl401675k
– ident: ref120/cit120
  doi: 10.1002/pssa.201329325
– ident: ref3/cit3
  doi: 10.1524/zkri.1931.76.1.201
– ident: ref36/cit36
  doi: 10.1021/jz5016845
– ident: ref49/cit49
  doi: 10.1002/celc.201600291
– ident: ref4/cit4
  doi: 10.1073/pnas.16.9.578
– start-page: 33
  volume-title: Materials for tomorrow
  year: 2007
  ident: ref18/cit18
  doi: 10.1007/978-3-540-47971-0_2
– ident: ref95/cit95
  doi: 10.1021/nn400464g
– ident: ref8/cit8
  doi: 10.1107/S0365110X67003524
– ident: ref17/cit17
  doi: 10.1021/am509096x
– ident: ref33/cit33
  doi: 10.1002/smll.201600345
– ident: ref110/cit110
  doi: 10.1021/acs.nanolett.6b03012
– ident: ref124/cit124
  doi: 10.1016/j.carbon.2017.07.031
– ident: ref25/cit25
  doi: 10.1680/nme.14.00020
– ident: ref109/cit109
  doi: 10.1021/acsnano.5b05468
– ident: ref82/cit82
  doi: 10.1103/PhysRevLett.101.195501
– ident: ref115/cit115
  doi: 10.1007/s11249-014-0337-9
– ident: ref98/cit98
  doi: 10.1063/1.4729144
– ident: ref43/cit43
  doi: 10.1039/C6TA02034H
– ident: ref119/cit119
  doi: 10.1039/c3sm51279g
– ident: ref39/cit39
  doi: 10.1016/j.matchemphys.2016.06.069
– ident: ref125/cit125
  doi: 10.1007/s11249-017-0868-y
– ident: ref68/cit68
  doi: 10.1021/cm9601446
– ident: ref123/cit123
  doi: 10.1039/C5RA21370C
– ident: ref41/cit41
  doi: 10.1002/adma.201603812
– ident: ref85/cit85
  doi: 10.1103/PhysRevB.35.6195
– ident: ref92/cit92
  doi: 10.1142/S1793292009001551
– ident: ref121/cit121
  doi: 10.1002/ijch.201400124
– volume: 847
  volume-title: Non-centrosymmetric superconductors: introduction and overview
  year: 2012
  ident: ref107/cit107
  doi: 10.1007/978-3-642-24624-1_1
– ident: ref99/cit99
  doi: 10.1063/1.4752440
– ident: ref1/cit1
  doi: 10.1021/ja01431a019
– ident: ref54/cit54
  doi: 10.1021/acsnano.5b02412
– ident: ref117/cit117
  doi: 10.1016/j.eurpolymj.2017.02.027
– ident: ref64/cit64
  doi: 10.1038/nature01450
– ident: ref15/cit15
  doi: 10.1002/jemt.1060030108
– ident: ref60/cit60
  doi: 10.1021/acs.jpcc.5b05811
SSID ssj0004281
Score 2.4710214
Snippet Inorganic nanotubes (NTs) and fullerene-like nanoparticles (NPs) of WS2 were discovered some 25 years ago and are produced now on a commercial scale for...
Inorganic nanotubes (NTs) and fullerene-like nanoparticles (NPs) of WS were discovered some 25 years ago and are produced now on a commercial scale for various...
Inorganic nanotubes (NTs) and fullerene-like nanoparticles (NPs) of WS₂ were discovered some 25 years ago and are produced now on a commercial scale for...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12865
SubjectTerms adhesives
alloys
catalytic activity
concrete
fabrics
lubricants
medical equipment
molecular dynamics
nanoparticles
nanotubes
polymers
Title Inorganic Nanotubes and Fullerene-like Nanoparticles at the Crossroads between Solid-State Chemistry and Nanotechnology
URI http://dx.doi.org/10.1021/jacs.7b01652
https://www.ncbi.nlm.nih.gov/pubmed/28777567
https://www.proquest.com/docview/1926686251
https://www.proquest.com/docview/2116900440
Volume 139
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYqeigXaHkutJWR6Al5lXX8iI_VqluKBJfdStxWfkqIVYJIVkj8esZOsquCVvSaTOzYGc98k3khdC5HgVvvPAlKBcI846TIrSMg-hyjhoMGitnI1zfi8i-7uuW36wDZ1x58GusD2XooTUy7AVH7kQo4vxECjafr_EdajHqYKwuRdwHur5-OCsjW_yqgDagyaZfJLvrd5-i0QSX3w2Vjhvb5bcnGd178M9rpACb-2XLEF_TBl3vo07jv67aPnv6UbSsni0G0Vs3S-Brr0uFojaZeKWRxd-_TzYc-bg7rBgNUxOO0pkq7GncRXnhaLe4cSaAVr6ZJA6bhV7_uD9Bs8ms2viRd-wWic8Ua4kG9cR3rx3FmrQxaSKu487nJnAwZdYDOKMhSwXhhqJDC5NZkQbEgqPU6P0RbZVX6Y4SzzLi8MFoCnGM8uEKLwJhyllunuKUDdAZ7Ne9OTz1PjnEKhkm82u3gAF30n21uu_LlsYvGYgP1jxX1Q1u2YwPdWc8Bc9if6CzRpa-W8A4KoAuYe3y0mQaMZ6FS0-4BOmrZZzUbjYUWuZAn_7G2U7RNI1qIzq7sK9pqHpf-G2CdxnxPjP4CtwD5pQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS-RAEG5ED-5l13066rot7J6WlkynH-mjDMr4mouz4C30E8QhkU0GwV9vdU8SURjwmlT6lUrVV6kXQr_lOHDrnSdBqUCYZ5wUuXUERJ9j1HDQQDEb-Xompv_YxS2_7ZLVYy4MLKKBkZrkxH-pLhDLBMFFaWL2DUjcLcAhNDL0yeTmJQ2SFuMe7cpC5F2c-9unox6yzWs9tAZcJiVz9gnNhuWl2JL742Vrju3Tm8qN717_DvrYwU18suKPz2jDV1_Q9qTv8vYVPZ5Xq8ZOFoOgrdul8Q3WlcPRNk2dU8ji7t6nmw99FB3WLQbgiCdpa7V2De7ivfBNvbhzJEFYPEyTBkzDDz_yv6H52el8MiVdMwaic8Va4kHZcR2ryXFmrQxaSKu487nJnAwZdYDVKEhWwXhhqJDC5NZkQbEgqPU6_442q7ryuwhnmXF5YbQEcMd4cIUWgTHlLLdOcUtH6AjOquy-paZMbnIKZkq82p3gCP3t315pu2LmsafGYg31n4H6YVXEYw3dUc8IJZxPdJ3oytdLWIMCIAPGHx-vpwFTWqjUwnuEfqy4aJiNxrKLXMi9d-ztF9qezq-vyqvz2eU--kAjjohusOwAbbb_l_4noKDWHCbefwb9ZgIV
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Za9wwEB5CCm1feh_bU4H2qSh4ZR3WY9h2SXqE0qSQN6MTQhZ7qb0U-us70touDSy0r9ZYl0eabzwXwBs1j8IFH2jUOlIeuKBV6TzFq89zZgVKoBSN_OVUHn_nHy_ExR7Mx1gYnESHPXXZiJ9O9drHIcNAShWEDcqmCBy8dW8ki11i6qPF2Z9QSFbNR8SrKlkOvu7X306yyHV_y6IdADMLmuVd-DZNMfuXXB1uenvofl3L3vhfa7gHdwbYSY62fHIf9kLzAG4txmpvD-HnSbMt8OQIXrhtv7GhI6bxJOmouYIKXV1ehdy4Hr3piOkJAkiyyMtrje_I4PdFztrVpacZypJpmNxh7n76of8IzpcfzhfHdCjKQE2peU8DCj1hUlY5wZ1T0UjltPChtIVXsWAeMRvDG1ZyUVkmlbSls0XUPErmgikfw37TNuEpkKKwvqysUQjyuIi-MjJyrr0Tzmvh2AwOcK_q4Ux1dTaXM1RX0tNhB2fwbvyCtRuSmqfaGqsd1G8n6vU2mccOuoORGWrcn2RCMU1oNzgHjYAGlUAx302DKrXUuZT3DJ5sOWkajaX0i0KqZ_-wttdw8-v7Zf355PTTc7jNEpxI1rDiBez3PzbhJYKh3r7K7P8bWUsEmA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inorganic+Nanotubes+and+Fullerene-like+Nanoparticles+at+the+Crossroads+between+Solid-State+Chemistry+and+Nanotechnology&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Vis%CC%8Cic%CC%81%2C+Bojana&rft.au=Panchakarla%2C+Leela+Srinivas&rft.au=Tenne%2C+Reshef&rft.date=2017-09-20&rft.pub=American+Chemical+Society&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=139&rft.issue=37&rft.spage=12865&rft.epage=12878&rft_id=info:doi/10.1021%2Fjacs.7b01652&rft.externalDocID=f77220958
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon