Atmospheric Reactivity of Methoxyphenols: A Review
Methoxyphenols emitted from lignin pyrolysis are widely used as potential tracers for biomass burning, especially for wood burning. In the past ten years, their atmospheric reactivity has attracted increasing attention from the academic community. Thus, this work provides an extensive review of the...
Saved in:
Published in | Environmental science & technology Vol. 56; no. 5; pp. 2897 - 2916 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
01.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Methoxyphenols emitted from lignin pyrolysis are widely used as potential tracers for biomass burning, especially for wood burning. In the past ten years, their atmospheric reactivity has attracted increasing attention from the academic community. Thus, this work provides an extensive review of the atmospheric reactivity of methoxyphenols, including their gas-phase, particle-phase, and aqueous-phase reactions, as well as secondary organic aerosol (SOA) formation. Emphasis was placed on kinetics, mechanisms, and SOA formation. The reactions of methoxyphenols with OH and NO3 radicals were the predominant degradation pathways, which also had significant SOA formation potentials. The reaction mechanism of methoxyphenols with O3 is the cycloaddition of O3 to the benzene ring or unsaturated CC bond, while H-abstraction and radical adduct formation are the main degradation channels of methoxyphenols by OH and NO3 radicals. Based on the published studies, knowledge gaps were pointed out. Future studies including experimental simulations and theoretical calculations of other representative kinds of methoxyphenols should be systematically carried out under complex pollution conditions. In addition, the ecotoxicity of their degradation products and their contribution to SOA formation from the atmospheric aging of biomass-burning plumes should be seriously assessed. |
---|---|
AbstractList | Methoxyphenols emitted from lignin pyrolysis are widely used as potential tracers for biomass burning, especially for wood burning. In the past ten years, their atmospheric reactivity has attracted increasing attention from the academic community. Thus, this work provides an extensive review of the atmospheric reactivity of methoxyphenols, including their gas-phase, particle-phase, and aqueous-phase reactions, as well as secondary organic aerosol (SOA) formation. Emphasis was placed on kinetics, mechanisms, and SOA formation. The reactions of methoxyphenols with OH and NO3 radicals were the predominant degradation pathways, which also had significant SOA formation potentials. The reaction mechanism of methoxyphenols with O3 is the cycloaddition of O3 to the benzene ring or unsaturated CC bond, while H-abstraction and radical adduct formation are the main degradation channels of methoxyphenols by OH and NO3 radicals. Based on the published studies, knowledge gaps were pointed out. Future studies including experimental simulations and theoretical calculations of other representative kinds of methoxyphenols should be systematically carried out under complex pollution conditions. In addition, the ecotoxicity of their degradation products and their contribution to SOA formation from the atmospheric aging of biomass-burning plumes should be seriously assessed. Methoxyphenols emitted from lignin pyrolysis are widely used as potential tracers for biomass burning, especially for wood burning. In the past ten years, their atmospheric reactivity has attracted increasing attention from the academic community. Thus, this work provides an extensive review of the atmospheric reactivity of methoxyphenols, including their gas-phase, particle-phase, and aqueous-phase reactions, as well as secondary organic aerosol (SOA) formation. Emphasis was placed on kinetics, mechanisms, and SOA formation. The reactions of methoxyphenols with OH and NO₃ radicals were the predominant degradation pathways, which also had significant SOA formation potentials. The reaction mechanism of methoxyphenols with O₃ is the cycloaddition of O₃ to the benzene ring or unsaturated C═C bond, while H-abstraction and radical adduct formation are the main degradation channels of methoxyphenols by OH and NO₃ radicals. Based on the published studies, knowledge gaps were pointed out. Future studies including experimental simulations and theoretical calculations of other representative kinds of methoxyphenols should be systematically carried out under complex pollution conditions. In addition, the ecotoxicity of their degradation products and their contribution to SOA formation from the atmospheric aging of biomass-burning plumes should be seriously assessed. Methoxyphenols emitted from lignin pyrolysis are widely used as potential tracers for biomass burning, especially for wood burning. In the past ten years, their atmospheric reactivity has attracted increasing attention from the academic community. Thus, this work provides an extensive review of the atmospheric reactivity of methoxyphenols, including their gas-phase, particle-phase, and aqueous-phase reactions, as well as secondary organic aerosol (SOA) formation. Emphasis was placed on kinetics, mechanisms, and SOA formation. The reactions of methoxyphenols with OH and NO radicals were the predominant degradation pathways, which also had significant SOA formation potentials. The reaction mechanism of methoxyphenols with O is the cycloaddition of O to the benzene ring or unsaturated C═C bond, while H-abstraction and radical adduct formation are the main degradation channels of methoxyphenols by OH and NO radicals. Based on the published studies, knowledge gaps were pointed out. Future studies including experimental simulations and theoretical calculations of other representative kinds of methoxyphenols should be systematically carried out under complex pollution conditions. In addition, the ecotoxicity of their degradation products and their contribution to SOA formation from the atmospheric aging of biomass-burning plumes should be seriously assessed. Methoxyphenols emitted from lignin pyrolysis are widely used as potential tracers for biomass burning, especially for wood burning. In the past ten years, their atmospheric reactivity has attracted increasing attention from the academic community. Thus, this work provides an extensive review of the atmospheric reactivity of methoxyphenols, including their gas-phase, particle-phase, and aqueous-phase reactions, as well as secondary organic aerosol (SOA) formation. Emphasis was placed on kinetics, mechanisms, and SOA formation. The reactions of methoxyphenols with OH and NO3 radicals were the predominant degradation pathways, which also had significant SOA formation potentials. The reaction mechanism of methoxyphenols with O3 is the cycloaddition of O3 to the benzene ring or unsaturated C═C bond, while H-abstraction and radical adduct formation are the main degradation channels of methoxyphenols by OH and NO3 radicals. Based on the published studies, knowledge gaps were pointed out. Future studies including experimental simulations and theoretical calculations of other representative kinds of methoxyphenols should be systematically carried out under complex pollution conditions. In addition, the ecotoxicity of their degradation products and their contribution to SOA formation from the atmospheric aging of biomass-burning plumes should be seriously assessed. Methoxyphenols emitted from lignin pyrolysis are widely used as potential tracers for biomass burning, especially for wood burning. In the past ten years, their atmospheric reactivity has attracted increasing attention from the academic community. Thus, this work provides an extensive review of the atmospheric reactivity of methoxyphenols, including their gas-phase, particle-phase, and aqueous-phase reactions, as well as secondary organic aerosol (SOA) formation. Emphasis was placed on kinetics, mechanisms, and SOA formation. The reactions of methoxyphenols with OH and NO3 radicals were the predominant degradation pathways, which also had significant SOA formation potentials. The reaction mechanism of methoxyphenols with O3 is the cycloaddition of O3 to the benzene ring or unsaturated C═C bond, while H-abstraction and radical adduct formation are the main degradation channels of methoxyphenols by OH and NO3 radicals. Based on the published studies, knowledge gaps were pointed out. Future studies including experimental simulations and theoretical calculations of other representative kinds of methoxyphenols should be systematically carried out under complex pollution conditions. In addition, the ecotoxicity of their degradation products and their contribution to SOA formation from the atmospheric aging of biomass-burning plumes should be seriously assessed.Methoxyphenols emitted from lignin pyrolysis are widely used as potential tracers for biomass burning, especially for wood burning. In the past ten years, their atmospheric reactivity has attracted increasing attention from the academic community. Thus, this work provides an extensive review of the atmospheric reactivity of methoxyphenols, including their gas-phase, particle-phase, and aqueous-phase reactions, as well as secondary organic aerosol (SOA) formation. Emphasis was placed on kinetics, mechanisms, and SOA formation. The reactions of methoxyphenols with OH and NO3 radicals were the predominant degradation pathways, which also had significant SOA formation potentials. The reaction mechanism of methoxyphenols with O3 is the cycloaddition of O3 to the benzene ring or unsaturated C═C bond, while H-abstraction and radical adduct formation are the main degradation channels of methoxyphenols by OH and NO3 radicals. Based on the published studies, knowledge gaps were pointed out. Future studies including experimental simulations and theoretical calculations of other representative kinds of methoxyphenols should be systematically carried out under complex pollution conditions. In addition, the ecotoxicity of their degradation products and their contribution to SOA formation from the atmospheric aging of biomass-burning plumes should be seriously assessed. |
Author | Chen, Dandan Chen, Xiao’e Liu, Changgeng |
AuthorAffiliation | School of Biological and Chemical Engineering |
AuthorAffiliation_xml | – name: School of Biological and Chemical Engineering |
Author_xml | – sequence: 1 givenname: Changgeng orcidid: 0000-0002-4899-0985 surname: Liu fullname: Liu, Changgeng email: changwyx@163.com – sequence: 2 givenname: Dandan surname: Chen fullname: Chen, Dandan – sequence: 3 givenname: Xiao’e surname: Chen fullname: Chen, Xiao’e |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35188384$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtLAzEUhYMo9qFrd1JwI8i0eTSZjLtSfEFFEAV3QybJ0JSZSZ1kqv33ZmztoqCubuB853JPTg8cVrbSAJwhOEQQo5GQbqidHyIJGSX0AHQRxTCinKJD0IUQkSgh7K0Des4tIISYQH4MOoQizgkfdwGe-NK65VzXRg6etZDerIxfD2w-eNR-bj_XQats4a4Hk6CvjP44AUe5KJw-3c4-eL29eZneR7Onu4fpZBYJkox9pCDkOKOSKMZIEl6ZwnmSC6aU4ogzBaXmsYyhiFWueJLHscYx0phlmGiZkD643Oxd1va9CSnT0jipi0JU2jYuDTAPeUKi_1FGEEMs-UYv9tCFbeoqBGkpSnHCWByo8y3VZKVW6bI2pajX6c_HBWC0AWRtnat1vkMQTNtq0lBN2q7fVhMcdM8hjRfe2MrXwhR_-K42vlbY3fob_QWv26D5 |
CitedBy_id | crossref_primary_10_5194_acp_24_12409_2024 crossref_primary_10_1021_acs_est_3c08726 crossref_primary_10_1016_j_jes_2022_05_040 crossref_primary_10_1021_acs_est_4c07631 crossref_primary_10_1021_acs_est_3c01931 crossref_primary_10_1016_j_atmosenv_2024_120787 crossref_primary_10_1021_acsestwater_4c00685 crossref_primary_10_1039_D2EA00015F crossref_primary_10_1021_acs_est_3c04263 crossref_primary_10_1021_acs_est_3c10199 crossref_primary_10_1021_acsestair_3c00042 crossref_primary_10_1029_2023JD039758 crossref_primary_10_1016_j_scitotenv_2022_158895 crossref_primary_10_1016_j_atmosenv_2023_119749 crossref_primary_10_1039_D3EM00329A crossref_primary_10_1093_pnasnexus_pgae385 crossref_primary_10_1021_acsearthspacechem_3c00301 crossref_primary_10_1021_acs_est_3c09903 crossref_primary_10_1016_j_envpol_2025_126044 crossref_primary_10_1016_j_atmosenv_2024_120895 crossref_primary_10_1016_j_atmosenv_2024_120655 crossref_primary_10_1021_acsestair_4c00174 crossref_primary_10_1039_D3EA00104K crossref_primary_10_5194_acp_23_2859_2023 crossref_primary_10_1016_j_atmosenv_2022_119217 crossref_primary_10_1021_acs_estlett_4c00612 crossref_primary_10_1021_acs_est_3c04370 |
Cites_doi | 10.1016/j.chemosphere.2020.126893 10.5194/acp-14-47-2014 10.1039/c1cp22478f 10.1364/AO.56.00E116 10.1016/j.cej.2020.126484 10.1016/j.atmosenv.2012.02.027 10.1021/es00131a006 10.1021/jp1071023 10.5194/acp-14-2871-2014 10.1002/2014GL060582 10.1021/acs.est.9b02588 10.1016/j.atmosenv.2010.07.042 10.5194/acp-16-13321-2016 10.1080/08958370600985875 10.1002/bbpc.19770810603 10.1039/D0EM00242A 10.5194/acp-15-3063-2015 10.1787/key_energ_stat-2015-en 10.5194/acp-13-8019-2013 10.1021/es001420r 10.5194/amt-8-2315-2015 10.1021/es0479437 10.5194/acp-12-7413-2012 10.1021/acs.jpca.6b02729 10.1016/j.scitotenv.2010.12.025 10.1016/j.atmosenv.2010.06.017 10.1021/acs.est.7b00248 10.1002/cphc.201000446 10.1021/es404515k 10.5194/acp-17-12941-2017 10.1021/acs.est.0c03648 10.1016/j.scitotenv.2021.145203 10.1021/es0524301 10.1016/j.atmosenv.2009.10.042 10.5194/acp-17-4751-2017 10.1016/j.atmosenv.2008.09.006 10.1016/j.atmosres.2007.04.005 10.1021/acs.jpca.5b00174 10.1029/2007JD009426 10.1016/j.atmosenv.2013.11.074 10.1016/j.atmosenv.2014.03.054 10.5194/acp-5-799-2005 10.1029/2010GL045258 10.1016/j.scitotenv.2016.03.111 10.1016/j.atmosenv.2019.117240 10.1002/2016JD025156 10.1039/b506750m 10.1016/j.atmosenv.2016.12.036 10.1016/j.atmosenv.2020.118140 10.3390/ijms20184492 10.2307/3431940 10.1016/j.scitotenv.2020.144239 10.1016/j.atmosenv.2019.03.021 10.1021/jp102177v 10.1021/acs.est.0c01345 10.1021/es303889z 10.1016/j.atmosenv.2015.11.028 10.1021/acsearthspacechem.0c00070 10.5194/acp-18-5677-2018 10.5194/acp-16-7411-2016 10.1002/3527601791 10.1021/es00147a009 10.1016/j.atmosenv.2011.11.020 10.1016/j.scitotenv.2016.06.212 10.1021/acs.jpca.5b03232 10.1021/es001331e 10.1029/JD090iD06p10463 10.1016/j.atmosenv.2011.03.026 10.1039/c2cs35140d 10.1021/acs.est.8b03441 10.1039/C9CP03246K 10.1021/cr0206420 10.1016/j.scitotenv.2019.06.229 10.1016/j.atmosenv.2019.03.005 10.1016/j.jhazmat.2020.124760 10.1016/S0045-6535(02)00041-3 10.1016/j.scitotenv.2016.11.025 10.5194/acp-21-8293-2021 10.1126/science.1180353 10.5194/acp-18-1611-2018 10.1021/es00035a026 10.1063/1.432770 10.1016/j.apr.2021.01.011 10.1029/GL006i002p00113 10.5194/acp-19-2687-2019 10.1016/j.scitotenv.2020.137953 10.1016/j.comptc.2018.02.014 10.1002/cphc.201090089 10.1039/C4CP06095D 10.1021/acs.jpca.9b05696 10.1021/cr500447k 10.1016/j.atmosenv.2018.06.003 10.5194/acp-17-7653-2017 10.1021/acs.jpca.5b10406 10.1021/jp4114877 10.1016/j.atmosenv.2020.117740 10.1016/j.chemosphere.2018.06.131 10.1016/j.chemosphere.2019.125088 10.1289/ehp.021101057 10.5194/acp-5-827-2005 10.1021/es00181a013 10.1016/j.envpol.2018.08.104 10.1038/28584 10.1016/j.atmosenv.2009.04.032 10.5194/acp-7-5727-2007 10.1021/es902476f 10.5194/acp-19-2001-2019 10.1021/es401043j 10.1063/1.555887 10.1021/cr00071a004 10.1016/j.apr.2016.12.008 10.1021/es981312t 10.5194/acp-9-1263-2009 10.5194/acp-7-5159-2007 10.1039/C5CP00268K 10.1021/acs.est.9b03649 10.5194/amt-10-1519-2017 10.1073/pnas.1419604111 10.1021/es00175a011 10.5194/acp-10-4111-2010 10.1038/nature13774 10.1021/es0486871 10.1021/acs.est.7b05864 10.5194/acp-11-1-2011 |
ContentType | Journal Article |
Copyright | 2022 American Chemical Society Copyright American Chemical Society Mar 1, 2022 |
Copyright_xml | – notice: 2022 American Chemical Society – notice: Copyright American Chemical Society Mar 1, 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 |
DOI | 10.1021/acs.est.1c06535 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE Biotechnology Research Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1520-5851 |
EndPage | 2916 |
ExternalDocumentID | 35188384 10_1021_acs_est_1c06535 a288314737 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- -DZ -~X ..I .DC .K2 3R3 4.4 4R4 53G 55A 5GY 5VS 6TJ 7~N 85S AABXI AAHBH ABJNI ABMVS ABOGM ABPPZ ABQRX ABUCX ACGFS ACGOD ACIWK ACJ ACPRK ACS ADHLV ADUKH AEESW AENEX AFEFF AFRAH AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 CUPRZ EBS ED~ F5P GGK GNL IH9 JG~ LG6 MS~ MW2 PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 W1F WH7 XSW XZL YZZ ZCA AAYXX ABBLG ABLBI CITATION CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a394t-d0082b5c3d66392b5bd2f9fa6ddd8186d0ce87c70a7dfd89f77e271e26b23ec93 |
IEDL.DBID | ACS |
ISSN | 0013-936X 1520-5851 |
IngestDate | Wed Jul 02 03:14:45 EDT 2025 Fri Jul 11 14:11:00 EDT 2025 Mon Jun 30 06:40:42 EDT 2025 Mon Jul 21 05:59:56 EDT 2025 Tue Jul 01 05:07:39 EDT 2025 Thu Apr 24 22:50:07 EDT 2025 Fri Apr 25 03:25:19 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Secondary organic aerosol Atmospheric reactivity Biomass burning Atmospheric oxidants Kinetics Methoxyphenols Mechanism |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a394t-d0082b5c3d66392b5bd2f9fa6ddd8186d0ce87c70a7dfd89f77e271e26b23ec93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-4899-0985 |
PMID | 35188384 |
PQID | 2635529667 |
PQPubID | 45412 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_2718230308 proquest_miscellaneous_2631616908 proquest_journals_2635529667 pubmed_primary_35188384 crossref_primary_10_1021_acs_est_1c06535 crossref_citationtrail_10_1021_acs_est_1c06535 acs_journals_10_1021_acs_est_1c06535 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref45/cit45 ref99/cit99 ref3/cit3 ref81/cit81 ref16/cit16 ref52/cit52 ref114/cit114 ref23/cit23 ref115/cit115 ref116/cit116 ref110/cit110 ref111/cit111 ref2/cit2 ref112/cit112 ref77/cit77 ref113/cit113 ref71/cit71 ref117/cit117 ref20/cit20 ref48/cit48 ref118/cit118 ref74/cit74 ref119/cit119 ref10/cit10 ref35/cit35 ref89/cit89 ref19/cit19 ref93/cit93 ref42/cit42 ref96/cit96 ref107/cit107 ref120/cit120 ref109/cit109 ref13/cit13 ref122/cit122 ref105/cit105 ref61/cit61 ref67/cit67 ref38/cit38 ref90/cit90 ref124/cit124 ref64/cit64 ref126/cit126 ref54/cit54 ref6/cit6 ref18/cit18 ref65/cit65 ref97/cit97 ref101/cit101 ref11/cit11 ref102/cit102 ref29/cit29 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref5/cit5 ref43/cit43 ref80/cit80 ref28/cit28 ref91/cit91 ref55/cit55 ref12/cit12 ref66/cit66 ref22/cit22 ref121/cit121 ref33/cit33 ref87/cit87 ref106/cit106 ref44/cit44 ref70/cit70 ref98/cit98 ref125/cit125 ref9/cit9 ref27/cit27 ref63/cit63 ref56/cit56 ref92/cit92 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref60/cit60 ref88/cit88 ref17/cit17 ref82/cit82 ref53/cit53 ref21/cit21 ref46/cit46 ref49/cit49 ref75/cit75 ref24/cit24 ref50/cit50 ref78/cit78 ref36/cit36 ref83/cit83 ref79/cit79 ref100/cit100 ref25/cit25 ref103/cit103 ref72/cit72 ref14/cit14 ref57/cit57 ref51/cit51 ref40/cit40 ref68/cit68 ref94/cit94 ref26/cit26 ref73/cit73 ref69/cit69 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref95/cit95 ref108/cit108 ref104/cit104 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref1/cit1 ref123/cit123 ref7/cit7 |
References_xml | – ident: ref38/cit38 doi: 10.1016/j.chemosphere.2020.126893 – ident: ref54/cit54 doi: 10.5194/acp-14-47-2014 – ident: ref66/cit66 doi: 10.1039/c1cp22478f – ident: ref112/cit112 doi: 10.1364/AO.56.00E116 – ident: ref33/cit33 doi: 10.1016/j.cej.2020.126484 – ident: ref37/cit37 doi: 10.1016/j.atmosenv.2012.02.027 – ident: ref13/cit13 doi: 10.1021/es00131a006 – ident: ref26/cit26 doi: 10.1021/jp1071023 – ident: ref116/cit116 doi: 10.5194/acp-14-2871-2014 – ident: ref65/cit65 doi: 10.1002/2014GL060582 – ident: ref126/cit126 doi: 10.1021/acs.est.9b02588 – ident: ref57/cit57 doi: 10.1016/j.atmosenv.2010.07.042 – ident: ref118/cit118 doi: 10.5194/acp-16-13321-2016 – ident: ref8/cit8 doi: 10.1080/08958370600985875 – ident: ref68/cit68 doi: 10.1002/bbpc.19770810603 – ident: ref74/cit74 doi: 10.1039/D0EM00242A – ident: ref90/cit90 doi: 10.5194/acp-15-3063-2015 – ident: ref1/cit1 doi: 10.1787/key_energ_stat-2015-en – ident: ref51/cit51 doi: 10.5194/acp-13-8019-2013 – ident: ref6/cit6 doi: 10.1021/es001420r – ident: ref100/cit100 doi: 10.5194/amt-8-2315-2015 – ident: ref48/cit48 doi: 10.1021/es0479437 – ident: ref91/cit91 doi: 10.5194/acp-12-7413-2012 – ident: ref40/cit40 doi: 10.1021/acs.jpca.6b02729 – ident: ref21/cit21 doi: 10.1016/j.scitotenv.2010.12.025 – ident: ref64/cit64 doi: 10.1016/j.atmosenv.2010.06.017 – ident: ref113/cit113 doi: 10.1021/acs.est.7b00248 – ident: ref53/cit53 doi: 10.1002/cphc.201000446 – ident: ref62/cit62 doi: 10.1021/es404515k – ident: ref88/cit88 doi: 10.5194/acp-17-12941-2017 – ident: ref73/cit73 doi: 10.1021/acs.est.0c03648 – ident: ref27/cit27 doi: 10.1016/j.scitotenv.2021.145203 – ident: ref93/cit93 doi: 10.1021/es0524301 – ident: ref121/cit121 doi: 10.1016/j.atmosenv.2009.10.042 – ident: ref10/cit10 doi: 10.5194/acp-17-4751-2017 – ident: ref15/cit15 doi: 10.1016/j.atmosenv.2008.09.006 – ident: ref119/cit119 doi: 10.1016/j.atmosres.2007.04.005 – ident: ref32/cit32 doi: 10.1021/acs.jpca.5b00174 – ident: ref108/cit108 doi: 10.1029/2007JD009426 – ident: ref3/cit3 doi: 10.1016/j.atmosenv.2013.11.074 – ident: ref60/cit60 doi: 10.1016/j.atmosenv.2014.03.054 – ident: ref11/cit11 doi: 10.5194/acp-5-799-2005 – ident: ref115/cit115 doi: 10.1029/2010GL045258 – ident: ref7/cit7 doi: 10.1016/j.scitotenv.2016.03.111 – ident: ref82/cit82 doi: 10.1016/j.atmosenv.2019.117240 – ident: ref111/cit111 doi: 10.1002/2016JD025156 – ident: ref50/cit50 doi: 10.1039/b506750m – ident: ref52/cit52 doi: 10.1016/j.atmosenv.2016.12.036 – ident: ref75/cit75 doi: 10.1016/j.atmosenv.2020.118140 – ident: ref25/cit25 doi: 10.3390/ijms20184492 – ident: ref56/cit56 doi: 10.2307/3431940 – ident: ref72/cit72 doi: 10.1016/j.scitotenv.2020.144239 – ident: ref81/cit81 doi: 10.1016/j.atmosenv.2019.03.021 – ident: ref59/cit59 doi: 10.1021/jp102177v – ident: ref123/cit123 doi: 10.1021/acs.est.0c01345 – ident: ref29/cit29 doi: 10.1021/es303889z – ident: ref31/cit31 doi: 10.1016/j.atmosenv.2015.11.028 – ident: ref69/cit69 doi: 10.1021/acsearthspacechem.0c00070 – ident: ref95/cit95 doi: 10.5194/acp-18-5677-2018 – ident: ref102/cit102 doi: 10.5194/acp-16-7411-2016 – ident: ref117/cit117 doi: 10.1002/3527601791 – ident: ref14/cit14 doi: 10.1021/es00147a009 – ident: ref98/cit98 doi: 10.1016/j.atmosenv.2011.11.020 – ident: ref107/cit107 doi: 10.1016/j.scitotenv.2016.06.212 – ident: ref99/cit99 – ident: ref35/cit35 doi: 10.1021/acs.jpca.5b03232 – ident: ref20/cit20 doi: 10.1021/es001331e – ident: ref44/cit44 doi: 10.1029/JD090iD06p10463 – ident: ref24/cit24 doi: 10.1016/j.atmosenv.2011.03.026 – ident: ref45/cit45 doi: 10.1039/c2cs35140d – ident: ref83/cit83 doi: 10.1021/acs.est.8b03441 – ident: ref28/cit28 doi: 10.1039/C9CP03246K – ident: ref110/cit110 doi: 10.1021/cr0206420 – ident: ref36/cit36 doi: 10.1016/j.scitotenv.2019.06.229 – ident: ref120/cit120 doi: 10.1016/j.atmosenv.2019.03.005 – ident: ref124/cit124 doi: 10.1016/j.jhazmat.2020.124760 – ident: ref122/cit122 doi: 10.1016/S0045-6535(02)00041-3 – ident: ref125/cit125 doi: 10.1016/j.scitotenv.2016.11.025 – ident: ref85/cit85 doi: 10.5194/acp-21-8293-2021 – ident: ref89/cit89 doi: 10.1126/science.1180353 – ident: ref97/cit97 doi: 10.5194/acp-18-1611-2018 – ident: ref19/cit19 doi: 10.1021/es00035a026 – ident: ref105/cit105 doi: 10.1063/1.432770 – ident: ref104/cit104 doi: 10.1016/j.apr.2021.01.011 – ident: ref106/cit106 doi: 10.1029/GL006i002p00113 – ident: ref80/cit80 doi: 10.5194/acp-19-2687-2019 – ident: ref77/cit77 doi: 10.1016/j.scitotenv.2020.137953 – ident: ref41/cit41 doi: 10.1016/j.comptc.2018.02.014 – ident: ref79/cit79 doi: 10.1002/cphc.201090089 – ident: ref71/cit71 doi: 10.1039/C4CP06095D – ident: ref70/cit70 doi: 10.1021/acs.jpca.9b05696 – ident: ref78/cit78 doi: 10.1021/cr500447k – ident: ref96/cit96 doi: 10.1016/j.atmosenv.2018.06.003 – ident: ref9/cit9 doi: 10.5194/acp-17-7653-2017 – ident: ref43/cit43 doi: 10.1021/acs.jpca.5b10406 – ident: ref23/cit23 doi: 10.1021/jp4114877 – ident: ref30/cit30 doi: 10.1016/j.atmosenv.2020.117740 – ident: ref22/cit22 doi: 10.1016/j.chemosphere.2018.06.131 – ident: ref55/cit55 doi: 10.1016/j.chemosphere.2019.125088 – ident: ref2/cit2 doi: 10.1289/ehp.021101057 – ident: ref4/cit4 doi: 10.5194/acp-5-827-2005 – ident: ref17/cit17 doi: 10.1021/es00181a013 – ident: ref42/cit42 doi: 10.1016/j.envpol.2018.08.104 – ident: ref47/cit47 doi: 10.1038/28584 – ident: ref58/cit58 doi: 10.1016/j.atmosenv.2009.04.032 – ident: ref101/cit101 doi: 10.5194/acp-7-5727-2007 – ident: ref63/cit63 doi: 10.1021/es902476f – ident: ref39/cit39 doi: 10.5194/acp-19-2001-2019 – ident: ref114/cit114 doi: 10.1021/es401043j – ident: ref46/cit46 doi: 10.1063/1.555887 – ident: ref49/cit49 doi: 10.1021/cr00071a004 – ident: ref67/cit67 doi: 10.1016/j.apr.2016.12.008 – ident: ref5/cit5 doi: 10.1021/es981312t – ident: ref16/cit16 doi: 10.5194/acp-9-1263-2009 – ident: ref34/cit34 – ident: ref92/cit92 doi: 10.5194/acp-7-5159-2007 – ident: ref61/cit61 doi: 10.1039/C5CP00268K – ident: ref76/cit76 doi: 10.1021/acs.est.9b03649 – ident: ref103/cit103 doi: 10.5194/amt-10-1519-2017 – ident: ref86/cit86 doi: 10.1073/pnas.1419604111 – ident: ref18/cit18 doi: 10.1021/es00175a011 – ident: ref94/cit94 doi: 10.5194/acp-10-4111-2010 – ident: ref87/cit87 doi: 10.1038/nature13774 – ident: ref12/cit12 doi: 10.1021/es0486871 – ident: ref109/cit109 doi: 10.1021/acs.est.7b05864 – ident: ref84/cit84 doi: 10.5194/acp-11-1-2011 |
SSID | ssj0002308 |
Score | 2.5025082 |
SecondaryResourceType | review_article |
Snippet | Methoxyphenols emitted from lignin pyrolysis are widely used as potential tracers for biomass burning, especially for wood burning. In the past ten years,... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2897 |
SubjectTerms | aerosols Aerosols - chemistry Aging Benzene Biodegradation Biomass Biomass burning Burning Cycloaddition cycloaddition reactions Degradation Degradation products ecotoxicology Free radicals Kinetics lignin Plumes pollution Pyrolysis Reaction mechanisms Reactivity technology Wood |
Title | Atmospheric Reactivity of Methoxyphenols: A Review |
URI | http://dx.doi.org/10.1021/acs.est.1c06535 https://www.ncbi.nlm.nih.gov/pubmed/35188384 https://www.proquest.com/docview/2635529667 https://www.proquest.com/docview/2631616908 https://www.proquest.com/docview/2718230308 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA4-Lnrw_VhdpYIHL63dpE1Sb4usiLAe1IW9lTYPEHUrtgvqr3em7XZ9sOqttJMSJpPMF2bmG0KOuVQJtdZ3bcqtG5hAuYkKQlgQo5lMQqotRnT71_xyEFwNw-GULPp7BJ92ThOVe3BAeh2FNKrhPFmkXAq8Z3XPb5tDF5C0nDQriBgfNiw-P36AbkjlX93QDGxZ-piL1So7Ky-pCTG15MEbF6mn3n8SN_49_TWyUiNNp1uZxjqZM6MNsvyJf3CDbPemZW4gWu_zfJPQbvGU5cg4cK-cG4PFD9hjwsms08eW069vmBqWPeZnTtepwgtbZHDRuzu_dOvuCm7CoqBwNXr_NFRMA-iI4CnV1EY24VprpLnTvjJSKOEnQlstIyuEoaJjKE8pMypi22RhlI3MLnFSX6RaA1Lz4b4I9xkZaCp8DdAgMlbJsEWOQQ1xvTvyuAx8006ML0E3ca2bFvEmaxKrmqEcG2U8zh5w0gx4rsg5Zou2J4s8nQcS8WDcmYsWOWo-w_7CoEkyMtm4lAFQzCNf_iIDDh4MkKHMTmVAzXwYMt4xGez9Twf7ZIligUWZ5dYmC8XL2BwA7CnSw9LgPwCw4_xY |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9tAEB4hOLQceLVAgFJXohIXB2f92DUSh4iCQiEcCki5ufY-JATECDvi8Wv4K_wzZhzbKVSpekHiZq1nrfXO7Dw0s98AbARCxswYxzZJYGxPe9KOpecjQ7RyRewzZSij2z0OOmfez57fm4DH6i4MLiLDL2VFEn-ELtDaojHUk82WJDTVqozyUN_fYpCW7Rz8QI5-Z2x_73S3Y5d9BOzYDb3cVmTnEl-6Cs1riE-JYiY0caCUIkA35UgtuOROzJVRIjSca8ZbmgUJc7UkuCVU8lPo-jAK79q7J7WuRwdeVD0SQjfo1eBBfy2YrJ_MXlq_MS5tYdr2Z-Gp3pSiouWiOciTpnx4hRf5nndtDmZKv9pqDw_CPEzo_gJM_4G2uACLe6NLfUhaarXsE7B2fpVmhK9wLq1fmq56UEcNKzVWlxps391TIVx6mW1bbWuYTPkMZ2_yN4sw2U_7ehmsxOGJUuiXOhgdY_QmPMW4o9ARCrWRwm_ABm57VOqCLCrS_KwV0SDyIip50YBmJQqRLPHYqS3I5fgJm_WE6yEUyXjStUq2Rusg2CHKsge8Ad_q16hNKEUU93U6KGgwBAhCR_yDBt0ZlHuXaJaGcluvxyV8P1d4K_-3B1_hQ-e0exQdHRwfrsJHRldLivq-NZjMbwb6Czp8ebJenDkLfr-1uD4DWUpgoQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1ZS-RAEC5EYdGH1dV1HY81Cy74ktlM5-iO4MOgDroeyLrCvMWkD5Cdncgmg8fv8a_4v6zKJHFVRnwRfAud6tDpqq6Dqv4KYC0QMmbGOLZJAmN72pN2LD0fGaKVK2KfKUMZ3cOjYPfU-9n1u2NwW92FwUVk-KWsSOLTqb5QpkQYaP2gcdSVzZYkRNWqlHJfX19ioJZt7m0jV78z1tn5vbVrl70E7NgNvdxWZOsSX7oKTWyIT4liJjRxoJQiUDflSC245E7MlVEiNJxrxluaBQlztSTIJVT0E5QkpBCvvXVS63t04kXVJyF0g24NIPRswWQBZfbYAo5wawvz1pmGu3pjiqqWP81BnjTlzRPMyPe-czPwsfSvrfbwQHyCMd2fhan_UBdnYX7n4XIfkpbaLZsD1s7_phnhLJxL65emKx_UWcNKjXVIjbavrqkgLu1lG1bbGiZVPsPpm_zNPIz3075eACtxeKIU-qcORskYxQlPMe4odIhCbaTwG7CG2x6VOiGLinQ_a0U0iLyISl40oFmJQyRLXHZqD9IbPWG9nnAxhCQZTbpcydfDOgh-iLLtAW_At_o1ahVKFcV9nQ4KGgwFgtARL9CgW4Oy7xLNl6Hs1utxCefPFd7i6_ZgFT4cb3eig72j_SWYZHTDpCjzW4bx_N9Ar6Dflydfi2NnwdlbS-s99aZjJA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atmospheric+Reactivity+of+Methoxyphenols%3A+A+Review&rft.jtitle=Environmental+science+%26+technology&rft.au=Liu%2C+Changgeng&rft.au=Chen%2C+Dandan&rft.au=Chen%2C+Xiao%27e&rft.date=2022-03-01&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.volume=56&rft.issue=5&rft.spage=2897&rft_id=info:doi/10.1021%2Facs.est.1c06535&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |