Atmospheric Reactivity of Methoxyphenols: A Review

Methoxyphenols emitted from lignin pyrolysis are widely used as potential tracers for biomass burning, especially for wood burning. In the past ten years, their atmospheric reactivity has attracted increasing attention from the academic community. Thus, this work provides an extensive review of the...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 56; no. 5; pp. 2897 - 2916
Main Authors Liu, Changgeng, Chen, Dandan, Chen, Xiao’e
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 01.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Methoxyphenols emitted from lignin pyrolysis are widely used as potential tracers for biomass burning, especially for wood burning. In the past ten years, their atmospheric reactivity has attracted increasing attention from the academic community. Thus, this work provides an extensive review of the atmospheric reactivity of methoxyphenols, including their gas-phase, particle-phase, and aqueous-phase reactions, as well as secondary organic aerosol (SOA) formation. Emphasis was placed on kinetics, mechanisms, and SOA formation. The reactions of methoxyphenols with OH and NO3 radicals were the predominant degradation pathways, which also had significant SOA formation potentials. The reaction mechanism of methoxyphenols with O3 is the cycloaddition of O3 to the benzene ring or unsaturated CC bond, while H-abstraction and radical adduct formation are the main degradation channels of methoxyphenols by OH and NO3 radicals. Based on the published studies, knowledge gaps were pointed out. Future studies including experimental simulations and theoretical calculations of other representative kinds of methoxyphenols should be systematically carried out under complex pollution conditions. In addition, the ecotoxicity of their degradation products and their contribution to SOA formation from the atmospheric aging of biomass-burning plumes should be seriously assessed.
AbstractList Methoxyphenols emitted from lignin pyrolysis are widely used as potential tracers for biomass burning, especially for wood burning. In the past ten years, their atmospheric reactivity has attracted increasing attention from the academic community. Thus, this work provides an extensive review of the atmospheric reactivity of methoxyphenols, including their gas-phase, particle-phase, and aqueous-phase reactions, as well as secondary organic aerosol (SOA) formation. Emphasis was placed on kinetics, mechanisms, and SOA formation. The reactions of methoxyphenols with OH and NO3 radicals were the predominant degradation pathways, which also had significant SOA formation potentials. The reaction mechanism of methoxyphenols with O3 is the cycloaddition of O3 to the benzene ring or unsaturated CC bond, while H-abstraction and radical adduct formation are the main degradation channels of methoxyphenols by OH and NO3 radicals. Based on the published studies, knowledge gaps were pointed out. Future studies including experimental simulations and theoretical calculations of other representative kinds of methoxyphenols should be systematically carried out under complex pollution conditions. In addition, the ecotoxicity of their degradation products and their contribution to SOA formation from the atmospheric aging of biomass-burning plumes should be seriously assessed.
Methoxyphenols emitted from lignin pyrolysis are widely used as potential tracers for biomass burning, especially for wood burning. In the past ten years, their atmospheric reactivity has attracted increasing attention from the academic community. Thus, this work provides an extensive review of the atmospheric reactivity of methoxyphenols, including their gas-phase, particle-phase, and aqueous-phase reactions, as well as secondary organic aerosol (SOA) formation. Emphasis was placed on kinetics, mechanisms, and SOA formation. The reactions of methoxyphenols with OH and NO₃ radicals were the predominant degradation pathways, which also had significant SOA formation potentials. The reaction mechanism of methoxyphenols with O₃ is the cycloaddition of O₃ to the benzene ring or unsaturated C═C bond, while H-abstraction and radical adduct formation are the main degradation channels of methoxyphenols by OH and NO₃ radicals. Based on the published studies, knowledge gaps were pointed out. Future studies including experimental simulations and theoretical calculations of other representative kinds of methoxyphenols should be systematically carried out under complex pollution conditions. In addition, the ecotoxicity of their degradation products and their contribution to SOA formation from the atmospheric aging of biomass-burning plumes should be seriously assessed.
Methoxyphenols emitted from lignin pyrolysis are widely used as potential tracers for biomass burning, especially for wood burning. In the past ten years, their atmospheric reactivity has attracted increasing attention from the academic community. Thus, this work provides an extensive review of the atmospheric reactivity of methoxyphenols, including their gas-phase, particle-phase, and aqueous-phase reactions, as well as secondary organic aerosol (SOA) formation. Emphasis was placed on kinetics, mechanisms, and SOA formation. The reactions of methoxyphenols with OH and NO radicals were the predominant degradation pathways, which also had significant SOA formation potentials. The reaction mechanism of methoxyphenols with O is the cycloaddition of O to the benzene ring or unsaturated C═C bond, while H-abstraction and radical adduct formation are the main degradation channels of methoxyphenols by OH and NO radicals. Based on the published studies, knowledge gaps were pointed out. Future studies including experimental simulations and theoretical calculations of other representative kinds of methoxyphenols should be systematically carried out under complex pollution conditions. In addition, the ecotoxicity of their degradation products and their contribution to SOA formation from the atmospheric aging of biomass-burning plumes should be seriously assessed.
Methoxyphenols emitted from lignin pyrolysis are widely used as potential tracers for biomass burning, especially for wood burning. In the past ten years, their atmospheric reactivity has attracted increasing attention from the academic community. Thus, this work provides an extensive review of the atmospheric reactivity of methoxyphenols, including their gas-phase, particle-phase, and aqueous-phase reactions, as well as secondary organic aerosol (SOA) formation. Emphasis was placed on kinetics, mechanisms, and SOA formation. The reactions of methoxyphenols with OH and NO3 radicals were the predominant degradation pathways, which also had significant SOA formation potentials. The reaction mechanism of methoxyphenols with O3 is the cycloaddition of O3 to the benzene ring or unsaturated C═C bond, while H-abstraction and radical adduct formation are the main degradation channels of methoxyphenols by OH and NO3 radicals. Based on the published studies, knowledge gaps were pointed out. Future studies including experimental simulations and theoretical calculations of other representative kinds of methoxyphenols should be systematically carried out under complex pollution conditions. In addition, the ecotoxicity of their degradation products and their contribution to SOA formation from the atmospheric aging of biomass-burning plumes should be seriously assessed.
Methoxyphenols emitted from lignin pyrolysis are widely used as potential tracers for biomass burning, especially for wood burning. In the past ten years, their atmospheric reactivity has attracted increasing attention from the academic community. Thus, this work provides an extensive review of the atmospheric reactivity of methoxyphenols, including their gas-phase, particle-phase, and aqueous-phase reactions, as well as secondary organic aerosol (SOA) formation. Emphasis was placed on kinetics, mechanisms, and SOA formation. The reactions of methoxyphenols with OH and NO3 radicals were the predominant degradation pathways, which also had significant SOA formation potentials. The reaction mechanism of methoxyphenols with O3 is the cycloaddition of O3 to the benzene ring or unsaturated C═C bond, while H-abstraction and radical adduct formation are the main degradation channels of methoxyphenols by OH and NO3 radicals. Based on the published studies, knowledge gaps were pointed out. Future studies including experimental simulations and theoretical calculations of other representative kinds of methoxyphenols should be systematically carried out under complex pollution conditions. In addition, the ecotoxicity of their degradation products and their contribution to SOA formation from the atmospheric aging of biomass-burning plumes should be seriously assessed.Methoxyphenols emitted from lignin pyrolysis are widely used as potential tracers for biomass burning, especially for wood burning. In the past ten years, their atmospheric reactivity has attracted increasing attention from the academic community. Thus, this work provides an extensive review of the atmospheric reactivity of methoxyphenols, including their gas-phase, particle-phase, and aqueous-phase reactions, as well as secondary organic aerosol (SOA) formation. Emphasis was placed on kinetics, mechanisms, and SOA formation. The reactions of methoxyphenols with OH and NO3 radicals were the predominant degradation pathways, which also had significant SOA formation potentials. The reaction mechanism of methoxyphenols with O3 is the cycloaddition of O3 to the benzene ring or unsaturated C═C bond, while H-abstraction and radical adduct formation are the main degradation channels of methoxyphenols by OH and NO3 radicals. Based on the published studies, knowledge gaps were pointed out. Future studies including experimental simulations and theoretical calculations of other representative kinds of methoxyphenols should be systematically carried out under complex pollution conditions. In addition, the ecotoxicity of their degradation products and their contribution to SOA formation from the atmospheric aging of biomass-burning plumes should be seriously assessed.
Author Chen, Dandan
Chen, Xiao’e
Liu, Changgeng
AuthorAffiliation School of Biological and Chemical Engineering
AuthorAffiliation_xml – name: School of Biological and Chemical Engineering
Author_xml – sequence: 1
  givenname: Changgeng
  orcidid: 0000-0002-4899-0985
  surname: Liu
  fullname: Liu, Changgeng
  email: changwyx@163.com
– sequence: 2
  givenname: Dandan
  surname: Chen
  fullname: Chen, Dandan
– sequence: 3
  givenname: Xiao’e
  surname: Chen
  fullname: Chen, Xiao’e
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35188384$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtLAzEUhYMo9qFrd1JwI8i0eTSZjLtSfEFFEAV3QybJ0JSZSZ1kqv33ZmztoqCubuB853JPTg8cVrbSAJwhOEQQo5GQbqidHyIJGSX0AHQRxTCinKJD0IUQkSgh7K0Des4tIISYQH4MOoQizgkfdwGe-NK65VzXRg6etZDerIxfD2w-eNR-bj_XQats4a4Hk6CvjP44AUe5KJw-3c4-eL29eZneR7Onu4fpZBYJkox9pCDkOKOSKMZIEl6ZwnmSC6aU4ogzBaXmsYyhiFWueJLHscYx0phlmGiZkD643Oxd1va9CSnT0jipi0JU2jYuDTAPeUKi_1FGEEMs-UYv9tCFbeoqBGkpSnHCWByo8y3VZKVW6bI2pajX6c_HBWC0AWRtnat1vkMQTNtq0lBN2q7fVhMcdM8hjRfe2MrXwhR_-K42vlbY3fob_QWv26D5
CitedBy_id crossref_primary_10_5194_acp_24_12409_2024
crossref_primary_10_1021_acs_est_3c08726
crossref_primary_10_1016_j_jes_2022_05_040
crossref_primary_10_1021_acs_est_4c07631
crossref_primary_10_1021_acs_est_3c01931
crossref_primary_10_1016_j_atmosenv_2024_120787
crossref_primary_10_1021_acsestwater_4c00685
crossref_primary_10_1039_D2EA00015F
crossref_primary_10_1021_acs_est_3c04263
crossref_primary_10_1021_acs_est_3c10199
crossref_primary_10_1021_acsestair_3c00042
crossref_primary_10_1029_2023JD039758
crossref_primary_10_1016_j_scitotenv_2022_158895
crossref_primary_10_1016_j_atmosenv_2023_119749
crossref_primary_10_1039_D3EM00329A
crossref_primary_10_1093_pnasnexus_pgae385
crossref_primary_10_1021_acsearthspacechem_3c00301
crossref_primary_10_1021_acs_est_3c09903
crossref_primary_10_1016_j_envpol_2025_126044
crossref_primary_10_1016_j_atmosenv_2024_120895
crossref_primary_10_1016_j_atmosenv_2024_120655
crossref_primary_10_1021_acsestair_4c00174
crossref_primary_10_1039_D3EA00104K
crossref_primary_10_5194_acp_23_2859_2023
crossref_primary_10_1016_j_atmosenv_2022_119217
crossref_primary_10_1021_acs_estlett_4c00612
crossref_primary_10_1021_acs_est_3c04370
Cites_doi 10.1016/j.chemosphere.2020.126893
10.5194/acp-14-47-2014
10.1039/c1cp22478f
10.1364/AO.56.00E116
10.1016/j.cej.2020.126484
10.1016/j.atmosenv.2012.02.027
10.1021/es00131a006
10.1021/jp1071023
10.5194/acp-14-2871-2014
10.1002/2014GL060582
10.1021/acs.est.9b02588
10.1016/j.atmosenv.2010.07.042
10.5194/acp-16-13321-2016
10.1080/08958370600985875
10.1002/bbpc.19770810603
10.1039/D0EM00242A
10.5194/acp-15-3063-2015
10.1787/key_energ_stat-2015-en
10.5194/acp-13-8019-2013
10.1021/es001420r
10.5194/amt-8-2315-2015
10.1021/es0479437
10.5194/acp-12-7413-2012
10.1021/acs.jpca.6b02729
10.1016/j.scitotenv.2010.12.025
10.1016/j.atmosenv.2010.06.017
10.1021/acs.est.7b00248
10.1002/cphc.201000446
10.1021/es404515k
10.5194/acp-17-12941-2017
10.1021/acs.est.0c03648
10.1016/j.scitotenv.2021.145203
10.1021/es0524301
10.1016/j.atmosenv.2009.10.042
10.5194/acp-17-4751-2017
10.1016/j.atmosenv.2008.09.006
10.1016/j.atmosres.2007.04.005
10.1021/acs.jpca.5b00174
10.1029/2007JD009426
10.1016/j.atmosenv.2013.11.074
10.1016/j.atmosenv.2014.03.054
10.5194/acp-5-799-2005
10.1029/2010GL045258
10.1016/j.scitotenv.2016.03.111
10.1016/j.atmosenv.2019.117240
10.1002/2016JD025156
10.1039/b506750m
10.1016/j.atmosenv.2016.12.036
10.1016/j.atmosenv.2020.118140
10.3390/ijms20184492
10.2307/3431940
10.1016/j.scitotenv.2020.144239
10.1016/j.atmosenv.2019.03.021
10.1021/jp102177v
10.1021/acs.est.0c01345
10.1021/es303889z
10.1016/j.atmosenv.2015.11.028
10.1021/acsearthspacechem.0c00070
10.5194/acp-18-5677-2018
10.5194/acp-16-7411-2016
10.1002/3527601791
10.1021/es00147a009
10.1016/j.atmosenv.2011.11.020
10.1016/j.scitotenv.2016.06.212
10.1021/acs.jpca.5b03232
10.1021/es001331e
10.1029/JD090iD06p10463
10.1016/j.atmosenv.2011.03.026
10.1039/c2cs35140d
10.1021/acs.est.8b03441
10.1039/C9CP03246K
10.1021/cr0206420
10.1016/j.scitotenv.2019.06.229
10.1016/j.atmosenv.2019.03.005
10.1016/j.jhazmat.2020.124760
10.1016/S0045-6535(02)00041-3
10.1016/j.scitotenv.2016.11.025
10.5194/acp-21-8293-2021
10.1126/science.1180353
10.5194/acp-18-1611-2018
10.1021/es00035a026
10.1063/1.432770
10.1016/j.apr.2021.01.011
10.1029/GL006i002p00113
10.5194/acp-19-2687-2019
10.1016/j.scitotenv.2020.137953
10.1016/j.comptc.2018.02.014
10.1002/cphc.201090089
10.1039/C4CP06095D
10.1021/acs.jpca.9b05696
10.1021/cr500447k
10.1016/j.atmosenv.2018.06.003
10.5194/acp-17-7653-2017
10.1021/acs.jpca.5b10406
10.1021/jp4114877
10.1016/j.atmosenv.2020.117740
10.1016/j.chemosphere.2018.06.131
10.1016/j.chemosphere.2019.125088
10.1289/ehp.021101057
10.5194/acp-5-827-2005
10.1021/es00181a013
10.1016/j.envpol.2018.08.104
10.1038/28584
10.1016/j.atmosenv.2009.04.032
10.5194/acp-7-5727-2007
10.1021/es902476f
10.5194/acp-19-2001-2019
10.1021/es401043j
10.1063/1.555887
10.1021/cr00071a004
10.1016/j.apr.2016.12.008
10.1021/es981312t
10.5194/acp-9-1263-2009
10.5194/acp-7-5159-2007
10.1039/C5CP00268K
10.1021/acs.est.9b03649
10.5194/amt-10-1519-2017
10.1073/pnas.1419604111
10.1021/es00175a011
10.5194/acp-10-4111-2010
10.1038/nature13774
10.1021/es0486871
10.1021/acs.est.7b05864
10.5194/acp-11-1-2011
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright American Chemical Society Mar 1, 2022
Copyright_xml – notice: 2022 American Chemical Society
– notice: Copyright American Chemical Society Mar 1, 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7S9
L.6
DOI 10.1021/acs.est.1c06535
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE
Biotechnology Research Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1520-5851
EndPage 2916
ExternalDocumentID 35188384
10_1021_acs_est_1c06535
a288314737
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
-DZ
-~X
..I
.DC
.K2
3R3
4.4
4R4
53G
55A
5GY
5VS
6TJ
7~N
85S
AABXI
AAHBH
ABJNI
ABMVS
ABOGM
ABPPZ
ABQRX
ABUCX
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
ADHLV
ADUKH
AEESW
AENEX
AFEFF
AFRAH
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
CUPRZ
EBS
ED~
F5P
GGK
GNL
IH9
JG~
LG6
MS~
MW2
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
W1F
WH7
XSW
XZL
YZZ
ZCA
AAYXX
ABBLG
ABLBI
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-a394t-d0082b5c3d66392b5bd2f9fa6ddd8186d0ce87c70a7dfd89f77e271e26b23ec93
IEDL.DBID ACS
ISSN 0013-936X
1520-5851
IngestDate Wed Jul 02 03:14:45 EDT 2025
Fri Jul 11 14:11:00 EDT 2025
Mon Jun 30 06:40:42 EDT 2025
Mon Jul 21 05:59:56 EDT 2025
Tue Jul 01 05:07:39 EDT 2025
Thu Apr 24 22:50:07 EDT 2025
Fri Apr 25 03:25:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Secondary organic aerosol
Atmospheric reactivity
Biomass burning
Atmospheric oxidants
Kinetics
Methoxyphenols
Mechanism
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a394t-d0082b5c3d66392b5bd2f9fa6ddd8186d0ce87c70a7dfd89f77e271e26b23ec93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-4899-0985
PMID 35188384
PQID 2635529667
PQPubID 45412
PageCount 20
ParticipantIDs proquest_miscellaneous_2718230308
proquest_miscellaneous_2631616908
proquest_journals_2635529667
pubmed_primary_35188384
crossref_primary_10_1021_acs_est_1c06535
crossref_citationtrail_10_1021_acs_est_1c06535
acs_journals_10_1021_acs_est_1c06535
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
ref52/cit52
ref114/cit114
ref23/cit23
ref115/cit115
ref116/cit116
ref110/cit110
ref111/cit111
ref2/cit2
ref112/cit112
ref77/cit77
ref113/cit113
ref71/cit71
ref117/cit117
ref20/cit20
ref48/cit48
ref118/cit118
ref74/cit74
ref119/cit119
ref10/cit10
ref35/cit35
ref89/cit89
ref19/cit19
ref93/cit93
ref42/cit42
ref96/cit96
ref107/cit107
ref120/cit120
ref109/cit109
ref13/cit13
ref122/cit122
ref105/cit105
ref61/cit61
ref67/cit67
ref38/cit38
ref90/cit90
ref124/cit124
ref64/cit64
ref126/cit126
ref54/cit54
ref6/cit6
ref18/cit18
ref65/cit65
ref97/cit97
ref101/cit101
ref11/cit11
ref102/cit102
ref29/cit29
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref5/cit5
ref43/cit43
ref80/cit80
ref28/cit28
ref91/cit91
ref55/cit55
ref12/cit12
ref66/cit66
ref22/cit22
ref121/cit121
ref33/cit33
ref87/cit87
ref106/cit106
ref44/cit44
ref70/cit70
ref98/cit98
ref125/cit125
ref9/cit9
ref27/cit27
ref63/cit63
ref56/cit56
ref92/cit92
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref60/cit60
ref88/cit88
ref17/cit17
ref82/cit82
ref53/cit53
ref21/cit21
ref46/cit46
ref49/cit49
ref75/cit75
ref24/cit24
ref50/cit50
ref78/cit78
ref36/cit36
ref83/cit83
ref79/cit79
ref100/cit100
ref25/cit25
ref103/cit103
ref72/cit72
ref14/cit14
ref57/cit57
ref51/cit51
ref40/cit40
ref68/cit68
ref94/cit94
ref26/cit26
ref73/cit73
ref69/cit69
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref95/cit95
ref108/cit108
ref104/cit104
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref1/cit1
ref123/cit123
ref7/cit7
References_xml – ident: ref38/cit38
  doi: 10.1016/j.chemosphere.2020.126893
– ident: ref54/cit54
  doi: 10.5194/acp-14-47-2014
– ident: ref66/cit66
  doi: 10.1039/c1cp22478f
– ident: ref112/cit112
  doi: 10.1364/AO.56.00E116
– ident: ref33/cit33
  doi: 10.1016/j.cej.2020.126484
– ident: ref37/cit37
  doi: 10.1016/j.atmosenv.2012.02.027
– ident: ref13/cit13
  doi: 10.1021/es00131a006
– ident: ref26/cit26
  doi: 10.1021/jp1071023
– ident: ref116/cit116
  doi: 10.5194/acp-14-2871-2014
– ident: ref65/cit65
  doi: 10.1002/2014GL060582
– ident: ref126/cit126
  doi: 10.1021/acs.est.9b02588
– ident: ref57/cit57
  doi: 10.1016/j.atmosenv.2010.07.042
– ident: ref118/cit118
  doi: 10.5194/acp-16-13321-2016
– ident: ref8/cit8
  doi: 10.1080/08958370600985875
– ident: ref68/cit68
  doi: 10.1002/bbpc.19770810603
– ident: ref74/cit74
  doi: 10.1039/D0EM00242A
– ident: ref90/cit90
  doi: 10.5194/acp-15-3063-2015
– ident: ref1/cit1
  doi: 10.1787/key_energ_stat-2015-en
– ident: ref51/cit51
  doi: 10.5194/acp-13-8019-2013
– ident: ref6/cit6
  doi: 10.1021/es001420r
– ident: ref100/cit100
  doi: 10.5194/amt-8-2315-2015
– ident: ref48/cit48
  doi: 10.1021/es0479437
– ident: ref91/cit91
  doi: 10.5194/acp-12-7413-2012
– ident: ref40/cit40
  doi: 10.1021/acs.jpca.6b02729
– ident: ref21/cit21
  doi: 10.1016/j.scitotenv.2010.12.025
– ident: ref64/cit64
  doi: 10.1016/j.atmosenv.2010.06.017
– ident: ref113/cit113
  doi: 10.1021/acs.est.7b00248
– ident: ref53/cit53
  doi: 10.1002/cphc.201000446
– ident: ref62/cit62
  doi: 10.1021/es404515k
– ident: ref88/cit88
  doi: 10.5194/acp-17-12941-2017
– ident: ref73/cit73
  doi: 10.1021/acs.est.0c03648
– ident: ref27/cit27
  doi: 10.1016/j.scitotenv.2021.145203
– ident: ref93/cit93
  doi: 10.1021/es0524301
– ident: ref121/cit121
  doi: 10.1016/j.atmosenv.2009.10.042
– ident: ref10/cit10
  doi: 10.5194/acp-17-4751-2017
– ident: ref15/cit15
  doi: 10.1016/j.atmosenv.2008.09.006
– ident: ref119/cit119
  doi: 10.1016/j.atmosres.2007.04.005
– ident: ref32/cit32
  doi: 10.1021/acs.jpca.5b00174
– ident: ref108/cit108
  doi: 10.1029/2007JD009426
– ident: ref3/cit3
  doi: 10.1016/j.atmosenv.2013.11.074
– ident: ref60/cit60
  doi: 10.1016/j.atmosenv.2014.03.054
– ident: ref11/cit11
  doi: 10.5194/acp-5-799-2005
– ident: ref115/cit115
  doi: 10.1029/2010GL045258
– ident: ref7/cit7
  doi: 10.1016/j.scitotenv.2016.03.111
– ident: ref82/cit82
  doi: 10.1016/j.atmosenv.2019.117240
– ident: ref111/cit111
  doi: 10.1002/2016JD025156
– ident: ref50/cit50
  doi: 10.1039/b506750m
– ident: ref52/cit52
  doi: 10.1016/j.atmosenv.2016.12.036
– ident: ref75/cit75
  doi: 10.1016/j.atmosenv.2020.118140
– ident: ref25/cit25
  doi: 10.3390/ijms20184492
– ident: ref56/cit56
  doi: 10.2307/3431940
– ident: ref72/cit72
  doi: 10.1016/j.scitotenv.2020.144239
– ident: ref81/cit81
  doi: 10.1016/j.atmosenv.2019.03.021
– ident: ref59/cit59
  doi: 10.1021/jp102177v
– ident: ref123/cit123
  doi: 10.1021/acs.est.0c01345
– ident: ref29/cit29
  doi: 10.1021/es303889z
– ident: ref31/cit31
  doi: 10.1016/j.atmosenv.2015.11.028
– ident: ref69/cit69
  doi: 10.1021/acsearthspacechem.0c00070
– ident: ref95/cit95
  doi: 10.5194/acp-18-5677-2018
– ident: ref102/cit102
  doi: 10.5194/acp-16-7411-2016
– ident: ref117/cit117
  doi: 10.1002/3527601791
– ident: ref14/cit14
  doi: 10.1021/es00147a009
– ident: ref98/cit98
  doi: 10.1016/j.atmosenv.2011.11.020
– ident: ref107/cit107
  doi: 10.1016/j.scitotenv.2016.06.212
– ident: ref99/cit99
– ident: ref35/cit35
  doi: 10.1021/acs.jpca.5b03232
– ident: ref20/cit20
  doi: 10.1021/es001331e
– ident: ref44/cit44
  doi: 10.1029/JD090iD06p10463
– ident: ref24/cit24
  doi: 10.1016/j.atmosenv.2011.03.026
– ident: ref45/cit45
  doi: 10.1039/c2cs35140d
– ident: ref83/cit83
  doi: 10.1021/acs.est.8b03441
– ident: ref28/cit28
  doi: 10.1039/C9CP03246K
– ident: ref110/cit110
  doi: 10.1021/cr0206420
– ident: ref36/cit36
  doi: 10.1016/j.scitotenv.2019.06.229
– ident: ref120/cit120
  doi: 10.1016/j.atmosenv.2019.03.005
– ident: ref124/cit124
  doi: 10.1016/j.jhazmat.2020.124760
– ident: ref122/cit122
  doi: 10.1016/S0045-6535(02)00041-3
– ident: ref125/cit125
  doi: 10.1016/j.scitotenv.2016.11.025
– ident: ref85/cit85
  doi: 10.5194/acp-21-8293-2021
– ident: ref89/cit89
  doi: 10.1126/science.1180353
– ident: ref97/cit97
  doi: 10.5194/acp-18-1611-2018
– ident: ref19/cit19
  doi: 10.1021/es00035a026
– ident: ref105/cit105
  doi: 10.1063/1.432770
– ident: ref104/cit104
  doi: 10.1016/j.apr.2021.01.011
– ident: ref106/cit106
  doi: 10.1029/GL006i002p00113
– ident: ref80/cit80
  doi: 10.5194/acp-19-2687-2019
– ident: ref77/cit77
  doi: 10.1016/j.scitotenv.2020.137953
– ident: ref41/cit41
  doi: 10.1016/j.comptc.2018.02.014
– ident: ref79/cit79
  doi: 10.1002/cphc.201090089
– ident: ref71/cit71
  doi: 10.1039/C4CP06095D
– ident: ref70/cit70
  doi: 10.1021/acs.jpca.9b05696
– ident: ref78/cit78
  doi: 10.1021/cr500447k
– ident: ref96/cit96
  doi: 10.1016/j.atmosenv.2018.06.003
– ident: ref9/cit9
  doi: 10.5194/acp-17-7653-2017
– ident: ref43/cit43
  doi: 10.1021/acs.jpca.5b10406
– ident: ref23/cit23
  doi: 10.1021/jp4114877
– ident: ref30/cit30
  doi: 10.1016/j.atmosenv.2020.117740
– ident: ref22/cit22
  doi: 10.1016/j.chemosphere.2018.06.131
– ident: ref55/cit55
  doi: 10.1016/j.chemosphere.2019.125088
– ident: ref2/cit2
  doi: 10.1289/ehp.021101057
– ident: ref4/cit4
  doi: 10.5194/acp-5-827-2005
– ident: ref17/cit17
  doi: 10.1021/es00181a013
– ident: ref42/cit42
  doi: 10.1016/j.envpol.2018.08.104
– ident: ref47/cit47
  doi: 10.1038/28584
– ident: ref58/cit58
  doi: 10.1016/j.atmosenv.2009.04.032
– ident: ref101/cit101
  doi: 10.5194/acp-7-5727-2007
– ident: ref63/cit63
  doi: 10.1021/es902476f
– ident: ref39/cit39
  doi: 10.5194/acp-19-2001-2019
– ident: ref114/cit114
  doi: 10.1021/es401043j
– ident: ref46/cit46
  doi: 10.1063/1.555887
– ident: ref49/cit49
  doi: 10.1021/cr00071a004
– ident: ref67/cit67
  doi: 10.1016/j.apr.2016.12.008
– ident: ref5/cit5
  doi: 10.1021/es981312t
– ident: ref16/cit16
  doi: 10.5194/acp-9-1263-2009
– ident: ref34/cit34
– ident: ref92/cit92
  doi: 10.5194/acp-7-5159-2007
– ident: ref61/cit61
  doi: 10.1039/C5CP00268K
– ident: ref76/cit76
  doi: 10.1021/acs.est.9b03649
– ident: ref103/cit103
  doi: 10.5194/amt-10-1519-2017
– ident: ref86/cit86
  doi: 10.1073/pnas.1419604111
– ident: ref18/cit18
  doi: 10.1021/es00175a011
– ident: ref94/cit94
  doi: 10.5194/acp-10-4111-2010
– ident: ref87/cit87
  doi: 10.1038/nature13774
– ident: ref12/cit12
  doi: 10.1021/es0486871
– ident: ref109/cit109
  doi: 10.1021/acs.est.7b05864
– ident: ref84/cit84
  doi: 10.5194/acp-11-1-2011
SSID ssj0002308
Score 2.5025082
SecondaryResourceType review_article
Snippet Methoxyphenols emitted from lignin pyrolysis are widely used as potential tracers for biomass burning, especially for wood burning. In the past ten years,...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2897
SubjectTerms aerosols
Aerosols - chemistry
Aging
Benzene
Biodegradation
Biomass
Biomass burning
Burning
Cycloaddition
cycloaddition reactions
Degradation
Degradation products
ecotoxicology
Free radicals
Kinetics
lignin
Plumes
pollution
Pyrolysis
Reaction mechanisms
Reactivity
technology
Wood
Title Atmospheric Reactivity of Methoxyphenols: A Review
URI http://dx.doi.org/10.1021/acs.est.1c06535
https://www.ncbi.nlm.nih.gov/pubmed/35188384
https://www.proquest.com/docview/2635529667
https://www.proquest.com/docview/2631616908
https://www.proquest.com/docview/2718230308
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA4-Lnrw_VhdpYIHL63dpE1Sb4usiLAe1IW9lTYPEHUrtgvqr3em7XZ9sOqttJMSJpPMF2bmG0KOuVQJtdZ3bcqtG5hAuYkKQlgQo5lMQqotRnT71_xyEFwNw-GULPp7BJ92ThOVe3BAeh2FNKrhPFmkXAq8Z3XPb5tDF5C0nDQriBgfNiw-P36AbkjlX93QDGxZ-piL1So7Ky-pCTG15MEbF6mn3n8SN_49_TWyUiNNp1uZxjqZM6MNsvyJf3CDbPemZW4gWu_zfJPQbvGU5cg4cK-cG4PFD9hjwsms08eW069vmBqWPeZnTtepwgtbZHDRuzu_dOvuCm7CoqBwNXr_NFRMA-iI4CnV1EY24VprpLnTvjJSKOEnQlstIyuEoaJjKE8pMypi22RhlI3MLnFSX6RaA1Lz4b4I9xkZaCp8DdAgMlbJsEWOQQ1xvTvyuAx8006ML0E3ca2bFvEmaxKrmqEcG2U8zh5w0gx4rsg5Zou2J4s8nQcS8WDcmYsWOWo-w_7CoEkyMtm4lAFQzCNf_iIDDh4MkKHMTmVAzXwYMt4xGez9Twf7ZIligUWZ5dYmC8XL2BwA7CnSw9LgPwCw4_xY
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9tAEB4hOLQceLVAgFJXohIXB2f92DUSh4iCQiEcCki5ufY-JATECDvi8Wv4K_wzZhzbKVSpekHiZq1nrfXO7Dw0s98AbARCxswYxzZJYGxPe9KOpecjQ7RyRewzZSij2z0OOmfez57fm4DH6i4MLiLDL2VFEn-ELtDaojHUk82WJDTVqozyUN_fYpCW7Rz8QI5-Z2x_73S3Y5d9BOzYDb3cVmTnEl-6Cs1riE-JYiY0caCUIkA35UgtuOROzJVRIjSca8ZbmgUJc7UkuCVU8lPo-jAK79q7J7WuRwdeVD0SQjfo1eBBfy2YrJ_MXlq_MS5tYdr2Z-Gp3pSiouWiOciTpnx4hRf5nndtDmZKv9pqDw_CPEzo_gJM_4G2uACLe6NLfUhaarXsE7B2fpVmhK9wLq1fmq56UEcNKzVWlxps391TIVx6mW1bbWuYTPkMZ2_yN4sw2U_7ehmsxOGJUuiXOhgdY_QmPMW4o9ARCrWRwm_ABm57VOqCLCrS_KwV0SDyIip50YBmJQqRLPHYqS3I5fgJm_WE6yEUyXjStUq2Rusg2CHKsge8Ad_q16hNKEUU93U6KGgwBAhCR_yDBt0ZlHuXaJaGcluvxyV8P1d4K_-3B1_hQ-e0exQdHRwfrsJHRldLivq-NZjMbwb6Czp8ebJenDkLfr-1uD4DWUpgoQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1ZS-RAEC5EYdGH1dV1HY81Cy74ktlM5-iO4MOgDroeyLrCvMWkD5Cdncgmg8fv8a_4v6zKJHFVRnwRfAud6tDpqq6Dqv4KYC0QMmbGOLZJAmN72pN2LD0fGaKVK2KfKUMZ3cOjYPfU-9n1u2NwW92FwUVk-KWsSOLTqb5QpkQYaP2gcdSVzZYkRNWqlHJfX19ioJZt7m0jV78z1tn5vbVrl70E7NgNvdxWZOsSX7oKTWyIT4liJjRxoJQiUDflSC245E7MlVEiNJxrxluaBQlztSTIJVT0E5QkpBCvvXVS63t04kXVJyF0g24NIPRswWQBZfbYAo5wawvz1pmGu3pjiqqWP81BnjTlzRPMyPe-czPwsfSvrfbwQHyCMd2fhan_UBdnYX7n4XIfkpbaLZsD1s7_phnhLJxL65emKx_UWcNKjXVIjbavrqkgLu1lG1bbGiZVPsPpm_zNPIz3075eACtxeKIU-qcORskYxQlPMe4odIhCbaTwG7CG2x6VOiGLinQ_a0U0iLyISl40oFmJQyRLXHZqD9IbPWG9nnAxhCQZTbpcydfDOgh-iLLtAW_At_o1ahVKFcV9nQ4KGgwFgtARL9CgW4Oy7xLNl6Hs1utxCefPFd7i6_ZgFT4cb3eig72j_SWYZHTDpCjzW4bx_N9Ar6Dflydfi2NnwdlbS-s99aZjJA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atmospheric+Reactivity+of+Methoxyphenols%3A+A+Review&rft.jtitle=Environmental+science+%26+technology&rft.au=Liu%2C+Changgeng&rft.au=Chen%2C+Dandan&rft.au=Chen%2C+Xiao%27e&rft.date=2022-03-01&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.volume=56&rft.issue=5&rft.spage=2897&rft_id=info:doi/10.1021%2Facs.est.1c06535&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon